WO1996019056A1 - Procede de correction de frequence, de fenetre temporelle, d'horloge d'echantillonnage et de variations de phase finale dans une reception de signaux a multiplexage mrf orthogonal - Google Patents

Procede de correction de frequence, de fenetre temporelle, d'horloge d'echantillonnage et de variations de phase finale dans une reception de signaux a multiplexage mrf orthogonal Download PDF

Info

Publication number
WO1996019056A1
WO1996019056A1 PCT/SE1995/001413 SE9501413W WO9619056A1 WO 1996019056 A1 WO1996019056 A1 WO 1996019056A1 SE 9501413 W SE9501413 W SE 9501413W WO 9619056 A1 WO9619056 A1 WO 9619056A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
phase error
amplitude
reference symbols
carriers
Prior art date
Application number
PCT/SE1995/001413
Other languages
English (en)
Inventor
Staffan NYSTRÖM
Erik Stare
Mårten Rignell
Göran Roth
Brian LØNROTH
Vidar Ringset
Original Assignee
Hd Divine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hd Divine filed Critical Hd Divine
Priority to AU42751/96A priority Critical patent/AU4275196A/en
Priority to JP8518667A priority patent/JPH10510958A/ja
Publication of WO1996019056A1 publication Critical patent/WO1996019056A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals

Definitions

  • the present invention relates to a method at digital system for correction of frequency, sampling clock and phase error which varies slowly with time, i.e. low- frequency phase noise.
  • the receiver is a so called OFDM- receiver which receives digital information in frames.
  • OFDM Orthogonal Frequency Division Multiplex
  • COFDM Coded Orthogonal Frequency Division Multiplex
  • the Patent document EP 448493 describes a system for transmission of TV digitally.
  • the picture information is transmitted to a mobile user and is divided into two parts; one is used to recreate a normal TV-picture and the other together with the first one to create a larger picture.
  • a receiver for digital radio signals The receiver utilizes a window method to minimize the intersymbol interference arising at multipath propagation.
  • the receiver will be equipped with a time window module which is used to extract usable samples from the received signal.
  • the American document US 5 228 025 describes a method to transmit digital data via radio, preferably to mobile receivers.
  • the method transmits a synchronization sequence in the form of at least one frequency which varies in one for the receiver known way.
  • the synchronization sequence is utilized for tuning the local oscillator.
  • the first prototype for transmission and reception of DAB Digital Audio Broadcasting
  • the first is called zero symbol and contains nothing but is used by the receiver on one hand for symbol synchronization, and on the other for estimation of interference in the channel.
  • the second symbol consists of a so called chirp or sine sweep signal which is a sine shaped signal, the frequency of which changes linearly with time and which sweeeps over the whole channel width. This is used by the receiver on one hand for adjustment of the location of the time window, i.e. division of the received signal in segments which are each processed by means of FFT, and on the other for estimation of the transmission function of the channel and estimation of deviations in the carrier frequency, if any.
  • TFPC-signal Time Frequency Phase Control
  • CAZAC-symbol which is used by the receiver both for timing, frequency adjustment and for estimation of the transmission function.
  • the present invention relates to a method for correction of frequency, time window, sampling clock and time variable phase error at OFDM-reception.
  • One from a transmitter transmitted signal is received by the OFDM- receiver.
  • the signal which is divided into consecutive frames, which each in its turn is divided into symbols, contains with certains intervals reference symbols with a predetermined content.
  • Each frame is divided into a number of symbols which regarding time follow each other.
  • Respective symbol is allotted a serial number, and the mentioned reference symbols are preferably transmitted in pairs.
  • the receiver analyzes the different reference symbols.
  • the signals in the reference symbols consist of so called chirp signals, i.e. so called sine sweeep signals which are sine signals the frequency of which is linearly changed with the time and which sweeps over the whole channel width.
  • One of the chirp signals goes from the highest frequency to the lowest in time, and the other chirp signal from the lowest frequency to the highest frequency.
  • the relation between the contents of the reference symbols in pair regarding time and frequency is utilized for adjustment of the frequency of the receiver.
  • the impulse response is calculated from the signals of the received reference frames at which correction of time window and sampling clock can be performed.
  • the main focus of the impulse response is determined, at which the real position of the time window can be determined.
  • the position of the time window is adjusted in relation to wished position by the sampling clock being adjusted in relation to the difference between the mentioned main focus and wished position.
  • Each symbol consists of a number of superimposed carriers with among themselves different frequencies.
  • each of the carriers further is arranged that its phase and amplitude, which can also be described by its real and imaginary part, is modulated by the data information which shall be transmitted.
  • the mentioned real and imaginary parts are allotted a definite position in a matrix system, in the matrix system real and imaginary parts are allowed to take different positions which are accepted.
  • the relation between the point which is indicated by received real and imaginary part and the ideal position in the matrix indicates an angle difference to the ideal position which is utilized for correction of the phase error at reception.
  • the indicated method gives a possibility to make accurate adjustments of the receiver in a way which has not previously been possible and which gives increased robustness at OFDM-reception.
  • the method further allows that the necessary adjustments in the receiver are possible to perform in a simple way.
  • the method thus allows that the program transmission can be performed with the high precision which is expected in these connections.
  • Figure 1 shows schematically how the receiver at first locates the chirp signals by means of a set of binary correlators and after that precision adjusts time window, carrier frequency and phase according to the invention.
  • Figure 2 shows how the OFDM-signal is created by means of IFFT (Invers Fast Fourier Transform). Each entry on the IFFT corresponds to a carrier.
  • IFFT Invers Fast Fourier Transform
  • Figure 3 shows the matrix for estimation of phase error with points according to the 16QAM-system and illustrates the angle relation between the real position of the received vector and the ideal position.
  • a signal sequence is transmitted from a transmitter and received by a receiver.
  • the signal sequence comprises a number of symbols which are arranged to a frame. At the beginning of each frame one or more synchronization symbols are arranged. At least two of the mentioned synchronization frames contain so called chirp signals.
  • a chirp signal is a sine signal the frequency of which is changed linearly with time.
  • a set of correlators are used in order to detect the position of the chirp signal .
  • the auto correlation for a chirp signal has a very acute maximum.
  • the symbol bit of the chirp signal is received and is compared with a stored signal. The signal is compared by being processed through a number of XNOR-gates. The number of equal bits, i.e.
  • the hamming weight of the resulting vector is obtained as an output signal from the correlator.
  • the synchronization signals which at that are obtained in 1 in Figure 1 are brought back to a frame structure generator, 2 in Figure 1, which controls division of the incoming signal in frames and symbols, and numbers the individual samples within each symbol.
  • the frame structure generator in this way controls the division of the signal in appropriate time windows to the FFT (Fast Fourier Transform) .
  • the symbols coming out from the FFT are after that forwarded to among other things a signal processor, 3 in Figure 1, where correction values for carrier frequency and the frequency of the sampling clocks is calculated.
  • the transmitted signal from the transmitter has been created by means of an IFFT (Inverse Fast Fourier Transform) according to Figure 2.
  • IFFT Inverse Fast Fourier Transform
  • each of the carriers has been given an amplitude and phase according to he formula e j ⁇ ⁇ / N ⁇ W here j ⁇ corresponds to the number of the carrier, and N the number of carriers.
  • a down-chirp signal is created in a similar way but with negative phase; consequently the formula becomes e -:, ⁇ /N.
  • the received signal is made subject to a Fast Fourier Transform (FFT) in the receiver.
  • FFT Fast Fourier Transform
  • the correction calculations which are performed in unit 3 in Figure 1 implies that a multiplication by the for the carrier allotted inverse angle is performed by received up-chirp being multiplied by an ideal down-chirp, and that received down-chirp is multiplied with an ideal up- chirp.
  • signals which we call de-rotated chirps, each constitutes an estimate of the transmission function of the channel. For an ideal channel these estimates become equal to 1 for all carriers. If a shift of the carrier frequency has occurred somewhere in the channel, the de-rotated chirps will have a remaining phase shift which is linearly depending on the serial number of the carrier. The changes get different symbols in the up- and the down- chirp.
  • the phase positions of the de-rotated chirps are also influenced by frequency selective fading and by wrong setting of the time window, but this influence has the same symbol in both chirps. Therefore the carrier error can be extracted by subtraction of the de-rotated phase positions of one of the chirps from the other.
  • the numerical value of the carrier error can in one in itself known way be estimated from the phase position's linear depending on the carrier number. The obtained number is after that utilized in an in itself known way to correct the frequency.
  • the impulse response of the channel is obtained by an IFFT-transform on the de-rotated chirps.
  • the impulse response is multiplied with a weighting function before the position of the main focus is calculated.
  • the difference between this position and a predetermined wished position constitutes a correction signal which after filtering controls the clock-frequency of the A/D-converter, at which the correction value successively will be adjusted towards zero. Consequently the time window will land up in wished position.
  • the impulse response of the channel can be estimated both from received up-chirp and down-chirp. It is to advantage to use the sum of these two estimates at the main focus calculation because an error in carrier frequency will influence the position of the main focus with different symbols depending on whether it is calculated on an up-chirp or on a down-chirp. The main focus position of the sum of the two impulse responses will therefore be insensible to errors in carrier frequency because the error will neutralize itself.
  • the received carriers are arranged in a matrix system with respect to their imaginary respective real part. These points are in the complex number plan allotted an area within which they are allowed to exist. A point in the complex number plan which occur within the mentioned area is regarded to symbolize a certain transmitted data sequence.
  • the relation of the point to the ideal position indicates an angle relation between the ideal position and the real position.
  • the mentioned angle difference indicates the phase error in the reception.
  • the average of the angle differences calculated from all the different carriers in the same symbol constitutes an estimate of the phase error.
  • the in this way obtained phase error can after that be combined with previously obtained phase errors and be utilized for phase correction of all carriers in the symbol in question, and for estimation of the expected phase error at the reception of next symbol. It can also be used for estimation of small frequency deviations because these give rise to phase errors with constant change from symbol to symbol.
  • the mentioned method for estimation of the phase error can be further developed in different ways. Two different improvements of the method have been identified. One or both improvements can be applied.
  • the first improvement is based on the fact that the amplitude of the received signal on one and the saute occasion can be of different strength for different carriers, frequencies. This is due to interference from reflections of the signal, so called multipath propagation, or interference from other transmitters which transmits the same signal in a so called single frequency network.
  • the carriers which are subject to destructive interference are weakened and get a worse signal/noise-relation than the other.
  • the frequency depending transmission function for the channel can be calculated in the receiver by analysis of the received chirps. At calculation of the average of the angle differences the values from the different carriers can be weighted with the calculated transmission function at which angle differences from carriers with high attenuation in the channel is given a lower weight than those with low attentuation.
  • the strong noise from the attenuated carriers can by that be made to have a minimal influence on the estimation of the phase error.
  • the second improvement is based on the fact that one and the same noise effect in the received signal gives different uncertainty in the estimation of the phase error for signals far from or close to the origin of coordinates.
  • the mentioned angle relations are weighed in relation to the distance to the origin of coordinates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Television Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

La présente invention porte sur un procédé de correction de la fréquence, de l'erreur de fenêtre temporelle, de l'horloge d'échantillonnage et de l'erreur de phase dans des récepteurs de signaux à multiplexage MRF orthogonal (MRFO). L'information transmise sous forme de signal comportant plusieurs porteuses numérisées, est constituée de trames consécutives comportant un certain nombre de symboles. Au moins une modulation d'impulsions vers le haut et une modulation d'impulsion vers le bas sont exécutées dans les trames respectives et la correction de la fréquence est réalisée à partir de l'analyse de ces modulations. On détermine, en outre, la focalisation principale de la réponse impulsionnelle pondérée et la position de cette focalisation sert à corriger l'erreur de fenêtre temporelle ainsi que l'horloge d'échantillonnage. On enregistre, de surcroît, les vecteurs provenant des emplacements des porteuses reçues en fonction de leur emplacement idéal dans une matrice. On détermine les angles constitués par les vecteurs reçus et le vecteur situé dans un emplacement idéal, que l'on pondère ensuite par rapport à l'amplitude de la fonction de transmission à la fréquence de la porteuse et à la distance séparant le vecteur de l'origine des coordonnées. On fait ensuite la moyenne des distances angulaires pondérées, la moyenne obtenue servant à corriger l'erreur de phase. Une fois connues, l'erreur de phase ainsi obtenue et celle des précédentes erreurs servent à calculer la prochaine erreur de phase dans la réception suivante.
PCT/SE1995/001413 1994-12-14 1995-11-27 Procede de correction de frequence, de fenetre temporelle, d'horloge d'echantillonnage et de variations de phase finale dans une reception de signaux a multiplexage mrf orthogonal WO1996019056A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU42751/96A AU4275196A (en) 1994-12-14 1995-11-27 Method at ofdm-reception for correction of frequency, time window, sampling clock and slow phase variations
JP8518667A JPH10510958A (ja) 1994-12-14 1995-11-27 Ofdm受信において、周波数、時間窓、サンプリングクロック及び緩やかな位相変動を補正する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9404356A SE504787C2 (sv) 1994-12-14 1994-12-14 Metod vid OFDM-mottagning för korrigering av frekvens, tidsfönster, samplingsklocka och långsamma fasvariationer
SE9404356-9 1994-12-14

Publications (1)

Publication Number Publication Date
WO1996019056A1 true WO1996019056A1 (fr) 1996-06-20

Family

ID=20396337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1995/001413 WO1996019056A1 (fr) 1994-12-14 1995-11-27 Procede de correction de frequence, de fenetre temporelle, d'horloge d'echantillonnage et de variations de phase finale dans une reception de signaux a multiplexage mrf orthogonal

Country Status (6)

Country Link
JP (1) JPH10510958A (fr)
KR (1) KR980700750A (fr)
CN (1) CN1170486A (fr)
AU (1) AU4275196A (fr)
SE (1) SE504787C2 (fr)
WO (1) WO1996019056A1 (fr)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007620A1 (fr) * 1995-08-16 1997-02-27 Philips Electronics N.V. Systeme de transmission a traitement des symboles ameliore
EP0818904A2 (fr) * 1996-07-12 1998-01-14 Roke Manor Research Limited Récupération d'horloge pour récepteur "DAB"
EP0829988A2 (fr) * 1996-09-16 1998-03-18 NOKIA TECHNOLOGY GmbH Synchronisation par symbole et réglage de la fréquence d'échantillonnage dans un récepteur pour MDFO
EP0837582A2 (fr) * 1996-10-18 1998-04-22 Alpine Electronics, Inc. Synchronisation de symbole, dans un récepteur RAN
EP0859494A2 (fr) * 1997-02-17 1998-08-19 Matsushita Electric Industrial Co., Ltd. Synchronisation de l'oscillateur local, dans des systèmes multiporteurs
FR2765058A1 (fr) * 1997-06-24 1998-12-24 Thomson Csf Procede et dispositif de correction frequentielle en modulation a frequence porteuse variable et plusieurs sous-porteuses
EP0930751A1 (fr) * 1998-01-19 1999-07-21 Victor Company Of Japan, Limited Dispositif de synchronisation par symbole dans un système MDFO utilisant des carctéristiques du canal de communication
EP0952713A2 (fr) * 1998-04-24 1999-10-27 Nec Corporation Circuit de synchronisation de fréquence et de symbole employant des signaux balayés en fréquence
WO1999057819A1 (fr) * 1998-05-01 1999-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Surveillance du retard d'une fenetre de recherche dans des systemes de communication a acces multiple par code de repartition
WO2000002325A1 (fr) * 1998-07-01 2000-01-13 Zenith Electronics Corporation Synchroniseur recepteur utilisant des frequences d'impulsion
WO2000031898A1 (fr) * 1998-11-24 2000-06-02 Hughes Electronics Corporation Dispositif d'acquisition pour systeme de telephonie mobile par satellites
WO2000031899A1 (fr) * 1998-11-24 2000-06-02 Hughes Electronics Corporation Synchronisation pour systeme de telephonie mobile par satellites utilisant un signal double chirp
EP1006699A2 (fr) * 1998-11-30 2000-06-07 Kabushiki Kaisha Toshiba Synchronisation de symboles pour transmission multiporteuse
EP1011234A1 (fr) * 1998-12-18 2000-06-21 Sony International (Europe) GmbH Synchronisation pour un récepteur RF utilisant de signaux chirp avec un correlateur passive
US6104767A (en) * 1997-11-17 2000-08-15 Telefonaktiebolaget Lm Ericsson Method and apparatus for estimating a frequency offset
EP1033872A2 (fr) * 1999-03-03 2000-09-06 Hitachi, Ltd. Appareil récepteur et méthode de réception
EP1039713A2 (fr) * 1999-03-26 2000-09-27 Nec Corporation Réduction de délai dans des récepteurs de signaux multiporteuse
EP1041790A2 (fr) * 1999-03-30 2000-10-04 Nec Corporation Synchronisation de symbole pour démodulateur OFDM
US6156181A (en) * 1996-04-16 2000-12-05 Caliper Technologies, Corp. Controlled fluid transport microfabricated polymeric substrates
EP1063824A2 (fr) * 1999-06-22 2000-12-27 Matsushita Electric Industrial Co., Ltd. Synchronisation de symboles dans des récepteurs multiporteuses
WO2001089168A2 (fr) * 2000-05-17 2001-11-22 Zenith Electronics Corporation Signal a compression d'impulsion compose et synchroniseur l'utilisant
GB2364221A (en) * 2000-03-15 2002-01-16 Mitsubishi Electric Corp Clock recovery circuit and method for OFDM
US6396866B1 (en) * 1998-05-01 2002-05-28 Trw Inc. Symmetric chirp communications acquisition method and apparatus
WO2002049265A2 (fr) * 2000-12-15 2002-06-20 Valence Semiconductor, Inc. Technique de synchronisation des symboles entierement numerique
WO2002051086A2 (fr) * 2000-12-18 2002-06-27 Schlumberger Canada Limited Estimation de l'erreur de temporisation dans les echantillons d'un signal module discret a tonalites multiples
US6628697B1 (en) * 1999-10-21 2003-09-30 Cisco Technology, Inc. Subscriber unit ranging in a point to multipoint system
US6731622B1 (en) 1998-05-01 2004-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Multipath propagation delay determining means using periodically inserted pilot symbols
WO2005041514A1 (fr) * 2003-10-18 2005-05-06 Technische Universität Dresden Procede de synchronisation lors de la transmission de signaux de multiplexage frequentiel optique (ofdm)
US6907245B2 (en) 2000-12-04 2005-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic offset threshold for diversity handover in telecommunications system
US6954644B2 (en) 2000-12-04 2005-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
US6980803B2 (en) 2000-12-04 2005-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Using statistically ascertained position for starting synchronization searcher during diversity handover
EP1659750A3 (fr) * 2004-11-18 2006-08-30 Pioneer Corporation Détection d'un décalage en fréquence porteuse dans un récepteur multiporteuse
WO2007060221A1 (fr) * 2005-11-25 2007-05-31 Thales Procede pour la transmission sous-marine de paquets de donnees
US7245930B1 (en) 1998-11-24 2007-07-17 Hughes Network Systems, Llc Acquisition mechanism for a mobile satellite system
EP1933516A3 (fr) * 1997-05-02 2009-03-04 LSI Logic Corporation Démodulation de signaux de diffusion vidéo
WO2011079326A1 (fr) * 2009-12-27 2011-06-30 Maxlinear, Inc. Procédés et appareil permettant d'exécuter une synchronisation dans des systèmes de communication multicanal
EP2429101A1 (fr) * 2010-09-08 2012-03-14 University College Cork-National University of Ireland, Cork Système multiporteur et procédé d'utilisation dans un réseau optique
EP3002884A1 (fr) * 2014-09-30 2016-04-06 Semtech Corporation Procédé de communication sans fil
WO2018207359A1 (fr) * 2017-05-12 2018-11-15 三菱電機株式会社 Dispositif de communication sans fil, procédé de transmission et procédé de réception
WO2019101586A1 (fr) * 2017-11-22 2019-05-31 Robert Bosch Gmbh Procédé et système de suppression d'un signal parasite lors de la detection d'un signal chirp
CN115333160A (zh) * 2022-09-13 2022-11-11 国网福建省电力有限公司 一种基于风电机组和电动汽车的微电网鲁棒频率控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142502B2 (en) * 2001-08-30 2006-11-28 Intel Corporation Technique for continuous OFDM demodulation
FR2924884B1 (fr) * 2007-12-11 2009-12-04 Eads Secure Networks Reduction d'interferences dans un signal a repartition de frequences orthogonales
CN102970034B (zh) * 2012-12-05 2014-11-05 天津光电通信技术有限公司 一种用于短波接收机射频模块的高精度本振输出方法
CN105007136A (zh) * 2014-04-23 2015-10-28 中兴通讯股份有限公司 Td-lte系统无线信道响应测量方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529421A2 (fr) * 1991-08-29 1993-03-03 Daimler-Benz Aktiengesellschaft Procédé et dispositif pour mesurer le décalage de fréquence de la porteuse, dans un système de communication à plusieurs canaux
US5345440A (en) * 1990-09-14 1994-09-06 National Transcommunications Limited Reception of orthogonal frequency division multiplexed signals
EP0618697A2 (fr) * 1993-03-27 1994-10-05 GRUNDIG E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig GmbH & Co. KG Procédé de correction d'erreurs de phase et d'amplitude pour signaux MDFOC

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345440A (en) * 1990-09-14 1994-09-06 National Transcommunications Limited Reception of orthogonal frequency division multiplexed signals
EP0529421A2 (fr) * 1991-08-29 1993-03-03 Daimler-Benz Aktiengesellschaft Procédé et dispositif pour mesurer le décalage de fréquence de la porteuse, dans un système de communication à plusieurs canaux
EP0618697A2 (fr) * 1993-03-27 1994-10-05 GRUNDIG E.M.V. Elektro-Mechanische Versuchsanstalt Max Grundig GmbH & Co. KG Procédé de correction d'erreurs de phase et d'amplitude pour signaux MDFOC

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007620A1 (fr) * 1995-08-16 1997-02-27 Philips Electronics N.V. Systeme de transmission a traitement des symboles ameliore
US5848107A (en) * 1995-08-16 1998-12-08 U. S. Philips Corporation Transmission system with improved symbol processing
US6156181A (en) * 1996-04-16 2000-12-05 Caliper Technologies, Corp. Controlled fluid transport microfabricated polymeric substrates
EP0818904A2 (fr) * 1996-07-12 1998-01-14 Roke Manor Research Limited Récupération d'horloge pour récepteur "DAB"
EP0818904A3 (fr) * 1996-07-12 2001-01-24 Roke Manor Research Limited Récupération d'horloge pour récepteur "DAB"
EP0829988A2 (fr) * 1996-09-16 1998-03-18 NOKIA TECHNOLOGY GmbH Synchronisation par symbole et réglage de la fréquence d'échantillonnage dans un récepteur pour MDFO
EP0829988A3 (fr) * 1996-09-16 1998-03-25 NOKIA TECHNOLOGY GmbH Synchronisation par symbole et réglage de la fréquence d'échantillonnage dans un récepteur pour MDFO
US6125124A (en) * 1996-09-16 2000-09-26 Nokia Technology Gmbh Synchronization and sampling frequency in an apparatus receiving OFDM modulated transmissions
EP0837582A2 (fr) * 1996-10-18 1998-04-22 Alpine Electronics, Inc. Synchronisation de symbole, dans un récepteur RAN
EP0837582A3 (fr) * 1996-10-18 2001-08-22 Alpine Electronics, Inc. Synchronisation de symbole, dans un récepteur RAN
EP0859494A3 (fr) * 1997-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Synchronisation de l'oscillateur local, dans des systèmes multiporteurs
EP0859494A2 (fr) * 1997-02-17 1998-08-19 Matsushita Electric Industrial Co., Ltd. Synchronisation de l'oscillateur local, dans des systèmes multiporteurs
EP1933516A3 (fr) * 1997-05-02 2009-03-04 LSI Logic Corporation Démodulation de signaux de diffusion vidéo
FR2765058A1 (fr) * 1997-06-24 1998-12-24 Thomson Csf Procede et dispositif de correction frequentielle en modulation a frequence porteuse variable et plusieurs sous-porteuses
WO1998059475A1 (fr) * 1997-06-24 1998-12-30 Thomson-Csf Procede et dispositif de correction frequentielle en modulation a frequence porteuse variable et plusieurs sous-porteuses
US6104767A (en) * 1997-11-17 2000-08-15 Telefonaktiebolaget Lm Ericsson Method and apparatus for estimating a frequency offset
EP0930751A1 (fr) * 1998-01-19 1999-07-21 Victor Company Of Japan, Limited Dispositif de synchronisation par symbole dans un système MDFO utilisant des carctéristiques du canal de communication
EP0952713A3 (fr) * 1998-04-24 2002-07-03 Nec Corporation Circuit de synchronisation de fréquence et de symbole employant des signaux balayés en fréquence
EP0952713A2 (fr) * 1998-04-24 1999-10-27 Nec Corporation Circuit de synchronisation de fréquence et de symbole employant des signaux balayés en fréquence
US6498822B1 (en) 1998-04-24 2002-12-24 Nec Corporation Frequency and timing synchronization circuit making use of a chirp signal
WO1999057819A1 (fr) * 1998-05-01 1999-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Surveillance du retard d'une fenetre de recherche dans des systemes de communication a acces multiple par code de repartition
AU755811B2 (en) * 1998-05-01 2002-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Search window delay tracking in code division multiple access communication systems
US6396866B1 (en) * 1998-05-01 2002-05-28 Trw Inc. Symmetric chirp communications acquisition method and apparatus
US6731622B1 (en) 1998-05-01 2004-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Multipath propagation delay determining means using periodically inserted pilot symbols
US6370397B1 (en) 1998-05-01 2002-04-09 Telefonaktiebolaget Lm Ericsson (Publ) Search window delay tracking in code division multiple access communication systems
WO2000002325A1 (fr) * 1998-07-01 2000-01-13 Zenith Electronics Corporation Synchroniseur recepteur utilisant des frequences d'impulsion
US6304619B1 (en) 1998-07-01 2001-10-16 Zenith Electronics Corporation Receiver synchronizer
US6418158B1 (en) 1998-11-24 2002-07-09 Hughes Electronics Corporation Synchronization in mobile satellite systems using dual-chirp waveform
WO2000031898A1 (fr) * 1998-11-24 2000-06-02 Hughes Electronics Corporation Dispositif d'acquisition pour systeme de telephonie mobile par satellites
WO2000031899A1 (fr) * 1998-11-24 2000-06-02 Hughes Electronics Corporation Synchronisation pour systeme de telephonie mobile par satellites utilisant un signal double chirp
US7245930B1 (en) 1998-11-24 2007-07-17 Hughes Network Systems, Llc Acquisition mechanism for a mobile satellite system
EP1006699A3 (fr) * 1998-11-30 2003-02-05 Kabushiki Kaisha Toshiba Synchronisation de symboles pour transmission multiporteuse
EP1006699A2 (fr) * 1998-11-30 2000-06-07 Kabushiki Kaisha Toshiba Synchronisation de symboles pour transmission multiporteuse
EP1011234A1 (fr) * 1998-12-18 2000-06-21 Sony International (Europe) GmbH Synchronisation pour un récepteur RF utilisant de signaux chirp avec un correlateur passive
EP1033872A3 (fr) * 1999-03-03 2001-05-23 Hitachi, Ltd. Appareil récepteur et méthode de réception
EP1033872A2 (fr) * 1999-03-03 2000-09-06 Hitachi, Ltd. Appareil récepteur et méthode de réception
EP1039713A3 (fr) * 1999-03-26 2003-11-12 Nec Corporation Réduction de délai dans des récepteurs de signaux multiporteuse
EP1039713A2 (fr) * 1999-03-26 2000-09-27 Nec Corporation Réduction de délai dans des récepteurs de signaux multiporteuse
EP1041790A2 (fr) * 1999-03-30 2000-10-04 Nec Corporation Synchronisation de symbole pour démodulateur OFDM
US6646980B1 (en) 1999-03-30 2003-11-11 Nec Corporation OFDM demodulator
EP1041790A3 (fr) * 1999-03-30 2001-08-08 Nec Corporation Synchronisation de symbole pour démodulateur OFDM
US6993083B1 (en) 1999-06-22 2006-01-31 Matsushita Electric Industrial Co., Ltd. Apparatus and method of OFDM demodulation
EP1063824A2 (fr) * 1999-06-22 2000-12-27 Matsushita Electric Industrial Co., Ltd. Synchronisation de symboles dans des récepteurs multiporteuses
EP1063824A3 (fr) * 1999-06-22 2003-08-27 Matsushita Electric Industrial Co., Ltd. Synchronisation de symboles dans des récepteurs multiporteuses
US6628697B1 (en) * 1999-10-21 2003-09-30 Cisco Technology, Inc. Subscriber unit ranging in a point to multipoint system
GB2364221B (en) * 2000-03-15 2002-08-28 Mitsubishi Electric Corp Clock recovery circuit and method
GB2364221A (en) * 2000-03-15 2002-01-16 Mitsubishi Electric Corp Clock recovery circuit and method for OFDM
WO2001089168A3 (fr) * 2000-05-17 2002-03-07 Zenith Electronics Corp Signal a compression d'impulsion compose et synchroniseur l'utilisant
WO2001089168A2 (fr) * 2000-05-17 2001-11-22 Zenith Electronics Corporation Signal a compression d'impulsion compose et synchroniseur l'utilisant
US6907245B2 (en) 2000-12-04 2005-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic offset threshold for diversity handover in telecommunications system
US6980803B2 (en) 2000-12-04 2005-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Using statistically ascertained position for starting synchronization searcher during diversity handover
US6954644B2 (en) 2000-12-04 2005-10-11 Telefonaktiebolaget Lm Ericsson (Publ) Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
WO2002049265A3 (fr) * 2000-12-15 2002-09-06 Valence Semiconductor Inc Technique de synchronisation des symboles entierement numerique
WO2002049265A2 (fr) * 2000-12-15 2002-06-20 Valence Semiconductor, Inc. Technique de synchronisation des symboles entierement numerique
US6799193B2 (en) 2000-12-15 2004-09-28 Maxim Integrated Products, Inc. Fully digital symbol synchronization technique
US6778622B2 (en) 2000-12-18 2004-08-17 Schlumberger Technology Corporation Estimating timing error in samples of a discrete multitone modulated signal
GB2384668A (en) * 2000-12-18 2003-07-30 Schlumberger Holdings Estimating timing error in samples of a discrete multitone modulated signal
WO2002051086A3 (fr) * 2000-12-18 2002-11-21 Schlumberger Ca Ltd Estimation de l'erreur de temporisation dans les echantillons d'un signal module discret a tonalites multiples
GB2384668B (en) * 2000-12-18 2004-12-15 Schlumberger Holdings Estimating timing error in samples of a discrete multitone modulated signal
WO2002051086A2 (fr) * 2000-12-18 2002-06-27 Schlumberger Canada Limited Estimation de l'erreur de temporisation dans les echantillons d'un signal module discret a tonalites multiples
WO2005041514A1 (fr) * 2003-10-18 2005-05-06 Technische Universität Dresden Procede de synchronisation lors de la transmission de signaux de multiplexage frequentiel optique (ofdm)
EP1659750A3 (fr) * 2004-11-18 2006-08-30 Pioneer Corporation Détection d'un décalage en fréquence porteuse dans un récepteur multiporteuse
US7577214B2 (en) 2004-11-18 2009-08-18 Pioneer Corporation OFDM signal receiver and receiving method
US7835228B2 (en) 2005-11-25 2010-11-16 Thales Modem and method for transmitting data in a medium notably such as air and water
WO2007060221A1 (fr) * 2005-11-25 2007-05-31 Thales Procede pour la transmission sous-marine de paquets de donnees
FR2894097A1 (fr) * 2005-11-25 2007-06-01 Thales Sa Modem et procede pour transmettre des donnees dans un milieu notamment tel que l'air et l'eau
US9391822B2 (en) 2009-12-27 2016-07-12 Maxlinear, Inc. Methods and apparatus for synchronization in multiple-channel communication systems
WO2011079326A1 (fr) * 2009-12-27 2011-06-30 Maxlinear, Inc. Procédés et appareil permettant d'exécuter une synchronisation dans des systèmes de communication multicanal
US10148480B2 (en) 2009-12-27 2018-12-04 Maxlinear, Inc. Methods and apparatus for synchronization in multiple-channel communication systems
US8681900B2 (en) 2009-12-27 2014-03-25 Maxlinear, Inc. Methods and apparatus for synchronization in multiple-channel communication systems
US8964903B2 (en) 2009-12-27 2015-02-24 Maxlinear, Inc. Methods and apparatus for synchronization in multiple-channel communication systems
WO2012032130A1 (fr) 2010-09-08 2012-03-15 University College Cork - National University Of Ireland, Cork Système à porteuse multiple et procédé associé destinés à être utilisés dans un réseau optique
EP2429101A1 (fr) * 2010-09-08 2012-03-14 University College Cork-National University of Ireland, Cork Système multiporteur et procédé d'utilisation dans un réseau optique
EP3002884A1 (fr) * 2014-09-30 2016-04-06 Semtech Corporation Procédé de communication sans fil
WO2018207359A1 (fr) * 2017-05-12 2018-11-15 三菱電機株式会社 Dispositif de communication sans fil, procédé de transmission et procédé de réception
WO2019101586A1 (fr) * 2017-11-22 2019-05-31 Robert Bosch Gmbh Procédé et système de suppression d'un signal parasite lors de la detection d'un signal chirp
CN111466086A (zh) * 2017-11-22 2020-07-28 罗伯特·博世有限公司 用于在探测啁啾信号时抑制干扰信号的方法和系统
US10965384B2 (en) 2017-11-22 2021-03-30 Robert Bosch Gmbh Method and system for suppressing an interference signal during detection of a chirp signal
CN111466086B (zh) * 2017-11-22 2021-12-31 罗伯特·博世有限公司 用于在探测啁啾信号时抑制干扰信号的方法和系统
CN115333160A (zh) * 2022-09-13 2022-11-11 国网福建省电力有限公司 一种基于风电机组和电动汽车的微电网鲁棒频率控制方法

Also Published As

Publication number Publication date
SE9404356L (sv) 1996-06-15
AU4275196A (en) 1996-07-03
SE9404356D0 (sv) 1994-12-14
CN1170486A (zh) 1998-01-14
JPH10510958A (ja) 1998-10-20
SE504787C2 (sv) 1997-04-28
KR980700750A (ko) 1998-03-30

Similar Documents

Publication Publication Date Title
WO1996019056A1 (fr) Procede de correction de frequence, de fenetre temporelle, d'horloge d'echantillonnage et de variations de phase finale dans une reception de signaux a multiplexage mrf orthogonal
US5444697A (en) Method and apparatus for frame synchronization in mobile OFDM data communication
EP0712555B1 (fr) Procede et appareil de synchronisation dans des systemes de transmission numerique a multiplexage par repartition orthogonale de la frequence
US6219334B1 (en) Receiving apparatus for receiving orthogonal frequency division multiplexing signal and receiving method thereof
JP4287895B2 (ja) 受信方法、受信装置
US6421401B1 (en) Method and apparatus for achieving and maintaining symbol synchronization particularly in an OFDM system
TW393839B (en) A transmission system for digital audio broadcasting
CN1309484B (zh) 校正取样偏移的方法和系统以及正交频分多路复用接收机
EP1299963B1 (fr) Dispositif de reception en diversite
US6584164B1 (en) Method for forming a training sequence
US7009931B2 (en) Synchronization in a multiple-input/multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system for wireless applications
US6304619B1 (en) Receiver synchronizer
CN102176707B (zh) 多载波系统中使用信道估计的码元定时校准
US5802117A (en) Method and apparatus for joint frequency offset and timing estimation of a multicarrier modulation system
EP1618696B1 (fr) Appareil de synchronisation de frequence et procede de synchronisation de frequence
EP0829988B1 (fr) Synchronisation par symbole et réglage de la fréquence d'échantillonnage dans un récepteur pour MDFO
US6104767A (en) Method and apparatus for estimating a frequency offset
US6711123B1 (en) Receiving apparatus for OFDM communication system
CN102780673A (zh) 用于ofdm传输的定时获取及模式和保护检测
KR102284089B1 (ko) 무선 센서 네트워크의 센서 노드 발진기의 주파수 보정 방법
EP1848114A2 (fr) Procédé pour détecter une séquence prédéterminée dans un signal RF utilisant une combinaison de corrélation et de FFT
US20070021130A1 (en) Multi-carrier radio communication system, transmission device, and reception device
US6249518B1 (en) TDMA single antenna co-channel interference cancellation
US6473453B1 (en) High data rate multiplexed multichannel high frequency broadcast system
KR20010041149A (ko) 주파수 동기 신호를 검출하기 위한 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95196802.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR BY CA CN CZ ES FI GE HU JP KP KR LT LV MX NO NZ PL RO RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970703823

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019970703823

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1019970703823

Country of ref document: KR