WO1996018209A1 - Cathode sputtering reactor and method of operating the same - Google Patents

Cathode sputtering reactor and method of operating the same Download PDF

Info

Publication number
WO1996018209A1
WO1996018209A1 PCT/DE1995/001740 DE9501740W WO9618209A1 WO 1996018209 A1 WO1996018209 A1 WO 1996018209A1 DE 9501740 W DE9501740 W DE 9501740W WO 9618209 A1 WO9618209 A1 WO 9618209A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
target elements
elements
sputter reactor
layer
Prior art date
Application number
PCT/DE1995/001740
Other languages
German (de)
French (fr)
Inventor
Christoph Werner
Ralf Peter Brinkmann
Alfred Kersch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1996018209A1 publication Critical patent/WO1996018209A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3323Problems associated with coating uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3325Problems associated with coating large area

Definitions

  • layers in particular made of metal, are often deposited by sputtering (sputtering) in sputter reactors.
  • sputtering sputtering
  • the sputtering reactors there is a target made of the material from which the
  • Layer is to be deposited, and a disc holder for receiving a substrate disc on which the layer is to be deposited is provided.
  • a plasma is generated in the sputter reactor for layer deposition. By ion bombardment from the plasma, atoms are knocked out of the target surface, which hit the surface of the substrate wafer and form the desired layer there.
  • a collimator is additionally provided in the sputter reactor between the target and the substrate wafer.
  • the inhomogeneity of the deposition rate leads to different sputtering of the collimator holes (see A. Kersch et ai, IEDM 1992 Digest of technical papers, page 181), which reduces the service life of the collimator.
  • the invention is based on the object of specifying a sputter reactor in which the inhomogeneity in the deposition rate is avoided in another way. Furthermore, it is an object of the invention to provide an operating method for such a sputter reactor.
  • a target arrangement with at least two or more target elements is provided instead of a continuous target.
  • These target elements each have essentially the same material composition.
  • the target elements can be controlled electrically independently of one another.
  • the target elements are subjected to different direct or alternating voltages during operation. Due to the different voltage on the individual target elements, the sputtering rate on the target arrangement is inhomogeneous.
  • the target elements are subjected to voltages so differently that a homogeneous deposition rate occurs over the diameter of the substrate disk at the location of the substrate disk.
  • the substrate to be processed has a different geometry
  • the invention can be used particularly advantageously as a sputtering reactor with a collimator, since in addition to the homogeneous thickness of the deposited layer, the service life of the collimator is also extended.
  • the voltages with which the target elements are acted upon are determined in the simplest way by means of calibration measurements. For this purpose, test series with different voltages are carried out on the individual target elements.
  • two or more measuring devices are provided in the sputtering reactor, with which the thickness of the deposited layer can be measured at at least two locations on the substrate wafer during the deposition of a layer on the substrate wafer.
  • the voltage applied to the target elements is adjusted with the aid of a control unit.
  • oscillating quartz or eddy current sensors are known, as are known, for example, from GG Barna et al, IEEE Trans, on Semiconductor Manufacturing, Vol. 7, 1994, page 149 and R. Iscoff, Semidonductor International, August 1994, page 69 are suitable.
  • the figure shows a sputter reactor with a target arrangement which comprises three target elements which can be controlled electrically independently of one another.
  • a sputter reactor comprises a reaction chamber 1, which is provided with pump stubs 2 and gas feeds 3.
  • the reaction chamber 1 is connected to the reference potential, for example earth potential.
  • a disk holder 4 is provided in the reaction chamber 1 for receiving a substrate wafer 5 to be processed, for example made of silicon.
  • the disc holder 4 is also connected to the reference potential.
  • a collimator 6 and a target arrangement 7 are also provided in the reaction chamber 1.
  • the collimator 6 is arranged between the target arrangement 7 and the disk holder 4.
  • the collimator 6 comprises cylindrical collimator holes, the cylinder axis of which is oriented essentially perpendicular to the surface of the substrate wafer 5.
  • the target arrangement 7 comprises several, for example three, target elements 71, 72, 73.
  • the target elements 71, 72, 73 each have the same material composition.
  • the target elements 71, 72, 73 contain titanium, for example.
  • the sputter reactor is provided with a voltage supply 8, which is connected to each of the target elements 71, 72, 73.
  • a voltage is applied to each of the target elements 71, 72, 73 independently of the other target elements via the voltage supply 8.
  • the voltage supply 8 can be implemented as a voltage generator with, for example, three independent outputs or as three independent voltage generators.
  • sensor elements 91, 92, 93 are provided in the reaction chamber 1.
  • the sensor elements 91, 92, 93 are arranged at three different locations above the substrate wafer 5.
  • the sensor elements 91, 92, 93 are suitable for measuring the thickness of a layer deposited on the substrate wafer 5. They are implemented, for example, as quartz oscillators or eddy current sensors.
  • the sputter reactor also includes a control unit 10 which has, for example, three inputs and three outputs.
  • the inputs of the control unit 10 are each connected to one of the sensor elements 91, 92, 93.
  • the outputs of the control unit 10 are connected to control inputs of the voltage supply 8.
  • the sputter reactor can moreover comprise means for generating plasma (not shown for the sake of clarity), for example a microwave or high-frequency transmitter.
  • the reaction chamber 1 is charged with a process gas, for example argon, via the gas feeds 3.
  • a pressure of 0.5 to 5 mTorr is set in the reaction chamber.
  • a plasma is excited in the reaction chamber 1 by coupling in an electrical high-frequency energy with a power of 1 to 5 kW and a frequency of, for example, 13.56 MHz.
  • a voltage is applied to the target elements 71, 72, 73.
  • a DC or AC voltage applied.
  • the temperature in the reaction chamber is 25 to 300 ° C. With these parameters, the deposition rate is 0.1 to 1 nm / s.
  • the current layer thickness is measured during the layer deposition via the sensor elements 91, 92, 93.
  • the control unit 10 comprises a microprocessor, via which the distribution of the current layer thickness is assessed. Depending on the layer thicknesses measured via the sensor elements 91, 92, 93, the control unit 10 generates output signals for controlling the voltage supply 8. Depending on the output signals of the control unit 10, the voltages on the target elements 71, 72, 73 are adjusted independently of one another. The signals generated at the output of the control unit control the voltage supply 8 in such a way that the sputtering rate at the individual target elements 71, 72, 73 leads to a deposition rate which is essentially homogeneous over the diameter of the substrate wafer 5.
  • the target element 71 is, for example, circular with a diameter of, for example, 20 cm.
  • the target element 72 is, for example, ring-shaped with an outer diameter of, for example, 36 cm.
  • the target element 73 is ring-shaped, for example, with an outer diameter of, for example, 52 cm.
  • the target elements 71, 72, 73 are arranged concentrically in one plane, a distance of 5 mm being maintained between the target element 71 and 72 and between the target elements 72 and 73.
  • the voltages at the target elements 71, 72, 73 are regulated, for example, in the range between 500 and 1500 volts.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The cathode sputtering reactor comprises inter alia a target arrangement (7) comprising at least two target elements (71, 72, 73) which can be controlled independently of each other and which each have substantially the same material composition. Lack of homogeneity during layer deposition in the sputtering reactor is compensated by appropriate electrical voltages at the target elements (71, 72, 73).

Description

Beschreibungdescription
Sputterreaktor und Verfahren zu dessen Betrieb.Sputter reactor and method for operating it.
Bei der Herstellung integrierter Schaltungen, insbesondere bei der Siliziumprozeßtechnik, erfolgt die Abscheidung von Schichten, insbesondere aus Metall, vielfach durch Sputtern (Kathodenstrahlzerstäuben) in Sputterreaktoren. In den Sput- terreaktoren ist ein Target aus dem Material, aus dem dieIn the manufacture of integrated circuits, in particular in silicon process technology, layers, in particular made of metal, are often deposited by sputtering (sputtering) in sputter reactors. In the sputtering reactors there is a target made of the material from which the
Schicht abgeschieden werden soll, und ein Scheibenhalter zur Aufnahme einer Substratscheibe, auf der die Schicht abge¬ schieden werden soll, vorgesehen. Zur Schichtabscheidung wird in dem Sputterreaktor ein Plasma erzeugt. Durch Ionenbeschuß aus dem Plasma werden aus der Targetoberfläche Atome heraus¬ geschlagen, die auf die Oberfläche der Substratscheibe auf¬ treffen und dort die gewünschte Schicht bilden.Layer is to be deposited, and a disc holder for receiving a substrate disc on which the layer is to be deposited is provided. A plasma is generated in the sputter reactor for layer deposition. By ion bombardment from the plasma, atoms are knocked out of the target surface, which hit the surface of the substrate wafer and form the desired layer there.
Bei der Sputterabscheidung werden Inhomogenitäten der Ab- scheideraten zwischen der Mitte und dem Rand des Sputterreak- tors beobachtet. Erfolgt die Schichtabscheidung auf Substrat¬ scheiben mit großem Durchmesser, so wirken sich diese Inhomo¬ genitäten besonders störend aus. Dieses ist besonders gravie¬ rend bei Siliziumscheiben mit einem Durchmesser von 8" oder mehr, wie sie bei der Herstellung von Schaltungsstrukturen in der 0,35 um und 0,25 um Generation vorgesehen werden.In sputter deposition, inhomogeneities in the deposition rates between the center and the edge of the sputter reactor are observed. If the layer is deposited on substrate disks with a large diameter, these inhomogeneities have a particularly disruptive effect. This is particularly serious in the case of silicon wafers with a diameter of 8 "or more, as are provided in the production of circuit structures in the 0.35 µm and 0.25 µm generation.
Vielfach ist im Sputterreaktor zwischen dem Target und der Substratscheibe zusätzlich ein Kollimator vorgesehen. Die In- homogenität der Abscheiderate führt hier zu einem unter¬ schiedlichen Zusputtern der Kollimatorlöcher (siehe A. Kersch et ai, IEDM 1992 Digest of technical papers, Seite 181), was die Standzeit des Kollimators reduziert.In many cases, a collimator is additionally provided in the sputter reactor between the target and the substrate wafer. The inhomogeneity of the deposition rate leads to different sputtering of the collimator holes (see A. Kersch et ai, IEDM 1992 Digest of technical papers, page 181), which reduces the service life of the collimator.
Es ist vorgeschlagen worden, zur Erzielung homogener Schicht- dicker, über den Durchmesser der Substratscheibe sm Ort de£ Targets e ne inhomogene Verteilung eines Magnetfeldes er- zeugen. Dadurch wird die Sputterrate am Target künstlich in¬ homogen gemacht, so daß auf der Substratscheibe eine mög¬ lichst homogene Abscheiderate auftritt. Dazu werden Perma¬ nentmagneten, bei einigen Reaktortypen in rotierender Anord¬ nung, vorgesehen. Die Anordnung der Permanentmagneten wird für den jeweiligen Anlagentyp beim Hersteller der Anlage op¬ timiert. Eine Anpassung an das Langzeitverhalten von Reaktor, Kollimator und Target beim Benutzer der Anlage ist nicht möglich.It has been proposed that an inhomogeneous distribution of a magnetic field be achieved over the diameter of the substrate wafer at the location of the target to achieve homogeneous layer thicknesses. testify. As a result, the sputter rate at the target is made artificially in¬ homogeneous, so that the most homogeneous possible deposition rate occurs on the substrate wafer. For this purpose, permanent magnets are provided, in the case of some reactor types in a rotating arrangement. The arrangement of the permanent magnets is optimized for the respective system type by the manufacturer of the system. Adaptation to the long-term behavior of the reactor, collimator and target by the user of the system is not possible.
Der Erfindung liegt die Aufgabe zugrunde, einen Sputterreak¬ tor anzugeben, bei dem die Inhomogenität in der Abscheiderate auf andere Weise vermieden wird. Ferner st es Aufgabe der Erfindung, ein Betriebsverfahren für einen derartigen Sputterreaktor anzugeben.The invention is based on the object of specifying a sputter reactor in which the inhomogeneity in the deposition rate is avoided in another way. Furthermore, it is an object of the invention to provide an operating method for such a sputter reactor.
Diese Aufgabe wird erfindungsgemäß gelöst durch einen Sput¬ terreaktor gemäß Anspruch 1 sowie ein Verfahren zu dessen Be¬ trieb gemäß Anspruch 5. Weitere Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.This object is achieved according to the invention by a sputtering reactor according to claim 1 and a method for its operation according to claim 5. Further developments of the invention emerge from the subclaims.
In dem erfindungsgemäßen Sputterreaktor ist anstelle eines durchgehenden Targets eine Targetanordnung mit mindestens zwei oder mehr Targetelementen vorgesehen. Diese Targetele- mente weisen jeweils im wesentlichen dieselben Materialzusam¬ mensetzung auf. Die Targetelemente sind unabhängig von einan¬ der elektrisch ansteuerbar. Insbesondere werden die Targete¬ lemente im Betrieb mit unterschiedlichen Gleich- oder Wech¬ selspannungen beaufschlagt. Durch die unterschiedliche Span- nung an den einzelnen Targetelementen wird die Sputterrate an der Targetanordnung inhomogen. Im Betrieb werden die Targete¬ lemente derartig unterschiedlich mit Spannungen beaufschlagt, daß am Ort der Substratscheibe eine homogene Abscheiderate über den Durchmesser der Substratscheibe auftritt.In the sputter reactor according to the invention, a target arrangement with at least two or more target elements is provided instead of a continuous target. These target elements each have essentially the same material composition. The target elements can be controlled electrically independently of one another. In particular, the target elements are subjected to different direct or alternating voltages during operation. Due to the different voltage on the individual target elements, the sputtering rate on the target arrangement is inhomogeneous. In operation, the target elements are subjected to voltages so differently that a homogeneous deposition rate occurs over the diameter of the substrate disk at the location of the substrate disk.
Da in der Siliziurr.prozeStechr.ik meist εcheibenfcrπge Substrate verwendet werden, ist es vorteilhaft, eines der Targetelemente kreisförmig auszubilden und das oder die wei¬ teren Targetelemente ringförmig auszubilden. Das kreisförmige Targetelement und das oder die ringförmigen Targetelemente werden dann konzentrisch in einer Ebene angeordnet. Durch diese kreis-/ringförmigen Targetelemente werden in einer Zy- lindersymmetrie, wie sie bei der Verwendung von scheibenför¬ migen Substraten vorliegt, Inhomogenitäten der Abscheiderate am Ort des Substrats optimal ausgeglichen.Since mostly silicon substrates are used in silicon processing technology, it is advantageous to use one of the To form target elements in a circle and to form the further target element or elements in a ring. The circular target element and the ring-shaped target element or elements are then arranged concentrically in one plane. These circular / ring-shaped target elements optimally compensate for inhomogeneities in the deposition rate at the location of the substrate in a cylinder symmetry, as is the case when using disk-shaped substrates.
Weist das zu prozessierende Substrat eine andere Geometrie auf, so liegt es im Rahmen der Erfindung, die Targetelemente mit anderer Geometrie, zum Beispiel als Sektoren eines Krei¬ ses, vorzusehen.If the substrate to be processed has a different geometry, it is within the scope of the invention to provide the target elements with a different geometry, for example as sectors of a circle.
Die Erfindung ist besonders vorteilhaft einsetzbar als Sput¬ terreaktor mit einem Kollimator, da hierbei neben der homoge¬ nen Dicke der abgeschiedenen Schicht auch eine Verlängerung der Standzeit des Kollimators erzielt wird." The invention can be used particularly advantageously as a sputtering reactor with a collimator, since in addition to the homogeneous thickness of the deposited layer, the service life of the collimator is also extended. "
Die Spannungen, mit denen die Targetelemente beaufschlagt werden, werden auf einfachste Weise über Eichmessungen ermit¬ telt. Dazu werden Versuchsreihen mit verschiedenen Spannungen an den einzelnen Targetelementen durchgeführt.The voltages with which the target elements are acted upon are determined in the simplest way by means of calibration measurements. For this purpose, test series with different voltages are carried out on the individual target elements.
Es liegt im Rahmen der Erfindung, die elektrische Ansteuerung der Targetelemente in situ zu optimieren. Dazu sind im Sput¬ terreaktor zwei oder mehr Meßeinrichtungen vorgesehen, mit denen während einer Abscheidung einer Schicht auf der Substratscheibe die Dicke der abgeschiedenen Schicht an in- destens zwei Orten der Substratscheibe meßbar ist. In Abhän¬ gigkeit der gemessenen Dicken wird mit Hilfe einer Steuerein¬ heit die an die Targetelemente angelegte Spannung nachge¬ stellt. Zur Messung der Schichtdicke sind Schwingquarz- oder Wirbelstromsensoren, wie sie zum Beispiel aus G. G. Barna et al, IEEE Trans, on Semiconductor Manufacturing, Vol. 7, 1994, Seite 149 und R. Iscoff, Semidonductor International, August 1994, Seite 69, bekannt sind, geeignet. Schließlich liegt es im Rahmen der Erfindung, durch Vergleich der gemessenen Dicken an verschiedenen Orten der Substrat- scheibe mit dem entsprechenden Wert einer numerischen Si ula- tion des Sputterreaktors iterativ optimale Werte für die Spannung an den einzelnen Targetelementen zu bestimmen und mit diesen den Prozeß durchzuführen.It is within the scope of the invention to optimize the electrical control of the target elements in situ. For this purpose, two or more measuring devices are provided in the sputtering reactor, with which the thickness of the deposited layer can be measured at at least two locations on the substrate wafer during the deposition of a layer on the substrate wafer. Depending on the measured thicknesses, the voltage applied to the target elements is adjusted with the aid of a control unit. In order to measure the layer thickness, oscillating quartz or eddy current sensors are known, as are known, for example, from GG Barna et al, IEEE Trans, on Semiconductor Manufacturing, Vol. 7, 1994, page 149 and R. Iscoff, Semidonductor International, August 1994, page 69 are suitable. Finally, it is within the scope of the invention to iteratively determine optimal values for the voltage at the individual target elements by comparing the measured thicknesses at different locations on the substrate wafer with the corresponding value of a numerical analysis of the sputter reactor and to carry out the process with them .
Im folgenden wird die Erfindung anhand eines Ausführungsbei- spiels und der Figur näher erläutert.The invention is explained in more detail below with the aid of an exemplary embodiment and the figure.
Die Figur zeigt einen Sputterreaktor mit einer Targetanord¬ nung, die drei elektrisch unabhängig voneinander ansteuerbare Targetelemente umfaßt.The figure shows a sputter reactor with a target arrangement which comprises three target elements which can be controlled electrically independently of one another.
Ein Sputterreaktor umfaßt eine Reaktionskammer 1, die mit Pumpstutzen 2 und Gaszuführungen 3 versehen ist. Die Reakti¬ onskammer 1 ist mit Bezugspotential, zum Beispiel Erdpoten¬ tial verbunden.A sputter reactor comprises a reaction chamber 1, which is provided with pump stubs 2 and gas feeds 3. The reaction chamber 1 is connected to the reference potential, for example earth potential.
In der Reaktionskammer 1 ist ein Scheibenhalter 4 vorgesehen zur Aufnahme einer zu prozessierenden Substratscheibe 5 zum Beispiel aus Silizium. Der Scheibenhalter 4 ist ebenfalls mit Bezugspotential verbunden.A disk holder 4 is provided in the reaction chamber 1 for receiving a substrate wafer 5 to be processed, for example made of silicon. The disc holder 4 is also connected to the reference potential.
In der Reaktionskammer 1 ist darüber hinaus ein Kollimator 6 und eine Targetanordnung 7 vorgesehen. Der Kollimator 6 ist zwischen der Targetanordnung 7 und dem Scheibenhalter 4 ange¬ ordnet. Der Kollimator 6 umfaßt zylinderförmige Kollimatorlö- eher, deren Zylinderachse im wesentlichen senkrecht zur Ober¬ fläche der Substratscheibe 5 ausgerichtet ist.A collimator 6 and a target arrangement 7 are also provided in the reaction chamber 1. The collimator 6 is arranged between the target arrangement 7 and the disk holder 4. The collimator 6 comprises cylindrical collimator holes, the cylinder axis of which is oriented essentially perpendicular to the surface of the substrate wafer 5.
Die Targetanordnung 7 umfaßt mehrere, zum Beispiel drei Tar¬ getelemente 71, 72, 73. Die Targetelemente 71, 72, 73 weisen jeweils dieselbe Materialzusammensetzung auf. Zur Abscheidung von zum Beispiel Titan enthalten die Targetelemente 71, 72, 73 zum Beispiel Titan. Der Sputterreaktor ist mit einer Spannungsversorgung 8 verse¬ hen, die mit jedem der Targetelemente 71, 72, 73 verbunden ist. Über die Spannungsversorgung 8 wird an jedes der Targe¬ telemente 71, 72, 73 unabhängig von den übrigen Targetelemen¬ ten eine Spannung angeleg . Die Spannungsversorgung 8 kann als ein Spannungsgenerator mit zum Beispiel drei unabhängigen Ausgängen oder als drei unabhängige Spannungsgeneratoren rea¬ lisiert sein.The target arrangement 7 comprises several, for example three, target elements 71, 72, 73. The target elements 71, 72, 73 each have the same material composition. To deposit titanium, for example, the target elements 71, 72, 73 contain titanium, for example. The sputter reactor is provided with a voltage supply 8, which is connected to each of the target elements 71, 72, 73. A voltage is applied to each of the target elements 71, 72, 73 independently of the other target elements via the voltage supply 8. The voltage supply 8 can be implemented as a voltage generator with, for example, three independent outputs or as three independent voltage generators.
In der Reaktionskammer 1 sind mehrere, zum Beispiel drei Sen¬ sorelemente 91, 92, 93 vorgesehen. Die Sensorelemente 91, 92, 93 sind an drei unterschiedlichen Orten oberhalb der Substratscheibe 5 angeordnet. Die Sensorelemente 91, 92, 93 sind zur Dickenmessung einer auf der Substratscheibe 5 abge¬ schiedenen Schicht geeignet. Sie werden zum Beispiel als Schwingquarz oder Wirbelstromsensor realisiert.Several, for example three, sensor elements 91, 92, 93 are provided in the reaction chamber 1. The sensor elements 91, 92, 93 are arranged at three different locations above the substrate wafer 5. The sensor elements 91, 92, 93 are suitable for measuring the thickness of a layer deposited on the substrate wafer 5. They are implemented, for example, as quartz oscillators or eddy current sensors.
Der Sputterreaktor umfaßt darüber hinaus eine Steuereinheit 10, die zum Beispiel drei Eingänge und drei Ausgänge auf¬ weist. Die Eingänge der Steuereinheit 10 sind jeweils mit ei¬ nem der Sensorelemente 91, 92, 93 verbunden. Die Ausgänge der Steuereinheit 10 werden mit Steuereingängen der Spannungsver¬ sorgung 8 verbunden.The sputter reactor also includes a control unit 10 which has, for example, three inputs and three outputs. The inputs of the control unit 10 are each connected to one of the sensor elements 91, 92, 93. The outputs of the control unit 10 are connected to control inputs of the voltage supply 8.
Der Sputterreaktor kann darüber hinaus Mittel zur Plasmaer¬ zeugung umfassen (der Übersichtlichkeit halber nicht darge¬ stellt), zum Beispiel einen Mikrowellen- oder Hochfrequenz¬ sender. Im Betrieb des Sputterreaktors wird die Reaktions- kammer 1 über die Gaszuführungen 3 mit einem Prozeßgas, zum Beispiel Argon beaufschlagt. In der Reaktionskammer wird ein Druck von 0,5 bis 5 mTorr eingestellt. Durch Einkopplung ei¬ ner elektrischen Hochfrequenzenergie mit einer Leistung von 1 bis 5 kW und einer Frequenz von zum Beispiel 13,56 MHz wird in der Reaktionskammer 1 ein Plasma angeregt. An die Targe¬ telemente 71, 72, 73 wird eine Spannung angelegt. Je nach den Eigenschaften des abzuscheidenden Materials wird dabei eine Gleich- oder WechselSpannung angelegt. Die Temperatur in der Reaktionskammer beträgt 25 bis 300°C. Bei diesen Parametern beträgt die Abscheiderate 0,1 bis 1 nm/s.The sputter reactor can moreover comprise means for generating plasma (not shown for the sake of clarity), for example a microwave or high-frequency transmitter. In operation of the sputter reactor, the reaction chamber 1 is charged with a process gas, for example argon, via the gas feeds 3. A pressure of 0.5 to 5 mTorr is set in the reaction chamber. A plasma is excited in the reaction chamber 1 by coupling in an electrical high-frequency energy with a power of 1 to 5 kW and a frequency of, for example, 13.56 MHz. A voltage is applied to the target elements 71, 72, 73. Depending on the properties of the material to be deposited, a DC or AC voltage applied. The temperature in the reaction chamber is 25 to 300 ° C. With these parameters, the deposition rate is 0.1 to 1 nm / s.
Über die Sensorelemente 91, 92, 93 wird bei der Schichtab¬ scheidung die aktuelle Schichtdicke gemessen. Die Steuerein¬ heit 10 umfaßt einen Mikroprozessor, über den eine Bewertung der Verteilung der aktuellen Schichtdicke erfolgt. Abhängig von den über die Sensorelemente 91, 92, 93 gemessenen Schichtdicken erzeugt die Steuereinheit 10 Ausgangsεignale zur Ansteuerung der Spannungsversorgung 8. Abhängig von den Ausgangssignalen der Steuereinheit 10 werden die Spannungen an den Targetelementen 71, 72, 73 unabhängig voneinander nachgestellt. Die am Ausgang der Steuereinheit erzeugten Si- gnale steuern die Spannungsversorgung 8 dabei so an, daß die Sputterrate an den einzelnen Targetelementen 71, 72, 73 zu einer über den Durchmesser der Substratscheibe 5 im wesent¬ lichen homogenen Abscheiderate führt.The current layer thickness is measured during the layer deposition via the sensor elements 91, 92, 93. The control unit 10 comprises a microprocessor, via which the distribution of the current layer thickness is assessed. Depending on the layer thicknesses measured via the sensor elements 91, 92, 93, the control unit 10 generates output signals for controlling the voltage supply 8. Depending on the output signals of the control unit 10, the voltages on the target elements 71, 72, 73 are adjusted independently of one another. The signals generated at the output of the control unit control the voltage supply 8 in such a way that the sputtering rate at the individual target elements 71, 72, 73 leads to a deposition rate which is essentially homogeneous over the diameter of the substrate wafer 5.
Das Targetelement 71 ist zum Beispiel kreisförmig mit einem Durchmesser von zum Beispiel 20 cm. Das Targetelement 72 ist zum Beispiel ringförmig mit einem Außendurchmesser von zum Beispiel 36 cm. Das Targetelement 73 ist zum Beispiel ring¬ förmig mit einem Außendurchmesser von zum Beispiel 52 cm. Die Targetelemente 71, 72, 73 sind konzentrisch in einer Ebene angeordnet, wobei zwischen dem Targetelement 71 und 72 sowie zwischen den Targetelementen 72 und 73 jeweils ein Abstand von 5 mm eingehalten wird. Die Spannungen an den Targetele¬ menten 71, 72, 73 werden zum Beispiel im Bereich zwischen 500 und 1500 Volt geregelt.The target element 71 is, for example, circular with a diameter of, for example, 20 cm. The target element 72 is, for example, ring-shaped with an outer diameter of, for example, 36 cm. The target element 73 is ring-shaped, for example, with an outer diameter of, for example, 52 cm. The target elements 71, 72, 73 are arranged concentrically in one plane, a distance of 5 mm being maintained between the target element 71 and 72 and between the target elements 72 and 73. The voltages at the target elements 71, 72, 73 are regulated, for example, in the range between 500 and 1500 volts.
Zu Beginn des Prozesses ist es vorteilhaft, an das Targetele¬ ment 71 1167 Volt, an das Targetelement 72 616 Volt und an das Targetelement 73 600 Volt anzulegen. Für diese Werte wur- den mit Hilfe einer numerischen Simulation eine homogene Ab¬ scheiderate als Funktion der Position auf der Substratscheibe errechnet. Die numerische Simulation ergibt, daß das abge- schiedene Material in gewissen Bereichen der Substratscheibe jeweils im wesentlichen von einem der Targetelemente her¬ rührt. Daher wird die Homogenität durch eine Überlagerung der Abscheideraten der einzelnen Targetelemente 71, 72, 73 opti¬ miert. At the beginning of the process, it is advantageous to apply 71 1167 volts to the target element, 72 616 volts to the target element and 73 600 volts to the target element. Using a numerical simulation, a homogeneous deposition rate as a function of the position on the substrate wafer was calculated for these values. The numerical simulation shows that the Different material in certain areas of the substrate wafer essentially originates from one of the target elements. Homogeneity is therefore optimized by superimposing the deposition rates of the individual target elements 71, 72, 73.

Claims

Patentansprüche claims
1. Sputterreaktor,1. sputter reactor,
- bei dem eine Reaktionskammer (1) mindestens mit einem- In which a reaction chamber (1) with at least one
Scheibenhalter (4) zur Aufnahme einer Substratscheibe (5) und mit einer Targetanordnung (7) vorgesehen ist,Disk holder (4) for receiving a substrate disk (5) and with a target arrangement (7) is provided,
- bei dem die Targetanordnung (7) mindestens zwei Targetele- mente (71, 72, 73) umfaßt, die im wesentlichen dieselbe Mate¬ rialzusammensetzung aufweisen und die unabhängig voneinander elektrisch ansteuerbar sind.- In which the target arrangement (7) comprises at least two target elements (71, 72, 73) which have essentially the same material composition and which can be controlled electrically independently of one another.
2. Sputterreaktor nach Anspruch 1,2. sputter reactor according to claim 1,
- bei dem in der Reaktionskammer (1) zusätzlich ein Kolli¬ mator (6) mit Kollimatorlöchern vorgesehen ist,- in which a collimator (6) with collimator holes is additionally provided in the reaction chamber (1),
- bei dem der Kollimator (6) zwischen der Targetanordnung (7) und dem Scheibenhalter (4) so angeordnet ist, daß die Ach¬ sen der Kollimatorlöcher im wesentlich senkrecht zur Ober¬ fläche der Subεtratscheibe (5) ausgerichtet sind.- In which the collimator (6) between the target arrangement (7) and the disc holder (4) is arranged so that the axes of the collimator holes are aligned substantially perpendicular to the surface of the substrate disc (5).
3. Sputterreaktor nach Anspruch 1 oder 2,3. sputter reactor according to claim 1 or 2,
- bei dem in der Reaktionskammer (1) mindestens zwei Sensore¬ lemente (91, 92, 93) vorgesehen sind, mit denen während ei¬ ner Abscheidung einer Schicht auf der Substratscheibe (5) die Dicke der abgeschiedenen Schicht an mindestens zwei Or- ten der Substratscheibe (5) meßbar ist,- In which at least two sensor elements (91, 92, 93) are provided in the reaction chamber (1), with which the thickness of the deposited layer at at least two locations during the deposition of a layer on the substrate wafer (5) the substrate wafer (5) is measurable,
- bei dem eine Steuereinheit (10) vorgesehen ist, über die in Abhängigkeit der gemessenen Dicken die einzelnen Targetele¬ mente (71, 72, 73) unabhängig voneinander ansteuerbar sind.- In which a control unit (10) is provided, via which the individual target elements (71, 72, 73) can be controlled independently of one another depending on the measured thicknesses.
4. Sputterreaktor nach einem der Ansprüche 1 bis 3, - bei dem eines der Targetelemente (71) kreisförmig und min¬ destens eines der Targetelemente (72, 73) ringförmig ist,4. sputtering reactor according to one of claims 1 to 3, - in which one of the target elements (71) is circular and at least one of the target elements (72, 73) is annular,
- bei dem das kreisförmige Targetelement (71) und das ring- förmige Targetelement (72, 73) konzentrisch in einer Ebene angeordnet sind.- In which the circular target element (71) and the ring-shaped target element (72, 73) are arranged concentrically in one plane.
5. Verfahren zum Betrieb eines Sputterreaktors nach Anspruch 1, bei dem die Targetelemente (71, 72, 73) jeweils unabhängig voneinander mit elektrischen Spannungen verbunden werden.5. A method of operating a sputter reactor according to claim 1, wherein the target elements (71, 72, 73) are each independently connected to electrical voltages.
6. Verfahren nach Anspruch 5,6. The method according to claim 5,
- bei dem während einer im Sputterreaktor ablaufenden Ab- Scheidung einer Schicht die Dicke der Schicht an mehreren- In the case of one layer being deposited in the sputter reactor, the thickness of the layer on several
Orten der Substratscheibe (5) gemessen wird undLocations of the substrate wafer (5) is measured and
- bei dem die Targetelemente (71, 72, 73) in Abhängigkeit der gemessenen Dicken mit einer Spannung beaufschlagt werden.- In which the target elements (71, 72, 73) are subjected to a voltage as a function of the measured thicknesses.
7. Verfahren nach Anspruch 6, bei dem durch Vergleich der gemessenen Dicken mit dem ent¬ sprechenden Wert einer numerischen Simulation des Sputterre¬ aktors iterativ Parameter zur Ansteuerung der Targetelemente (71, 72, 73) bestimmt werden. 7. The method according to claim 6, in which parameters for controlling the target elements (71, 72, 73) are determined iteratively by comparing the measured thicknesses with the corresponding value of a numerical simulation of the sputter reactor.
PCT/DE1995/001740 1994-12-07 1995-12-05 Cathode sputtering reactor and method of operating the same WO1996018209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4443609.2 1994-12-07
DE4443609 1994-12-07

Publications (1)

Publication Number Publication Date
WO1996018209A1 true WO1996018209A1 (en) 1996-06-13

Family

ID=6535197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001740 WO1996018209A1 (en) 1994-12-07 1995-12-05 Cathode sputtering reactor and method of operating the same

Country Status (1)

Country Link
WO (1) WO1996018209A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63469A (en) * 1986-06-19 1988-01-05 Matsushita Electric Ind Co Ltd Sputtering device
EP0313750A1 (en) * 1987-10-29 1989-05-03 International Business Machines Corporation Magnetron sputter etching/deposition system
DE4127262C1 (en) * 1991-08-17 1992-06-04 Forschungsges Elektronenstrahl Sputtering equipment for coating large substrates with (non)ferromagnetic material - consisting of two sub-targets electrically isolated and cooling plates whose gap in between is that in region of pole units

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63469A (en) * 1986-06-19 1988-01-05 Matsushita Electric Ind Co Ltd Sputtering device
EP0313750A1 (en) * 1987-10-29 1989-05-03 International Business Machines Corporation Magnetron sputter etching/deposition system
DE4127262C1 (en) * 1991-08-17 1992-06-04 Forschungsges Elektronenstrahl Sputtering equipment for coating large substrates with (non)ferromagnetic material - consisting of two sub-targets electrically isolated and cooling plates whose gap in between is that in region of pole units

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 198 (C - 502) 8 June 1988 (1988-06-08) *

Similar Documents

Publication Publication Date Title
EP0478909B1 (en) Process and apparatus for obtaining a diamondlayer
DE19702187C2 (en) Method and device for operating magnetron discharges
DE10195251B4 (en) Plasma processing system and method
EP3289113A1 (en) Method for producing coated substrates
DE10018143A1 (en) Layer system used for the wear protection, corrosion protection and for improving the sliding properties of machine parts consists of an adhesion layer, a transition layer and a covering layer arranged on a substrate
DE1790094B1 (en) METHOD FOR APPLYING THIN NON-CONDUCTIVE LAYERS
EP0394661A1 (en) Process for at least partially coating workpieces by means of a sputter-CVD method
EP2165003A1 (en) Pdv method and pdv device for producing low friction, wear resistant, functional coatings, and coatings produced therewith
DE4324683C1 (en) Procedure for adapting the generator in bipolar low-pressure glow processes
EP2175044B1 (en) PVD coating method, device for carrying out the procedure and substances coated with the procedure
DE19506513C2 (en) Reactive coating device
DE69017555T2 (en) Process and apparatus for sputtering films.
EP0867036B1 (en) Method and device for pre-treatment of substrates
EP0796505B1 (en) Plasma reactor and method of operating the same
DE10000019A1 (en) Sputter deposition unit, useful for depositing titanium and titanium nitride coatings on semiconductor wafers, has a non-target material surface for receiving and re-sputtering target material onto a workpiece periphery
DE3442208C2 (en)
DE69305725T2 (en) Magnetron sputtering device and thin film coating process
WO1996018209A1 (en) Cathode sputtering reactor and method of operating the same
DE112005000627B4 (en) Plasma treatment of large-volume components
DE10051509A1 (en) Production of a thin layer system comprises introducing power into the plasma in the form of a controlled number of pulses during deposition of extremely thin layers; and adjusting the average power during the pulse-one time
EP2417619B1 (en) Process chamber having modulated plasma supply
EP1473382A1 (en) Process and apparatus for plasma-activated film deposition by magnetron sputtering
DE19703791C2 (en) Process for controlling glow discharges with pulsed energy supply
DE102011009347B4 (en) Process for the preparation of a carbon-containing layer system and apparatus for carrying out the process
DE19535560C1 (en) Monitoring ion-assisted boron nitride deposition process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase