WO1996021523A1 - Process for imparting liquid repellency to metal surface and ultra-liquid-repellent metal material - Google Patents
Process for imparting liquid repellency to metal surface and ultra-liquid-repellent metal material Download PDFInfo
- Publication number
- WO1996021523A1 WO1996021523A1 PCT/JP1996/000024 JP9600024W WO9621523A1 WO 1996021523 A1 WO1996021523 A1 WO 1996021523A1 JP 9600024 W JP9600024 W JP 9600024W WO 9621523 A1 WO9621523 A1 WO 9621523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- water
- uneven structure
- repellent
- metal material
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
- B05D5/083—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
Definitions
- the present invention relates to a method for imparting liquid repellency to a metal surface, and in particular, to products requiring liquid repellency, for example, kitchen products such as tables, trays, sinks, bulletin boards such as road signs, and electronic products for mobile phones.
- the present invention relates to a method for imparting liquid repellency which can be applied to the surface treatment of metal surfaces such as fins for heat exchangers and flowing liquid tubes.
- the present invention also relates to the application of the metal material imparted with water repellency as described above to a snow-resistant / ice-resistant material and an anti-snow material against ice and snow. Background art
- an object of the present invention is to provide a method capable of imparting high liquid repellency to a metal surface at low cost and simply. Disclosure of the invention
- liquid repellency was improved by forming a multi-period structure including a long-period uneven structure and a small-period uneven structure in the structure.
- the metal having the super water-repellent surface when placed on an ice-snow surface, it has extremely high frictional properties, very little icing or snow accretion on the surface, and when the temperature rises to zero degrees Celsius or higher, ice and snow may be generated.
- the present inventors have found that water does not cover the surface even when it is melted, does not damage the road surface or floor surface, and is an ideal anti-snow and anti-slip metal material, thus completing the present invention.
- the present invention is characterized in that a liquid-repellent substance is coated on all or a part of a metal surface having a fine uneven structure on the surface and having a contact angle with water of 30 ° or less.
- the present invention provides a method for imparting liquid repellency to a metal surface.
- the present invention is characterized in that a metal surface having a fine uneven structure on the surface and a contact angle with water of 30 ° or less has a super water-repellent surface coated with a water-repellent substance.
- the present invention provides a super-water-repellent metal material.
- the present invention is characterized by having a super-water-repellent surface formed by coating a water-repellent substance on a metal surface having a fine concavo-convex structure and having a contact angle to water of 30 degrees or less. It provides a snow-resistant and ice-resistant metal material.
- the present invention is characterized in that it has a super-water-repellent surface formed by coating a water-repellent substance on a metal surface having a fine uneven structure and a contact angle to water of 30 degrees or less.
- the present invention provides an anti-skid metal material for ice and snow.
- the present invention provides a method for imparting liquid repellency to a metal surface, which comprises coating a fluoroalkyl phosphate compound on all or a part of the metal surface. Is what you do.
- the present invention provides a super lyophobic metal material having a super lyophobic surface coated with a fluoroalkyl phosphate compound on the metal surface.
- FIG. 1 are diagrams showing a configuration of a main part of the contact angle measuring device and a contact angle.
- FIG. 2 is a scanning electron micrograph of the acid-treated zinc plate surface in the example of the present invention.
- FIG. 3 is a scanning electron micrograph of a surface of an aluminum plate that has been subjected to a heat treatment in an example of the present invention.
- FIG. 4 is a scanning electron micrograph of the surface of a zinc plate in a cathode subjected to electrolysis treatment in an example of the present invention.
- FIG. 5 is a scanning electron micrograph of the surface of an aluminum plate at the anode subjected to electrolysis treatment in the example of the present invention.
- FIG. 6 is a diagram showing the shape of snow or ice used in the snow resistance test and the ice resistance test.
- FIG. 7 is an explanatory diagram showing a method for testing snow resistance and ice resistance.
- FIG. 8 is a diagram showing the shape of a metal plate used for measuring slipperiness on ice and snow.
- FIG. 9 is a diagram showing the ice and snow surface preparation container used for the slip property measurement.
- FIG. 10 is a scanning electron micrograph of the surface of a zinc plate in a cathode subjected to electrolysis treatment in Example 8.
- FIG. 11 shows the results of dysman plotting of the contact angles of the zinc plate obtained in Example 8 with various liquids.
- FIG. 12 is a scanning electron micrograph of the surface of the aluminum plate at the anode subjected to the electrolysis treatment in Example 9.
- FIG. 13 shows the results of dismantling the contact angles of the aluminum plate obtained in Example 9 with various liquids.
- lyophobic refers to a case where the contact angle of a metal surface with a liquid is larger than 90 degrees, and such a surface is called a lyophobic surface.
- the object of the present invention is not necessarily limited to a surface to which water adheres, but is also applied to increase a contact angle with a liquid containing alcohol, oil, and surfactant.
- the liquid-repellent substance used in the final coating treatment of the metal surface is a substance having a contact angle of more than 90 degrees with respect to the liquid.
- the contact angle to water is 30 degrees or less.
- the actual surface area per cm 2 of the uneven structure in plan view is sufficiently large. Is generally preferred.
- the liquid repellency is not improved.
- the liquid repellency is affected by the density of the actual surface near the very surface of the uneven structure that can come in contact with the droplets, that is, the actual surface area per unit volume. It is preferred.
- the height of the fine uneven structure on the surface is preferably 800 m or less, more preferably 300 m or less, and particularly preferably 30 um or less.
- the actual surface area per cm 2 of the concavo-convex structure in plan view is large, specifically, 3 cm 2 or more.
- the actual surface area of the uneven structure is preferably less than 2 Ocm 2 .
- the contact ratio of the irregular surface i.e. the contact area of the concavo-convex structure when addressed a smooth rigid on its uneven surface, rigid surface 1 cm 2 per 0.2 cm 2 or less.
- the actual surface area refers to the surface area measured by the BET method.
- This BET method uses the BET adsorption formula proposed by S. B runauer, PH Emmett and E. Telel, based on the adsorption of gas molecules (nitrogen gas, krypton gas) on a solid surface. How to calculate the surface area of a solid It is. The height, width and contact area of the uneven structure were measured by image analysis from a cross-sectional SEM photograph of the solid.
- the range of the width and height of the fine uneven structure formed on the metal surface is 1 to 800 m, more preferably 1 nm to 300 m, especially 50 to 30 m.
- the structure need not be uniform.
- the shape of the concavo-convex structure is not particularly limited, and may be any of scaly, prismatic, cylindrical, pyramidal, conical, and needle-like.
- a fractal structure or a self-fine structure having a fractal dimension of two or more and less than three dimensions, which is formed by complicatedly combining those shapes, may be used.
- the method for producing such a hydrophilic metal surface and it may be an artificially processed one or a naturally existing one.
- methods of artificially processing include (1) a method of polishing or cutting the metal surface, (2) a method of immersing the metal surface in an acid or alkaline solution, and (3) a method of polishing the metal. (4) a method using metal as an electrode and utilizing electrolysis, and (5) a method based on metal structure.
- Specific examples of the above (1) include a method of sanding with sandpaper or metal file, a method of sand blasting, or a method of cutting a V-groove or a cross hatch on a metal surface with a cutter.
- the method (2) can be implemented, for example, by the following steps. Mix an acid such as hydrochloric acid and water, adjust the concentration to an appropriate pH between pH 1 and 6, immerse the target metal plate in this solution, and hold it at a specified temperature for a specified time As a result, a fine uneven structure is formed on the metal surface.
- an alkali sodium hydroxide or the like is mixed with water, the concentration is adjusted to an appropriate pH between pH 8 and 14, and the target metal plate is immersed in this solution. By holding at a predetermined temperature for a predetermined time, a fine uneven structure is formed on the metal surface.
- the method (4) there is a method in which a target metal plate is immersed in an electrolyte solution as an anode or a cathode, and a predetermined voltage is applied between both electrodes at a predetermined temperature for a predetermined time. At this time, a method of forming a concavo-convex structure by eluting metal from the target metal plate And a method of forming a concavo-convex structure by depositing a metal or other substance in an electrolyte solution on a target metal plate. Examples of the former include electrolytic polishing, and the latter include electroplating and electrodeposition coating.
- the above method (5) can be carried out, for example, by the following steps: a liquid having a target metal heated to above its melting point and melted in a mold having fine irregularities on the c surface. By pouring it into metal, and then cooling and solidifying it, it is possible to obtain a metal surface with the ⁇ -shaped fine uneven structure transferred to the surface.
- the metal used in the present invention is not particularly limited as long as a fine uneven structure is formed by the above-mentioned processes (1) to (5).
- the metal used in the above-mentioned processes (2) to (4) is not particularly limited. Suitable metals include zinc, nickel, iron, aluminum or their alloys, stainless steel and the like.
- a liquid-repellent surface can be obtained by coating such a hydrophilic metal surface with a liquid-repellent substance.
- the thickness of the coating layer at this time is not particularly limited as long as it does not eliminate fine irregularities on the surface, and is preferably 100 nm or less.
- a heat-proof treatment such as chromate treatment can be performed prior to or simultaneously with the treatment with these liquid repellent substances.
- the liquid-repellent substance used in the present invention may be any substance that has a hydrophobic group or the like by reacting with a functional group (for example, a hydroxyl group) on a metal surface, and is not limited.
- a functional group for example, a hydroxyl group
- the c- silane coupling agent include a coupling agent, a titanate-based coupling agent, an aluminum-based coupling agent, an isocyanate-based coupling agent, and a zirconium-based coupling agent.
- Examples include trichloroalkylsilanes of the formula (1), trimethoxyalkylsilanes of the formula (2), and triethoxyquinalkylsilanes of the formula (3).
- n is an integer of 6 to 20.
- a reaction part reacting with a functional group on the metal surface (C 1 group, ⁇ CH 3 group, respectively) , OC 2 H 5 groups) and one water-phobic part (long-chain alkyl group) for imparting water repellency.
- a functional group on the metal surface C 1 group, ⁇ CH 3 group, respectively
- OC 2 H 5 groups a water-phobic part
- the structure of the hydrophobic part may be different.
- some or all of the hydrogen atoms in the hydrophobic portion may be replaced by fluorine atoms, as in the alkyltrichlorosilane fluoride represented by the following formula (4).
- titanate-based coupling agents are not limited to the following examples, and typical ones are isopropylpropylisostearoyl titanate, isopropyltrioctynol titanate, and isopropyl alcohol represented by the following formula (5).
- Aluminum-based coupling agent examples include an acetoalkoxyaluminum diisopropylate represented by the following formula (6).
- the treatment using the silane coupling agent is performed, for example, as follows.
- a mixture of hexadecane and a mixture of formaldehyde and carbon tetrachloride is dried over molecular solvent, and an appropriate amount of a silane coupling agent is added to the dried solvent to obtain a treatment solution.
- the treatment is carried out by immersing a metal having a concavo-convex structure in a dry atmosphere at an appropriate temperature for a predetermined time. After immersion, wash with black mouth form and water and dry.
- the treatment using a titanate-based coupling agent or an aluminum-based force-binding agent is performed, for example, as follows. Toluene is dried with a molecular sieve or the like, and an appropriate amount of a titanate-based coupling agent or an aluminum-based coupling agent is added to the dried toluene to obtain a treatment solution.
- the treatment is carried out by immersing a metal having an uneven structure at a suitable temperature for a predetermined time in a dry atmosphere. After immersion, wash with an appropriate organic solvent or an aqueous solution containing an activator for washing, wash with water and dry under appropriate conditions.
- a fluoroalkyl phosphate compound is used as a coating agent.
- excellent liquid repellency can be obtained even when the metal surface is smooth or has a fine uneven structure as described above.
- the contact angle is larger than 90 degrees, the contact angle is further increased, and when the contact angle of the droplet on the flat solid surface is less than 90 degrees, the contact angle is further decreased.
- a mono (fluoroalkyl) phosphate, a di (fluoroalkyl) phosphate or a salt thereof is preferable, and a mono (C 6 -C 36 fluoroalkyl) is particularly preferable.
- Phosphate esters, di (C 6 -C 36 fluoroalkyl) phosphate esters or salts thereof are preferred. More specifically, a monofluoroalkyl phosphate represented by the following general formula (7)
- R f represents a linear or branched fluoroalkyl group
- X represents any one of a hydrogen atom, an alkali metal, an alkaline earth metal, ammonia, and an alkylammonium having 1 to 4 carbon atoms.
- the linear or branched fluoroalkyl group represented by R f has 6 to 36 carbon atoms from the viewpoint of ease of synthesis, and further has 8 to 36 carbon atoms from the viewpoint of liquid repellency.
- R may be a perfluoroalkyl group composed of only carbon atoms and fluorine atoms, or a fluoroalkyl group in which a part of hydrogen is replaced by fluorine.
- the proportion of fluorine is large, and it is particularly preferable that the terminal group is a CF 3 — group.
- Examples of the alkali metal represented by X include sodium, potassium, rubidium, cesium, and the like.
- Examples of the alkaline earth metal include calcium, potassium, stomium, and the like.
- Examples of the alkylammonium (4) include monomethylamine, dimethylamine, trimethylamine, monoethylamine, dimethylamine, triethylamine, monopropylamine, dipropylamine, tripropylamine and the like and proton. Alkyl ammonium formed. From the viewpoints of stability and easiness of treatment, X is most preferably a hydrogen atom.
- a coating method using a c -fluoroalkyl phosphate compound for example, (1) a fluoroalkyl phosphate compound (2) a method of applying the treatment liquid directly to the metal surface, (3) a method of immersing a piece of metal in the treatment liquid and applying a voltage between them.
- a method of applying the voltage to perform electrolysis is exemplified.
- the solvent used in this treatment liquid is not particularly limited as long as it is a solvent that can dissolve the fluoroalkyl phosphatase, and examples thereof include alcohol, ether, and fluorocarbon.
- the fluoroalkyl phosphoric acid ester is usually incorporated in an amount of 0.01 to 50% by weight, preferably 0.1 to 10% by weight.
- the method (1) can be carried out, for example, by adsorbing the fluoroalkyl phosphate on the metal surface by holding the metal plate in the above-mentioned treatment solution at a predetermined temperature for a predetermined time. .
- the above treatment liquid is directly applied to a metal surface with a brush, a brush, or the like, or is sprayed or sprayed on a metal surface, and then the metal is exposed to air.
- the method (3) which can be carried out by allowing the solvent to evaporate after standing for a predetermined period of time, can be performed, for example, by treating the above-mentioned processing solution with the metal to be provided with liquid repellency as the positive electrode and the other metal as the negative electrode. Immersed, prescribed voltage between both electrodes at prescribed temperature at prescribed temperature
- the application can be carried out by adsorbing fluoroalkyl phosphate ester on the metal surface on the anode side by applying for a time.
- the metal material obtained as described above has excellent liquid repellency (especially water repellency), and is useful as a material requiring various liquid repellencies.
- the metal material of the present invention has sufficient mechanical strength, is inexpensive, and has excellent resistance to snow and ice, and is suitable for shelves, luggage, antennas, and capes in a freezing warehouse. It can be widely used as a material for saws, steel towers, jigs for civil engineering machinery, houses and roofs.
- the frictional force is significantly reduced on frozen ground in cold regions, snowy surfaces in snowy countries, and frozen floors in refrigeration warehouses. It is dangerous because people fall down when walking. In order to prevent such dangers, it has been a conventional method to create an uneven structure on a solid surface in order to increase the frictional force between the contacting surfaces. In extreme cases, spikes and needle-like projections are formed on the soles of the shoes to prevent slippage on ice and snow.
- the anti-skid anti-slip metal material of the present invention despite having no sharp projections, produces high friction on the ice and snow surface, so that shelves, luggage, shoes, and vehicles in a freezing warehouse can be used. It can be used as an anti-slip material for surfaces that come in contact with metal such as ice or snow such as a ring. Further, icing and snow accretion on the surface of the metal material of the present invention are extremely small, and even if the temperature becomes zero degrees Celsius or higher and the ice and snow melts, water does not cover the surface, and the road surface and floor surface are damaged. Absent.
- liquid-repellent metal surface obtained according to the present invention is used for the air-side heat transfer surface of a heat exchanger such as an air conditioner or a refrigerator, a frost formation phenomenon can be suppressed for a long time. As a result, the reduction in heat exchange efficiency due to frost formation can be reduced.
- liquid-repellent metal surface obtained by the present invention is used as a contact surface with a liquid of a pipe (flowing pipe) through which liquid flows, such as a water pipe or a funnel, the flow of the liquid is reduced.
- a pipe flowing pipe
- a flow tube that is fast and free of liquid after use can be obtained.
- Coupling is performed by mixing 300 g of hexadecane (manufactured by Tokyo Chemical Industry), 30 g of carbon tetrachloride (manufactured by Kanto Chemical Co., Ltd.), and 30 g of Kuroguchi Holm (manufactured by Kanto Chemical Co., Ltd.). Add about 1 g of 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane to the solvent dehydrated with molecular sieve 3A, and immerse the zinc plate in a dry nitrogen atmosphere at room temperature for 12 hours. By I went. After the coupling treatment, the membrane was washed twice with a black-mouthed form 300, air-dried, further washed with water, and air-dried.
- the contact angle of the metal surface to distilled water was measured using an optical contact angle meter (CA-A, manufactured by Kyowa Interface Science Co., Ltd.). That is, as shown in FIGS. 1 (a) and 1 (b), test sample 1 was placed on sample stage 2 of the above-mentioned optical contact angle meter, and distilled water was poured into syringe 3 for dropping droplets. A droplet 4 having a diameter of l mm was formed at the tip of the needle of the nozzle 3. The gap between the liquid drop 4 and the test sample 1 was maintained at about 1 cm, and the syringe 3 was vibrated to drop the drop 4 at the needle tip onto the test sample 1. After dropping the droplet 4, the contact angle (0) between the droplet 4 and the test sample 1 was measured.
- CA-A optical contact angle meter
- the contact angle of water on a flat zinc plate was 79 degrees, but by polishing the zinc plate with a paper file, the contact angle to water was reduced to 29 degrees, resulting in a hydrophilic surface.
- a water-repellent surface having a contact angle to water of 141 degrees was obtained.
- the contact angle with water was only 105 degrees, and sufficient water repellency was not obtained.
- the height of the irregularities on the surface of the zinc plate is 1 ⁇ m or less, the width is 300 ⁇ m or more, the actual surface area per 1 cm 2 in plan view is 1.0 to 1.2 cm 2 , and the contact area was 0.6 cm 2 or more.
- a zinc plate (manufactured by Niraco) having a size of 30 cm x i 0 cm and a thickness of 0.3 was immersed in an aqueous solution adjusted to pH 3 with hydrochloric acid at room temperature for 3 days.
- a fine concave-convex structure was formed as shown in FIG. Height 2-5 0 ⁇ m of this concavo-convex structure, the width 0. 5 to 2 5 // m, the actual surface area per 1 cm 2 in plan view 1 6. 2 cm 2, the contact area is 0. It was 0.43 cm 2 .
- the surface was made liquid-repellent by a cutting treatment using octyl decyltrichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.).
- the coupling treatment was performed by mixing 300 g of hexadecane (Tokyo Kasei Co., Ltd.), 30 g of carbon tetrachloride (Kanto Chemical Co., Ltd., special grade), and 30 g of Kuroguchi Holm (Kanto Chemical Co., Ltd., special grade).
- dehydrating the solvent with molecular sieve 3 A Approximately 1 g of decyltrichlorosilane was added, and the zinc plate was immersed in the treatment solution for 12 hours in a dry nitrogen atmosphere at room temperature. After the treatment, the membrane was washed twice with a black form 300 and air-dried at room temperature. After drying, the sample was washed with water and air dried again at room temperature.
- the contact angle of the zinc plate sample thus obtained with water and glycerin was measured using an optical contact angle measuring device (CA-A type, manufactured by Kyowa Interface Science Co., Ltd.).
- the contact angle of water on a flat zinc plate was 79 degrees, but by immersing it in acid, the contact angle with water was reduced to 16 degrees, resulting in a hydrophilic surface.
- silane coupling treatment a liquid-repellent surface having a contact angle of 160 degrees with water and a contact angle of 155 degrees with glycerin was obtained.
- the surface was made water-repellent by a coupling treatment using isopropyltriisostearoyl titanate (variety: KR-TTS, manufactured by Ajinomoto Co.). Coupling is performed using toluene (special grade, manufactured by Wako) dehydrated using molecular sieve 3A (manufactured by Wako). 5 g were mixed, and an aluminum plate was immersed in the treatment liquid at a temperature of 100 ° C. for 5 hours. After the coupling treatment, the membrane was washed twice with toluene ⁇ , dried at room temperature, further washed with water, and air-dried at room temperature.
- KR-TTS isopropyltriisostearoyl titanate
- the contact angle of the aluminum sample thus obtained with water was measured using an optical contact angle measuring device (CA-A type, manufactured by Kyowa Interface Science Co., Ltd.).
- the contact angle of water on a flat aluminum plate was 70 degrees, but by immersing it in an alkaline solution, the contact angle with water was reduced to less than 3 degrees, and the hydrophilicity was reduced.
- Surface By treating the hydrophilic surface with a titanate-based coupling agent, A water-repellent surface having a contact angle of 158 degrees was obtained.
- An iron plate (manufactured by Niraco Co., Ltd.) with a size of 30 cm, 10 cm and a thickness of 0.3 cm is immersed in a 3% by weight saline solution, taken out, and left in the air for 2 weeks to corrode the surface.
- fine uneven structure (height 2 to 20 ⁇ 1, width 0.5 to 30 / m, actual surface area per 1 cm 2 in plan view 13.7 cm 2 , contact area 0.0 0.5 cm 2 ) was formed and subjected to a coupling treatment using octadecyl trichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) to make the surface water-repellent.
- the coupling treatment is performed by mixing 300 g of hexadecane (manufactured by Tokyo Chemical Industry), 30 g of carbon tetrachloride (manufactured by Kanto Chemical Co., special grade), and 30 g of Kuroguchi Form (manufactured by Kanto Chemical Co., Ltd.). Approximately 1 g of octyl decyl trichlorosilane was added to the solvent dehydrated with molecular sieve 3A, and the steel plate was immersed in a dry nitrogen atmosphere at room temperature for 12 hours. After the coupling treatment, the membrane was washed twice with a black-mouthed form 300 and air-dried.
- the contact angle of the iron plate sample thus obtained with water was measured using an optical contact angle measuring device (CA-A type, manufactured by Kyowa Interface Science Co., Ltd.). Although the contact angle of water on a flat iron plate was 83 degrees, the natural corrosion of the water reduced the contact angle to water to less than 3 degrees, resulting in a hydrophilic surface. By treating the hydrophilic surface with a silane-based coupling agent, a water-repellent surface having a contact angle to water of 160 degrees was obtained.
- the liquid repellency was achieved by a coupling treatment using octadecyl trichlorolanne (manufactured by Tokyo Chemical Industry Co., Ltd.).
- the coupling treatment is performed by mixing 300 g of hexadecane (manufactured by Tokyo Kasei Co., Ltd.), 30 g of carbon tetrachloride (manufactured by Kanto Chemical Co., Ltd., special grade), and 30 g of Kuroguchi Form (manufactured by Kanto Chemical Co., Ltd., special grade).
- the contact angle of the zinc plate sample thus obtained with water and glycerin (Kanto Chemical Co., Ltd., special grade) wetting index standard solutions No. 54 and No. 48 (Wako Co., Ltd.) was determined by the optical contact angle.
- the measurement was performed using a measuring device (manufactured by Kyowa Interface Science Co., Ltd., CA-A type).
- the contact angle of water on a flat zinc plate was 79 degrees, but by electrolyzing it, the contact angle with water was reduced to less than 3 degrees, resulting in a hydrophilic surface.
- a silane coupling agent By treating the hydrophilic surface with a silane coupling agent, a lyophobic surface having contact angles with various liquids shown in Table 1 was obtained.
- Table 1 Water Glycerin Wetting Index Standard Solution Wetting Index Standard Solution
- Example 5 two pieces of Lumidium (manufactured by Niraco Co., Ltd.) of size 3 Ocm x 10 cm and thickness 1 were used instead of the zinc plate, and 25 N-sulfuric acid 5 was used instead of the aqueous zinc chloride solution. Except for using a mixture of 1 liter of ion-exchanged water, installation was performed in the same manner as in Example 5, and an electrode current density of 1 OmAZcm was obtained using a stabilized DC power supply (manufactured by Instek, Inc., GPS-3300). 2 for 3 hours. As a result, aluminum was eluted from the aluminum plate surface of the anode, and a fine uneven structure was formed on the surface.
- a stabilized DC power supply manufactured by Instek, Inc., GPS-3300
- the liquid repellency was achieved by a force ring treatment using 1 H, 1 H, 2 H, 2 H-perfluorooctyl trichlorosilane (manufactured by PCR).
- Coupling treatment is as follows: Hexadecane (Tokyo Kasei) 300 g, carbon tetrachloride (Kanto Chemical Co., special grade) 30 g, Kuroguchi Holm (Kanto Chemical Co., special grade) 30 g About 1 g of 1 H, 1 H, 2 H, 2 H-perfluorooctyl trichlorolane was added to the solvent mixed and dehydrated with 1 A sieve 3 A, and the aluminum plate used as the anode was dried at room temperature.
- the contact angle of water on a flat aluminum plate was 70 degrees, but by electrolyzing it, the contact angle with water was reduced to less than 3 degrees, resulting in a hydrophilic surface. .
- a silane coupling agent By treating the hydrophilic surface with a silane coupling agent, a lyophobic surface having contact angles with various liquids shown in Table 2 was obtained. Table 2
- the ice used for the evaluation of ice resistance was a block-shaped ice with a side of 2 cm (ice machine; manufactured by HOSH I ZAK I, manufactured by IM-200 DWJ). As shown in Fig. 6, a slice of ice, crushed to a maximum length of 1 cm, was used.
- a slice of ice, crushed to a maximum length of 1 cm was used.
- natural snow Fukushima Prefecture, Taikura Ski Resort
- the super-hydrophobic zinc plate obtained as described above is placed horizontally on the ground as shown in Fig.7. Then, snow or ice 1 is placed on sample plate 2 and sample plate 2 is gradually tilted. Then, the angles 0 SI and P at which the snow or ice 1 started to slide were recorded.
- the water-repellent zinc plate obtained as in Example 2 is horizontally placed on the ground as shown in FIG. After that, snow or ice 1 is placed on the sample plate 2, and the sample plate 2 is gradually tilted. Then, the angle at which snow or ice 1 starts to slide 0 S 11 . was recorded. Under the temperature of 5 C, the block ice started to slide at 24 degrees in S S ,, P. 0 SI , P slipped at 24 degrees on the salmon ice, and S sll P against snow (temperature of 2 ° C) was 20 degrees. I went there, block ice And 0 sli P for snow ice is 50 degrees or more, and 0 sli P for snow is 90 degrees.
- the water-repellent aluminum plate obtained as in Example 3 is horizontally placed on the ground as shown in FIG. After that, snow or ice 1 is placed on the sample plate 2, and the sample plate 2 is gradually tilted. Then, the angles 0 SI and P at which the snow or ice 1 started to slide were recorded. Under the condition of a temperature of 1-5 ° C, the block ice started to slide at 24 degrees in S S 1 and P. 0 sli P slipped at 24 degrees on the Zarame ice, and 0 sli P for snow (temperature 2 ° C) was 20 to 22 degrees. As a comparative example, a similar experiment was performed on an untreated flat aluminum plate. As a result, 0 sli P for block ice and flounder ice was 50 degrees or more, and 0 sli P for snow was 90 degrees.
- the water-repellent iron plate obtained as in Example 4 is horizontally placed on the ground as shown in FIG. Then, snow or ice 1 is placed on sample plate 2 and sample plate 2 is gradually tilted. Then, the angle at which snow or ice 1 starts to slide is 0 sll . Was recorded. At a temperature of 15 ° C, the block ice began to slide at 0 sli P at 16-17 ° C. 0 sl , P slipped at 16 to 17 degrees on the salam ice, and 0 SI , P for snow (temperature 2 ° C) was 16 to 20 degrees. As a comparative example, a similar experiment was performed on an untreated flat iron plate, and the value of 0 sli P for block ice and flounder ice was 60 degrees or more, and that for snow was 90 degrees.
- the water-repellent zinc plate obtained as in Example 5 is placed horizontally on the ground as shown in FIG. After that, snow or ice 1 is set on the sample plate 2, and the sample plate 2 is gradually tilted. Then, the angles S SI , P at which the snow or ice 1 started to slide were recorded. At a temperature of 5 ° C, the block ice began to slide at 25 s with 0 sli P.
- the water-repellent aluminum plate obtained as in Example 6 is horizontally placed on the ground as shown in FIG. After that, snow or ice 1 is placed on the sample plate 2, and the sample plate 2 is gradually tilted. Then, angles 0 S 1 and P at which the snow or ice 1 starts to slide are recorded. Under the condition of a temperature of 1-5 ° C, the block ice started sliding at 0 sli P at 23 degrees. At Zara main ice Suberidashi at 0 sli P 2 three times, 0 sll P against the snow (air temperature 2 ° C) was 1. 6 degrees.
- the microstructure before the silane coupling treatment was applied, and a similar experiment was performed on the hydrophilic surface.At a temperature of 15 ° C, S sli P for block ice was 50 ° C. On the other hand, 0 sli P for the salmon ice was 90 degrees, which means that the snow- and ice-resistance requires a fine structure on the surface and a chemical water-repellent treatment on the surface.
- the water-repellent aluminum plate created in Example 6 was installed at an angle of 60 degrees with respect to the ground (Kao Corporation, at the site of Sakata Plant, at a temperature of 1), and the snow accumulation on the surface was checked. investigated. As a result, it was found that snow slipped off the surface of the water-repellent aluminum very quickly, and did not go off. As a comparative example, a similar experiment was performed on an aluminum plate obtained by performing coupling 'treatment on flat aluminum, and it was found that snow adhered to one surface.
- the super-water-repellent zinc plate obtained as in Example 1 was bent at a length of 25 cm as shown in FIG. 8, and further placed in a container shown in FIG. 9 with block ice (2 cm square) and coarse ice (length lcm) or put snow and put a super water-repellent zinc plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about lcm in length), or snow, and the angle at which the super water-repellent zinc plate starts to slide 0 S 1 , P On the ice (5 ° C), 0 sli P started to slide at 20 to 30 degrees. On coarse ice (temperature 5 ° C), 0 sll P slipped at 33 degrees, and on snow (temperature 2 degrees), it slipped even at the measurement limit of 80 degrees.
- the super-water-repellent zinc plate obtained as in Example 2 was processed as shown in FIG. 8, and further placed in a container shown in FIG. 9 in the form of block ice (2 cm square), coarse ice (about 1 cm in length), or Put snow in it and place a super water-repellent zinc plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about l cm in length), or snow, and the angle at which the super-water-repellent zinc plate starts to slide 0 sl , ⁇ As a result, on ice (temperature 5 ° C), ⁇ sli P started to slide at 20 to 30 degrees. On coarse ice (temperature 5 ° C), 0 sli P started to slip at about 30 ° C, and on snow (temperature 2 ° C), it did not slip even at the measurement limit of 80 ° C.
- the super-water-repellent aluminum plate obtained as in Example 3 was processed as shown in FIG. 8, and further placed in a container shown in FIG. 9 in block ice (2 ( ⁇ square), coarse ice (length 1 cm). ) Or snow, put a super water-repellent aluminum plate on top of it, and gradually remove the container with block ice (2 cm square), coarse ice (about lcm in length), or snow. tilt go, angle S when the super water-repellent aluminum plate begins to slip
- the super-water-repellent iron plate obtained as in Example 4 was processed as shown in FIG. 8, and further, block ice (2 cm square), coarse ice (about lcm in length), or snow was placed in the container shown in FIG. Put the super water-repellent iron plate on this. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about lcro in length), or snow, and measure the angle 0 S 1 , P when the super water-repellent iron plate starts to slide. However, on ice (temperature 5 ° C), s , i P began to slip when the temperature exceeded about 30 degrees. Even on coarse ice (temperature 5 ° C), S SI and P started to slide at 30 ° C, and on snow (temperature 2 ° C), they did not slip even at the measurement limit of 80 ° C.
- the super-water-repellent zinc plate obtained as in Example 5 was processed as shown in FIG. 8 and further placed in a container shown in FIG. 9 in block ice (2 cm square), coarse ice (about lcm in length), or Put snow in it and place a super water-repellent zinc plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about 1 cm long), or snow, and set the angle 0 S when the super water-repellent zinc plate starts to slide. As a result of measurement, on ice (temperature 5 ° C), it started to slip at e sl , P or 30 degrees. Even on coarse ice (temperature 5 ° C), 0 sli P starts to slide at 30 degrees, and on snow (temperature At 2 ° C), it did not slip even at the measurement limit of 80 degrees.
- S sli P was 7 degrees on coarse ice and 0 sli P was 10 to 12 degrees on snow.
- a similar test was performed on a hydrophilic zinc plate having a microstructure, and although the value of 0 sli P was large and had an anti-slip effect, ice and snow adhered to the surface. Les, there was a practical problem.
- the super-water-repellent aluminum plate obtained as in Example 6 was processed as shown in FIG. 8, and further placed in a container shown in FIG. 9 with block ice (2 cm square) and coarse ice (about 1 cm long). ) Put snow or snow and put super water-repellent aluminum plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about 1 cm in length), or snow, and set the angle 0 S , 1 P when the super water-repellent aluminum plate starts to slide. was measured on ice (temperature one 5 ° C) in 0 S li P began slipping in 2 8 °. Coarse ice (temperature one 5 ° C) at 0 S,, P is Suberidashi 3 twice, snow (temperature 2 ° C) in an even slip et become 8 0 degrees is the measurement limit Kaka ivy.
- the mixture was placed in a reaction flask, mixed, heated to 70 ° C., and mixed for 12 hours. After cooling the reaction mixture to 60 ° C., 17 g of water was added and hydrolysis was carried out at 70 for 8 hours. After cooling to 30 ° C, getyl ether 350; ⁇ , water 18 and ethanol 70 mil were added, and the mixture was shaken to extract phosphoric acid into the lower layer.
- the liquid repellency treatment of the OH metal surface was performed as follows. Smooth aluminum plate, stainless steel plate 18 and zinc plate (manufactured by Nikola) with a size of 10 cm x 5 cm and a thickness of 1. Omm are immersed in a 2.0 wt% ethanol solution of compound 7a for 1 week at room temperature. After washing with ethanol, it was dried.
- the contact angle of the metal surface with respect to the liquid was measured using an optical contact angle meter (CA-A, manufactured by Kyowa Interface Science Co., Ltd.). That is, as shown in FIGS. 1 (a) and 1 (b), test sample 1 was placed on sample stage 2 of the above-mentioned optical contact angle meter, and the liquid was poured into syringe 3 for dropping liquid by 0.5 m. Then, a droplet 4 was formed at the tip of the syringe 3. The syringe 3 was slowly moved downward, and the droplet 4 was brought into contact with the test sample 1, and vibration was applied to place the droplet 4 on the test sample 1. At this time, the contact angle (0) between the droplet 4 and the test sample 1 was measured.
- the liquids shown in Table 1 were used, and commercial grade products were used as they were. Table 3 shows the measurement results of the contact angles of each liquid on an aluminum plate, a stainless steel plate 18, and a zinc plate treated with liquid repellency with compound 7a.
- Table 3 shows the measurement results of various liquids on an untreated smooth aluminum plate, stainless steel plate 18, and zinc plate (manufactured by Nilaco).
- 2 ⁇ -Table 3
- Aluminum plate Stainless steel 1 Zinc plate Untreated compound 7a treatment Untreated compound 7a treatment Untreated compound 7a treatment
- the aluminum plate having the fine concavo-convex structure was immersed in a 2.0% by weight ethanol solution of compound 7a at room temperature for 1 week, washed with ethanol, and dried.
- the contact angles of the aluminum plate treated in this manner with various liquids shown in Table 4 were measured.
- the results are shown in Figure 13 in the form of a dysman plot.
- the data of the smooth aluminum plate subjected to lyophobic treatment with the compound 7a shown in Example 7 is also shown by a white symbol.
- treating a smooth aluminum plate with Compound 7a on an aluminum plate with fine irregularities has a much higher lyophobic property than treating it with Compound 7a.
- liquid repellency can be imparted to various metal surfaces by a simple operation.
- the metal material of the present invention is excellent in snow resistance and ice resistance: shelves and luggage in freezing warehouses, antennas, cables, steel towers, jigs for civil engineering machinery, houses, roofs, road signs, etc. It can be widely used as a material for bulletin boards.
- the anti-snow and anti-slip metal material of the present invention has high friction on the ice and snow surface, despite having no sharp projections, so that shelves, luggage, shoes, and vehicle wheels in a freezing warehouse can be used. It can be used as a non-slip material for surfaces that come into contact with metal such as ice or snow.
- icing and snow accretion on the surface of the metal material of the present invention are extremely small, Water does not cover the surface even if ice and snow melts at zero or more, and does not damage the road or floor.
- liquid-repellent metal material obtained by the present invention is used for the air-side heat transfer surface of a heat exchanger such as an air conditioner or a refrigerator, it is possible to reduce the decrease in heat exchange efficiency due to frost formation. Can be.
- liquid-repellent metal material obtained by the present invention may be used for a liquid-contacting surface of a pipe (flowing liquid pipe) through which liquid flows, such as a water pipe, a funnel, and a pouring port for various liquids.
- a pipe flowing liquid pipe
- the liquid repellent metal material obtained by the present invention is used for various electric devices such as a portable or indoor video, television, radio, etc., or an external part of a precision device such as a camera or a clock, thereby obtaining a device.
- the inside can be shielded from tap water, rainwater, seawater, snow, etc. to prevent electric shock, short circuit or rust.
- this unit may be used for electrical outlets such as outlets, sockets, water heaters, coffee makers, etc.
- liquid-repellent metal material obtained by the present invention around handrails, doorknobs, and elevator push buttons, fingerprint dirt can be prevented.
- liquid-repellent metal material obtained by the present invention in a part of an accessory or a watch that directly touches the human skin, it prevents sweat from adhering, and further prevents rash and rash. be able to.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- ing And Chemical Polishing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
A process for imparting liquid repellency to a metal surface by coating part or the whole of a metal surface having a finely uneven structure and a contact angle of 30° or below against water with a liquid-repelling substance; a liquid-repellent metal material obtained by this process; and the use of the liquid-repellent metal material as a metal material resistant to icing and snowing or a nonslip metal material against ice and snow. The invention also provides a process for imparting liquid repellency to a metal surface by coating a metal surface with a fluoroalkyl phosphate.
Description
明 細 書 金属表面への撥液性付与方法及び超撥液性金属材料 技術分野 Description Method of imparting liquid repellency to metal surface and super liquid repellent metal material
本発明は、 金属表面への撥液性付与方法に関し、 詳しくは撥液性が要求される 製品、 例えば、 テーブル、 盆、 流し台等の台所用製品、 道路標識等の掲示板、 携 帯用電気製品、 熱交換器用フィ ン、 流液管などの金属表面の表面処理に適用し得 る撥液性付与方法に関するものである。 また、 本発明はこのようにして撥水性が 付与された金属材料の耐着雪 ·耐着氷性材料及び対氷雪滑り止め材料への応用に 関する。 背景技術 The present invention relates to a method for imparting liquid repellency to a metal surface, and in particular, to products requiring liquid repellency, for example, kitchen products such as tables, trays, sinks, bulletin boards such as road signs, and electronic products for mobile phones. The present invention relates to a method for imparting liquid repellency which can be applied to the surface treatment of metal surfaces such as fins for heat exchangers and flowing liquid tubes. The present invention also relates to the application of the metal material imparted with water repellency as described above to a snow-resistant / ice-resistant material and an anti-snow material against ice and snow. Background art
従来から、 フッ素樹脂ゃシリコーン樹脂等を用いてコーティ ングするなどの化 学的処理により、 金属表面に撥水性を付与することが行われている。 より複雑な 方法としては、 ポリテトラフルォロエチレンォリゴマ一粒子を共析分散した複合 メツキ皮膜を金属表面に形成する方法 (特開平 4 一 2 8 5 1 1 9号公報) などが 提案されている。 Conventionally, water repellency has been imparted to a metal surface by a chemical treatment such as coating with a fluororesin-silicone resin or the like. As a more complicated method, a method of forming a composite plating film in which polytetrafluoroethylene oligomer particles are eutectoidally dispersed on a metal surface (Japanese Patent Application Laid-Open No. Hei 218,511,199) is proposed. Have been.
しかしながら、 上記の処理方法では金属表面に十分に満足し得る撥液性を付与 することが困難であるか、 あるいは撥液性の耐久性が十分でなく、 また作業工程 が複雑なものとなり、 またコーティ ングに用いるフッ素系化合物は高価であるた め、 製品が高価なものになるという問題がある。 例えば平滑な金属面にフッ素樹 脂ゃシリコーン樹脂でコーティ ングした場合には、 水の接触角にして 1 0 0〜 1 1 0度程度の撥水性しか得られない。 However, it is difficult to impart a sufficiently satisfactory liquid repellency to the metal surface by the above-mentioned treatment method, or the durability of the liquid repellency is not sufficient, and the work process becomes complicated. Since the fluorine-based compound used for coating is expensive, there is a problem that the product is expensive. For example, when a smooth metal surface is coated with a fluorine resin-silicone resin, only a water repellency of about 100 to 110 degrees as a contact angle with water can be obtained.
従って、 本発明の目的は金属表面に安価かつ簡便に、 高度な撥液性を付与する ことができる方法を提供することにある。 発明の開示 Therefore, an object of the present invention is to provide a method capable of imparting high liquid repellency to a metal surface at low cost and simply. Disclosure of the invention
このような実情において、 本発明者は鋭意検討を行った結果、 基材表面に大き
い周期の凹凸構造と、 その構造の中に小さい周期の凹凸構造を含む多段凹凸構造 を形成させることにより、 撥液性が向上することを見出し、 先に特許出願したUnder such circumstances, the present inventors have conducted intensive studies, and as a result, have found that It was discovered that liquid repellency was improved by forming a multi-period structure including a long-period uneven structure and a small-period uneven structure in the structure.
(特願平 5— 3 3 6 4 2 4号) 。 そして、 更に検討を重ねたところ、 金属表面に 微細な凹凸構造を有し、 水に対する接触角が 3 0度以下となる金属表面を撥液性 物質によりコーティ ング処理すれば、 金属表面に対して優れた撥液性が付与でき ることを見出した。 また、 コーティ ング物質としてフルォロアルキルリ ン酸エス テル化合物を用いると、 金属表面が平滑であると微細な凹凸構造を有することを 問わず、 優れた撥液性が付与できることを見出した。 そしてまた、 このようにし て得られた超撥水金属表面には氷や雪が極めて付着しにく く、 そしてわずかに金 属表面を傾けることによってその上にのせた氷や雪が滑り落ちることを見出した。 更に当該超撥水表面を有する金属を氷雪面上に置いた時には逆に極めて高い摩擦 性を有し、 その表面への着氷や着雪が極めて少なく、 また温度が摂氏零度以上に なって氷雪が融解しても水が表面を覆うことがなく、 かつ路面や床面を傷つける ものでなく、 理想的な対氷雪滑り止め金属材料であることを見出し、 本発明を完 成するに至った。 (Japanese Patent Application No. 5—3 3 6 4 2 4). Further examinations revealed that if the metal surface, which has a fine uneven structure on the metal surface and has a contact angle to water of 30 degrees or less, is coated with a lyophobic substance, It has been found that excellent liquid repellency can be imparted. In addition, they have found that when a fluoroalkyl phosphate ester compound is used as a coating substance, excellent liquid repellency can be imparted regardless of whether the metal surface has a smooth and fine uneven structure. Furthermore, it was found that ice and snow were extremely unlikely to adhere to the super-water-repellent metal surface obtained in this way, and that ice and snow placed on the metal surface could slide down by slightly tilting the metal surface. . In addition, when the metal having the super water-repellent surface is placed on an ice-snow surface, it has extremely high frictional properties, very little icing or snow accretion on the surface, and when the temperature rises to zero degrees Celsius or higher, ice and snow may be generated. The present inventors have found that water does not cover the surface even when it is melted, does not damage the road surface or floor surface, and is an ideal anti-snow and anti-slip metal material, thus completing the present invention.
すなわち、 本発明は、 表面に微細な凹凸構造を有し、 水に対する接触角が 3 0 度以下となる金属表面の全部又は一部に撥液性物質をコ一ティ ングすることを特 徴とする金属表面への撥液性付与方法を提供するものである。 That is, the present invention is characterized in that a liquid-repellent substance is coated on all or a part of a metal surface having a fine uneven structure on the surface and having a contact angle with water of 30 ° or less. The present invention provides a method for imparting liquid repellency to a metal surface.
また、 本発明は、 表面に微細な凹凸構造を有し、 水に対する接触角が 3 0度以 下となる金属表面に撥水性物質をコーティ ングしてなる超撥水表面を有すること を特徴とする超撥水性金属材料を提供するものである。 Further, the present invention is characterized in that a metal surface having a fine uneven structure on the surface and a contact angle with water of 30 ° or less has a super water-repellent surface coated with a water-repellent substance. The present invention provides a super-water-repellent metal material.
更に、 本発明は、 微細な凹凸構造を有し水に対する接触角が 3 0度以下となる 金属表面に撥水性物質をコ一ティ ングしてなる超撥水表面を有することを特徴と する耐着雪 ·耐着氷性金属材料を提供するものである。 Furthermore, the present invention is characterized by having a super-water-repellent surface formed by coating a water-repellent substance on a metal surface having a fine concavo-convex structure and having a contact angle to water of 30 degrees or less. It provides a snow-resistant and ice-resistant metal material.
更にまた、 本発明は、 微細な凹凸構造を有し水に対する接触角が 3 0度以下と なる金属表面に撥水性物質をコ一ティ ングしてなる超撥水表面を有することを特 徴とする対氷雪滑り止め金属材料を提供するものである。 Furthermore, the present invention is characterized in that it has a super-water-repellent surface formed by coating a water-repellent substance on a metal surface having a fine uneven structure and a contact angle to water of 30 degrees or less. The present invention provides an anti-skid metal material for ice and snow.
更に本発明は金属表面の全部又は一部に、 フルォロアルキルリン酸エステル化 合物をコーティ ングすることを特徴とする、 金属表面への撥液性付与方法を提供
するものである。 Further, the present invention provides a method for imparting liquid repellency to a metal surface, which comprises coating a fluoroalkyl phosphate compound on all or a part of the metal surface. Is what you do.
更にまた、 本発明は金属表面にフルォロアルキルリン酸エステル化合物をコ一 ティングしてなる超撥液表面を有することを特徴とする超撥液性金属材料を提供 するものである。 図面の簡単な説明 Furthermore, the present invention provides a super lyophobic metal material having a super lyophobic surface coated with a fluoroalkyl phosphate compound on the metal surface. BRIEF DESCRIPTION OF THE FIGURES
図 1の (a ) 及び (b ) は接触角測定装置の要部の構成及び接触角を示す図で あ 。 (A) and (b) of FIG. 1 are diagrams showing a configuration of a main part of the contact angle measuring device and a contact angle.
図 2は、 本発明の実施例における酸処理された亜鉛板表面の走査型電子顕微鏡 写真である。 FIG. 2 is a scanning electron micrograph of the acid-treated zinc plate surface in the example of the present invention.
図 3は、 本発明の実施例におけるアル力リ処理されたアルミ二ゥム板表面の走 査型電子顕微鏡写真である。 FIG. 3 is a scanning electron micrograph of a surface of an aluminum plate that has been subjected to a heat treatment in an example of the present invention.
図 4は、 本発明の実施例における電気分解処理された陰極における亜鉛板表面 の走査型電子顕微鏡写真である。 FIG. 4 is a scanning electron micrograph of the surface of a zinc plate in a cathode subjected to electrolysis treatment in an example of the present invention.
図 5は、 本発明の実施例における電気分解処理された陽極におけるアルミニゥ ム板表面の走査型電子顕微鏡写真である。 FIG. 5 is a scanning electron micrograph of the surface of an aluminum plate at the anode subjected to electrolysis treatment in the example of the present invention.
図 6は、 耐着雪性及び耐着氷性の試験に用いた雪又は氷の形状を示す図である。 図 7は、 耐着雪性及び耐着氷性試験方法を示す説明図である。 FIG. 6 is a diagram showing the shape of snow or ice used in the snow resistance test and the ice resistance test. FIG. 7 is an explanatory diagram showing a method for testing snow resistance and ice resistance.
図 8は、 氷雪上での滑り性測定に用いた金属板の形状を示す図である。 FIG. 8 is a diagram showing the shape of a metal plate used for measuring slipperiness on ice and snow.
図 9は、 滑り性測定に用いた氷雪面作製用容器を示す図である。 FIG. 9 is a diagram showing the ice and snow surface preparation container used for the slip property measurement.
図 1 0は、 実施例 8における電気分解処理された陰極における亜鉛板表面の走 査型電子顕微鏡写真である。 FIG. 10 is a scanning electron micrograph of the surface of a zinc plate in a cathode subjected to electrolysis treatment in Example 8.
図 1 1は、 実施例 8で得られた亜鉛板の各種液に対する接触角をジスマンプロ ッ トした結果である。 FIG. 11 shows the results of dysman plotting of the contact angles of the zinc plate obtained in Example 8 with various liquids.
図 1 2は、 実施例 9における電気分解処理された陽極におけるアル ミニウム板 表面の走査型電子顕微鏡写真である。 FIG. 12 is a scanning electron micrograph of the surface of the aluminum plate at the anode subjected to the electrolysis treatment in Example 9.
図 1 3は、 実施例 9で得られたアルミニウム板の各種液体に対する接触角をジ スマンプロッ トした結果である。
発明を実施するための最良の形態 FIG. 13 shows the results of dismantling the contact angles of the aluminum plate obtained in Example 9 with various liquids. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において撥液性とは、 金属表面の液体に対する接触角が 9 0度より大き くなる場合をいい、 このような表面を撥液性表面という。 本発明の対象は必ずし も水か付着する表面に限定されるものではなく、 アルコール、 油、 界面活性剤を 含む液体との接触角を増大させるためにも適用されるものである。 その際、 金属 表面の最終的なコ一ティ ング処理に用いる撥液性物質は、 当該液体に対して接触 角が 9 0度より大きくなる物質である。 In the present invention, lyophobic refers to a case where the contact angle of a metal surface with a liquid is larger than 90 degrees, and such a surface is called a lyophobic surface. The object of the present invention is not necessarily limited to a surface to which water adheres, but is also applied to increase a contact angle with a liquid containing alcohol, oil, and surfactant. At this time, the liquid-repellent substance used in the final coating treatment of the metal surface is a substance having a contact angle of more than 90 degrees with respect to the liquid.
撥液性金属表面を作製する際に用いる、 水に対する接触角が 3 0度以下となる 親水性金属表面の微細な凹凸構造としては、 平面視で凹凸構造 1 cm2あたりの実 表面積が十分大きくなる構造が概して好ましい。 しかしながら、 凹凸の高さを通 常の液滴の大きさ (〜2mm) 程度あるいはそれ以上に大きくすることによって、 凹凸表面の実表面積を増やしても、 撥液性が向上するものでもない。 撥液性に影 響するのは、 液滴と接触し得る凹凸構造のごく表面近傍での実表面の稠密度、 す なわち単位体積あたりの実表面積であり、 これが大きいことが撥液性にとって好 ましいのである。 When forming a lyophobic metal surface, the contact angle to water is 30 degrees or less.As the fine uneven structure of the hydrophilic metal surface, the actual surface area per cm 2 of the uneven structure in plan view is sufficiently large. Is generally preferred. However, even if the actual surface area of the uneven surface is increased by increasing the height of the unevenness to the size of a normal droplet (about 2 mm) or more, the liquid repellency is not improved. The liquid repellency is affected by the density of the actual surface near the very surface of the uneven structure that can come in contact with the droplets, that is, the actual surface area per unit volume. It is preferred.
この観点から、 表面の微細な凹凸構造としては、 その高さが 8 0 0 m 以下が 好ましく、 3 0 0 以下がより好ましく、 30 um以下が特に好ましい。 そし て、 この条件のもとに、 平面視で凹凸構造 1 cm2あたりの実表面積が大きいこと、 具体的には 3cm2以上となることが好ましい。 ただし、 この実表面積が大きくな りすぎると、 凹凸構造が薄片状や細線状となり、 金属表面の機械的強度が低下す る二とになるため好ましくない。 従って、 金属表面の強度を維持する観点から、 凹凸構造実表面積は 2 Ocm2未満であることが好ましい。 また、 凹凸構造の全実 表面積を有効に使うために、 凹凸表面の接触率、 すなわちその凹凸表面に平滑な 剛体をあてたときの凹凸構造の接触面積が、 剛体表面 1 cm2あたり 0. 2 cm2以下 であることが好ましい。 In this respect, the height of the fine uneven structure on the surface is preferably 800 m or less, more preferably 300 m or less, and particularly preferably 30 um or less. Under these conditions, it is preferable that the actual surface area per cm 2 of the concavo-convex structure in plan view is large, specifically, 3 cm 2 or more. However, if the actual surface area is too large, the uneven structure becomes flaky or thin-line, and the mechanical strength of the metal surface is undesirably reduced. Therefore, from the viewpoint of maintaining the strength of the metal surface, the actual surface area of the uneven structure is preferably less than 2 Ocm 2 . In order to effectively use the entire actual surface area of the concavo-convex structure, the contact ratio of the irregular surface, i.e. the contact area of the concavo-convex structure when addressed a smooth rigid on its uneven surface, rigid surface 1 cm 2 per 0.2 cm 2 or less.
なお、 本発明において実表面積とは、 BET法により測定した表面積をいう。 この B E T法は、 S. B r u n a u e r , P. H. Emm e t t及び E. T e l 1 e rによって提唱された BET吸着式を利用し、 固体表面への気体分子 (窒素ガス、 クリプトンガス) の吸着に基づいて、 固体の表面積を算出する方法
である。 また、 凹凸構造の高さ、 幅及び接触面積は固体の断面 S E M写真から画 像解析により測定した。 In the present invention, the actual surface area refers to the surface area measured by the BET method. This BET method uses the BET adsorption formula proposed by S. B runauer, PH Emmett and E. Telel, based on the adsorption of gas molecules (nitrogen gas, krypton gas) on a solid surface. How to calculate the surface area of a solid It is. The height, width and contact area of the uneven structure were measured by image analysis from a cross-sectional SEM photograph of the solid.
以上のことから、 金属表面に形成された微細な凹凸構造の幅及び高さの範囲は 1 謂〜 8 0 0 m 、 更に 1 nm〜 3 0 0 〃m 、 特に 5 0議〜 3 0 m が好ましく、 その構造は均一でなく ともよい。 また、 凹凸構造の形状は特に限定されるもので はなく、 りん片状、 角柱状、 円柱状、 角錐状、 円錐状、 針伏などのいずれでもよ い。 更にそれらの形状が複雑に組み合わさってできた、 2次元以上 3次元未満の フラクタル次元を持つフラクタル構造又は自己ァファイン構造であってもよい。 このような親水性金属表面の作製方法に特に制限はなく、 人工的に加工したも のでも、 また自然に存在するものでもよい。 特に、 人工的に加工する方法として は、 ( 1 ) 金属表面を研磨又は切削の機械加工を行う方法、 ( 2 ) 酸又はアル力 リの溶液に金属表面を浸漬する方法、 ( 3 ) 金属を腐蝕させる方法、 ( 4 ) 金属 を電極として用い、 電気分解を利用する方法、 ( 5 ) 金属の铸造による方法が挙 げられる。 From the above, the range of the width and height of the fine uneven structure formed on the metal surface is 1 to 800 m, more preferably 1 nm to 300 m, especially 50 to 30 m. Preferably, the structure need not be uniform. Further, the shape of the concavo-convex structure is not particularly limited, and may be any of scaly, prismatic, cylindrical, pyramidal, conical, and needle-like. Furthermore, a fractal structure or a self-fine structure having a fractal dimension of two or more and less than three dimensions, which is formed by complicatedly combining those shapes, may be used. There is no particular limitation on the method for producing such a hydrophilic metal surface, and it may be an artificially processed one or a naturally existing one. In particular, methods of artificially processing include (1) a method of polishing or cutting the metal surface, (2) a method of immersing the metal surface in an acid or alkaline solution, and (3) a method of polishing the metal. (4) a method using metal as an electrode and utilizing electrolysis, and (5) a method based on metal structure.
上記 ( 1 ) の具体的方法としては、 紙やすりや金属やすりでヤスリ掛けする方 法、 サンドブラスト、 あるいはカッターによって V溝やクロスハッチを金属表面 に切削加工する方法などが挙げられる。 Specific examples of the above (1) include a method of sanding with sandpaper or metal file, a method of sand blasting, or a method of cutting a V-groove or a cross hatch on a metal surface with a cutter.
上記 ( 2 ) の方法は、 例えば次のような工程によって実施することができる。 塩酸等の酸と水とを混合し、 pH l 〜 6の間の適当な pHになるように濃度を調整し、 この溶液中に対象とする金属板を浸漬し、 所定温度で所定時間保持することによ り、 金属表面に微細な凹凸構造が形成される。 また、 アルカリを用いる場合は水 酸化ナトリゥム等と水とを混合し、 pH 8 〜 1 4の間の適当な pHになるように濃度 を調整し、 この溶液中に対象とする金属板を浸潰し、 所定温度で所定時間保持す ることにより、 金属表面に微細な凹凸構造が形成される。 The method (2) can be implemented, for example, by the following steps. Mix an acid such as hydrochloric acid and water, adjust the concentration to an appropriate pH between pH 1 and 6, immerse the target metal plate in this solution, and hold it at a specified temperature for a specified time As a result, a fine uneven structure is formed on the metal surface. When an alkali is used, sodium hydroxide or the like is mixed with water, the concentration is adjusted to an appropriate pH between pH 8 and 14, and the target metal plate is immersed in this solution. By holding at a predetermined temperature for a predetermined time, a fine uneven structure is formed on the metal surface.
上記 ( 3 ) の方法としては、 水蒸気を含む雰囲気中で、 対象とする金属板を所 定温度で所定時間保持し、 自然腐蝕させる方法がある。 As a method of the above (3), there is a method of holding a target metal plate at a predetermined temperature for a predetermined time in an atmosphere containing water vapor to cause natural corrosion.
上記 ( 4 ) の方法としては、 電解質溶液中に、 対象とする金属板を陽極あるい は陰極として浸漬し、 両極間に所定電圧を所定温度で所定時間、 印加する方法か ある。 その際、 対象とする金属板から金属を溶出させ凹凸構造を形成させる方法
と、 対象とする金属板に電解質溶液中の金属あるいは他の物質を析出させ凹凸構 造を形成させる方法の二通りがある。 前者には電解研磨、 後者には電気めつき、 電着塗装などの例がある。 As the method (4), there is a method in which a target metal plate is immersed in an electrolyte solution as an anode or a cathode, and a predetermined voltage is applied between both electrodes at a predetermined temperature for a predetermined time. At this time, a method of forming a concavo-convex structure by eluting metal from the target metal plate And a method of forming a concavo-convex structure by depositing a metal or other substance in an electrolyte solution on a target metal plate. Examples of the former include electrolytic polishing, and the latter include electroplating and electrodeposition coating.
上記 ( 5 ) の方法は、 たとえば次のような工程によって実施することができる c 表面に微細な凹凸を有する铸型に、 対象とする金属をその融点以上に加熱して融 解させた液体状金属にして流し込み、 それを冷却、 固化させることによって、 铸 型の微細な凹凸構造を表面に移し取った金属表面を得ることができる。 The above method (5) can be carried out, for example, by the following steps: a liquid having a target metal heated to above its melting point and melted in a mold having fine irregularities on the c surface. By pouring it into metal, and then cooling and solidifying it, it is possible to obtain a metal surface with the 铸 -shaped fine uneven structure transferred to the surface.
本発明で用いる金属は、 上記 ( 1 ) 〜 ( 5 ) の処理によって微細な凹凸構造か 形成されるものであれば特に限定されるものではないが、 上記 ( 2 ) 〜 ( 4 ) の 処理に適した金属としては、 亜鉛、 ニッケル、 鉄、 アルミニウム又はこれらの合 金、 ステンレス等が挙げられる。 The metal used in the present invention is not particularly limited as long as a fine uneven structure is formed by the above-mentioned processes (1) to (5). However, the metal used in the above-mentioned processes (2) to (4) is not particularly limited. Suitable metals include zinc, nickel, iron, aluminum or their alloys, stainless steel and the like.
上記のような、 表面に微細な凹凸構造を有する金属表面は、 そこに十分な凹凸 構造が形成されれば、 水に対する接触角 3 0度以下となる親水性金属表面となる c 本発明においては、 このような親水性金属表面を撥液性物質でコーティ ングする ことによって撥液性表面を得ることができる。 このときのコーティ ング層の厚さ は、 表面の微細な凹凸をなくさない程度に薄ければ何れでもよいか、 特に 1 0 0 nm以下が好ましい。 また、 これら撥液性物質による処理に先だって又は同時にク ロメ一ト処理などの防銪処理を施すことができる。 As described above, the metal surface having a fine uneven structure on the surface, if there sufficient relief structure is formed, the c present invention as a contact angle of 3 0 degrees or less and comprising a hydrophilic metal surface to water A liquid-repellent surface can be obtained by coating such a hydrophilic metal surface with a liquid-repellent substance. The thickness of the coating layer at this time is not particularly limited as long as it does not eliminate fine irregularities on the surface, and is preferably 100 nm or less. In addition, prior to or simultaneously with the treatment with these liquid repellent substances, a heat-proof treatment such as chromate treatment can be performed.
親水性金属表面を撥液性物質でコーティ ングする方法として、 代表的には種々 のカツプリング剤で金属表面を処理する方法がある。 本発明で用いる撥液性物質 としては、 金属表面の官能基 (例えばヒ ドロキシル基等) と反応し、 疎水基等を 持つ物質であれば何でもよく、 限定されるものではないが、 例えばシランカップ リ ング剤、 チタネート系カップリ ング剤、 アルミニウム系カップリ ング剤、 イソ シァネ一ト系カップリ ング剤、 ジルコニウム系力ップリ ング剤などが挙げられる c シランカップリ ング剤としては具体的には次の式 ( 1 ) のトリ クロロアルキル シラン、 式 ( 2 ) のトリ メ トキシアルキルンラン、 式 ( 3 ) のトリエトキンアル キルシラン等が挙げられる。
C -Si-CnH2n+l ( 1 ) As a method of coating a hydrophilic metal surface with a lyophobic substance, there is typically a method of treating the metal surface with various coupling agents. The liquid-repellent substance used in the present invention may be any substance that has a hydrophobic group or the like by reacting with a functional group (for example, a hydroxyl group) on a metal surface, and is not limited. Examples of the c- silane coupling agent include a coupling agent, a titanate-based coupling agent, an aluminum-based coupling agent, an isocyanate-based coupling agent, and a zirconium-based coupling agent. Examples include trichloroalkylsilanes of the formula (1), trimethoxyalkylsilanes of the formula (2), and triethoxyquinalkylsilanes of the formula (3). C -Si-C n H 2 n + l (1)
0CH3 0CH 3
CH30-Si-CnH2n+i (2) CH 3 0-Si-CnH 2 n + i (2)
0CH3 0CH3
OC2H5 OC2H5
C2H50-Sト CnH2n+1 ( 3) C 2 H 5 0-S G C n H 2n + 1 (3)
OC2H5 OC2H5
(式中、 nは 6〜2 0の整数である。 ) 上記式 ( 1 ) 〜 (3) の化合物では金属表面の官能基と反応する反応部 (それ ぞれ C 1基、 〇CH3基、 OC2H5基) が 3箇所と、 撥水性を付与するための疎 水部 (長鎖アルキル基) が 1箇所であるが、 例えば疎水部が 2〜3箇所あっても よく、 それぞれの疎水部の構造が異なっていてもよい。 また、 次の式 ( 4 ) のフ ッ化アルキルトリクロロシランのように疎水部の水素原子の一部又は全部がフッ 素原子で置き換わっていてもよい。 (In the formula, n is an integer of 6 to 20.) In the compounds of the above formulas (1) to (3), a reaction part reacting with a functional group on the metal surface (C 1 group, 〇CH 3 group, respectively) , OC 2 H 5 groups) and one water-phobic part (long-chain alkyl group) for imparting water repellency. For example, there may be two to three hydrophobic parts. The structure of the hydrophobic part may be different. Further, some or all of the hydrogen atoms in the hydrophobic portion may be replaced by fluorine atoms, as in the alkyltrichlorosilane fluoride represented by the following formula (4).
Z£ Z £
C£-Si-C2H4-C6F13 ( 4) C £ -Si-C 2 H 4 -C 6 F 13 (4)
Cf Cf
チタネート系カツプリング剤としては、 以下の例に限定されるものではないか、 代表的なものとしては、 下記式 ( 5 ) で示すィソプロピルトリイソステアロイル チタネー ト、 イソプロピルトリオクチノルチタネート、 イソプロピル卜リ ドデシ ルベンゼンスルホニルチタネート、 イソプロビルトリス (ジォクチ儿パイロスル フェート) チタネート、 テトラオクチルビス (ジトリデシルホスフアイ ト) チタ ネート、 テトラ ( 2, 2—ジァリルォキシメチル— 1 一プチル) ビス (ジト リデ シル) ホスファイ トチタネート、 ビス (ジォクチルパイロホスフェート) ォキシ アセテートチタネート、 ビス (ジォクチルパイロホスフエート) エチレンチタネ
ート、 イソプロピルトリ (ジォクチルホスフ: Lート) チタネート、 ジイソステア ロイルエチレンチタネート等が挙げられる。 また、 これらカップリ ング剤中の疎 水基の水素原子の一部あるいは全部がフッ素原子で置き換わっていてもよい。 The titanate-based coupling agents are not limited to the following examples, and typical ones are isopropylpropylisostearoyl titanate, isopropyltrioctynol titanate, and isopropyl alcohol represented by the following formula (5). Lidodecylbenzenesulfonyl titanate, isopropylbenzene tris (dioctyl pyrosulfate) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diaryloxymethyl-1-butyl) bis ( Ditrilideyl) phosphite titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate And isopropyl tri (dioctyl phosphate: L-t) titanate, diisostearoylethylene titanate and the like. Further, some or all of the hydrogen atoms of the hydrophobes in these coupling agents may be replaced by fluorine atoms.
CH3 - - C 17 H35 ) ( 5 )CH3--C 17 H35) (5)
アルミニウム系カップリング剤の代表的なものとしては、 次の式 ( 6 ) のァセ トアルコキシアルミニウムジイソプロビレー卜が挙げられる。 Representative examples of the aluminum-based coupling agent include an acetoalkoxyaluminum diisopropylate represented by the following formula (6).
シランカップリ ング剤を用いた処理は、 例えば次のようにして行われる。 へキ サデカンにクロ口ホルムと四塩化炭素を混合したものをモレキュラーン一ブで乾 燥し、 この乾燥した溶媒にシランカップリング剤を適量加えて処理液とする。 こ の処理液に、 乾燥雰囲気中で凹凸構造を有する金属を適当な温度で所定時間浸漬 することで行われる。 浸漬後、 クロ口ホルム洗浄、 水洗浄を経て乾燥する。 The treatment using the silane coupling agent is performed, for example, as follows. A mixture of hexadecane and a mixture of formaldehyde and carbon tetrachloride is dried over molecular solvent, and an appropriate amount of a silane coupling agent is added to the dried solvent to obtain a treatment solution. The treatment is carried out by immersing a metal having a concavo-convex structure in a dry atmosphere at an appropriate temperature for a predetermined time. After immersion, wash with black mouth form and water and dry.
チタネート系カップリング剤又はアルミニウム系力ップリ ング剤を用いた処理 は、 例えば次のようにして行われる。 トルエンをモレキュラーシーブ等で乾燥し、 この乾燥したトルエンにチタネート系カップリ ング剤あるいはアルミニウム系力 ップリ ング剤を適量加えて処理液とする。 この処理液に、 乾燥雰囲気下で凹凸構 造を有する金属を適当な温度で所定時間浸漬することで行われる。 浸漬後、 適当 な有機溶媒あるいは洗浄用の活性剤を含む水溶液で洗浄後、 水で洗浄して適当な 条件下で乾燥する。 The treatment using a titanate-based coupling agent or an aluminum-based force-binding agent is performed, for example, as follows. Toluene is dried with a molecular sieve or the like, and an appropriate amount of a titanate-based coupling agent or an aluminum-based coupling agent is added to the dried toluene to obtain a treatment solution. The treatment is carried out by immersing a metal having an uneven structure at a suitable temperature for a predetermined time in a dry atmosphere. After immersion, wash with an appropriate organic solvent or an aqueous solution containing an activator for washing, wash with water and dry under appropriate conditions.
ところで、 コーティ ング剤としてフルォロアルキルリ ン酸エステル化合物を用
いた場合には、 金属表面が平滑であっても上記のような微細な凹凸構造を有する 場合であっても優れた撥液性が得られる。 しかし、 上記のような微細な凹凸構造 を有する金属表面にコーティ ングする場合が特に好ましい。 By the way, a fluoroalkyl phosphate compound is used as a coating agent. In this case, excellent liquid repellency can be obtained even when the metal surface is smooth or has a fine uneven structure as described above. However, it is particularly preferable to coat the metal surface having the fine uneven structure as described above.
しかも驚く ことに、 フルォロアルキルリン酸エステルをコーティ ング剤として 用いた場合には、 表面を粗面化することによる撥液性向上の効果は、 通常のぬれ 理論から予測されるものをはるかに上回っている。 ぬれ理論によると、 表面の粗 面化が固体表面のぬれ性に及ぼす影響は、 平らな固体表面上の液滴の接触角が Surprisingly, when fluoroalkyl phosphate ester is used as a coating agent, the effect of improving the liquid repellency by roughening the surface is far from what is expected from ordinary wetting theory. It exceeds. According to wetting theory, the effect of surface roughening on the wettability of a solid surface depends on the contact angle of the droplet on a flat solid surface.
90度より大きい場合には接触角を更に大きくする方向に、 逆に、 平らな固体表 面上の液滴の接触角が 90度未満の場合には接触角を更に小さくする方向に働くWhen the contact angle is larger than 90 degrees, the contact angle is further increased, and when the contact angle of the droplet on the flat solid surface is less than 90 degrees, the contact angle is further decreased.
(A. W. Adamson著、 Physical Chemistry of SurfacesCJohn Wiley & Sons, New York) を参照) 。 しかしながら、 フルォロアルキルリン酸エステルでコ一テ ィ ングした場合には、 平滑な金属表面を該処理液で処理した表面上では 90度未 満の接触角しか示さない液滴も、 粗面化した金属表面を該処理液で処理した表面 にのせると、 90度以上の接触角を示すようになる。 (See A. W. Adamson, Physical Chemistry of Surfaces, John Wiley & Sons, New York). However, when coated with a fluoroalkyl phosphate ester, droplets that show a contact angle of less than 90 degrees on a smooth metal surface on the surface treated with the treatment solution, or rough surfaces, When the oxidized metal surface is placed on the surface treated with the treatment liquid, a contact angle of 90 ° or more is exhibited.
本発明に用いられるフルォロアルキルリ ン酸エステルとしては、 モノ (フルォ 口アルキル) リン酸エステル、 ジ (フルォロアルキル) リン酸エステル又はそれ らの塩が好ましく、 特にモノ (C6— C36フルォロアルキル) リン酸エステル、 ジ (C6— C36フルォロアルキル) リン酸エステル又はそれらの塩が好ましい。 より具体的には次に示される一般式 ( 7) で表されるモノフルォロアルキルリ ン 酸エステル As the fluoroalkyl phosphoric acid ester used in the present invention, a mono (fluoroalkyl) phosphate, a di (fluoroalkyl) phosphate or a salt thereof is preferable, and a mono (C 6 -C 36 fluoroalkyl) is particularly preferable. ) Phosphate esters, di (C 6 -C 36 fluoroalkyl) phosphate esters or salts thereof are preferred. More specifically, a monofluoroalkyl phosphate represented by the following general formula (7)
Rf0- P(=0)(-0-X)2 ( 7) R f 0- P (= 0) (-0-X) 2 (7)
又は一般式 (8) で表されるジフルォロアルキルリ ン酸エステル Or a difluoroalkyl phosphate represented by the general formula (8)
(RfO)2-P(=0)(-0-X) ( 8 ) (R f O) 2 -P (= 0) (-0-X) (8)
(式中 Rf は直鎖また分岐フルォロアルキル基を、 Xは水素原子、 アルカリ金属、 アルカリ土類金属、 アンモニゥ厶、 炭素数 1〜 4のアルキルアンモニゥムのいず れかを示す) が挙げられる。 これらのモノエステルとジエステルは混合して用い てもよい。 (In the formula, R f represents a linear or branched fluoroalkyl group, and X represents any one of a hydrogen atom, an alkali metal, an alkaline earth metal, ammonia, and an alkylammonium having 1 to 4 carbon atoms.) Can be These monoesters and diesters may be used as a mixture.
Rf で示される直鎖又は分岐フルォロアルキル基としては、 合成の容易さの観 点から炭素数 6〜3 6のもの、 更に撥液性の観点から炭素数が 8〜 3 6のものか
好ましい。 また R , は、 炭素原子とフッ素原子のみから構成されたパーフルォロ ァルキル基でも、 水素の一部がフッ素で置き換わったフルォロアルキル基でもよ い。 ただし後者の場合にも、 撥液性の向上のために、 フッ素の割合は多い方が好 ましく、 特に、 末端基は C F 3—基であることが好ましい。 The linear or branched fluoroalkyl group represented by R f has 6 to 36 carbon atoms from the viewpoint of ease of synthesis, and further has 8 to 36 carbon atoms from the viewpoint of liquid repellency. preferable. R, may be a perfluoroalkyl group composed of only carbon atoms and fluorine atoms, or a fluoroalkyl group in which a part of hydrogen is replaced by fluorine. However, also in the latter case, in order to improve the liquid repellency, it is preferable that the proportion of fluorine is large, and it is particularly preferable that the terminal group is a CF 3 — group.
Xで示されるアルカリ金属としては、 ナトリウム、 カリウム、 ルビジウム、 セ シゥ厶などが挙げられ、 アルカリ土類金属としては、 カルシウム、 ノくリウ厶、 ス ト口ンチウムなどが挙げられ、 炭素数 1 〜 4のアルキルアンモニゥ厶としては、 モノ メチルァミ ン、 ジメチルァ ミ ン、 ト リ メチルァ ミ ン、 モノェチルァ ミ ン、 ジ ェチルァミ ン、 ト リェチルァミ ン、 モノプロピルァミ ン、 ジプロピルアミ ン又は、 トリプロピルァミ ンなどとプロ トンとで形成されるアルキルアンモニゥムか挙げ られる。 安定性、 処理の容易さの観点から、 Xとしては水素原子が最も好ましい c フルォロアルキルリン酸エステル化合物を用いたコーティ ング方法としては、 例えば ( 1 ) フルォロアルキルリ ン酸エステル化合物を含有する処理液中に金属 を浸漬する方法、 (2 ) 当該処理液を直接金属表面へ塗布する方法、 ( 3 ) 当該 処理液中にニ片の金属を浸漬し、 それらの間に電圧を印加して電気分解する方法 などが挙げられる。 Examples of the alkali metal represented by X include sodium, potassium, rubidium, cesium, and the like. Examples of the alkaline earth metal include calcium, potassium, stomium, and the like. Examples of the alkylammonium (4) include monomethylamine, dimethylamine, trimethylamine, monoethylamine, dimethylamine, triethylamine, monopropylamine, dipropylamine, tripropylamine and the like and proton. Alkyl ammonium formed. From the viewpoints of stability and easiness of treatment, X is most preferably a hydrogen atom. As a coating method using a c -fluoroalkyl phosphate compound, for example, (1) a fluoroalkyl phosphate compound (2) a method of applying the treatment liquid directly to the metal surface, (3) a method of immersing a piece of metal in the treatment liquid and applying a voltage between them. A method of applying the voltage to perform electrolysis is exemplified.
この処理液に用いる溶剤としては、 フルォロアルキルリ ン酸エステルを可溶な 溶剤であれば特に限定されるものではないが、 例えば、 アルコール、 エーテル、 フルォロカーボンなどが挙げられる。 この処理液中にフルォロアルキルリ ン酸ェ ステルは、 通常 0 . 0 1 〜 5 0重量%配合される力 特に 0 . 1 〜 1 0重量%配 合することが好ましい。 The solvent used in this treatment liquid is not particularly limited as long as it is a solvent that can dissolve the fluoroalkyl phosphatase, and examples thereof include alcohol, ether, and fluorocarbon. In this treatment solution, the fluoroalkyl phosphoric acid ester is usually incorporated in an amount of 0.01 to 50% by weight, preferably 0.1 to 10% by weight.
上記 ( 1 ) の方法は、 例えば上記の処理液に、 金属板を所定温度で所定時間保 持することにより、 フルォロアルキルリ ン酸エステルを金属表面に吸着させるこ とにより行うことができる。 The method (1) can be carried out, for example, by adsorbing the fluoroalkyl phosphate on the metal surface by holding the metal plate in the above-mentioned treatment solution at a predetermined temperature for a predetermined time. .
上記 ( 2 ) の方法は、 例えば上記の処理液を、 筆、 ハケ等で直接金属表面にぬ る、 あるいは、 スプレー、 霧吹き等で金属表面に吹き付ける処理を行った後、 金 属を空気中で所定時間静置し、 溶媒を揮散させることによって行うことかできる 上記 ( 3 ) の方法は、 例えば上記の処理液中に、 撥液性を付与したい金属を陽 極として、 他の金属を陰極として浸潰し、 両電極間に所定電圧を所定温度で所定
時間、 印加することによって、 陽極側の金属表面にフルォロアルキルリン酸エス テルを吸着させることにより行うことができる。 In the above method (2), for example, the above treatment liquid is directly applied to a metal surface with a brush, a brush, or the like, or is sprayed or sprayed on a metal surface, and then the metal is exposed to air. The method (3), which can be carried out by allowing the solvent to evaporate after standing for a predetermined period of time, can be performed, for example, by treating the above-mentioned processing solution with the metal to be provided with liquid repellency as the positive electrode and the other metal as the negative electrode. Immersed, prescribed voltage between both electrodes at prescribed temperature at prescribed temperature The application can be carried out by adsorbing fluoroalkyl phosphate ester on the metal surface on the anode side by applying for a time.
上記の如く して得られる金属材料は、 優れた撥液性 (特に撥水性) を有し、 種 々の撥液性が要求される材料として有用である。 The metal material obtained as described above has excellent liquid repellency (especially water repellency), and is useful as a material requiring various liquid repellencies.
ところで、 従来から、 雪や氷が固体表面に付着するのを防ぐために、 固体表面 をなるベく平滑にし、 雪や氷との摩擦を低減する方法がとられていた。 またフッ 素化合物粒子を成分として含む撥水塗料で固体表面を覆うことによって、 耐着雪 性が付与できることが指摘されている (特開平 6 - 1 2 2 8 3 8号〜同 6 - 1 2 2 8 4 1号公報) 。 しかしながら、 金属表面においては、 それを平滑にした だけでは、 金属表面と水との親和性が高いため、 十分な耐着雪性 ·耐着氷性は得 られない。 一方、 表面をフッ素化合物粒子を成分とする塗料で処理する方法は、 表面の強度が十分でなくまたフッ素化合物が高価であるため広く使用されていな い。 By the way, conventionally, in order to prevent snow and ice from adhering to the solid surface, a method has been adopted in which the solid surface is made as smooth as possible to reduce friction with snow and ice. It has also been pointed out that snow-resistance can be imparted by covering the solid surface with a water-repellent paint containing fluorine compound particles as a component (Japanese Unexamined Patent Application Publication No. Hei 6-12828-1994). No. 2 841). However, on the metal surface, smoothing it alone does not provide sufficient snow and ice resistance because of the high affinity between the metal surface and water. On the other hand, the method of treating the surface with a paint containing fluorine compound particles as components is not widely used because the surface strength is not sufficient and the fluorine compound is expensive.
これに対し、 本発明金属材料は、 十分な機械的強度を有し、 安価であり、 かつ 耐着雪性 ·耐着氷性が優れており、 冷凍用倉庫中の棚や荷物、 アンテナ、 ケープ ノレ、 鉄塔、 土木機械用治具、 家屋、 屋根などの材料として広く使用することがで きる。 On the other hand, the metal material of the present invention has sufficient mechanical strength, is inexpensive, and has excellent resistance to snow and ice, and is suitable for shelves, luggage, antennas, and capes in a freezing warehouse. It can be widely used as a material for saws, steel towers, jigs for civil engineering machinery, houses and roofs.
また、 寒冷地の凍結した地表面や雪国における積雪面、 冷凍用倉庫中の凍結し た床面などにおいては、 摩擦力が著しく低下しており、 わずかな傾きで静置した 物体が滑り動いたり、 人が歩行の際すべつて転倒するなど、 危険である。 このよ うな危険を防止すべく、 接触する表面の間の摩擦力を増加させる目的で、 固体表 面上に凹凸構造を作製することは従来から行われている方法である。 極端な場合 には、 靴の底にスパイクや針状の突起物を作ることによって、 氷雪面上での滑り を防止している。 In addition, the frictional force is significantly reduced on frozen ground in cold regions, snowy surfaces in snowy countries, and frozen floors in refrigeration warehouses. It is dangerous because people fall down when walking. In order to prevent such dangers, it has been a conventional method to create an uneven structure on a solid surface in order to increase the frictional force between the contacting surfaces. In extreme cases, spikes and needle-like projections are formed on the soles of the shoes to prevent slippage on ice and snow.
しかしながら、 スパイク等の鋭い突起物を有する表面は、 それを氷雪のない路 面や床面に置いたとき、 路面や床面を極度に傷つける可能性がある。 また、 人が 誤って突起物に触れてけがをする危険もある。 一方、 摩擦を増加させるために金 属表面に微細な凹凸構造を作製すると、 金属面に氷雪が付着しやすくなり、 摩擦 面が氷雪で被覆されかえって摩擦力が低下することがある。 しかも、 摂氏零度以
上の環境下では、 氷雪から溶けだした水が金属表面を覆い、 潤滑剤として働いて、 摩擦力の向上を阻害する。 However, surfaces with sharp protrusions, such as spikes, can severely damage the road or floor when placed on ice or snow-free roads or floors. Also, there is a risk of injury by accidentally touching the projection. On the other hand, if a fine uneven structure is formed on the metal surface to increase friction, ice and snow will easily adhere to the metal surface, and the friction surface will be covered with ice and snow, and the frictional force may decrease. Moreover, below zero degrees Celsius In the above environment, water that has melted from ice and snow covers the metal surface and acts as a lubricant, impeding the improvement of frictional force.
これに対し、 本発明の対氷雪滑り止め金属材料は、 鋭い突起物を有さないにも かかわらず、 氷雪面上で高い摩擦を生じるので、 冷凍用倉庫中の棚や荷物、 靴、 車両の輪どめなどの氷や雪と金属が接触する面の滑り止め材料として使用するこ とができる。 また、 本発明金属材料表面への着氷や着雪が極めて少なく、 更に温 度が摂氏零度以上になって氷雪が融解しても水が表面を覆うことがなく、 かつ路 面や床面を傷つけない。 On the other hand, the anti-skid anti-slip metal material of the present invention, despite having no sharp projections, produces high friction on the ice and snow surface, so that shelves, luggage, shoes, and vehicles in a freezing warehouse can be used. It can be used as an anti-slip material for surfaces that come in contact with metal such as ice or snow such as a ring. Further, icing and snow accretion on the surface of the metal material of the present invention are extremely small, and even if the temperature becomes zero degrees Celsius or higher and the ice and snow melts, water does not cover the surface, and the road surface and floor surface are damaged. Absent.
更にまた、 本発明によって得られた撥液性金属表面を、 エアコンや冷凍 '冷蔵 庫などの熱交換器の空気側伝熱面に用いれば、 着霜現象を長期にわたって抑制す ることができる。 その結果、 着霜による熱交換効率の低下を減少させることかで きる。 Furthermore, if the liquid-repellent metal surface obtained according to the present invention is used for the air-side heat transfer surface of a heat exchanger such as an air conditioner or a refrigerator, a frost formation phenomenon can be suppressed for a long time. As a result, the reduction in heat exchange efficiency due to frost formation can be reduced.
また、 本発明によって得られた撥液性金属表面を、 流水管やじょ うごなどのよ うに内部を液体が流れる管 (流液管) の液体との接触面に用いれば、 液体の流れ が速く、 かつ、 使用後に液残りのない流液管を得ることができる。 実施例 Further, if the liquid-repellent metal surface obtained by the present invention is used as a contact surface with a liquid of a pipe (flowing pipe) through which liquid flows, such as a water pipe or a funnel, the flow of the liquid is reduced. A flow tube that is fast and free of liquid after use can be obtained. Example
以下、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこれらの実 施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例 1及び比較例 1 Example 1 and Comparative Example 1
サイズ 3 0 cm x 1 0 cm, 厚さ 0 . 3讓の亜鉛板 (二ラコ社製) を粗さ 1 2 0 0 番の紙ヤスリで磨く ことで表面に凹凸構造 (高さ 5 m 、 幅 1〜 5 0 〃m 、 平面 視で 1 cm2あたりの実表面積 3 . 3 cm2、 接触面積 0 . 0 0 2 6 cm2 ) を形成し、 1 H , 1 H , 2 H , 2 H—パーフルォロォクチル トリ クロ σシラン (P C R社製) を用いてカップリ ング処理を行い、 表面を撥水化した。 カップリ ング処理はへキ サデカン (東京化成社製) 3 0 0 g、 四塩化炭素 (関東化学社製、 特級) 3 0 g、 クロ口ホルム (関東化学社製、 特級) 3 0 gを混合してモレキュラーシーブ 3 A で脱水した溶媒に 1 H , 1 H , 2 H , 2 H—パーフルォロォクチルトリ クロロシ ラン約 1 gを加え、 亜鉛板を室温乾燥窒素雰囲気下で 1 2時間浸漬することによ
り行った。 カップリ ング処理後、 クロ口ホルム 3 0 0 で 2回洗浄後、 自然乾燥 し、 それを更に水洗浄後、 自然乾燥させた。 An uneven surface (height 5 m, width: 0.30 cm x 10 cm, thickness 0.3 mm) made by polishing a zinc sheet (made by Niraco) with a # 200 sandpaper 1-5 0 〃M, actual surface area per 1 cm 2 in a plan view 3. 3 cm 2, the contact area 0. 0 0 2 6 cm 2 ) is formed, 1 H, 1 H, 2 H, 2 H- Coupling treatment was performed using perfluorooctyl trichloro σ silane (manufactured by PCR) to make the surface water-repellent. Coupling is performed by mixing 300 g of hexadecane (manufactured by Tokyo Chemical Industry), 30 g of carbon tetrachloride (manufactured by Kanto Chemical Co., Ltd.), and 30 g of Kuroguchi Holm (manufactured by Kanto Chemical Co., Ltd.). Add about 1 g of 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane to the solvent dehydrated with molecular sieve 3A, and immerse the zinc plate in a dry nitrogen atmosphere at room temperature for 12 hours. By I went. After the coupling treatment, the membrane was washed twice with a black-mouthed form 300, air-dried, further washed with water, and air-dried.
金属表面の蒸留水に対する接触角は光学式接触角計測定装置 (協和界面科学社 製、 CA— A型) を用いて測定した。 すなわち図 1 (a) 、 (b) に示すように 試験試料 1を上記光学式接触角計の試料台 2に載置し、 液滴滴下用のシリ ンジ 3 に蒸留水を 0. 入れ、 シリ ンジ 3の針の先に直径 l mmの液滴 4を作った。 液 滴 4 と試験試料 1 との間を約 1 cmに保ち、 シリ ンジ 3に振動を与えて針先の液滴 4を試験試料 1の上に落下させた。 液滴 4を落下させた後、 液滴 4 と試験試料 1 との間の接触角 (0) を測定した。 The contact angle of the metal surface to distilled water was measured using an optical contact angle meter (CA-A, manufactured by Kyowa Interface Science Co., Ltd.). That is, as shown in FIGS. 1 (a) and 1 (b), test sample 1 was placed on sample stage 2 of the above-mentioned optical contact angle meter, and distilled water was poured into syringe 3 for dropping droplets. A droplet 4 having a diameter of l mm was formed at the tip of the needle of the nozzle 3. The gap between the liquid drop 4 and the test sample 1 was maintained at about 1 cm, and the syringe 3 was vibrated to drop the drop 4 at the needle tip onto the test sample 1. After dropping the droplet 4, the contact angle (0) between the droplet 4 and the test sample 1 was measured.
平らな亜鉛板上での水の接触角は 7 9度であつたが、 亜鉛板を紙ヤスリで磨く ことにより、 水に対する接触角が 2 9度まで減少し、 親水性表面となった。 その 親水性表面をシランカツプリ ング処理することによって、 水に対する接触角が 1 4 1度となるような撥水性表面が得られた。 The contact angle of water on a flat zinc plate was 79 degrees, but by polishing the zinc plate with a paper file, the contact angle to water was reduced to 29 degrees, resulting in a hydrophilic surface. By subjecting the hydrophilic surface to silane coupling treatment, a water-repellent surface having a contact angle to water of 141 degrees was obtained.
比較例として水の接触角が 7 9度である平らな亜鉛板表面を同様なシランカツ プリ ング処理したところ、 水に対する接触角は 1 0 5度にしかならず、 十分な撥 水性は得られなかった。 また、 この亜鉛板表面の凹凸の高さは 1 〃m 以下、 幅は 3 0 0 /m 以上、 平面視で 1 cm2あたりの実表面積は 1. 0〜 1. 2 cm2、 接触面 積は 0. 6 cm2以上であった。 As a comparative example, when the surface of a flat zinc plate having a contact angle of water of 79 degrees was subjected to the same silane coupling treatment, the contact angle with water was only 105 degrees, and sufficient water repellency was not obtained. The height of the irregularities on the surface of the zinc plate is 1 μm or less, the width is 300 μm or more, the actual surface area per 1 cm 2 in plan view is 1.0 to 1.2 cm 2 , and the contact area Was 0.6 cm 2 or more.
実施例 2 Example 2
サイズ 3 0cmx i 0 cm, 厚さ 0. 3画の亜鉛板 (二ラコ社製) を、 塩酸で pHを 3に調整した水溶液に 3日間室温で浸潰した。 表面を電子顕微鏡 (日立社製、 FE— S EM、 S— 4 0 0 0) を用いて観察したところ、 図 2のように微細な凹 凸構造が形成されていた。 こ の凹凸構造の高さは 2〜 5 0 〃 m 、 幅は 0. 5〜2 5 //m 、 平面視で 1 cm2あたりの実表面積は 1 6. 2 cm2、 接触面積は 0. 0 0 4 3 cm2であった。 A zinc plate (manufactured by Niraco) having a size of 30 cm x i 0 cm and a thickness of 0.3 was immersed in an aqueous solution adjusted to pH 3 with hydrochloric acid at room temperature for 3 days. When the surface was observed using an electron microscope (Hitachi, FE-SEM, S-400), a fine concave-convex structure was formed as shown in FIG. Height 2-5 0 〃 m of this concavo-convex structure, the width 0. 5 to 2 5 // m, the actual surface area per 1 cm 2 in plan view 1 6. 2 cm 2, the contact area is 0. It was 0.43 cm 2 .
表面の撥液化はォク夕デシルトリ クロロシラン (東京化成社製) を用いたカツ プリ ング処理により行った。 カップリ ング処理は、 へキサデカン (東京化成社製) 3 0 0 g、 四塩化炭素 (関東化学社製、 特級) 3 0 g、 クロ口ホルム (関東化学 社製、 特級) 3 0 gを混合した溶媒をモレキュラーシーブ 3 Aで脱水後、 ォク夕
デシルトリクロロシラン約 1 gを加え、 その処理液に亜鉛板を室温乾燥窒素雰囲 気下で 1 2時間浸漬することにより行った。 処理後、 クロ口ホルム 3 0 0 で二 回洗浄し、 室温で自然乾燥を行った。 乾燥後、 サンプルを水で洗い、 再び室温で 自然乾燥させた。 The surface was made liquid-repellent by a cutting treatment using octyl decyltrichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.). The coupling treatment was performed by mixing 300 g of hexadecane (Tokyo Kasei Co., Ltd.), 30 g of carbon tetrachloride (Kanto Chemical Co., Ltd., special grade), and 30 g of Kuroguchi Holm (Kanto Chemical Co., Ltd., special grade). After dehydrating the solvent with molecular sieve 3 A, Approximately 1 g of decyltrichlorosilane was added, and the zinc plate was immersed in the treatment solution for 12 hours in a dry nitrogen atmosphere at room temperature. After the treatment, the membrane was washed twice with a black form 300 and air-dried at room temperature. After drying, the sample was washed with water and air dried again at room temperature.
このようにして得られた亜鉛板試料の水及びグリセり ンに対する接触角を、 光 学式接触角測定装置 (協和界面科学社製、 C A - A型) を用いて測定した。 平ら な亜鉛板上での水の接触角は 7 9度であつたが、 それを酸に浸漬することにより、 水に対する接触角が 1 6度まで減少し、 親水性表面となった。 その親水性表面を シランカツプリ ング処理することによって、 水に対する接触角が 1 6 0度、 グリ セリンに対する接触角が 1 5 5度となるような撥液性表面が得られた。 The contact angle of the zinc plate sample thus obtained with water and glycerin was measured using an optical contact angle measuring device (CA-A type, manufactured by Kyowa Interface Science Co., Ltd.). The contact angle of water on a flat zinc plate was 79 degrees, but by immersing it in acid, the contact angle with water was reduced to 16 degrees, resulting in a hydrophilic surface. By subjecting the hydrophilic surface to silane coupling treatment, a liquid-repellent surface having a contact angle of 160 degrees with water and a contact angle of 155 degrees with glycerin was obtained.
実施例 3及び比較例 2 Example 3 and Comparative Example 2
サイズ 3 O cm 1 O cm、 厚さ 0 . 3 mmのアルミニウム板 (二ラコ社製) を、 水 道水 7 0 0 に水酸化ナトリウム 3 0 gを加えてアル力リ水溶液としたものに室 温で 3時間浸漬した。 表面の構造を電子顕微鏡 (日立社製、 F E - S E M、 S - 4 0 0 0 ) を用いて観察したところ、 図 3のように微細な凹凸構造が形成されて いた。 この凹凸構造の高さは 2 m 、 幅は 1〜 2 0 m 、 平面視で 1 cm2あたり の実表面積は 4 . 3 cm2 , 接触面積は 0 . 0 0 1 5 cm2であった。 An aluminum plate (manufactured by Niraco Co., Ltd.) with a size of 3 O cm and 1 O cm and a thickness of 0.3 mm was placed in a solution prepared by adding 30 g of sodium hydroxide to 700 ml of tap water to form an aqueous solution. Soaked at room temperature for 3 hours. When the surface structure was observed using an electron microscope (Hitachi, FE-SEM, S-40000), a fine uneven structure was formed as shown in FIG. The height of this uneven structure was 2 m, the width was 1 to 20 m, the actual surface area per 1 cm 2 in plan view was 4.3 cm 2 , and the contact area was 0.0015 cm 2 .
表面の撥水化はィソプロピルトリィソステアロイルチタネート (品種: K R— T T S、 味の素社製) を用いたカップリ ング処理により行った。 カップリ ン グ処 理は、 モレキュラーシーブ 3 A (和光社製) を用いて脱水したトルエン (和光社 製、 特級) 3 0
5 gを混合し、 その処理液にアルミニゥム 板を温度 1 0 0 °Cで 5時間浸漬することにより行った。 カップリ ング処理後、 ト ルェン 3 0 0 ^で二回洗浄し、 室温で乾燥後、 更に水で洗浄し、 室温で自然乾燥 させた。 The surface was made water-repellent by a coupling treatment using isopropyltriisostearoyl titanate (variety: KR-TTS, manufactured by Ajinomoto Co.). Coupling is performed using toluene (special grade, manufactured by Wako) dehydrated using molecular sieve 3A (manufactured by Wako). 5 g were mixed, and an aluminum plate was immersed in the treatment liquid at a temperature of 100 ° C. for 5 hours. After the coupling treatment, the membrane was washed twice with toluene ^, dried at room temperature, further washed with water, and air-dried at room temperature.
このようにして得られたアルミ二ゥム扳試料の水に対する接触角を光学式接触 角測定装置 (協和界面科学社製、 C A— A型) を用いて測定した。 平らなアル ミ 二ゥ厶板上での水の接触角は 7 0度であつたが、 それをアル力リ溶液に浸漬する ことにより水に対する接触角が 3度以下にまで減少し、 親水性表面となった。 そ の親水性表面をチタネート系カップリング剤で処理することによって、 水に対す
る接触角が 1 5 8度となるような撥水性表面が得られた。 The contact angle of the aluminum sample thus obtained with water was measured using an optical contact angle measuring device (CA-A type, manufactured by Kyowa Interface Science Co., Ltd.). The contact angle of water on a flat aluminum plate was 70 degrees, but by immersing it in an alkaline solution, the contact angle with water was reduced to less than 3 degrees, and the hydrophilicity was reduced. Surface. By treating the hydrophilic surface with a titanate-based coupling agent, A water-repellent surface having a contact angle of 158 degrees was obtained.
比較例として、 水の接触角が 7 0度である平らなアルミニウム板表面に同様な カップリング処理をしたところ、 水に対する接触角は 1 1 0度にしかならず、 十 分な撥水性は得られなかった。 また、 このアルミニウム板表面の凹凸の高さは 1 u rn 以下、 幅は 3 0 0 m 以上、 平面視で 1 cm2あたりの実表面積は 1 . 1 cm2、 接触面積は 0 . 5 cm2以上であった。 As a comparative example, when a similar coupling treatment was performed on a flat aluminum plate surface having a water contact angle of 70 degrees, the contact angle with water was only 110 degrees, and sufficient water repellency was not obtained. Was. Also, the height of the unevenness of the surface of the aluminum plate 1 u rn or less, the width 3 0 0 m or more, 1 real surface area per 1 cm 2 in plan view. 1 cm 2, the contact area is 0. 5 cm 2 That was all.
実施例 4及び比較例 3 Example 4 and Comparative Example 3
サイズ 3 0 cm 1 0 cm, 厚さ 0 . 3隨の鉄板 (二ラコ社製) を、 濃度 3重量% の食塩水に浸漬し、 取り出して空気中で 2週間放置することで表面を腐蝕させて 微細な凹凸構造 (高さ 2〜2 0〃1« 、 幅0 . 5〜3 0 / m 、 平面視で 1 cm2あた りの実表面積 1 3 . 7 cm2、 接触面積 0 . 0 0 5 cm2 ) を形成し、 ォクタデシル ト リ クロロシラン (東京化成社製) を用いてカップリ ング処理を行い、 表面を撥水 化した。 カップリ ング処理は、 へキサデカン (東京化成社製) 3 0 0 g、 四塩化 炭素 (関東化学社製、 特級) 3 0 g、 クロ口ホルム (関東化学社製、 特級) 3 0 gを混合してモレキュラーシーブ 3 Aで脱水した溶媒にォク夕デシルトリ クロ口 シラン約 1 gを加え、 鉄板を室温乾燥窒素雰囲気下で 1 2時間浸漬することによ り行った。 カップリ ング処理後、 クロ口ホルム 3 0 0 で 2回洗浄後、 自然乾燥 させた。 An iron plate (manufactured by Niraco Co., Ltd.) with a size of 30 cm, 10 cm and a thickness of 0.3 cm is immersed in a 3% by weight saline solution, taken out, and left in the air for 2 weeks to corrode the surface. And fine uneven structure (height 2 to 20〃1, width 0.5 to 30 / m, actual surface area per 1 cm 2 in plan view 13.7 cm 2 , contact area 0.0 0.5 cm 2 ) was formed and subjected to a coupling treatment using octadecyl trichlorosilane (manufactured by Tokyo Chemical Industry Co., Ltd.) to make the surface water-repellent. The coupling treatment is performed by mixing 300 g of hexadecane (manufactured by Tokyo Chemical Industry), 30 g of carbon tetrachloride (manufactured by Kanto Chemical Co., special grade), and 30 g of Kuroguchi Form (manufactured by Kanto Chemical Co., Ltd.). Approximately 1 g of octyl decyl trichlorosilane was added to the solvent dehydrated with molecular sieve 3A, and the steel plate was immersed in a dry nitrogen atmosphere at room temperature for 12 hours. After the coupling treatment, the membrane was washed twice with a black-mouthed form 300 and air-dried.
このようにして得られた鉄板試料の水に対する接触角を光学式接触角測定装置 (協和界面科学社製、 C A - A型) を用いて測定した。 平らな鉄板上での水の接 触角は 8 3度であつたが、 それを自然腐蝕させることにより水に対する接触角が 3度以下まで減少し、 親水性表面となった。 その親水性表面をシラン系カツプリ ング剤で処理することによって、 水に対する接触角が 1 6 0度となるような撥水 性表面が得られた。 The contact angle of the iron plate sample thus obtained with water was measured using an optical contact angle measuring device (CA-A type, manufactured by Kyowa Interface Science Co., Ltd.). Although the contact angle of water on a flat iron plate was 83 degrees, the natural corrosion of the water reduced the contact angle to water to less than 3 degrees, resulting in a hydrophilic surface. By treating the hydrophilic surface with a silane-based coupling agent, a water-repellent surface having a contact angle to water of 160 degrees was obtained.
比較例として、 水の接触角か 8 3度である平らな鉄板表面に同様なカツプリ ン グ処理をしたところ、 水に対する接触角は 1 0 3度にしかならず、 十分な撥水性 は得られなかった。 また、 この鉄板表面の凹凸の高さは 1 m 以下、 幅は 3 0 0 m 以上、 平面視で 1 cm2あたりの実表面積は 1 . 0〜 1 . 2 cm2、 接触面 積は 0 . 5 cm2以上であった。
実施例 5 As a comparative example, when a similar cutting treatment was performed on a flat iron plate surface with a water contact angle of 83 degrees, the water contact angle was only 103 degrees, and sufficient water repellency was not obtained. . The height of the irregularities on the iron plate surface is 1 m or less, the width is 300 m or more, the actual surface area per 1 cm 2 in plan view is 1.0 to 1.2 cm 2 , and the contact area is 0. 5 cm 2 or more. Example 5
サイズ 3 0 cm 1 0 cm. 厚さ 1 mmの亜鉛板 (二ラコ社製) 二枚を、 0. 0 1 mo£/ \ -塩化亜鉛水溶液中に電極として 4 2咖の間隔をおいて対向させて設置 し、 直流安定化電源 (インステックス社製、 GP S— 3 0 3 0 ) により両極間に 1. 0 Vの定電圧を 5時間印加した。 その結果、 陰極の亜鉛板表面に塩化亜鉛水 溶液中の亜鉛イオンが析出した。 その陰極表面の微細構造を電子顕微鏡 (日立社 製、 FE— S EM、 S— 4 0 0 0) で観察したところ、 図 4のように微細な凹凸 構造が形成されていた。 この凹凸構造の高さは 1〜2 0〃m 、 幅は 0. 2〜3 0 um 、 平面視で 1 cm2あたりの実表面積は 1 5. 3cm2, 接触面積は 0. 0 1 1 cm2であった。 Size 30 cm 10 cm. Two 1 mm thick zinc plates (manufactured by Niraco) are opposed to each other as electrodes in a 0.01 mo £ / \-zinc chloride aqueous solution at an interval of 42 mm. A constant voltage of 1.0 V was applied between both electrodes for 5 hours using a stabilized DC power supply (GPS-300, manufactured by Instex). As a result, zinc ions in the aqueous zinc chloride solution were deposited on the surface of the zinc plate of the cathode. When the fine structure of the cathode surface was observed with an electron microscope (FE-SEM, S-400, manufactured by Hitachi, Ltd.), a fine uneven structure was formed as shown in FIG. Height 1-2 0〃M of this concavo-convex structure, width 0. 2 to 3 0 um, the actual surface area per 1 cm 2 in plan view 1 5. 3 cm 2, the contact area of 0. 0 1 1 cm Was 2 .
撥液化はォクタデシルトリ クロロンラン (東京化成社製) を用いたカップリ ン グ処理により行った。 カップリ ング処理は、 へキサデカン (東京化成社製) 3 0 0 g、 四塩化炭素 (関東化学社製、 特級) 3 0 g、 クロ口ホルム (関東化学 社製、 特級) 3 0 gを混合してモレキュラーシーブ 3 Aで脱水した溶媒にォクタ デシルトリ クロロシラン約 1 gを加え、 陰極として用いた亜鉛板を室温乾燥窒素 雰囲気下で 1 2時間浸漬することにより行った。 カップリ ング処理後、 クロロホ ルム 3 0 0 で 2回洗浄後、 自然乾燥させた。 The liquid repellency was achieved by a coupling treatment using octadecyl trichlorolanne (manufactured by Tokyo Chemical Industry Co., Ltd.). The coupling treatment is performed by mixing 300 g of hexadecane (manufactured by Tokyo Kasei Co., Ltd.), 30 g of carbon tetrachloride (manufactured by Kanto Chemical Co., Ltd., special grade), and 30 g of Kuroguchi Form (manufactured by Kanto Chemical Co., Ltd., special grade). About 1 g of octadecyltrichlorosilane was added to the solvent dehydrated with molecular sieve 3A, and the zinc plate used as a cathode was immersed in a dry nitrogen atmosphere at room temperature for 12 hours. After the coupling treatment, the plate was washed twice with 300 parts of chloroform and air-dried.
このようにして得られた亜鉛板試料の水、 グリセリ ン (関東化学社製、 特級) ぬれ指数標準液 No. 5 4、 及び No. 4 8 (和光社製) に対する接触角を光学 式接触角測定装置 (協和界面科学社製、 CA- A型) を用いて測定した。 The contact angle of the zinc plate sample thus obtained with water and glycerin (Kanto Chemical Co., Ltd., special grade) wetting index standard solutions No. 54 and No. 48 (Wako Co., Ltd.) was determined by the optical contact angle. The measurement was performed using a measuring device (manufactured by Kyowa Interface Science Co., Ltd., CA-A type).
平らな亜鉛板上での水の接触角は 7 9度であつたが、 それを電気分解処理する ことにより水に対する接触角が 3度以下にまで減少し、 親水性表面となった。 そ の親水性表面をシランカップリ ング剤で処理することによって、 各種液体に対す る接触角が表 1 に示す値となるような撥液性表面か得られた。 表 1 水 グリセリン ぬれ指数標準液 ぬれ指数標準液 The contact angle of water on a flat zinc plate was 79 degrees, but by electrolyzing it, the contact angle with water was reduced to less than 3 degrees, resulting in a hydrophilic surface. By treating the hydrophilic surface with a silane coupling agent, a lyophobic surface having contact angles with various liquids shown in Table 1 was obtained. Table 1 Water Glycerin Wetting Index Standard Solution Wetting Index Standard Solution
Να5 4 Να4 8 Να5 4 Να4 8
接触角 (度) 163 155 151 140
実施例 6 Contact angle (degree) 163 155 151 140 Example 6
実施例 5において亜鉛板の代りにサイズ 3 Ocmx 1 0 cm, 厚さ 1讓の了ルミ二 ゥ厶扳 (二ラコ社製) 2枚を、 塩化亜鉛水溶液の代りに 2 5 N -硫酸 5 とィ オン交換水 1 リ ッ トルを混合したものを用いた以外は実施例 5と同様に設置し、 直流安定化電源 (インステツク社製、 G P S - 3 0 3 0 ) を用いて電極電流密度 1 OmAZcm2で 3時間通電した。 その結果、 陽極のアルミニウム板表面からアル ミニゥ厶が溶出し、 表面に微細な凹凸構造が形成された。 その陽極表面の微細構 造を電子顕微鏡 (日立社製、 F E— S EM、 S- 4 0 0 0 ) を用いて観察したと ころ、 図 5のように微細な凹凸構造が形成されていた。 この凹凸構造の高さは 2 〃111 、 幅は 1〜 1. 5 / m 、 平面視で 1 cm2あたりの実表面積は 1 4. 7 cm2、 接 触面積は 0. 0 0 7 2 cm2であつた。 In Example 5, two pieces of Lumidium (manufactured by Niraco Co., Ltd.) of size 3 Ocm x 10 cm and thickness 1 were used instead of the zinc plate, and 25 N-sulfuric acid 5 was used instead of the aqueous zinc chloride solution. Except for using a mixture of 1 liter of ion-exchanged water, installation was performed in the same manner as in Example 5, and an electrode current density of 1 OmAZcm was obtained using a stabilized DC power supply (manufactured by Instek, Inc., GPS-3300). 2 for 3 hours. As a result, aluminum was eluted from the aluminum plate surface of the anode, and a fine uneven structure was formed on the surface. When the fine structure of the anode surface was observed using an electron microscope (FE-SEM, S-400, manufactured by Hitachi, Ltd.), a fine uneven structure was formed as shown in FIG. The height of this uneven structure is 2〃111, the width is 1 to 1.5 / m, the actual surface area per 1 cm 2 in plan view is 14.7 cm 2 , and the contact area is 0.0072 cm Two .
撥液化は 1 H, 1 H, 2 H, 2 H-パーフルォロォクチルト リ クロロシラ ン ( P C R社製) を用いた力ップリ ング処理により行った。 カップリ ング処 理は、 へキサデカン (東京化成社製) 3 0 0 g、 四塩化炭素 (関東化学社製、 特 級) 3 0 g、 クロ口ホルム (関東化学社製、 特級) 3 0 gを混合してモレキユラ 一シーブ 3 Aで脱水した溶媒に 1 H, 1 H, 2 H, 2 H—パーフルォロォクチル トリ クロロンラン約 1 gを加え、 陽極として用いたアルミ二ゥ厶板を室温乾燥窒 素雰囲気下で 1 2時間浸漬することにより行った。 カップリ ング処理後、 クロ口 ホルム 3 0 0 で 2回洗浄後、 乾燥し、 再び水洗浄後、 室温で自然乾燥させた。 このようにして得られたアルミニウム板試料の水、 グリセリ ン (関東化学社製、 特級) 、 ぬれ指数標準液 No. 5 4及び No. 4 8 (和光社製) に対する接触角 を光学式接触角測定装置 (協和界面科学社製、 CA - A型) を用いて測定した。 平らなアルミ二ゥム板上での水の接触角は 7 0度であつたが、 それを電気分解 処理することにより水に対する接触角が 3度以下にまで減少し、 親水性表面とな つた。 その親水性表面をシランカップリ ング剤で処理することによって、 各種液 体に対する接触角が表 2に示す値となるような撥液性表面が得られた。
表 2 The liquid repellency was achieved by a force ring treatment using 1 H, 1 H, 2 H, 2 H-perfluorooctyl trichlorosilane (manufactured by PCR). Coupling treatment is as follows: Hexadecane (Tokyo Kasei) 300 g, carbon tetrachloride (Kanto Chemical Co., special grade) 30 g, Kuroguchi Holm (Kanto Chemical Co., special grade) 30 g About 1 g of 1 H, 1 H, 2 H, 2 H-perfluorooctyl trichlorolane was added to the solvent mixed and dehydrated with 1 A sieve 3 A, and the aluminum plate used as the anode was dried at room temperature. This was performed by immersing in a nitrogen atmosphere for 12 hours. After the coupling treatment, the membrane was washed twice with black mouth form 300, dried, washed again with water, and air-dried at room temperature. The contact angle of the aluminum plate sample thus obtained with water, glycerin (Kanto Chemical Co., Ltd., special grade) and wetting index standard solutions No. 54 and No. 48 (Wako Co., Ltd.) was determined by the optical contact angle. The measurement was performed using a measuring device (manufactured by Kyowa Interface Science Co., Ltd., CA-A type). The contact angle of water on a flat aluminum plate was 70 degrees, but by electrolyzing it, the contact angle with water was reduced to less than 3 degrees, resulting in a hydrophilic surface. . By treating the hydrophilic surface with a silane coupling agent, a lyophobic surface having contact angles with various liquids shown in Table 2 was obtained. Table 2
実施例 1のようにして得られた超撥水亜鉛液を用いて、 以下の如く してその耐 着氷性及び耐着雪性を評価した。 Using the super-water-repellent zinc liquid obtained as in Example 1, its ice and snow accretion were evaluated as follows.
耐着氷性の評価に用いた氷は、 一辺が 2 cmのプロッ ク状の氷 (製氷機 ; HOSH I ZAK I社製、 I M— 2 0 0 DWJにより作製) と、 これを同装置に より最大長さ 1 cmに砕いたザラメ氷を図 6のように固めたものを用いた。 耐着雪 性の評価には、 天然の雪 (福島県、 台鞍スキー場) を図 6のように固めたものを 使用した。 The ice used for the evaluation of ice resistance was a block-shaped ice with a side of 2 cm (ice machine; manufactured by HOSH I ZAK I, manufactured by IM-200 DWJ). As shown in Fig. 6, a slice of ice, crushed to a maximum length of 1 cm, was used. For evaluation of snow resistance, we used natural snow (Fukushima Prefecture, Taikura Ski Resort) that was hardened as shown in Fig. 6.
上記のようにして得られた超撥水性亜鉛板を図 7のように地面に水平に設置す る。 その後、 雪あるいは氷 1をサンプル板 2の上に設置し、 サンプル板 2を徐々 に傾けてゆく。 そして、 雪あるいは氷 1が滑り出す角度 0S I ,Pを記録した。 The super-hydrophobic zinc plate obtained as described above is placed horizontally on the ground as shown in Fig.7. Then, snow or ice 1 is placed on sample plate 2 and sample plate 2 is gradually tilted. Then, the angles 0 SI and P at which the snow or ice 1 started to slide were recorded.
気温一 5°C条件下では、 ブロック氷は 0s l l Pが 2 5度で滑り始めた。 ザラメ氷 上でも 0 s l ,Pが 2 5度で滑り出し、 雪 (気温 2°C) に対する 0S I,Pは 2 0度であ つた。 比較例として、 未処理の平らな亜鉛板で同様な実験を行ったところ、 プロ ック氷及びザラメ氷に対する 0 s l i Pは 5 0度以上であり、 雪に対する 0 s l ,ρは 9 0度となった。 この亜鉛板表面の凹凸の幅は 3 0 0 m 以上、 高さは 1 m 以 下、 1 cm2あたりの実表面積は 1. 0〜に 2 cm2, 剛体 1 cm2あたりの接触面積 は 0. 6cm2 以上であった。 Under the condition of a temperature of 1-5 ° C, the block ice started to slide at 0 sll P at 25 degrees. 0 sl , P slipped at 25 degrees on the slag ice, and 0 SI , P for snow (temperature 2 ° C) was 20 degrees. As a comparative example, when a similar experiment was performed using an untreated flat zinc plate, 0 sli P for block ice and flounder ice was 50 degrees or more, and 0 sl and ρ for snow were 90 degrees. became. The width of the unevenness of the zinc plate surface 3 0 0 m or more, 1 m hereinafter height, 1 real surface area per cm 2 1. 0 to 2 cm 2, the contact area per rigid 1 cm 2 0 6 cm 2 or more.
試験例 2 Test example 2
実施例 2のようにして得られた撥水性亜鉛板を図 7のように地面に水平に設置 する。 その後、 雪あるいは氷 1をサンプル板 2の上に設置し、 サンプル板 2を徐 々に傾けてゆく。 そして、 雪あるいは氷 1が滑り出す角度 0 S 11。を記録した。 気 温一 5 C条件下では、 ブロック氷は SS,,Pが 2 4度で滑り始めた。 ザラメ氷上で も 0 S I ,Pが 2 4度で滑り出し、 雪 (気温 2°C) に対する S s l l Pは 2 0度であった c 比較例として、 未処理の平らな亜鉛板で同様な実験を行ったところ、 ブロック氷
及びザラメ氷に対する 0s l i Pは 5 0度以上であり、 雪に対する 0s l i Pは 9 0度と なつ τこ。 The water-repellent zinc plate obtained as in Example 2 is horizontally placed on the ground as shown in FIG. After that, snow or ice 1 is placed on the sample plate 2, and the sample plate 2 is gradually tilted. Then, the angle at which snow or ice 1 starts to slide 0 S 11 . Was recorded. Under the temperature of 5 C, the block ice started to slide at 24 degrees in S S ,, P. 0 SI , P slipped at 24 degrees on the salmon ice, and S sll P against snow (temperature of 2 ° C) was 20 degrees. I went there, block ice And 0 sli P for snow ice is 50 degrees or more, and 0 sli P for snow is 90 degrees.
試験例 3 Test example 3
実施例 3のようにして得られた撥水性アルミ二ゥ厶板を図 7のように地面に水 平に設置する。 その後、 雪あるいは氷 1をサンプル板 2の上に設置し、 サンプル 板 2を徐々に傾けてゆく。 そして、 雪あるいは氷 1が滑り出す角度 0S I,Pを記録 した。 気温一 5°C条件下では、 ブロック氷は SS 1,Pが 2 4度で滑り始めた。 ザラ メ氷上でも 0 s l i Pが 2 4度で滑り出し、 雪 (気温 2°C) に対する 0s l i Pは 2 0〜 2 2度であった。 比較例として、 未処理の平らなアルミニウム板で同様な実験を 行ったところ、 ブロック氷及びザラメ氷に対する 0 s l i Pは 5 0度以上であり、 雪 に対する 0 s l i Pは 9 0度となった。 The water-repellent aluminum plate obtained as in Example 3 is horizontally placed on the ground as shown in FIG. After that, snow or ice 1 is placed on the sample plate 2, and the sample plate 2 is gradually tilted. Then, the angles 0 SI and P at which the snow or ice 1 started to slide were recorded. Under the condition of a temperature of 1-5 ° C, the block ice started to slide at 24 degrees in S S 1 and P. 0 sli P slipped at 24 degrees on the Zarame ice, and 0 sli P for snow (temperature 2 ° C) was 20 to 22 degrees. As a comparative example, a similar experiment was performed on an untreated flat aluminum plate. As a result, 0 sli P for block ice and flounder ice was 50 degrees or more, and 0 sli P for snow was 90 degrees.
試験例 4 Test example 4
実施例 4のようにして得られた撥水性鉄板を図 7のように地面に水平に設置す る。 その後、 雪あるいは氷 1をサンプル板 2の上に設置し、 サンプル板 2を徐々 に傾けてゆく。 そして、 雪あるいは氷 1が滑り出す角度 0s l l。を記録した。 気温 一 5°C条件下では、 プロック氷は 0s l i Pが 1 6〜 1 7度で滑り始めた。 ザラメ氷 上でも 0s l,Pが 1 6〜 1 7度で滑り出し、 雪 (気温 2°C) に対する 0S I ,Pは 1 6 〜2 0度であった。 比較例として、 未処理の平らな鉄板で同様な実験を行ったと ころ、 ブロック氷及びザラメ氷に対する 0s l i Pは 6 0度以上であり、 雪に対する は 9 0度であった。 The water-repellent iron plate obtained as in Example 4 is horizontally placed on the ground as shown in FIG. Then, snow or ice 1 is placed on sample plate 2 and sample plate 2 is gradually tilted. Then, the angle at which snow or ice 1 starts to slide is 0 sll . Was recorded. At a temperature of 15 ° C, the block ice began to slide at 0 sli P at 16-17 ° C. 0 sl , P slipped at 16 to 17 degrees on the salam ice, and 0 SI , P for snow (temperature 2 ° C) was 16 to 20 degrees. As a comparative example, a similar experiment was performed on an untreated flat iron plate, and the value of 0 sli P for block ice and flounder ice was 60 degrees or more, and that for snow was 90 degrees.
試験例 5 Test example 5
実施例 5のようにして得られた撥水性亜鉛板を図 7のように地面に水平に設置 する。 その後、 雪あるいは氷 1をサンプル板 2の上に設置し、 サンプル板 2を徐 々に傾けてゆく。 そして、 雪あるいは氷 1が滑り出す角度 SS I ,Pを記録した。 気 温一 5 °C条件下では、 ブロック氷は 0 s l i Pが 2 5度で滑り始めた。 ザラメ氷上で も 0s l i Pが 2 5度で滑り出し、 雪 (気温 2°C) に対する 0s l i Pは 2 0度であった c 比較例として、 未処理の平らな亜鉛板で同様な実験を行ったところ、 ブロック氷 及びザラメ氷に対する 0s l i Pは 5 0度以上であり、 雪に対する 0s l l Pは 9 0度と なつ了こ。
試験例 6 The water-repellent zinc plate obtained as in Example 5 is placed horizontally on the ground as shown in FIG. After that, snow or ice 1 is set on the sample plate 2, and the sample plate 2 is gradually tilted. Then, the angles S SI , P at which the snow or ice 1 started to slide were recorded. At a temperature of 5 ° C, the block ice began to slide at 25 s with 0 sli P. Coarse ice even Suberidashi at 0 sli P 2 5 degrees, as c Comparative Example 0 sli P against the snow (air temperature 2 ° C) was 2 0 degrees, subjected to the same experiments a flat zinc plate of untreated and where, 0 sli P for block ice and coarse ice is 5 0 degrees or more, 0 sll P against snow 9 0 degrees and summer Ryoko. Test example 6
実施例 6のようにして得られた撥水性アルミニゥム板を図 7のように地面に水 平に設置する。 その後、 雪あるいは氷 1をサンプル板 2の上に設置し、 サンプル 板 2を徐々に傾けてゆく。 そして、 雪あるいは氷 1が滑り出す角度 0S 1 ,Pを記錄 した。 気温一 5°C条件下では、 ブロック氷は 0s l i Pが 2 3度で滑り始めた。 ザラ メ氷上でも 0s l i Pが 2 3度で滑り出し、 雪 (気温 2°C) に対する 0s l l Pは 1 6度 であった。 比較例としてシランカップリング処理を施す前の微細構造を有し、 親 水性表面に対して同様な実験を行ったところ、 気温一 5 °C条件下では、 ブロック 氷に対する Ss l i Pは 5 0度、 ザラメ氷に対する 0s l i Pは 9 0度となり、 耐着雪性 及び耐着氷性には、 表面の微細構造とその表面の化学的な撥水処理が必要である ことがわかる。 The water-repellent aluminum plate obtained as in Example 6 is horizontally placed on the ground as shown in FIG. After that, snow or ice 1 is placed on the sample plate 2, and the sample plate 2 is gradually tilted. Then, angles 0 S 1 and P at which the snow or ice 1 starts to slide are recorded. Under the condition of a temperature of 1-5 ° C, the block ice started sliding at 0 sli P at 23 degrees. At Zara main ice Suberidashi at 0 sli P 2 three times, 0 sll P against the snow (air temperature 2 ° C) was 1. 6 degrees. As a comparative example, the microstructure before the silane coupling treatment was applied, and a similar experiment was performed on the hydrophilic surface.At a temperature of 15 ° C, S sli P for block ice was 50 ° C. On the other hand, 0 sli P for the salmon ice was 90 degrees, which means that the snow- and ice-resistance requires a fine structure on the surface and a chemical water-repellent treatment on the surface.
試験例 7 Test example 7
実施例 6で作成した撥水性アルミ二ゥム板を地面に対して 6 0度傾けて設置し (花王 (株) 、 酒田工場敷地内、 気温 1で) 、 その表面での雪の積もり具合を調 査した。 その結果、 撥水アルミニウム表面では雪は極めて迅速に滑り落ち、 つも らないことがわかった。 比較例として、 平らなアルミニウムにカップリ ング'処理 を施したアルミニゥ厶板についても同様な実験をしたところ、 一面に雪が付着し てしまうことがわかった。 The water-repellent aluminum plate created in Example 6 was installed at an angle of 60 degrees with respect to the ground (Kao Corporation, at the site of Sakata Plant, at a temperature of 1), and the snow accumulation on the surface was checked. investigated. As a result, it was found that snow slipped off the surface of the water-repellent aluminum very quickly, and did not go off. As a comparative example, a similar experiment was performed on an aluminum plate obtained by performing coupling 'treatment on flat aluminum, and it was found that snow adhered to one surface.
試験例 8 Test example 8
実施例 1のようにして得られた超撥水亜鉛板を長さ 2 5 cmのところで図 8のよ うに折り曲げ、 更に図 9に示す容器にブロック氷 ( 2 cm角) 、 粗目氷 (長さ l cm 程度) 、 又は雪を入れて、 この上に超撥水亜鉛板を設置する。 そして、 ブロック 氷 ( 2 cm角) 、 粗目氷 (長さ l cm程度) 、 又は雪を入れた容器を徐々に傾けて行 き、 超撥水亜鉛板が滑り始める時の角度 0S 1 ,Pを測定したところ、 氷上 (気温 5 °C) では 0s l i Pが 2 0〜3 0度で滑り始めた。 粗目氷上 (気温 5°C) では 0 s l l P が 3 3度で滑り出し、 雪上 (気温 2て) では測定限界である 8 0度になっても滑 らな力、つた。 The super-water-repellent zinc plate obtained as in Example 1 was bent at a length of 25 cm as shown in FIG. 8, and further placed in a container shown in FIG. 9 with block ice (2 cm square) and coarse ice (length lcm) or put snow and put a super water-repellent zinc plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about lcm in length), or snow, and the angle at which the super water-repellent zinc plate starts to slide 0 S 1 , P On the ice (5 ° C), 0 sli P started to slide at 20 to 30 degrees. On coarse ice (temperature 5 ° C), 0 sll P slipped at 33 degrees, and on snow (temperature 2 degrees), it slipped even at the measurement limit of 80 degrees.
比較例として、 平らな亜鉛板で同様な実験をしたところ、 氷上では 0 S | ,PはAs a comparative example, was a similar experiment with a flat zinc plate, the ice 0 S |, P is
1 0度、 粗目氷上では Ss l 1 Pは 7度、 そして雪上では es, ,。は 1 0〜! 2度であ
つた。 また、 比較例として紙ヤスリで磨く ことにより水に対する接触角か 2 9度 まで減少した亜鉛板に対しても同様の試験を行ったところ、 6> s , i Pの値は大きく 滑り止め効果はあるが、 表面に氷や雪が付着してしまい実用上問題があった。 こ の亜鉛板表面の凹凸の幅は 1〜5 0 m 、 高さは 5 zm、 1 cm2あたりの実表面 積は 3. 3 cm2、 剛体 l cm2あたりの接触面積は 0. 0 0 2 6 cm2であった。 At 10 degrees, on coarse ice S sl 1 P is 7 degrees, and on snow e s ,,. Is 10 ~! Twice I got it. Moreover, when the same test was conducted with respect to the reduced zinc plate to the contact angle or 2 9 degrees with respect to water by sanding Comparative Example, 6> s, the value of i P is stopping effect slip large However, there was a practical problem due to ice and snow adhering to the surface. The width of the unevenness of this zinc plate surface 1 to 5 0 m, height actual surface area per 5 zm, 1 cm 2 is 3. 3 cm 2, the contact area per rigid l cm 2 is 0.0 0 It was 2 6 cm 2.
試験例 9 Test example 9
実施例 2のようにして得られた超撥水亜鉛板を図 8のように加工し、 更に図 9 に示す容器にブロック氷 ( 2 cm角) 、 粗目氷 (長さ l cm程度) 、 又は雪を入れて、 この上に超撥水亜鉛板を設置する。 そして、 ブロック氷 (2 cm角) 、 粗目氷 (長 さ l cm程度) 、 又は雪を入れた容器を徐々に傾けて行き、 超撥水亜鉛板が滑り始 める時の角度 0 s l , Ρを測定したところ、 氷上 (気温 5 °C) では ø s l i Pが 2 0〜 3 0度で滑り始めた。 粗目氷上 (気温 5°C) では 0s l i Pがおよそ 3 0度で滑り出 し、 雪上 (気温 2°C) では測定限界である 8 0度になっても滑らなかった。 The super-water-repellent zinc plate obtained as in Example 2 was processed as shown in FIG. 8, and further placed in a container shown in FIG. 9 in the form of block ice (2 cm square), coarse ice (about 1 cm in length), or Put snow in it and place a super water-repellent zinc plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about l cm in length), or snow, and the angle at which the super-water-repellent zinc plate starts to slide 0 sl , Ρ As a result, on ice (temperature 5 ° C), øsli P started to slide at 20 to 30 degrees. On coarse ice (temperature 5 ° C), 0 sli P started to slip at about 30 ° C, and on snow (temperature 2 ° C), it did not slip even at the measurement limit of 80 ° C.
比較例として、 平らな亜鉛板で同様な実験をしたところ、 氷上では 0S 1 1 Pはお よそ 1 0度、 粗目氷上では 0s l i Pは 7度、 そして雪上での 0s l i pは 1 0〜 1 2度 であった。 また、 比較例として酸浸漬により水に対する接触角が 1 6度まで減少 した亜鉛板に対しても同様の試験を行つたところ、 Θ " i pの値は大きく滑り止め 効果はあるが、 表面に氷や雪が付着してしま 、実用上問題があつた。 As a comparative example, a similar experiment was performed on a flat zinc plate. 0 S 11 P on ice was about 10 degrees, 0 sli P on coarse ice was 7 degrees, and 0 slip on snow was 10 to 1 degree. It was twice. As a comparative example, a similar test was performed on a zinc sheet whose contact angle with water was reduced to 16 degrees by acid immersion. There was a practical problem with snow and snow.
試験例 1 0 Test example 10
実施例 3のようにして得られた超撥水ァルミ二ゥ厶板を図 8のように加工し、 更に図 9に示す容器にプロック氷 ( 2(^角) 、 粗目氷 (長さ 1 cm程度) 、 又は雪 を入れて、 この上に超撥水アルミニウム板を設置する。 そして、 ブロック氷 ( 2 cm角) 、 粗目氷 (長さ l cm程度) 、 又は雪を入れた容器を徐々に傾けて行き、 超 撥水アルミニウム板が滑り始める時の角度 S | ,Pを測定したところ、 氷上 (気温The super-water-repellent aluminum plate obtained as in Example 3 was processed as shown in FIG. 8, and further placed in a container shown in FIG. 9 in block ice (2 (^ square), coarse ice (length 1 cm). ) Or snow, put a super water-repellent aluminum plate on top of it, and gradually remove the container with block ice (2 cm square), coarse ice (about lcm in length), or snow. tilt go, angle S when the super water-repellent aluminum plate begins to slip |, was measured P, on ice (temperature
5 °C) では 0 S I ,Pが 3 0度で滑り始めた。 粗目氷上 (気温 5 °C) でも 0 S I ,Pか 3 0度で滑り出し、 雪上 (気温 2°C) では測定限界である 8 0度になっても滑ら な力、つた。 At 5 ° C), 0 SI and P started to slip at 30 degrees. Even on coarse ice (temperature 5 ° C), it slipped at 0 SI , P or 30 degrees, and on snow (temperature 2 ° C), it slipped even at the measurement limit of 80 degrees.
比較例として、 平らなアルミニウム板で同様な実験をしたところ、 氷上では 6 s l i Pは 8度、 粗目氷上では 0s l l Pは 7度、 そして雪上では 0 s l i Pは 1 2〜 1 3
度であった。 また、 比較例としてアルカリ水溶液に 3時間浸漬することで水に対 する接触角が 3度以下まで減少した超親水性アルミニウム板に対しても同様な試 験を行ったところ、 0s l iPの値は大きく滑り止め効果はあるものの、 表面に氷や 雪が付着してしまい実用上問題があった。 このアルミ二ゥ厶板表面の凹凸構造は 幅 1〜 2 0 m、 高さ 2 m、 1 cm2あたりの実表面積 4. 3 cm2、 剛体 l cm2あ たりの接触面積 0. 0 0 1 5 cm2であった。 As a comparative example, was a similar experiment with a flat aluminum plate, 6 sli P is 8 degrees on ice, 0 sll P is 7 degrees in the coarse ice and the snow 0 sli P 1 2-1 3 Degree. Furthermore, was subjected to the same tests against superhydrophilic aluminum plate contact angle against water by immersing 3 hours in an alkaline aqueous solution as a comparative example was reduced to 3 ° or less, 0 sl iP value Although it has a large anti-slip effect, ice and snow adhered to the surface, and there was a practical problem. The secondary aluminum © irregular structure of厶板surface width. 1 to 2 0 m, height 2 m, 1 real surface area per cm 2 4. 3 cm 2, the contact area 0.0 0 1 or Ah rigid l cm 2 5 was cm 2.
試験例 1 1 Test example 1 1
実施例 4のようにして得られた超撥水鉄板を図 8のように加工し、 更に図 9に 示す容器にブロック氷 (2cm角) 、 粗目氷 (長さ l cm程度) 、 又は雪を入れて、 この上に超撥水鉄板を設置する。 そして、 ブロック氷 (2cm角) 、 粗目氷 (長さ l cro程度) 、 又は雪を入れた容器を徐々に傾けて行き、 超撥水鉄板が滑り始める 時の角度 0S 1,Pを測定したところ、 氷上 (気温 5°C) では s,i Pが約 3 0度を超 えたあたりで滑り始めた。 粗目氷上 (気温 5°C) でも SS I,Pが 3 0度で滑り出し、 雪上 (気温 2°C) では測定限界である 8 0度になっても滑らなかった。 The super-water-repellent iron plate obtained as in Example 4 was processed as shown in FIG. 8, and further, block ice (2 cm square), coarse ice (about lcm in length), or snow was placed in the container shown in FIG. Put the super water-repellent iron plate on this. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about lcro in length), or snow, and measure the angle 0 S 1 , P when the super water-repellent iron plate starts to slide. However, on ice (temperature 5 ° C), s , i P began to slip when the temperature exceeded about 30 degrees. Even on coarse ice (temperature 5 ° C), S SI and P started to slide at 30 ° C, and on snow (temperature 2 ° C), they did not slip even at the measurement limit of 80 ° C.
比較例として、 平らな鉄板で同様な実験をしたところ、 氷上では es l ,Pは 1 0 度以下、 粗目氷上では 0S I,Pは 7度、 そして雪上では 6»s l iPは 1 0〜 1 2度であ つた。 また、 比較例として食塩水に浸漬することで水に対する接触角が 3度以下 まで低下した鉄板に対しても同様の試験を行つたところ、 Θ s , i pの値は大きく滑 り止め効果はあるものの、 表面に氷や雪が付着してしまい実用上問題かあつた。 この鉄板表面の凹凸構造は、 幅 0. 5〜3 0〃m、 高さ 2〜2 0 zm 、 1 cm2あ たりの実表面積 1 3. 7 cm2、 剛体 1 cm2あたりの接触面積 0. 0 0 5 cm2であつ た。 As a comparative example, a similar experiment was performed on a flat iron plate. On ice, e sl and P are less than 10 degrees, on coarse ice 0 SI and P are 7 degrees, and on snow 6 » sl iP is 10 to 1 It was twice. In addition, when the contact angle with water by immersing in saline as a comparative example having conducted the same test against reduced iron up to 3 degrees or less, the value of theta s, ip is greater the slip stopping effect However, ice and snow adhered to the surface, causing a practical problem. Bumpy structure of the iron plate surface, the width from 0.5 to 3 0〃M, height 2~2 0 zm, 1 cm 2 Ah actual surface area of the or 1 3. 7 cm 2, the contact area per rigid 1 cm 2 0 0.05 cm 2 .
試験例 1 2 Test example 1 2
実施例 5のようにして得られた超撥水亜鉛板を図 8のように加工し、 更に図 9 に示す容器にブロック氷 (2 cm角) 、 粗目氷 (長さ l cm程度) 、 又は雪を入れて、 この上に超撥水亜鉛板を設置する。 そして、 ブロック氷 ( 2cm角) 、 粗目氷 (長 さ 1 cm程度) 、 又は雪を入れた容器を徐々に傾けて行き、 超撥水亜鉛板が滑り始 める時の角度 0Sい pを測定したところ、 氷上 (気温 5°C) では es l,Pか 3 0度で 滑り始めた。 粗目氷上 (気温 5°C) でも 0s l i Pが 3 0度で滑り出し、 雪上 (気温
2°C) では測定限界である 8 0度になっても滑らなかった。 The super-water-repellent zinc plate obtained as in Example 5 was processed as shown in FIG. 8 and further placed in a container shown in FIG. 9 in block ice (2 cm square), coarse ice (about lcm in length), or Put snow in it and place a super water-repellent zinc plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about 1 cm long), or snow, and set the angle 0 S when the super water-repellent zinc plate starts to slide. As a result of measurement, on ice (temperature 5 ° C), it started to slip at e sl , P or 30 degrees. Even on coarse ice (temperature 5 ° C), 0 sli P starts to slide at 30 degrees, and on snow (temperature At 2 ° C), it did not slip even at the measurement limit of 80 degrees.
比較例として、 平らな亜鉛板で同様な実験をしたところ、 氷上では 0 s l lPはAs a comparative example, was a similar experiment with a flat zinc plate, the ice 0 sl lP is
1 0度、 粗目氷上では Ss l i Pは 7度、 そして雪上では 0s l i Pは 1 0〜 1 2度であ つた。 また、 比較例として微細構造を形成した親水性亜鉛板に対しても同様の試 験を行ったところ、 0 s l i Pの値は大きく滑り止め効果はあるものの、 表面に氷や 雪が付着してしまレ、実用上問題があつた。 At 10 degrees, S sli P was 7 degrees on coarse ice and 0 sli P was 10 to 12 degrees on snow. As a comparative example, a similar test was performed on a hydrophilic zinc plate having a microstructure, and although the value of 0 sli P was large and had an anti-slip effect, ice and snow adhered to the surface. Les, there was a practical problem.
試験例 1 3 Test example 1 3
実施例 6のようにして得られた超撥水アルミ二ゥ厶板を図 8のように加工し、 更に図 9に示す容器にブロック氷 ( 2 cm角) 、 粗目氷 (長さ 1 cm程度) 、 又は雪 を入れて、 この上に超撥水アルミニウム板を設置する。 そして、 ブロック氷 ( 2 cm角) 、 粗目氷 (長さ 1 cm程度) 、 又は雪を入れた容器を徐々に傾けて行き、 超 撥水アルミニウム板が滑り始める時の角度 0S, 1 Pを測定したところ、 氷上 (気温 一 5°C) では 0S l i Pが 2 8度で滑り始めた。 粗目氷上 (気温一 5°C) では 0S, ,P が 3 2度で滑り出し、 雪上 (気温 2°C) では測定限界である 8 0度になっても滑 らなカヽつた。 The super-water-repellent aluminum plate obtained as in Example 6 was processed as shown in FIG. 8, and further placed in a container shown in FIG. 9 with block ice (2 cm square) and coarse ice (about 1 cm long). ) Put snow or snow and put super water-repellent aluminum plate on it. Then, gradually tilt the container containing block ice (2 cm square), coarse ice (about 1 cm in length), or snow, and set the angle 0 S , 1 P when the super water-repellent aluminum plate starts to slide. was measured on ice (temperature one 5 ° C) in 0 S li P began slipping in 2 8 °. Coarse ice (temperature one 5 ° C) at 0 S,, P is Suberidashi 3 twice, snow (temperature 2 ° C) in an even slip et become 8 0 degrees is the measurement limit Kaka ivy.
比較例として、 平らなアルミニウム板で同様な実験をしたところ、 氷上で は 0s l i Pは 8度以下、 粗目氷上では 0Sい Pは 7度以下、 そして雪上では 0s l ,Pは 1 2〜 1 3度であった。 また、 比較例として表面に微細構造を形成することで水 に対する接触角が 3度以下であるアルミニウム板に対しても同様の試験を行った ところ、 Ss,i Pの値は大きく滑り止め効果はあるものの、 表面に氷や雪が付着し てしまい実用上問題があった。 As a comparative example, a similar experiment was performed on a flat aluminum plate.On ice, 0 sli P was 8 degrees or less, on coarse ice 0 S or P was 7 degrees or less, and on snow 0 sl and P was 12 to 12 degrees. 13 degrees. As a comparative example, a similar test was performed on an aluminum plate having a contact angle with water of 3 ° or less by forming a microstructure on the surface.The values of S s and i P were large and the anti-slip effect was large. However, there was a practical problem with ice and snow adhering to the surface.
実施例 7及び比較例 4 Example 7 and Comparative Example 4
1 H, 1 H, 2 H, 2 H—パーフルォロデ力ノール (PCR社製) 1 0 0 g、 1 0 5重量%ポリ リ ン酸 9 8. 5 gとイソプロピルエーテル 2 0 0 gを 4つ口反 応フラスコに入れ混合し、 7 0°Cまで昇温し、 1 2時間混合した。 反応混合物を 6 0°Cまで冷却した後、 水 1 7 gを添加し、 7 0でで加水分解を 8時間行った。 3 0°Cまで冷却後、 ジェチルエーテル 3 5 0;^、 水 1 8 とエタノール 7 0 mil を加え振とうし、 リ ン酸を下層に抽出した。 リン酸が抽出された下層を分離した 後、 上層に水 1 8 と 1 N塩酸 2 を加え振とうし、 上層を洗浄した。 上層
を取り出し溶媒を留去すると 1 1 2 gの白色固体が得られた。 白色固体中には 1 H, 1 H, 2 H, 2 H—パーフルォロデシルリ ン酸エステル (化合物 7 a) が 9 6. 5 %含まれいた。 1 H, 1 H, 2 H, 2 H—Perfluorodetinol (manufactured by PCR) 100 g, 100 wt.% 98.5 g of polyphosphoric acid and 200 g of isopropyl ether in four ports The mixture was placed in a reaction flask, mixed, heated to 70 ° C., and mixed for 12 hours. After cooling the reaction mixture to 60 ° C., 17 g of water was added and hydrolysis was carried out at 70 for 8 hours. After cooling to 30 ° C, getyl ether 350; ^, water 18 and ethanol 70 mil were added, and the mixture was shaken to extract phosphoric acid into the lower layer. After separating the lower layer from which the phosphoric acid was extracted, water 18 and 1N hydrochloric acid 2 were added to the upper layer and shaken, and the upper layer was washed. Upper layer Was removed and the solvent was distilled off to obtain 112 g of a white solid. The white solid contained 96.5% of 1H, 1H, 2H, 2H-perfluorodecyl phosphate (Compound 7a).
化合物 Ί a Compound Ί a
0 0
II II
CF3(CF2)8CH2CH2-0-P- OH CF 3 (CF 2 ) 8 CH 2 CH 2 -0-P-OH
OH 金属表面の撥液化処理は以下のようにして行った。 サイズ 1 0cmx 5cm、 厚さ 1. Ommの平滑なアルミニウム板、 ステンレス 1 8板、 亜鉛板 (各ニコラ社製) を各々化合物 7 aの 2. 0重量%エタノール溶液へ、 室温で 1週間浸漬処理し、 エタノールで洗浄したあと、 乾燥させた。 The liquid repellency treatment of the OH metal surface was performed as follows. Smooth aluminum plate, stainless steel plate 18 and zinc plate (manufactured by Nikola) with a size of 10 cm x 5 cm and a thickness of 1. Omm are immersed in a 2.0 wt% ethanol solution of compound 7a for 1 week at room temperature. After washing with ethanol, it was dried.
金属表面の液体に対する接触角は光学式接触角計測定装置 (協和界面科学社製 CA - A型) を用いて測定した。 すなわち図 1 (a) 、 (b) に示すように試験 試料 1を上記光学式接触角計の試料台 2に載置し、 液滴滴下用のシリ ンジ 3に液 体を 0. 5m£入れ、 シリ ンジ 3の針先に液滴 4を作った。 シリ ンジ 3をゆっく り と下方に移動し、 液滴 4を試験試料 1の上に接触させ、 振動を与えて液滴 4を試 験試料 1の上に置いた。 この時の液滴 4と試験試料 1 との間の接触角 (0) を測 定した。 液体は表 1に示すものを用い、 それぞれ市販の特級品をそのまま使用し た。 化合物 7 aで撥液化処理したアルミニウム板、 ステンレス 1 8板、 亜鉛板上 での、 各液体の接触角の測定結果を表 3に示す。 The contact angle of the metal surface with respect to the liquid was measured using an optical contact angle meter (CA-A, manufactured by Kyowa Interface Science Co., Ltd.). That is, as shown in FIGS. 1 (a) and 1 (b), test sample 1 was placed on sample stage 2 of the above-mentioned optical contact angle meter, and the liquid was poured into syringe 3 for dropping liquid by 0.5 m. Then, a droplet 4 was formed at the tip of the syringe 3. The syringe 3 was slowly moved downward, and the droplet 4 was brought into contact with the test sample 1, and vibration was applied to place the droplet 4 on the test sample 1. At this time, the contact angle (0) between the droplet 4 and the test sample 1 was measured. The liquids shown in Table 1 were used, and commercial grade products were used as they were. Table 3 shows the measurement results of the contact angles of each liquid on an aluminum plate, a stainless steel plate 18, and a zinc plate treated with liquid repellency with compound 7a.
比較例として、 未処理の平滑なアルミニウム板、 ステンレス 1 8板、 亜鉛板 (各ニラコ社製) 上での各種液体の測定結果を表 3に合わせて示す。
2 ^ - 表 3 アル ミニウム板 ステンレス 1 8 亜 鉛 板 未処理 化合物 7 a処理 未処理 化合物 7 a処理 未処理 化合物 7 a処理 溶 媒 接触角 接触角 接触角 接触角 接触角 接触角 へキサン 6.5 33.3 8.5 28 3> 28.5 オクタ ン 5 45.8 10.6 52.6 3> 48As a comparative example, Table 3 shows the measurement results of various liquids on an untreated smooth aluminum plate, stainless steel plate 18, and zinc plate (manufactured by Nilaco). 2 ^-Table 3 Aluminum plate Stainless steel 1 8 Zinc plate Untreated compound 7a treatment Untreated compound 7a treatment Untreated compound 7a treatment Solvent contact angle Contact angle Contact angle Contact angle Contact angle Contact angle Hexane 6.5 33.3 8.5 28 3> 28.5 octane 5 45.8 10.6 52.6 3> 48
-厂カン 6.2 62.3 13 60.5 3> 64 ドデカン 6.3 75.7 17.6 72.6 5.5 69.4 へキサデ力ン 3.8 86.4 20.9 77 12.4 76.2 ォクタノール 3.6 72.8 19.2 64.6 10.5 77.3 ドデカノ ール 16.4 90 25.4 79.6 20.7 78.4 シクロへキサノ ール 19.3 84.4 28.3 90 27.5 87 ジエチレ ングリ コール 60.7 102.4 56.4 101.2 62.8 108.6 グリセリ ン 75.6 129.5 82.3 118.4 46.4 138.2 ミ リスチン酸メチル 8.5 91.6 22.2 81.6 19.2 71.5 グル夕ル酸ジェチル 16.4 88.8 26.5 77.8 30 76 アジピン酸ジェチル 29.6 96.5 48.4 66.1 35 82.4 マロン酸ジメチル 47.5 101.2 52 83.2 35.4 93.2 モノァセチン 45.9 110 57.5 97.1 49.5 94.6 水 76.4 114.4 77.8 123 87.8 117.3
-Factory 6.2 62.3 13 60.5 3> 64 Dodecane 6.3 75.7 17.6 72.6 5.5 69.4 Hexadene 3.8 86.4 20.9 77 12.4 76.2 Octanol 3.6 72.8 19.2 64.6 10.5 77.3 Dodecanol 16.4 90 25.4 79.6 20.7 78.4 Cyclohexanol 19.3 84.4 28.3 90 27.5 87 Diethylene glycol 60.7 102.4 56.4 101.2 62.8 108.6 Glycerin 75.6 129.5 82.3 118.4 46.4 138.2 Methyl myristate 8.5 91.6 22.2 81.6 19.2 71.5 Getyl glucurate 16.4 88.8 26.5 77.8 30 76 Getyl adipate 29.6 96.5 48.4 66.1 35 82.4 Dimethyl malonate 47.5 101.2 52 83.2 35.4 93.2 Monoacetin 45.9 110 57.5 97.1 49.5 94.6 Water 76.4 114.4 77.8 123 87.8 117.3
化合物 7 aで処理されたアルミニウム板、 ステンレス 1 8板、 亜鉛板上での各 種液体の接触角は、 未処理のものと比較して大きく増加し、 化合物 7 aによる処 理によって撥液性が大きく向上していることがわかる。 The contact angles of various liquids on aluminum plate, stainless steel plate 18 and zinc plate treated with compound 7a are greatly increased compared to untreated ones, and liquid repellency is obtained by treatment with compound 7a. It can be seen that is greatly improved.
実施例 8 Example 8
サイズ 1 0 cm x 5 cm、 厚さ 1 . 0匪の平滑な亜鉛板 (ニラコ社製) 二枚を 0 . 0 1 N塩化亜鉛水溶液中で 5 cmの距離で対向配置し、 直流安定化電源 (イン テックス社製、 G P S— 3 0 3 0 ) を用いて電極電流密度 1 mAZcm2 で 3時間通 電した。 その結果、 陰極の亜鉛板表面へ亜鉛が析出し、 表面に微細な凹凸構造か 形成された。 この亜鉛板を蒸留水で洗浄後、 乾燥させ、 その微細構造を走査型電 子顕微鏡 (日立社製、 S— 4 0 0 0 ) を用いて観察したところ、 図 1 0のように 微細な凹凸構造が形成されていた。 この凹凸構造の高さは 2〜 5 0 m、 幅は 0 . 5〜2 5〃m、 平面視野で 1 cm2 当たりの実表面積は 1 0 . 2 cm2、 接触面 積は 0 . 0 4 3 cm2 であった。 この微細な凹凸構造を持つ亜鉛板を化合物 7 aの 2 . 0重量%エタノール溶液中、 室温で 1週間浸漬処理し、 エタノールで洗浄後、 乾燥させた。 このようにして処理した亜鉛板の、 表 4に示す各種液体に対する接 触角を測定した。 その結果をジスマンプロッ トの形で図 1 1に示す。 また同時に 図 1 1 には、 実施例 7に示した、 化合物 7 aで撥液化処理した平滑な亜鉛板のデ 一夕も白抜きの記号で示した。
Size: 10 cm x 5 cm, Thickness: 1.0 Maraudal zinc plate (manufactured by Nilaco Co., Ltd.) Two DC plates are placed opposite to each other at a distance of 5 cm in a 0.01 N aqueous zinc chloride solution, and a DC stabilized power supply (GPS, manufactured by INTEX Co., Ltd.), and electricity was supplied at an electrode current density of 1 mAZcm 2 for 3 hours. As a result, zinc was deposited on the zinc plate surface of the cathode, and a fine uneven structure was formed on the surface. The zinc plate was washed with distilled water, dried, and its microstructure was observed with a scanning electron microscope (S-400, manufactured by Hitachi, Ltd.). A structure was formed. Height. 2 to 5 0 m of the concavo-convex structure, the width from 0.5 to 2 5〃M, 0 the actual surface area of 1 cm 2 per in flat field 1. 2 cm 2, the contact surfaces product zeros. 0 4 It was 3 cm 2. The zinc plate having the fine concavo-convex structure was immersed in a 2.0% by weight solution of compound 7a in ethanol at room temperature for 1 week, washed with ethanol, and dried. The contact angles of the zinc plates treated in this way with various liquids shown in Table 4 were measured. The results are shown in Figure 11 in the form of a dysman plot. At the same time, in FIG. 11, the outline of the flat zinc plate subjected to the lyophobic treatment with the compound 7a shown in Example 7 is also indicated by white symbols.
表 4 液 体 表面張力 (dyne/cm) Table 4 Liquid surface tension (dyne / cm)
へキサン 18.4 Hexane 18.4
オクタン 21.6 Octane 21.6
飽和炭化水素 デカン 23.8 Saturated hydrocarbon decane 23.8
ドデカン 25.4 Dodecane 25.4
へキサデ力ン 27.5 Hexadene force 27.5
ォク夕ノール 27.5 Okyu Noor 27.5
ドデカノール 29.4 Dodecanol 29.4
アルコール シクロへキサノール 33.4 Alcohol Cyclohexanol 33.4
ジェチレングリコール 45.2 Dethylene glycol 45.2
グリセリン 63.4 Glycerin 63.4
ミ リスチン酸メチル 29.4 Methyl myristate 29.4
エステル グル夕ル酸ジェチル 32.3 Ester glutyl citrate 32.3
アジピン酸ジェチル 36.0 Getyl adipate 36.0
モノァセチン 41.8 Monoacetin 41.8
水 水 72.3 図 1 1 に示すように、 平滑な亜鉛板を化合物 7 aで処理するよりも、 微細な凹 凸を形成した亜鉛板に化合物 7 aで処理する方が撥液性がはるかに向上している c すなわち、 凹凸の亜鉛板における cos 6の値は、 平滑な亜鉛板の cos 0の値にく らべ、 大きく負の方にシフ トしている。 しかもこのシフ トは、 従来の濡れ理論か ら予測されているような cosS < 0となる表面張力の液体に対しておこるのみで なく、 驚く ことに、 cos0 > 0となる表面張力の液体に対してもおきている。 す なわち、 化合物 7 aで処理された亜鉛表面が本来親液性を示すような液体に対し ても、 表面の凹凸化によって撥液性を示すようになる。 このことによって、 非常 に広範な液体に対して撥液性を示す亜鉛表面が得られるようになった。 Water Water 72.3 As shown in Figure 11, treating a smooth zinc plate with compound 7a on a zinc plate with fine pits and projections improves the lyophobic property much more than treating it with compound 7a. C, that is, the value of cos 6 in the uneven zinc plate is shifted to a largely negative direction as compared with the value of cos 0 in the smooth zinc plate. Moreover, this shift not only occurs for liquids with a surface tension of cosS <0 as predicted from the conventional wetting theory, but also surprisingly, for liquids with a surface tension of cos0> 0. It's all up. That is, even if the zinc surface treated with the compound 7a is originally lyophilic, the surface of the zinc becomes lyophobic due to the unevenness of the surface. This has resulted in zinc surfaces that are repellent to a very wide range of liquids.
実施例 9 Example 9
サイズ 1 0 cmx 5 cm、 厚さ 1 . 0薩の平滑なアルミ二ゥ厶板 (二ラコ社製) 二 枚を 1 N硫酸溶液中で 5 cmの距離で対向配置し、 直流安定化電源 (インテックス 社製、 G P S - 3 0 3 0 ) を用いて電極電流密度 1 OmAZcm2 で 3時間通電した c その結果、 陽極のアルミニウム板表面からアルミニウムが溶出し、 表面に微細な 凹凸構造が形成された。 その微細構造を走査型電子顕微鏡 (日立社製、 S - 4 0 0 0 ) を用いて観察したところ、 図 1 2のように微細な凹凸構造が形成され
ていた。 この凹凸の高さは 2 m、 幅は 1〜 5 m、 平面視野で 1 cm2 当た りの実表面積は 1 6 . 2 cm2、 接触面積は 0 . 0 0 2 3 cm2 であった。 Two flat aluminum plates of 10 cm x 5 cm and thickness of 1.0 cm (made by Niraco Co., Ltd.) are placed facing each other in a 1 N sulfuric acid solution at a distance of 5 cm, and a DC stabilized power supply ( Intex Corporation, GPS - 3 0 3 0) the electrode current density 1 OmAZcm 2 in 3-hour conduction were c using the result, aluminum is eluted from the surface of the aluminum plate of the anode, the fine uneven structure formed on a surface thereof . Observation of the fine structure using a scanning electron microscope (S-400, manufactured by Hitachi, Ltd.) revealed that a fine uneven structure was formed as shown in Fig. 12. I was The height of the unevenness was 2 m, the width was 1 to 5 m, the actual surface area per 1 cm 2 in a planar view was 16.2 cm 2 , and the contact area was 0.002 3 cm 2 .
この微細な凹凸構造を持つアルミ二ゥム板を化合物 7 aの 2 . 0重量%ェタノ —ル溶液中、 室温で 1週間浸漬処理し、 エタノールで洗浄後、 乾燥させた。 この ようにして処理したアルミニゥ厶板の、 表 4に示す各種液体に対する接触角を測 定した。 その結果をジスマンプロッ トの形で図 1 3に示す。 また同時に図 1 3に は、 実施例 7に示した、 化合物 7 aで撥液化処理した平滑なアルミニウム板のデ —夕も白抜きの記号で示した。 The aluminum plate having the fine concavo-convex structure was immersed in a 2.0% by weight ethanol solution of compound 7a at room temperature for 1 week, washed with ethanol, and dried. The contact angles of the aluminum plate treated in this manner with various liquids shown in Table 4 were measured. The results are shown in Figure 13 in the form of a dysman plot. At the same time, in FIG. 13, the data of the smooth aluminum plate subjected to lyophobic treatment with the compound 7a shown in Example 7 is also shown by a white symbol.
図 1 3に示すように、 平滑なアルミニウム板を化合物 7 aで処理するよりも、 微細な凹凸を形成したアルミニゥム板に化合物 7 aで処理する方が撥液性がはる かに向上している。 すなわち、 凹凸のアルミニウム板における C OS 0の値は、 平 滑なアルミニゥム板の Cos 0の値にく らべ、 大きく負の方にシフトしている。 し かもこのシフ トは、 従来の濡れ理論から予測されているような COS 0く 0となる 表面張力の液体に対しておこるのみでなく、 驚くことに、 cos S > 0となる表面 張力の液体に対しもおきている。 すなわち、 化合物 7 aで処理されたアルミニゥ ム表面が本来親液性を示すような液体に対しても、 表面の凹凸化によつて撥液性 を示すようになる。 このことによって、 非常に広範な液体に対して撥液性を示す アルミニゥ厶表面が得られるようになった。 産業上の利用可能性 As shown in Fig. 13, treating a smooth aluminum plate with Compound 7a on an aluminum plate with fine irregularities has a much higher lyophobic property than treating it with Compound 7a. I have. That is, the value of C OS 0 in the aluminum plate of the irregularity, the value difficulty of C os 0 flat smooth a Aruminiumu plate label is greatly shifted to a negative one. Furthermore, this shift not only occurs for liquids with a surface tension of COS 0 or 0 as predicted from the conventional wetting theory, but also surprisingly, liquids with a surface tension of cos S> 0 Has also been raised. That is, even if the aluminum surface treated with compound 7a is originally lyophilic, the aluminum surface will exhibit liquid repellency due to the unevenness of the surface. This has made it possible to obtain an aluminum surface that is lyophobic for a very wide range of liquids. Industrial applicability
本発明によれば、 簡便な操作で種々の金属表面に優れた撥液性を付与すること ができる。 According to the present invention, excellent liquid repellency can be imparted to various metal surfaces by a simple operation.
また、 本発明金属材料は、 耐着雪性 ·耐着氷性が優れており :冷凍用倉庫中の 棚や荷物、 アンテナ、 ケーブル、 鉄塔、 土木機械用治具、 家屋、 屋根、 道路標識 等の掲示板などの材料として広く使用することができる。 In addition, the metal material of the present invention is excellent in snow resistance and ice resistance: shelves and luggage in freezing warehouses, antennas, cables, steel towers, jigs for civil engineering machinery, houses, roofs, road signs, etc. It can be widely used as a material for bulletin boards.
更に本発明の対氷雪滑り止め金属材料は、 鋭い突起物を有さないにもかかわら ず、 氷雪面上で高い摩擦を生じるので、 冷凍用倉庫中の棚や荷物、 靴、 車両の輪 どめなどの氷や雪と金属が接触する面の滑り止め材料として使用することかでき る。 また、 本発明金属材料表面への着氷や着雪が極めて少なく、 更に温度が摂氏
零度以上になって氷雪が融解しても水が表面を覆うことがなく、 かつ路面や床面 を傷つけない。 Furthermore, the anti-snow and anti-slip metal material of the present invention has high friction on the ice and snow surface, despite having no sharp projections, so that shelves, luggage, shoes, and vehicle wheels in a freezing warehouse can be used. It can be used as a non-slip material for surfaces that come into contact with metal such as ice or snow. In addition, icing and snow accretion on the surface of the metal material of the present invention are extremely small, Water does not cover the surface even if ice and snow melts at zero or more, and does not damage the road or floor.
更にまた、 本発明によって得られた撥液性金属材料は、 エアコンや冷凍 .冷蔵 庫などの熱交換器の空気側伝熱面に用いれば、 着霜による熱交換効率の低下を減 少させることができる。 Furthermore, if the liquid-repellent metal material obtained by the present invention is used for the air-side heat transfer surface of a heat exchanger such as an air conditioner or a refrigerator, it is possible to reduce the decrease in heat exchange efficiency due to frost formation. Can be.
また、 本発明によって得られた撥液性金属材料を、 流水管やじょうご、 各種液 体のそそぎ口などのように内部を液体が流れる管 (流液管) の液体との接触面に 用いれば、 液体の流れが速く、 かつ、 使用後に液残りのない流液管を得ることが できる。 Further, the liquid-repellent metal material obtained by the present invention may be used for a liquid-contacting surface of a pipe (flowing liquid pipe) through which liquid flows, such as a water pipe, a funnel, and a pouring port for various liquids. In addition, it is possible to obtain a flow tube in which the flow of the liquid is fast and the liquid does not remain after use.
また、 本発明によって得られた撥液性金属材料を、 携帯用又は室内用のビデオ、 テレビ、 ラジオなどの各種電気機器、 あるいはカメラ、 時計などの精密機器の外 装部に用いることにより、 機器内部を水道水、 雨水、 海水、 雪などから遮断し、 感電やショートあるいはさびを防ぐことができる。 更に、 コンセン ト、 ソケッ ト、 あるいは湯わかしボッ ト、 コーヒーメーカーなどの電気製品のケーブルのさしこ み口など、 水がふれていると通電の際にショートや感電の危険がある部材に、 本 発明によって得られた撥液性金属材料を用いることにより、 部材表面から水を排 除し、 ショー トや感電の危険をなくすことができる。 Further, the liquid repellent metal material obtained by the present invention is used for various electric devices such as a portable or indoor video, television, radio, etc., or an external part of a precision device such as a camera or a clock, thereby obtaining a device. The inside can be shielded from tap water, rainwater, seawater, snow, etc. to prevent electric shock, short circuit or rust. In addition, this unit may be used for electrical outlets such as outlets, sockets, water heaters, coffee makers, etc. By using the liquid-repellent metal material obtained by the present invention, water can be removed from the surface of the member, and the risk of short-circuit and electric shock can be eliminated.
また、 本発明によって得られた撥液性金属材料を、 手すり、 ドアノブ、 エレべ —夕一の押ボタン周辺などに用いることによって、 指紋汚れをつきにく くするこ とができる。 In addition, by using the liquid-repellent metal material obtained by the present invention around handrails, doorknobs, and elevator push buttons, fingerprint dirt can be prevented.
また、 本発明によって得られた撥液性金属材料を、 アクセサリー、 時計などの うち人間の肌に直接触れる部分に用いることにより、 汗の付着を防ぎ、 更にはか ぶれやしつしんを防止することができる。
In addition, by using the liquid-repellent metal material obtained by the present invention in a part of an accessory or a watch that directly touches the human skin, it prevents sweat from adhering, and further prevents rash and rash. be able to.
Claims
1 . 表面に微細な凹凸構造を有し、 水に対する接触角が 3 0度以下となる金属 表面の全部又は一部に撥液性物質をコ一ティングすることを特徴とする金属表面 への撥液性付与方法。 1. A liquid repellent material is coated on all or part of the metal surface, which has a fine uneven structure on the surface and has a contact angle with water of 30 degrees or less. Liquid property imparting method.
2 . 微細な凹凸構造の幅及び高さが、 1 ηπ!〜 8 0 0 m である請求項 1記載の 撥液性付与方法。 2. The width and height of the fine uneven structure is 1 ηπ! The liquid repellency imparting method according to claim 1, wherein the thickness is from 800 m to 800 m.
3 . 微紬な凹凸構造の幅及び高さが、 1 nm〜 3 0 0 χ m である請求項 1記載の 撥液性付与方法。 3. The method for imparting liquid repellency according to claim 1, wherein the width and height of the fine irregularities are 1 nm to 300 μm.
4 . 微細な凹凸構造の高さが 3 0 0 m 以下であり、 平面視で該凹凸構造 l cm2 あたりの実表面積が 3 cm2 以上であり、 該凹凸構造表面に平滑な剛体をあ てたときの接触面積が剛体表面 1 cm2 あたり 2 cm2 以下である請求項 1記載 の撥液性付与方法。 4. The height of the fine uneven structure is 300 m or less, the actual surface area per 1 cm 2 of the uneven structure in plan view is 3 cm 2 or more, and a smooth rigid body is applied to the surface of the uneven structure. 2. The method for imparting liquid repellency according to claim 1, wherein the contact area is 2 cm 2 or less per 1 cm 2 of the rigid body surface.
5 . 微細な凹凸構造の高さが 3 0 0 u m 以下であり、 平面視で該凹凸構造 1 cm2 あたりの実表面積が 3 cm2 以上 2 0 cm2 未満であり、 該凹凸構造表面に平滑 な剛体をあてたときの接触面積が剛体表面 1 cm2 あたり 2 cm2 以下である、 請求項 1記載の撥液性付与方法。 5. The height of the fine concavo-convex structure is 300 μm or less, the actual surface area per 1 cm 2 of the concavo-convex structure in plan view is 3 cm 2 or more and less than 20 cm 2 , and the surface of the concavo-convex structure is smooth. 2. The method for imparting liquid repellency according to claim 1, wherein a contact area of the rigid body is 2 cm 2 or less per 1 cm 2 of the rigid body surface.
6 . 微細な凹凸構造がフラクタル構造又は自己ァファイン構造である請求項 1 〜 5のいずれかの項記載の撥液性付与方法。 6. The method for imparting liquid repellency according to any one of claims 1 to 5, wherein the fine uneven structure is a fractal structure or a self-fine structure.
7 . 微細な凹凸構造を金属表面に作製する手段が、 研磨又は切削の機械加工を 金属表面に施す方法、 酸又はアルカリの溶液に金属表面を浸漬する方法、 金属を 腐食させる方法、 金属を電極して用い、 電気分解を利用する方法又は金属を铸造 する方法である請求項 1〜 6のいずれかの項記載の撥液性付与方法。 7. Means for creating fine irregularities on the metal surface include polishing or cutting mechanical processing on the metal surface, immersing the metal surface in an acid or alkali solution, corroding the metal, and metal electrode The method for imparting liquid repellency according to any one of claims 1 to 6, wherein the method is a method using electrolysis or a method for producing a metal.
8 . 微細な凹凸構造を有し水に対する接触角が 3 0度以下となる金属表面に撥 水性物質をコ一ティングしてなる超撥水表面を有することを特徴とする超撥水性 金属材料。 8. A super-water-repellent metal material characterized by having a super-water-repellent surface formed by coating a water-repellent substance on a metal surface having a fine concavo-convex structure and a contact angle with water of 30 degrees or less.
9 . 耐着雪 ·耐着氷性金属材料である請求項 8記載の金厲材料。 9. The metal material according to claim 8, which is a metal material that is resistant to snow and ice.
1 0 . 対氷雪滑り止め金属材料である請求項 8記載の金属材料。 10. The metal material according to claim 8, which is a non-skid anti-skid metal material.
1 1 . 微細な凹凸構造の幅及び高さか、 1 ηπ!〜 8 0 0 である請求項 8〜
1 0のいずれかの項記載の金属材料。 1 1. The width and height of the fine uneven structure, 1 ηπ! Claim 8 to Claim 8 10. The metal material according to any one of items 10.
1 2 . 微細な凹凸構造の幅及び高さが、 1 ηπ!〜 3 0 0 m である請求項 8〜 1 0のいずれかの項記載の金属材料。 1 2. The width and height of the fine uneven structure is 1 ηπ! The metal material according to any one of claims 8 to 10, wherein the thickness of the metal material is from 300 to 300 m.
1 3 . 微細な凹凸構造の高さが 3 0 0 m以下であり、 平面視で該凹凸構造 1 cm2 あたりの実表面積が 3 cm2 以上であり、 該凹凸構造表面に平滑な剛体をあて たときの接触面積が剛体表面 1 cm2 あたり 2 cm2 以下である請求項 8〜 1 0 のいずれかの項記載の金属材料。 13. The height of the fine uneven structure is 300 m or less, the actual surface area per 1 cm 2 of the uneven structure in plan view is 3 cm 2 or more, and a smooth rigid body is applied to the surface of the uneven structure. metallic material according to one of claims 8-1 0 contact area is less rigid surface 1 cm 2 per 2 cm 2 when the.
1 4 . 微細な凹凸構造の高さが 3 0 0 rn 以下であり、 平面視で該凹凸構造 1 cm2 あたりの実表面積が 3 cm2 以上 2 0 cm2 未満であり、 該凹凸構造表面に平滑 な剛体をあてたときの接触面積が剛体表面 1 cm2 あたり 2 cm2 以下である、 請求項 8〜 0のいずれかの項記載の金属材料。 1 4. The height of the fine uneven structure is not more than 3 0 0 rn, a real surface area per uneven structure 1 cm 2 in a plan view is less than 3 cm 2 or more 2 0 cm 2, the uneven structure surface The metal material according to any one of claims 8 to 0, wherein a contact area when a smooth rigid body is applied is 2 cm 2 or less per 1 cm 2 of the rigid body surface.
1 5 . 微細な凹凸構造がフラクタル構造又は自己ァファイン構造である請求項 8〜 1 4のいずれかの項記載の金属材料。 15. The metal material according to any one of claims 8 to 14, wherein the fine uneven structure is a fractal structure or a self-fine structure.
1 6 . 金属表面の全部又は一部に、 フルォロアルキルリン酸エステル化合物を コーティングすることを特徴とする、 金属表面への撥液性付与方法。 16. A method for imparting liquid repellency to a metal surface, which comprises coating the entire or a part of the metal surface with a fluoroalkyl phosphate compound.
1 7 . フルォロアルキルリ ン酸エステル化合物が、 モノフルォロアルキルリ ン 酸エステル、 ジフルォロアルキルリン酸エステル又はそれらの塩である請求項 1 6記載の撥液性付与方法。 17. The method for imparting liquid repellency according to claim 16, wherein the fluoroalkyl phosphoric acid ester compound is a monofluoroalkyl phosphoric acid ester, a difluoroalkyl phosphoric acid ester or a salt thereof.
1 8 . 金属表面にフルォロアルキルリン酸エステル化合物をコーティ ングして なる超撥液表面を有することを特徴とする超撥液性金属材料。
18. A super lyophobic metal material having a super lyophobic surface formed by coating a fluoroalkyl phosphate compound on the metal surface.
補正 *の請求の範囲 Amendment * Claims
[ 1 9 9 6年 5月 1 4日 (1 4 . 0 5 . 9 6 ) 国際事務局受理:出顔当初の請求の範囲 1— 1 8は補 正された請求の範囲 1一 1 2に置き換えられた。 (2頁) ] [May 14, 1996 (14.05.96) Accepted by the International Bureau: Claims at the time of initial appearance 1–18 are replaced by amended claims 1–1 2 Has been replaced. (2 pages)]
1 . 表面に、 凹凸構造の高さが 1 nm〜 3 0 0 m であり、 平面視で該凹凸構造 l cm2 あたりの実表面積が 3 cm2 以上 2 0 cm2 未満であり、 該凹凸構造表面に平 滑な剛体をあてたときの接触面積が剛体表面 1 cm2 あたり 2 cm2 以下である 微細な凹凸構造を有し、 水に対する接触角が 3 0度以下となる金属表面の全部又 は一部に撥液性物質をコーティ ングすることを特徴とする金属表面への撥液性付 与方法。 1. The height of the uneven structure on the surface is 1 nm to 300 m, and the actual surface area per 1 cm 2 of the uneven structure in a plan view is 3 cm 2 or more and less than 20 cm 2. has a fine uneven structure contact area is less rigid surface 1 cm 2 per 2 cm 2 when addressed flat smooth rigid to the surface, or all of the metal surfaces in contact angle with water becomes less than 3 0 degrees Is a method for imparting liquid repellency to a metal surface, characterized in that a liquid repellent substance is partially coated.
2 . 微細な凹凸構造がフラク夕ル構造又は自己ァフアイン構造である請求項 1 記載の撥液性付与方法。 2. The method for imparting liquid repellency according to claim 1, wherein the fine uneven structure is a flux structure or a self-affine structure.
3 . 微細な凹凸構造を金属表面に作製する手段か、 研磨又は切削の機械加工を 金属表面に施す方法、 酸又はアルカ リの溶液に金属表面を浸漬する方法、 金属を 腐食させる方法、 金属を電極して用い、 電気分解を利用する方法又は金属を铸造 する方法である請求項 1又は 2記載の撥液性付与方法。 3. Means to create fine uneven structure on metal surface, method of polishing or cutting mechanical processing on metal surface, method of immersing metal surface in acid or alkali solution, method of corroding metal, 3. The method for imparting liquid repellency according to claim 1, wherein the method is used as an electrode, the method utilizing electrolysis, or the method of producing a metal.
4 . 撥液性物質が、 フルォロアルキルリン酸エステル化合物である請求項 1〜 3のいずれかの項記載の撥液性付与方法。 4. The method for imparting liquid repellency according to any one of claims 1 to 3, wherein the liquid repellent substance is a fluoroalkyl phosphate compound.
5 . 凹凸構造の高さが 1 nm〜 3 0 0 m であり、 平面視で該凹凸構造 1 cm2 あ たりの実表面積が 3 cm2 以上 2 0 cm2 未満であり、 該凹凸構造表面に平滑な剛体 をあてたときの接触面積が剛体表面 1 cm2 あたり 0 . 2 cm2 以下である微細な凹 凸構造を有し水に対する接触角が 3 0度以下となる金属表面に撥水性物質をコー ティ ングしてなる超撥水表面を有することを特徴とする超撥水性金属材料。 5. A height 1 nm~ 3 0 0 m of the concavo-convex structure, a real surface area or Ah uneven structure 1 cm 2 in a plan view is less than 3 cm 2 or more 2 0 cm 2, the uneven structure surface water repellent material to the metal surfaces in contact angle becomes less than 3 0 ° contact area for water having a fine concave convex structure is 0. 2 cm 2 or less per rigid surface 1 cm 2 when addressed a smooth rigid A super-water-repellent metallic material having a super-water-repellent surface formed by coating the following.
6 . 耐着雪 ·耐着氷性金属材料である請求項 5記載の金属材料。 6. The metal material according to claim 5, which is a snow- and ice-resistant metal material.
7 . 対氷雪滑り止め金属材料である請求項 5記載の金属材料。 7. The metal material according to claim 5, which is an anti-snow metal material against ice and snow.
8 . 微細な凹凸構造がフラク夕ル構造又は自己ァフアイン構造である請求項 5 〜 7のいずれかの項記載の金属材料。 8. The metal material according to any one of claims 5 to 7, wherein the fine uneven structure is a flux structure or a self-affine structure.
9 . 撥水性物質が、 フルォロアルキルリ ン酸エステル化合物である請求項 5〜 8のいずれかの項記載の金属材料。 9. The metal material according to any one of claims 5 to 8, wherein the water repellent substance is a fluoroalkyl phosphate compound.
1 0 . 金属表面の全部又は一部に、 フルォロアルキルリン酸エステル化合物を コ一ティ ングすることを特徴とする、 金属表面への撥液性付与方法。 10. A method for imparting liquid repellency to a metal surface, comprising coating a fluoroalkyl phosphate compound on all or a part of the metal surface.
- 32 - 補正された用紙 (条約第 *)
-32-Amended paper (Convention *)
1 1 . フルォロアルキルリン酸エステル化合物が、 モノフルォロアルキルリ ン 酸エステル、 ジフルォロアルキルリ ン酸エステル又はそれらの塩である請求項11. The claim wherein the fluoroalkyl phosphate compound is a monofluoroalkyl phosphate, a difluoroalkyl phosphate or a salt thereof.
1 0記載の撥液性付与方法。 10. The method for imparting liquid repellency described in 10 above.
1 2 . 金属表面にフルォロアルキルリ ン酸エステル化合物をコーティ ングして なる超撥液表面を有することを特徴とする超撥液性金属材料。 12. A super-liquid-repellent metal material having a super-liquid-repellent surface formed by coating a fluoroalkyl phosphate compound on a metal surface.
- 33 - 捕正された用紙 (条約第 条)
-33-Paper captured (Article Articles of the Convention)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7/2493 | 1995-01-11 | ||
JP249395 | 1995-01-11 | ||
JP16059095A JPH08246163A (en) | 1995-01-11 | 1995-06-27 | Method for imparting liquid pepellency to metallic surface |
JP7/160590 | 1995-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996021523A1 true WO1996021523A1 (en) | 1996-07-18 |
Family
ID=26335874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1996/000024 WO1996021523A1 (en) | 1995-01-11 | 1996-01-10 | Process for imparting liquid repellency to metal surface and ultra-liquid-repellent metal material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH08246163A (en) |
WO (1) | WO1996021523A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001056711A1 (en) | 2000-02-03 | 2001-08-09 | Sunyx Surface Nanotechnologies Gmbh | Conduit with an ultraphobic inner wall |
US7214302B1 (en) | 1999-10-05 | 2007-05-08 | Sunyx Surface Nanotechnologies Gmbh | Method and device for moving and placing liquid drops in a controlled manner |
US7456392B2 (en) | 2002-02-22 | 2008-11-25 | Qiagen Gmbh | Use of ultraphobic surfaces having a multitude of hydrophilic areas for analyzing samples |
US7632466B2 (en) | 2000-02-09 | 2009-12-15 | Qiagen Gmbh | Ultraphobic surface structure having a plurality of hydrophilic areas |
WO2010017995A1 (en) | 2008-08-15 | 2010-02-18 | Qiagen Gmbh | Method for analysing a complex sample by mass spectrometry |
JP2015071552A (en) * | 2013-10-02 | 2015-04-16 | Agcセイミケミカル株式会社 | Method of producing phosphoric monoester containing perfluoroalkyl group |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3762819B2 (en) * | 1997-08-05 | 2006-04-05 | セイミケミカル株式会社 | Painted article |
CN1321271C (en) * | 2002-06-27 | 2007-06-13 | 旭技术株式会社 | Surface processed part, surface processing method and its device |
US7094476B2 (en) | 2002-06-27 | 2006-08-22 | Asahi Tec Corporation | Surface-treated product, surface-treatment method, and surface-treatment apparatus |
JP4872182B2 (en) * | 2003-03-06 | 2012-02-08 | 日本軽金属株式会社 | Aluminum coating material and manufacturing method thereof |
US7455045B2 (en) | 2006-08-01 | 2008-11-25 | Aisan Kogyo Kabushiki Kaisha | Fluid flow control device for internal combustion engine |
JP6060882B2 (en) * | 2013-12-03 | 2017-01-18 | マツダ株式会社 | Method for treating the surface of engine parts made of Al alloy for forming a heat insulation layer |
JP6256264B2 (en) * | 2014-09-05 | 2018-01-10 | Jfeスチール株式会社 | Galvanized steel sheet |
JP6498091B2 (en) * | 2015-09-25 | 2019-04-10 | Jx金属株式会社 | Surface-treated metal foil, laminate, printed wiring board, semiconductor package, electronic equipment |
JP2019144335A (en) * | 2018-02-19 | 2019-08-29 | デクセリアルズ株式会社 | Fine structure body, manufacturing method therefor, and optical device |
JPWO2023157628A1 (en) * | 2022-02-21 | 2023-08-24 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54102253A (en) * | 1978-01-31 | 1979-08-11 | Dainippon Ink & Chem Inc | Rust inhibitor |
JPH05161875A (en) * | 1991-12-16 | 1993-06-29 | Asahi Kagaku Kogyo Kk | Metal paint film difficult to form ice and frost and easy to remove ice, frost and snow |
JPH0679820A (en) * | 1992-09-01 | 1994-03-22 | Kobe Steel Ltd | Member excellent in water repellency and anti-frosting properties and manufacture thereof |
JPH06134925A (en) * | 1992-10-23 | 1994-05-17 | Sumitomo Metal Ind Ltd | Resin coated metal material and production thereof |
-
1995
- 1995-06-27 JP JP16059095A patent/JPH08246163A/en active Pending
-
1996
- 1996-01-10 WO PCT/JP1996/000024 patent/WO1996021523A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54102253A (en) * | 1978-01-31 | 1979-08-11 | Dainippon Ink & Chem Inc | Rust inhibitor |
JPH05161875A (en) * | 1991-12-16 | 1993-06-29 | Asahi Kagaku Kogyo Kk | Metal paint film difficult to form ice and frost and easy to remove ice, frost and snow |
JPH0679820A (en) * | 1992-09-01 | 1994-03-22 | Kobe Steel Ltd | Member excellent in water repellency and anti-frosting properties and manufacture thereof |
JPH06134925A (en) * | 1992-10-23 | 1994-05-17 | Sumitomo Metal Ind Ltd | Resin coated metal material and production thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7214302B1 (en) | 1999-10-05 | 2007-05-08 | Sunyx Surface Nanotechnologies Gmbh | Method and device for moving and placing liquid drops in a controlled manner |
WO2001056711A1 (en) | 2000-02-03 | 2001-08-09 | Sunyx Surface Nanotechnologies Gmbh | Conduit with an ultraphobic inner wall |
US7632466B2 (en) | 2000-02-09 | 2009-12-15 | Qiagen Gmbh | Ultraphobic surface structure having a plurality of hydrophilic areas |
US7456392B2 (en) | 2002-02-22 | 2008-11-25 | Qiagen Gmbh | Use of ultraphobic surfaces having a multitude of hydrophilic areas for analyzing samples |
WO2010017995A1 (en) | 2008-08-15 | 2010-02-18 | Qiagen Gmbh | Method for analysing a complex sample by mass spectrometry |
EP2157432A1 (en) | 2008-08-15 | 2010-02-24 | Qiagen GmbH | Method for analysing a complex sample by mass spectrometry |
JP2015071552A (en) * | 2013-10-02 | 2015-04-16 | Agcセイミケミカル株式会社 | Method of producing phosphoric monoester containing perfluoroalkyl group |
Also Published As
Publication number | Publication date |
---|---|
JPH08246163A (en) | 1996-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996021523A1 (en) | Process for imparting liquid repellency to metal surface and ultra-liquid-repellent metal material | |
Song et al. | Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method | |
Uzoma et al. | Superhydrophobicity, conductivity and anticorrosion of robust siloxane-acrylic coatings modified with graphene nanosheets | |
Tang et al. | Superhydrophobic and anti-icing properties at overcooled temperature of a fluorinated hybrid surface prepared via a sol–gel process | |
Maeztu et al. | Effect of graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol-gel nanocoating for the design of corrosion resistant and hydrophobic surfaces | |
US9926478B2 (en) | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation | |
Sun et al. | Electrochemical fabrication of superhydrophobic Zn surfaces | |
US20160153094A1 (en) | Salt Based Etching of Metals and Alloys for Fabricating Superhydrophobic and Superoleophobic Surfaces | |
Zhang et al. | Abrasion‐resistant, hot water‐repellent and self‐cleaning superhydrophobic surfaces fabricated by electrophoresis of nanoparticles in electrodeposited sol–gel films | |
Jafari et al. | A simple method to create superhydrophobic aluminium surfaces | |
Song et al. | Rapid fabrication of superhydrophobic surfaces on copper substrates by electrochemical machining | |
Song et al. | Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability | |
KR101150173B1 (en) | Laminate having superhydrophobic surface and process for preparing the same | |
Cheng et al. | Controllable wettability of micro-and nano-dendritic structures formed on aluminum substrates | |
Cui et al. | Fabrication of robust gold superhydrophobic surface on iron substrate with properties of corrosion resistance, self-cleaning and mechanical durability | |
Feng et al. | Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior | |
Karthik et al. | Fabrication of corrosion resistant mussel-yarn like superhydrophobic composite coating on aluminum surface | |
Cullen et al. | Correlation between the structure and the anticorrosion barrier properties of hybrid sol–gel coatings: application to the protection of AA2024-T3 alloys | |
Li et al. | A simple method for fabrication of bionic superhydrophobic zinc coating with crater-like structures on steel substrate | |
Tan et al. | Superhydrophobic surfaces on brass substrates fabricated via micro-etching and a growth process | |
Inoue et al. | Fluorine‐Free Slippery Liquid‐Infused Porous Surfaces Prepared Using Hierarchically Porous Aluminum | |
Afshar et al. | The application of superhydrophobic coatings to brass alloy substrates: A review | |
Shakourian et al. | Ultrasonic atomization based fabrication of superhydrophobic and corrosion-resistant hydrolyzed MTMS/PVDF coatings | |
Arianpour et al. | On hydrophobic and icephobic properties of TiO2-doped silicon rubber coatings | |
Zhao et al. | Robust superamphiphobic aluminum surfaces: fabrication and investigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 08913337 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |