WO1996011306A1 - Vibrating device for an operating machine for a hydraulic shovel - Google Patents

Vibrating device for an operating machine for a hydraulic shovel Download PDF

Info

Publication number
WO1996011306A1
WO1996011306A1 PCT/JP1995/002010 JP9502010W WO9611306A1 WO 1996011306 A1 WO1996011306 A1 WO 1996011306A1 JP 9502010 W JP9502010 W JP 9502010W WO 9611306 A1 WO9611306 A1 WO 9611306A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
valve
hydraulic
working machine
switching valve
Prior art date
Application number
PCT/JP1995/002010
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Tomita
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to EP95932957A priority Critical patent/EP0785312A4/en
Publication of WO1996011306A1 publication Critical patent/WO1996011306A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/12Fluid oscillators or pulse generators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/221Arrangements for controlling the attitude of actuators, e.g. speed, floating function for generating actuator vibration
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels

Definitions

  • the present invention relates to a working machine vibration device for a hydraulic shovel, and more particularly to a vibration device that facilitates switching of a vibration mode during excavation work or rolling work of a work machine.
  • a vibration device of a hydraulic vibratory pile driver is provided with a gripping device 102 that vibrates the hydraulic vibratory pile driver up and down.
  • the pressure oil in the oscillating pressure oil supply line 109 controlled to a predetermined flow rate by the valve regulating valve 105 flows into the hydraulic motor 103 via the pipe 110, and the hydraulic motor 103 Is rotated to a predetermined number of revolutions (for example, Japanese Patent Application Laid-Open No. 57-40025).
  • the direction switching valve 106 the pressure oil from the pressure oil supply unit 108 flows into the cylinder 100 via the pipeline 111 and the vibration switching valve 104. I do.
  • the vibration switching valve 104 operates at a frequency corresponding to the rotation speed of the hydraulic motor 103, so that the pressure oil is supplied to the inflow port 100 by switching the vibration switching valve 104.
  • the fluid flows alternately from a and 100b, the piston 101 is moved up and down, and the gripping device 102 is vibrated.
  • a switch means for instructing a vibration mode and a means for intermittently supplying pressure oil to a work machine driving actuator when the vibration mode is designated.
  • a switch means for instructing a vibration mode and a means for intermittently supplying pressure oil to a work machine driving actuator when the vibration mode is designated.
  • the vibration device of the hydraulic vibratory pile driver only controls the piston 102 up and down.
  • the work machine vibration device controls the amplitude of the work machine cylinder on the upside and the amplitude on the downside thereof to be constant. Therefore, in the prior art, in the case of the compaction vibration work on irregular terrain where the ground tightening position changes, the blanking occurs and There is a problem that vibration is not given.
  • the present invention has been made to solve the problems of the prior art, and is directed to a hydraulic excavator that efficiently performs vibration work such as excavation work and compaction work in civil works according to various types of soil and terrain.
  • An object of the present invention is to provide a working machine vibration device.
  • a working machine vibration device for a hydraulic shovel includes: an actuator driving hydraulic pressure source; a plurality of working machine driving devices driven by pressure oil from the hydraulic source; A working machine having a boom, an arm, and a bucket, wherein at least one of the working machines is used or at least one of the working machines is used to vibrate the working machine.
  • a rotary vibration valve that continuously switches and discharges pressure oil from a hydraulic source
  • a swing mode switching valve having two positions, a position for continuously discharging the discharged oil switched by the rotary vibration valve in one direction, and a position for discharging the switched oil alternately.
  • a first directional switching valve that switches pressure oil from a hydraulic pressure source and supplies the vibration oil to the vibration actuator via a rotary vibration valve and a vibration mode switching valve;
  • a second directional control valve may be provided in the strait to switch at least one lined oil of the work equipment for the work equipment by a pilot valve.
  • a first directional switching valve that switches pressure oil from a hydraulic pressure source and supplies it to at least one of the working machine actuators via a rotary vibration valve and a vibration mode switching valve;
  • a second pipe which is connected to at least one other part of the work equipment factory, and is connected to at least one other pipe and switches oil supply to at least one other by a pie port valve.
  • a direction switching valve may be provided.
  • At least one of the working equipment switches controlled by the first directional switching valve may be a bucket working part (9).
  • the switching of the first direction switching valve may be performed by a signal from the vibration mode switching operation unit.
  • a hydraulic motor O N Z O F F switching valve for controlling the supply of pressure oil from a hydraulic source
  • a flow S adjusting valve for adjusting the flow from the hydraulic motor ONZOFF switching valve (12) is provided,
  • the hydraulic motor may be rotated by the flow rate adjusted from the flow rate adjustment valve, and the vibration frequency of the rotary vibration valve may be controlled according to the rotation speed of the hydraulic motor.
  • the work equipment work that is refueled by the second directional control valve is the boom work.
  • the second direction switching valve and the switching valve for the accumulator may be switched by a pilot pressure signal from a pilot valve or an electric signal from an electric vibration mode switching operation unit.
  • a pressure switch for detecting the pressure of the work equipment actuator is provided, and based on the detected pressure, when at least one of the work equipment actuators is in a driving state, the vibration is switched to the vibration actuator. Pressurized oil may be supplied.
  • the rolling mode in which the work equipment work or the vibration work equipment is reciprocally vibrated, or the excavation mode in which the vibrator is vibrated in one direction can be arbitrarily selected.
  • the excavation work is facilitated by vibrating any one of the bucket, the arm and the boom to dislodge the earth and sand.
  • compaction becomes easy even on sloping ground or uneven terrain, and rolling compaction work becomes easy.
  • even if the ground level is lowered during the vibration work it is possible to prevent the blanking by working in the excavation mode that vibrates in one direction. In this way, it is possible to apply vibration according to various types of soil, topography, etc., and workability is improved.
  • the accumulator suppresses the vibrations that occur during the operation of the work equipment, thereby improving the stability and reliability of the hydraulic excavator. Further, by detecting the pressure of the work equipment work overnight, the work equipment work is automatically vibrated in conjunction with the vibration work work while the work equipment work is being driven, improving workability.
  • FIGS. 1A and 1B are diagrams of a hydraulic excavator to which the working machine vibration device according to the present invention is applied.
  • FIG. 1A is a side view at the time of compaction work
  • FIG. 1B is a side view at the time of excavation work.
  • FIG. 2 is a hydraulic circuit diagram of the working machine vibration device according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve according to the first embodiment in a neutral state.
  • FIGS. 4A and 4B are views of the compaction mode in the rolling mode according to the first embodiment when the actuator is temporarily reduced, and
  • FIG. 4A is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve.
  • Figure 4B is the hydraulic circuit diagram
  • FIGS. 5A and 5B are diagrams of the compaction mode according to the first embodiment when the actuator is extended, and FIG. 5A is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve. , Figure 5B is the hydraulic circuit diagram,
  • FIG. 6A and 6B are diagrams showing a stopped state of the excavation mode according to the first embodiment.
  • FIG. 6A is an explanatory view of a cross section of a rotary vibration valve and a vibration mode switching valve.
  • FIG. 7A and FIG. 7B are diagrams showing an operation state in the excavation mode according to the first embodiment
  • FIG. 7A is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve.
  • Figure 7B is the hydraulic circuit diagram
  • FIG. 8A, 8B, and 8C are diagrams in which a throttle is provided in the vibration mode switching valve of FIG. 6B, and FIG. 8A is a cross-sectional view of the rotary vibration valve and the vibration mode switching valve.
  • Figure, Figure 8B is a detailed view of the part P in Figure 8A, Figure 8C is the hydraulic circuit diagram,
  • FIG. 9A, 9B, and 9C are diagrams showing a working machine vibration device according to a second embodiment of the present invention.
  • FIG. 9A is a side view of a main part of the working machine
  • FIG. Fig. 9C is the hydraulic circuit diagram for the work equipment
  • Fig. 9C is the hydraulic circuit diagram for the work equipment.
  • FIG. 10 is a hydraulic circuit diagram of the working machine vibration concealment according to the third embodiment of the present invention.
  • FIG. 11 is a hydraulic circuit diagram of a working machine vibration device according to a fourth embodiment of the present invention.
  • FIG. 12 is a hydraulic circuit diagram of a working machine vibration device according to a fifth embodiment of the present invention.
  • FIG. 13 is a hydraulic circuit diagram of a working machine vibration device according to a sixth embodiment of the present invention.
  • FIG. 14 is a hydraulic circuit diagram of a working machine vibration device according to a seventh embodiment of the present invention.
  • FIG. 15 is a hydraulic circuit diagram of a working machine vibration device according to an eighth embodiment of the present invention.
  • FIG. 16 is an explanatory view of a working machine vibration device according to a conventional technique.
  • BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the hydraulic shovel working machine vibration device according to the present invention will be described in detail below with reference to the accompanying drawings.
  • FIG. 1A and 1B show a hydraulic excavator 1 as an application example of the present invention, which can travel freely by a lower traveling body 2 driven by a traveling motor (not shown).
  • a traveling motor not shown
  • an upper revolving body 3 that can be rotated by driving a revolving motor is provided, and the upper revolving body 3 is equipped with a work implement 1a.
  • the work machine 1a includes a boom 4, an arm 6, a bucket 8, a plurality of hydraulic actuators 5, 7, 9, a tilt lever 9h, and a link 9j.
  • the boom 4 that can be moved up and down by driving the boom actuator 5 has a arm 6 at the tip.
  • the arm 6 is swingable up and down by driving an arm actuator 7, and a bucket 8 is attached to a tip end.
  • one end of the baggage actuator 9 is connected to one end of the tilt lever 9h, the other end of the tilt lever 9h is connected to the arm 6, and the tilt lever 9h is connected to the baggage holder. It is connected to bucket 8 via link 9j.
  • the bucket 8 becomes rotatable by driving the bucket actuator 9.
  • At least one of the pistons of each work equipment for work equipment 5, 7, and 9 was reciprocated or unidirectionally vibrated to excavate while loosening the earth or to remove the earth and sand. Rolling work while compacting is possible.
  • work equipment A when at least one of the work machines for work equipment 5, 7, and 9 is indicated, it is referred to as work equipment A.
  • a hydraulic source 10 (10 a) (hereinafter referred to as a hydraulic source 10 a) for driving the actuator is connected to the first directional control valve 11.
  • 1-way directional control valve 11 1 Force ⁇ connected to rotary vibration valve 15 via lines 18a and 18b, and vibration mode switching valve 17 downstream of rotary vibration valve 15 It is arranged.
  • the vibration mode switching valve 17 is connected to each of the bottom oil chambers 5 a, 7 a, and 9 a of the factory A through a line 18 e.
  • the vibration mode switching valve 17 is connected to each of the actuators A by piping 18 d. Oil chamber 5 b, 7 b. Connected to 9 b.
  • each of the work equipments 5, 7, and 9 can be individually operated and controlled. This example will be described in a seventh embodiment.
  • the second directional control valve 13 connected to the hydraulic pressure source 10 (10b) (hereinafter referred to as the hydraulic pressure source 10b) is connected to the pipeline 18e via the pipeline 19a, It is connected to pipeline 18d via pipeline 19b.
  • the hydraulic motor ONZO FF switching valve 12 (hereinafter referred to as the motor switching valve 12) connected to the hydraulic pressure source 10 (10c) (hereinafter referred to as the hydraulic pressure source 10c) is connected to the line 12b.
  • the hydraulic motor 14 connected to the flow control valve 16 via the conduit 12 d enables the rotary vibration valve 15 to rotate.
  • 1 2c is a return line.
  • the hydraulic sources 10 are illustrated and described as hydraulic sources 10a, 10b, and 10c for the sake of simplicity. However, the number of the hydraulic sources 10 may be one or more as necessary. 10 is used.
  • the pilot operation circuit will be described.
  • the hydraulic pressure source 20 for the pilot and the operating member 21c of the vibration mode switching operating section 2.1 are in contact with the pilot valve 21A (21a, 21b). No ,.
  • the pilot valve 21a is connected to the operating portion 11a of the first directional control valve 11 via a pilot line 22 and a branch line 22a.
  • the pilot valve 21 b is connected to the operating section 11 b of the first directional control valve 11 via a pilot pipe 23 and a branch pipe 23 a.
  • the two pilot lines 22 and 23 are respectively connected to the operation units 17 a 17 b of the vibration mode switching valve 17.
  • the shuttle valve 25 disposed between the branch pipes 22 b and 23 b of the two pilot pipes 22 and 23 is connected to the motor switching valve 12 by the pilot pipe 24. Connected to operation unit 1 2 a.
  • pilot valve 24 A (24 a. 24 b) provided on the operation lever 26 is connected to the hydraulic port 10 for the pilot port.
  • Pilot valve 24 Pilot line from 4a 28 a is connected to the operation unit 13 a of the second directional control valve 13.
  • a pilot line 28 b from the pilot valve 24 b is connected to the operation unit 13 b of the second directional switching valve 13.
  • 27 is a tank.
  • the drive shaft 14a of the hydraulic motor 14 is connected to the rotor 15h of the rotary vibration valve 15 by a spline 14b.
  • a plurality of passage holes 15a to 15d are formed on the outer periphery of the rotor 15h.
  • This drawing shows a state in which the pilot pressure is not acting on the first directional switching valve 11 and the vibration mode switching valve 17, and the spool 17 g of the vibration mode switching valve 17 is in the neutral position It is in.
  • the passages 17 i, 17 j, 17 k and the passages 17 d, 17 e, and 17 f of the vibration mode switching valve 17 are closed.
  • the first directional control valve 11 is connected to the passage 15a of the rotary vibration valve 15 by a pipe 18a. Since the hydraulic motor 14 is not driven, Actuyue A is stopped.
  • FIGS. 4A and 4B show a state where the hydraulic motor 14 is driven, and the rotary vibration valve 15 is at the position b.
  • the vibration mode switching valve 17 and the first directional switching valve 11 are both switched to the position b by the pilot pressure acting on the operation units 17b and 11b.
  • passage 15a and passage 15b are in communication.
  • the passage 15 b communicates with the passages 17 j and 17 e of the vibration mode switching valve 17.
  • the passage 17e is connected to the head oil chamber 5B via a line 18d.
  • the pipeline 18 e connected to the bottom oil chamber 5 A is sequentially communicated with the passages 17 d, 17 i, 15 c, 17 k, and 17 f via the pipeline 18 a.
  • FIGS. 5A and 5B show the case where the rotary vibration valve 15 is at the position a, and the rotary vibration valve 15 is sequentially connected to the passages 15a, 15d, 17i, and 17d. And the bottom oil chamber 5A via a pipe 18e. Head oil chamber 5B is connected to tank 27 via line 18d, passages 17e, 17j, 17k, 17f and line 18a.
  • Figures 6A and 6B show when the rotary vibration valve 15 is in the a position.Even if both the first directional switching valve 11 and the vibration mode switching valve 17 are switched to the a position, Rotary vibration valve 1
  • the passages 15a and 15b of No. 5 do not communicate with the passages 17e to 17f of the vibration mode switching valve 1 ⁇ .
  • FIGS.7A and 7B show the case where the rotary vibration valve 15 is at the position b, and the first direction switching valve 11 and the vibration mode switching valve 17 are both switched to the position a.
  • the type vibration valve 15 is sequentially connected to the bottom oil chamber 5A via passages 15a, 15d, 17i, 17d and a pipe 18e.
  • the head oil chamber 5B is sequentially connected to the tank 27 via the pipeline 18d, the pipelines 17e and 17f, and the pipeline 18b.
  • the operation member 21 c of the vibration mode switching operation unit 21 when working in the excavation mode by applying vibration to the work implement 1 a, the operation member 21 c of the vibration mode switching operation unit 21 is operated to the excavation side, so that Both the one-way switching valve 11 and the vibration mode switching valve 17 switch to the a position.
  • Motor switching valve 12 also switches to position a, and hydraulic oil from hydraulic source 10 C flows into hydraulic motor 14 via flow control valve 16, and rotation of hydraulic motor 14 starts. I do.
  • the rotation speed of the hydraulic motor 14 is increased or decreased by the opening degree of the flow S adjusting valve 16 and can be adjusted by control means (not shown).
  • the rotary vibration valve 15 is alternately and continuously switched to the position a and the position b at a vibration frequency corresponding to the rotation speed of the hydraulic motor 14. Therefore, the pressure oil from the hydraulic pressure source 10a is intermittently discharged from the rotary valve 15 through the line 18a from the position a of the first directional control valve 11 and the vibration mode switching valve. It is intermittently supplied from the a position 17 to the bottom oil chamber 5A of the actuator A through the line 18e. On the other hand, the oil in the head oil chamber 5B is drained to the tank 27 via the pipes 18d and 18b.
  • Actuyue A generates one-way vibration, and it becomes possible to excavate easily by applying vibration to the hard soil.
  • the operating member 21c of the vibration mode switching valve 21 is operated to the compaction side so that the first directional control valve 1 1 and the vibration mode switching valve 17 both switch to position b.
  • the motor switching valve 12 also switches to the position a, and, similarly to the above, the hydraulic motor 14 is driven by the hydraulic oil from the hydraulic pressure source 10a. Start rotation. At a vibration frequency corresponding to the rotation speed of the hydraulic motor 14, the rotary vibration valve 15 is operated continuously by switching between the a position and the b position alternately.
  • the position b of the vibration mode switching valve 17 is three ports.
  • the pressure oil from the hydraulic pressure source 10a is supplied to the head oil chamber 5B via the pipes 18b, 18c, 18d and the pipe 18b. It is continuously switched to pressurized oil supplied to the bottom oil chamber 5A via 18c and 18e to make lined oil.
  • each piston of the actuator A generates a reciprocating vibration, and it is possible to easily perform the compaction by vibrating the soil and compacting.
  • the hydraulic oil from the pilot hydraulic power source 20 is supplied with the pilot valve. Acts on 24 a or 24 b to the operation section 13 a or 13 b of the second directional control valve 13. As a result, the second directional control valve 13 is switched from the neutral position n to the a position or the b position, so that the hydraulic oil A discharged from the second directional control valve 13 can drive the actuator A. Becomes That is, by operating the operation lever 26, normal driving with the actuator A is possible.
  • the actuator A can vibrate in the excavation mode or the compaction mode.
  • the actuator A expands and contracts by the operation lever 26, normal work with the hydraulic excavator using the actuator A can be performed.
  • FIGS. 8A, 8B and 8C show the case where a throttle 17 h is provided on the spool 17 g of the vibration mode switching valve 17.
  • the bottom oil chamber 5A is sequentially connected via line 18e, passages 17d, 15c, 17k, throttle 17h, passages 17e, 17f, and line 18b.
  • the work machine 1a is provided with a vibration actuator 30 instead of the baguette link 9j shown in FIG. 1A.
  • the vibration actuator 30 is connected to the vibration mode switching valve 17, and the actuator A is used to drive the hydraulic excavator 1 for normal work. With this configuration, the vibration actuator 30 applies vibration while applying vibration. Drilling and compaction work can be performed with Actuator A.
  • one end of the vibration actuator 30 has one end connected to the tilt lever 9h and the other end connected to the baggage 8, but the connection position is not limited.
  • a third embodiment of the present invention will be described.
  • an electric system is used instead of the hydraulic system of the first embodiment.
  • the first solenoid-operated directional control valve 32 for controlling the flow rate of the pressure oil from the hydraulic pressure source 31a is connected to the rotary vibration valve 35 and the electromagnetic vibration mode via the conduit 41a.
  • the second solenoid-operated directional control valve 33 for controlling the flow rate of the pressure oil from the hydraulic pressure source 31b is connected to the line 41e via the line 42a and to the line 41e via the line 42b. 4 1d, connected.
  • Drilling mode switch 45a and electric compaction mode switch 45b of electric vibration mode switching operation section 45, lever angle sensor 38 that detects the operation angle of electric lever 37, and The operation box 39 for the electric motor is connected to the controller 40 so that signals can be input.
  • the excavation mode switch 45 a is set to 0 N
  • the operation unit 3 of the first solenoid-operated directional control valve 32 is controlled via the controller 40.
  • a signal is output to 2a and the operation unit 36a of the electromagnetic vibration mode switching valve 36. Also, when the compression mode switch 45b is turned on, the operation section 32b of the first electromagnetic directional switching valve 32 and the electromagnetic vibration mode switching valve 36 are turned on via the controller 40. Operation unit
  • a signal is output to the operating section 33 a of the second electromagnetic directional switching valve 33 via 40.
  • a signal is output to the operation section 33 b of the second electromagnetic directional switching valve 33 via the controller 40.
  • the signal output from the vibration frequency control operation means 39 a and 39 b of the electric motor overnight operation box 39 controls the number of rotations of the electric motor 34 via the controller 40. are doing.
  • a rotary vibration valve 35 is connected to the electric motor 34.
  • the rotary vibration valve 35 is alternately and continuously switched to the position a and the position b at a frequency corresponding to the rotation speed of the electric motor 34.
  • the pressure oil from the hydraulic pressure source 31a intermittently flows from the rotary vibration valve 35 through the a position of the first electromagnetic directional switching valve 32 and the line 41a. Is discharged.
  • This discharge oil is intermittently supplied to the bottom oil chamber 5A from the position a of the electromagnetic vibration mode switching valve 36 through the conduit 41e.
  • the oil in the head oil chamber 5B is drained to the tank 41 through the pipelines 41 d and 4 lb.
  • Actuyue A can generate vibrations in one direction, and vibrate the hard soil to facilitate excavation.
  • the excavation mode switch 45b when performing work in the compaction mode by applying vibration to the work equipment 1a, set the excavation mode switch 45b to ON and operate the vibration frequency control operation means 39a or 39b. .
  • the rotary vibration valve 35 is alternately switched between the position a and the position b, and the pressure oil from the hydraulic pressure source 31 a is supplied from the position b of the first electromagnetic directional switching valve 32 to the line 4. It is intermittently discharged from the rotary vibration valve 35 through 1b. Since the b position of the electromagnetic vibration mode switching valve 36 is 3 ports, the pressure oil from the hydraulic power source 31a is supplied from the lines 41b, 41c, 41d to the head oil.
  • the pressure oil supplied to the chamber 5B or the pressure oil supplied to the bottom oil chamber 5A from the pipelines 41b, 41c, 41e is continuously switched.
  • the piston of the actuator A generates a reciprocating vibration, and the rolling operation can be easily performed as in the above embodiment.
  • the signal from the controller 40 is operated according to the signal from the lever inclination angle sensor 38 to operate the second electromagnetic directional control valve 33. Output to part 3 3a.
  • the signal is output to the operation unit 33b.
  • the second solenoid-operated directional control valve 33 is switched from the neutral position n to the position a or b. Therefore, the pressure oil to be discharged is supplied to the bottom oil chamber 5A via the pipes 42a and 41e or the head oil chamber 5 via the pipes 42b and 41d. Supplied to B. Therefore, by setting the electric lever 37 to the extension side or the contraction side, the actuator A is driven, and normal work such as excavation is performed.
  • the vibration generation and the normal work are enabled in the actuator A in the third embodiment, whereas the actuator A for the vibration and the actuator A for the working machine are separately provided. It is an example to prepare for.
  • the electromagnetic vibration mode switching valve 36 is connected to the bottom oil chamber 30a of the vibration actuator 30 by a pipe 41e and vibrated by a pipe 41d. It is connected to the head oil chamber 3 Ob at 30 hours.
  • the vibration actuator 30 is arranged in the same way as in Fig. 9A.
  • the second solenoid-operated directional control valve 33 is connected to the bottom oil chamber 5A of the factory A via the pipe 42a, and the head oil chamber of the factory A is used by the pipe 42b. 5 Connected to B.
  • the excavation or compaction work can be performed by driving the actuator A while applying vibration with the vibration actuator 30.
  • a fifth embodiment of the present invention will be described.
  • This embodiment is an example in which an accumulator is continuously connected to the hydraulic circuit of the boom actuator in FIG. 9C of the second embodiment.
  • the directional control valve 13 is connected to the bottom oil chamber 5a of the boom actuator 5 by the pipe 19a and the head oil chamber 5 of the boiler actuator 5 by the pipe 19b. b and are connected respectively.
  • the branch pipe 19 c connected to the pipe 19 b connects the switching valve 29 for the accumulator.
  • a throttle 29 b and an accumulator 29 c are provided downstream of the accumulator switching valve 29.
  • the operation part 29 a of the switching valve 29 for the accumulator is connected to the shuttle valve 25 by a branch line 24 a.
  • a sixth embodiment of the present invention will be described.
  • This embodiment is an example in which an accumulator is connected to the hydraulic circuit for the boom actuator in FIG. 11 of the fourth embodiment.
  • the solenoid-operated directional control valve 33 is connected to the bottom oil chamber 5a of the boom actuator 5 by a pipe 42a, and the head of the boom actuator 5 is connected by a pipe 42b. Connected to oil chamber 5b.
  • the branch line 42c connected to the line 42b is provided with an accumulator switching valve 43, a throttle 43b, and an accumulator 43c in the same manner as in the case of Fig. 12. .
  • the signal of the excavation mode switch 45a or the compaction mode switch 45b is input from the controller 40 to the operation unit 43a of the changeover valve 43 for accumulation.
  • the accumulator switching valve 43, the throttle 43b, and the accumulator 43c may be connected to the pipeline 42.
  • a seventh embodiment of the present invention will be described.
  • the present embodiment is an example in which the actuator A is individually controlled and a vibration actuator is provided, in contrast to the third embodiment.
  • the boom directional control valve 13 c connected to the hydraulic pressure source 10 b is connected to the bottom oil chamber 5 a of the boom actuator 5 by a line 18 el, and is connected to the line 1. It is connected to the head oil chamber 5 b by 8 dl.
  • the pressure detection pipe 53 a connected to the pipe 18 dl is connected to the pressure switch 53. Also, connect to the hydraulic pressure source 10b.
  • the arm directional switching valve 13 d is connected to the bottom oil chamber 7 a of the arm actuator 7 through line 18 e2 and to the head oil chamber 7 b through line 18 d. are doing. Line 18 d2
  • the pressure detecting line 54 a to be connected connects the pressure switch 54.
  • baguette directional control valve 13 e connected to the hydraulic pressure source 1 O b is connected to the bottom oil chamber 9 a of the baggage actuator 9 via a line 18 e3, Road 1
  • the boom, arm, and bucket directional switching valves 13c, 13d, and 13e are the second directional switching valves shown in FIG.
  • Each signal from the pressure switch 53, 54, 55 is input to the controller 60, and a signal corresponding to each signal is output from the controller 60 to the proportional solenoid valve 61. Is done.
  • the proportional solenoid-operated directional control valve 61 connected to the hydraulic pressure source 56 is connected to the pilot line 6
  • the pilot line 61 a is connected to the motor switching valve via the branch line 61 c.
  • the hydraulic motor 14, the rotary vibration valve 15 and the vibration mode switching valve 17 are provided for each of the factories 5, 7, and 9, respectively.
  • the pressure switches 53, 54, and 55 are connected to the boom lowering pressure of the boom actuator 5, the digging pressure of the arm actuator 7, and the bucket actuator 9 Detects tilt pressure.
  • the vibration directional switching valve 62, the mode switching valve 12 and the vibration mode switching valve 6 3 The pressure oil is automatically supplied to the bottom oil chamber 30a of the vibration actuator 30 by switching to the position a, thereby enabling one-way excavation vibration. Accordingly, during each operation by the work machine 1a, the vibration actuator 30 automatically generates vibration, thereby improving workability.
  • each of the boom, arm and bucket solenoid directional control valves 33-1, 33-2, 33-3 (the same parts as the second solenoid directional control valve 33) These are connected to the bottom oil chambers 5a, 7a, and 9a, respectively, via lines 41el, 41e2, and 41e3.
  • each of the solenoid directional valves 33-1, 33-2, 33-3 is connected to a head oil chamber 5b via a line 41dl, 41d2, 41d3, respectively. , 7 b, 9 b fet L contact.
  • the pressure detection lines 53a, 54a, 55a which are connected to the lines 41dl, 41d2, 41d3, respectively, are connected to the pressure switches 53, 54, 55, respectively.
  • the controller 60 connected to the pressure switches 53, 54, 55 is connected to the electromagnetic directional switching valve 81 for vibration, the electromagnetic vibration mode switching valve 82, and the electric motor 34.
  • the rotary vibration valve 35, the electromagnetic vibration mode switching valve 36, and the like are provided for each of the factories 5, 7, and 9, respectively.
  • the pressure switches 53, 54, and 55 respectively provide the boom lowering side pressure of the boom actuator 5, the excavation side pressure of the arm actuator 7, and the tilt of the bucket actuator 9, respectively. Pressure is being detected.
  • the electromagnetic directional switching valve 8 1 for vibration is switched from the closed position c to the open position a and the electromagnetic vibration mode Switching valve 8 2 forces to switch from closed position c to open position a.
  • the pressure oil from the hydraulic pressure source 31a is automatically supplied to the vibration actuator 30 to excavate and vibrate.
  • the present invention provides a working machine vibration device for a hydraulic shovel that can easily perform excavating work and compacting work by arbitrarily selecting a compacting mode or a excavating mode of a working machine, thereby improving workability. Useful. Also, when the ground position goes down during vibration work, In addition, safety is improved by preventing idle hits. Furthermore, since the vibration can be suppressed by the accumulator, riding comfort is good. While the work equipment work is being driven, the vibration work is automatically vibrated in conjunction with the work equipment, improving workability.

Abstract

The present invention relates to a vibrating device for an operating machine for a hydraulic shovel for efficiently performing vibrating operations such as digging and roll-compacting work. To this end, the vibrating device comprises a rotary vibrating valve (15) for continuously switching pressure oil from a hydraulic source (10) for discharging and a vibrating mode switching valve (17) having two positions, a position where switched discharge oil is continuously discharged in one direction and another position where said oil is alternately switched for discharging, wherein discharge oil from said vibrating mode switching valve (17) is supplied to either actuators (5, 7, 9) for said operating machine or vibrating actuator (30) so as to vibrate said operating machine (1a).

Description

明 細 書 油圧ショベルの作業機振動装置 技 術 分 野  Description Hydraulic excavator work equipment vibration device
本発明は、 油圧ショベルの作業機振動装置に係り、 特に、 作業機の掘削作業時 又は転圧作業時の振動モー ドの切換えを容易にする振動装置に関する。 背 景 技 術  The present invention relates to a working machine vibration device for a hydraulic shovel, and more particularly to a vibration device that facilitates switching of a vibration mode during excavation work or rolling work of a work machine. Background technology
従来、 油圧振動杭打機の振動装置は、 図 1 6に示すように、 油圧振動杭打機を 上下に振動する把持装置 1 0 2を備え、 方向切換弁 1 0 7を切換えると、 流量調 整弁 1 0 5により所定流量に制御された発振用圧油供袷部 1 0 9の圧油が、 管路 1 1 0を介して油圧モータ 1 0 3に流入して、 油圧モータ 1 0 3を所定の回転数 に回転させる (例えば、 日本特開昭 5 7 — 4 0 0 2 5号公報) 。 また、 方向切換 弁 1 0 6を切換えることにより、 圧油供給部 1 0 8からの圧油は、 管路 1 1 1及 び振動切換弁 1 0 4を介して、 シリ ンダ 1 0 0に流入する。 この流入の際、 振動 切換弁 1 0 4が油圧モータ 1 0 3の回転数に応じた振動数で作動するので、 圧油 は、 振動切換弁 1 0 4の切換りにより、 流入口 1 0 0 a , 1 0 0 bから交互に流 入して、 ピス トン 1 0 1を上下動させ、 把持装置 1 0 2を振動させている。  Conventionally, as shown in FIG. 16, a vibration device of a hydraulic vibratory pile driver is provided with a gripping device 102 that vibrates the hydraulic vibratory pile driver up and down. The pressure oil in the oscillating pressure oil supply line 109 controlled to a predetermined flow rate by the valve regulating valve 105 flows into the hydraulic motor 103 via the pipe 110, and the hydraulic motor 103 Is rotated to a predetermined number of revolutions (for example, Japanese Patent Application Laid-Open No. 57-40025). Also, by switching the direction switching valve 106, the pressure oil from the pressure oil supply unit 108 flows into the cylinder 100 via the pipeline 111 and the vibration switching valve 104. I do. At the time of this inflow, the vibration switching valve 104 operates at a frequency corresponding to the rotation speed of the hydraulic motor 103, so that the pressure oil is supplied to the inflow port 100 by switching the vibration switching valve 104. The fluid flows alternately from a and 100b, the piston 101 is moved up and down, and the gripping device 102 is vibrated.
また、 油圧ショベルの作業機振動装置として、 バイブレーショ ンモー ドを指示 するスィ ッチ手段と、 バイブレーショ ンモードが指示された際に、 作業機駆動用 ァクチユエータに間欠的に圧油を供袷する手段とを備えたものが知られている ( 例えば、 日本実開昭 6 2 — 6 0 6 5 8号公報) 。  Further, as a working machine vibration device of a hydraulic shovel, a switch means for instructing a vibration mode, and a means for intermittently supplying pressure oil to a work machine driving actuator when the vibration mode is designated. (For example, Japanese Unexamined Utility Model Publication No. 62-66058).
しかしながら、 油圧振動杭打機の振動装置は、 ピス ト ン 1 0 2を上下に振動制 御させるのみである。 また、 作業機振動装置は、 作業機シリ ンダの上げ側の振幅 と下げ側の振幅とを一定に制御するものである。 従って、 これらの先行技術は、 地盤の締因め位置が変化する不整地の転圧振動作業の場合、 空打ちを生じて、 充 分な振動が与えられない問題がある。 However, the vibration device of the hydraulic vibratory pile driver only controls the piston 102 up and down. The work machine vibration device controls the amplitude of the work machine cylinder on the upside and the amplitude on the downside thereof to be constant. Therefore, in the prior art, in the case of the compaction vibration work on irregular terrain where the ground tightening position changes, the blanking occurs and There is a problem that vibration is not given.
と ころで、 油圧シ ョベルは道路工事等でも多用されるが、 掘削作業時、 钦らか い土砂の場合は、 バケツ 卜とアームとの複合操作で作業を行っている。 一方、 固 い土砂の場合は、 バケツ ト、 及びアーム又はブームに振動を与えて土砂をほぐし てから、 掘削作業を行っている。 また、 転圧作業時、 バケツ トにより、 道路に撒 いた土砂の締固めを行っている。  At this point, hydraulic shovels are often used in road construction, etc., but in excavation work, in the case of heavy sediment, work is performed by a combined operation of a bucket and an arm. On the other hand, in the case of hard earth and sand, excavation work is performed after the bucket and arm or boom are vibrated to loosen the earth and sand. During compaction work, buckets are used to compact soil scattered on roads.
しかし、 これらの作業は、 平坦な地盤の場合、 作業機のブーム、 アーム、 バゲ ッ 卜に一定の振動を与えることにより可能であるが、 傾斜した地盤又は不整地の 場合、 上記振動装置と同様に、 振動を充分に与えられない問題がある。 また、 作 業機を振動させて作業を行う場合、 作業機全体に振動が生じるが、 特にブームか らの振動が上部旋回体に伝わることにより、 乗り心地が悪く なる。 しかも、 振動 により、 作業機に 裂が発生する問題がある。  However, in the case of flat ground, it is possible to apply a constant vibration to the boom, arm, and baguette of the work machine.However, in the case of sloping ground or uneven ground, Similarly, there is a problem that vibration cannot be given sufficiently. Also, when performing work by vibrating the work machine, the entire work machine is vibrated, but the vibration from the boom is transmitted to the upper revolving structure, and the riding comfort is degraded. In addition, there is a problem that the working machine cracks due to the vibration.
以上より、 各種土質、 地形等に応じた土木作業の可能な油圧ショベルの作業機 振動装置が必要となっている。 発 明 の 開 示  As described above, there is a need for a hydraulic excavator work equipment vibrating device that can perform civil engineering work according to various soil types and topography. Disclosure of the invention
本発明は、 かかる従来技術の問題点を解消するためになされたもので、 各種土 質、 地形に応じた土木作業において、 掘削作業、 転圧作業等の振動作業を効率的 に行う油圧ショベルの作業機振動装置を提供することを目的とする。  SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and is directed to a hydraulic excavator that efficiently performs vibration work such as excavation work and compaction work in civil works according to various types of soil and terrain. An object of the present invention is to provide a working machine vibration device.
本発明に係る油圧ショベルの作業機振動装置は、 ァクチユエ一夕駆動用油圧源 と、 この油圧源からの圧油により駆動される複数の作業機用ァクチユエ一夕及び ノ又は振動用ァクチユエ一夕と、 ブーム、 アーム及びバケツ トを有する作業機と を備え、 作業機用ァクチユエ一夕の少なく と も一つ又は振勳用ァクチユエ一夕に より、 作業機を振動させる油圧ショベルの作業機振動装置において、  A working machine vibration device for a hydraulic shovel according to the present invention includes: an actuator driving hydraulic pressure source; a plurality of working machine driving devices driven by pressure oil from the hydraulic source; A working machine having a boom, an arm, and a bucket, wherein at least one of the working machines is used or at least one of the working machines is used to vibrate the working machine. ,
油圧源からの圧油を連続的に切換えて吐出する回転式振動弁と、 A rotary vibration valve that continuously switches and discharges pressure oil from a hydraulic source,
この回転式振動弁により切換えられた吐出油を連続して一方向に吐出する位置と 、 交互に切換えて吐出する位置との二つの位置を有する振勳モ一 ド切換弁とを備 、 A swing mode switching valve having two positions, a position for continuously discharging the discharged oil switched by the rotary vibration valve in one direction, and a position for discharging the switched oil alternately. ,
振動モー ド切換弁からの吐出油を作業機用ァクチユエ一夕又は振動用ァクチユエ —夕に供給することを特徴と している。 It is characterized in that the oil discharged from the vibration mode switching valve is supplied to the work equipment for one night or the vibration for the work equipment.
また、 油圧源からの圧油を切換えて、 回転式振動弁及び振動モー ド切換弁を介 して、 振動用ァクチユエ一夕に供給する第 1方向切換弁と、  A first directional switching valve that switches pressure oil from a hydraulic pressure source and supplies the vibration oil to the vibration actuator via a rotary vibration valve and a vibration mode switching valve;
油圧源と作業機用ァクチユエ一夕とをそれぞれ接続する菅路と、 Suguro connecting the hydraulic power source and the work equipment factory
この菅路に配設されて、 作業機用ァクチユエ一夕の少なく とも一つへの袷油をパ イロッ ト弁により切換える第 2方向切換弁とを設けてもよい。  A second directional control valve may be provided in the strait to switch at least one lined oil of the work equipment for the work equipment by a pilot valve.
また、 油圧源からの圧油を切換えて、 回転式振動弁及び振動モー ド切換弁を介 して作業機用ァクチユエ一夕の少なく とも一つに供給する第 1方向切換弁と、 油圧源と作業機用ァクチユエ一夕の少なく とも他の一つとを接铳する菅路と、 この菅路に配設されて、 少なく とも他の一つへの給油をパイ口ッ 卜弁により切換 える第 2方向切換弁とを設けてもよい。  A first directional switching valve that switches pressure oil from a hydraulic pressure source and supplies it to at least one of the working machine actuators via a rotary vibration valve and a vibration mode switching valve; A second pipe, which is connected to at least one other part of the work equipment factory, and is connected to at least one other pipe and switches oil supply to at least one other by a pie port valve. A direction switching valve may be provided.
第 1方向切換弁により切換制御される作業機用ァクチユエ一夕の少なく とも一 つは、 バケツ ト用ァクチユエ一夕(9) としてもよい。 また、 第 1方向切換弁の切 換は、 振動モー ド切換操作部からの信号により行ってもよい。  At least one of the working equipment switches controlled by the first directional switching valve may be a bucket working part (9). The switching of the first direction switching valve may be performed by a signal from the vibration mode switching operation unit.
さらに、 回転式振動弁を駆動する油圧モータと、  A hydraulic motor for driving the rotary vibration valve;
油圧源からの圧油の供給を制御する油圧モータ O N Z O F F切換弁と、 A hydraulic motor O N Z O F F switching valve for controlling the supply of pressure oil from a hydraulic source,
この油圧モータ O N Z O F F切換弁(12)からの流量を調整する流 S調整弁とを設 け、 A flow S adjusting valve for adjusting the flow from the hydraulic motor ONZOFF switching valve (12) is provided,
流量調整弁からの調整された流量により油圧モータが回転すると共に、 油圧モー 夕の回転数に応じて回転式振動弁の振動周波数が制御されると してもよい。 The hydraulic motor may be rotated by the flow rate adjusted from the flow rate adjustment valve, and the vibration frequency of the rotary vibration valve may be controlled according to the rotation speed of the hydraulic motor.
第 2方向切換弁により切換給油される作業機用ァクチユエ一夕はブーム用ァク チユエ一夕であり、  The work equipment work that is refueled by the second directional control valve is the boom work.
第 2方向切換弁とブーム用ァクチユエ一夕との間の菅路に、 アキュムレータ用切 換弁の流入側を接続すると共に、 アキュムレータ用切換弁の吐出側にアキュムレ 一夕を接続し、 第 2方向切換弁及びアキュムレータ用切換弁が、 パイロッ 卜弁からのパイ ロッ ト 圧信号又は電気式振動モー ド切換操作部からの電気信号により切換わると しても よい。 Connect the inflow side of the accumulator switching valve to the pipe between the second directional switching valve and the boom actuator, and connect the accumulator to the discharge side of the accumulator switching valve. The second direction switching valve and the switching valve for the accumulator may be switched by a pilot pressure signal from a pilot valve or an electric signal from an electric vibration mode switching operation unit.
さ らには、 作業機用ァクチユエータの圧力を検出する圧力スィ ツチを設け、 この検出圧力に基づいて、 作業機用ァクチユエ一夕の少なく と も一つが駆動状態 の場合、 振動用ァクチユエ一夕へ圧油を供給すると してもよい。  In addition, a pressure switch for detecting the pressure of the work equipment actuator is provided, and based on the detected pressure, when at least one of the work equipment actuators is in a driving state, the vibration is switched to the vibration actuator. Pressurized oil may be supplied.
かかる構成により、 作業機用ァクチユエ一夕又は振動用ァクチユエ一夕のビス 卜 ンを、 往復振動させる転圧モー ド、 あるいは一方向に振動させる掘削モー ドが 、 任意に選択できる。 これにより、 油圧ショベルの各種作業の中で、 土木工事等 の固い土砂の場合、 バケツ ト、 アーム及びブームのいずれかに振動を与えて土砂 をほぐすので、 掘削作業が容易になる。 また、 傾斜のついた地盤又は不整地にお いても締固めが容易になり、 転圧作業が容易になる。 しかも、 振動作業中に地盤 の位置が下がっても、 一方向に振動させる掘削モー ドで作業することにより、 空 打ちを防止することが可能となる。 このように、 各種土質、 地形等に応じた振動 付与が可能であり、 作業性が向上する。  With this configuration, the rolling mode in which the work equipment work or the vibration work equipment is reciprocally vibrated, or the excavation mode in which the vibrator is vibrated in one direction can be arbitrarily selected. As a result, in the case of hard excavation work such as civil engineering work, the excavation work is facilitated by vibrating any one of the bucket, the arm and the boom to dislodge the earth and sand. In addition, compaction becomes easy even on sloping ground or uneven terrain, and rolling compaction work becomes easy. In addition, even if the ground level is lowered during the vibration work, it is possible to prevent the blanking by working in the excavation mode that vibrates in one direction. In this way, it is possible to apply vibration according to various types of soil, topography, etc., and workability is improved.
また、 アキュムレータにより、 作業機用ァクチユエ一夕に発生する振動を抑制 するようにしたので、 油圧ショベルの安定性及び信頼性が向上する。 さ らに、 作 業機用ァクチユエ一夕の圧力を検出することにより、 作業機用ァクチユエ一夕が 駆動中、 振動用ァクチユエ一夕が連動して自動振動するので、 作業性が向上する  In addition, the accumulator suppresses the vibrations that occur during the operation of the work equipment, thereby improving the stability and reliability of the hydraulic excavator. Further, by detecting the pressure of the work equipment work overnight, the work equipment work is automatically vibrated in conjunction with the vibration work work while the work equipment work is being driven, improving workability.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 A及び図 1 Bは本発明に係る作業機振動装置の適用例となる油圧ショベル の図であって、 図 1 Aは転圧作業時の側面図、 図 1 Bは掘削作業時の側面図、 図 2 は本発明の第 1 実施例に係る作業機振動装置の油圧回路図、  FIGS. 1A and 1B are diagrams of a hydraulic excavator to which the working machine vibration device according to the present invention is applied. FIG. 1A is a side view at the time of compaction work, and FIG. 1B is a side view at the time of excavation work. FIG. 2 is a hydraulic circuit diagram of the working machine vibration device according to the first embodiment of the present invention,
図 3 は第 1実施例に係る回転式振動弁と振動モー ド切換弁の中立状態における断 面の説明図、 図 4 A及び図 4 Bは第 1実施例に係る転圧モー ドでのァクチユエ一夕縮小時の図 であって、 図 4 Aは回転式振動弁と振動モー ド切換弁の断面の説明図、 図 4 Bは 油圧回路図、 FIG. 3 is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve according to the first embodiment in a neutral state. FIGS. 4A and 4B are views of the compaction mode in the rolling mode according to the first embodiment when the actuator is temporarily reduced, and FIG. 4A is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve. , Figure 4B is the hydraulic circuit diagram,
図 5 A及び図 5 Bは第 1実施例に係る転圧モー ドでのァクチユエ一夕伸長時の図 であって、 図 5 Aは回転式振動弁と振動モー ド切換弁の断面の説明図、 図 5 Bは 油圧回路図、 FIGS. 5A and 5B are diagrams of the compaction mode according to the first embodiment when the actuator is extended, and FIG. 5A is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve. , Figure 5B is the hydraulic circuit diagram,
図 6 A及び図 6 Bは第 1実施例に係る掘削モー ドの停止状態を示す図であって、 図 6 Aは回転式振動弁と振動モー ド切換弁の断面の説明図、 図 6 Bは油圧回路図 図 7 A及び図 7 Bは第 1実施例に係る掘削モー ドでの作動状態を示す図であって 、 図 7 Aは回転式振動弁と振動モード切換弁の断面の説明図、 図 7 Bは油圧回路 図、 6A and 6B are diagrams showing a stopped state of the excavation mode according to the first embodiment. FIG. 6A is an explanatory view of a cross section of a rotary vibration valve and a vibration mode switching valve. FIG. 7A and FIG. 7B are diagrams showing an operation state in the excavation mode according to the first embodiment, and FIG. 7A is an explanatory view of a cross section of the rotary vibration valve and the vibration mode switching valve. , Figure 7B is the hydraulic circuit diagram,
図 8 A、 図 8 B及び図 8 Cは図 6 Bの振動モー ド切換弁に絞りを設けた場合の図 であって、 図 8 Aは回転式振動弁と振動モード切換弁の断面の説明図、 図 8 Bは 図 8 Aの P部詳細図、 図 8 Cは油圧回路図、 8A, 8B, and 8C are diagrams in which a throttle is provided in the vibration mode switching valve of FIG. 6B, and FIG. 8A is a cross-sectional view of the rotary vibration valve and the vibration mode switching valve. Figure, Figure 8B is a detailed view of the part P in Figure 8A, Figure 8C is the hydraulic circuit diagram,
図 9 A、 図 9 B及び図 9 Cは本発明の第 2実施例に係る作業機振動装置を示す図 であって、 図 9 Aは作業機の要部側面図、 図 9 Bは振動用ァクチユエ一夕の油圧 回路図、 図 9 Cは作業機用ァクチユエ一夕の油圧回路図、 9A, 9B, and 9C are diagrams showing a working machine vibration device according to a second embodiment of the present invention. FIG. 9A is a side view of a main part of the working machine, and FIG. Fig. 9C is the hydraulic circuit diagram for the work equipment, and Fig. 9C is the hydraulic circuit diagram for the work equipment.
図 1 0は本発明の第 3実施例に係る作業機振動装匿の油圧回路図、 FIG. 10 is a hydraulic circuit diagram of the working machine vibration concealment according to the third embodiment of the present invention,
図 1 1 は本発明の第 4実施例に係る作業機振動装置の油圧回路図、 FIG. 11 is a hydraulic circuit diagram of a working machine vibration device according to a fourth embodiment of the present invention,
図 1 2は本発明の第 5実施例に係る作業機振動装置の油圧回路図、 FIG. 12 is a hydraulic circuit diagram of a working machine vibration device according to a fifth embodiment of the present invention,
図 1 3は本発明の第 6実施例に係る作業機振動装置の油圧回路図、 FIG. 13 is a hydraulic circuit diagram of a working machine vibration device according to a sixth embodiment of the present invention,
図 1 4は本発明の第 7実施例に係る作業機振動装置の油圧回路図、 FIG. 14 is a hydraulic circuit diagram of a working machine vibration device according to a seventh embodiment of the present invention,
図 1 5は本発明の第 8実施例に係る作業機振動装置の油圧回路図、 FIG. 15 is a hydraulic circuit diagram of a working machine vibration device according to an eighth embodiment of the present invention,
図 1 6は従来技術に係る作業機振動装置の説明図である。 発明を実施するための最良の形態 本発明に係る油圧シ ョベルの作業機振動装置について、 好ま しい実施例を添付 図面に従って以下に詳述する。 FIG. 16 is an explanatory view of a working machine vibration device according to a conventional technique. BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the hydraulic shovel working machine vibration device according to the present invention will be described in detail below with reference to the accompanying drawings.
図 1 A及び図 1 Bは、 本発明の適用例となる油圧ショベル 1 を示し、 下部走行 体 2力く、 図示しない走行モータの駆動により走行自在である。 下部走行体 2上に は、 旋回モータの駆動により旋回可能な上部旋回体 3が設けら、 上部旋回体 3に は、 作業機 1 aが装着されている。 作業機 1 aは、 ブーム 4、 アーム 6、 バケツ 卜 8、 複数の油圧ァクチユエ一夕 5、 7、 9、 チル ト レバー 9 h及びリ ンク 9 j を備えている。  1A and 1B show a hydraulic excavator 1 as an application example of the present invention, which can travel freely by a lower traveling body 2 driven by a traveling motor (not shown). On the lower traveling body 2, an upper revolving body 3 that can be rotated by driving a revolving motor is provided, and the upper revolving body 3 is equipped with a work implement 1a. The work machine 1a includes a boom 4, an arm 6, a bucket 8, a plurality of hydraulic actuators 5, 7, 9, a tilt lever 9h, and a link 9j.
ブーム用ァクチユエ一夕 5の駆動により上下摇動自在なブーム 4 は、 先端にァ —ム 6を取着している。 アーム 6 は、 アーム用ァクチユエータ 7の駆動により上 下揺動自在であると共に、 先端にはバケツ 卜 8を取着している。 また、 バゲッ ト 用ァクチユエ一夕 9の一端とチル ト レバー 9 hの一端を連結し、 チル 卜 レバ一 9 hの他端とアーム 6を連結すると共に、 チル ト レバー 9 hがバゲッ 卜用リ ンク 9 j を介してバケツ 卜 8に連結されている。 これにより、 バケツ ト 8は、 バケツ ト 用ァクチユエ一夕 9の駆動により回動自在となる。  The boom 4 that can be moved up and down by driving the boom actuator 5 has a arm 6 at the tip. The arm 6 is swingable up and down by driving an arm actuator 7, and a bucket 8 is attached to a tip end. Also, one end of the baggage actuator 9 is connected to one end of the tilt lever 9h, the other end of the tilt lever 9h is connected to the arm 6, and the tilt lever 9h is connected to the baggage holder. It is connected to bucket 8 via link 9j. As a result, the bucket 8 becomes rotatable by driving the bucket actuator 9.
以上より、 作業機用の各ァクチユエ一夕 5、 7、 9のピス ト ンの内、 少なく と も一つを往復振動又は一方向振動させることにより、 土砂をほぐしながらの掘削 作業、 又は土砂を締固めながらの転圧作業が可能となっている。 以下、 作業機用 ァクチユエ一夕 5、 7、 9の内、 少なく と も一つを指す場合、 ァクチユエ一夕 A という。  From the above, at least one of the pistons of each work equipment for work equipment 5, 7, and 9 was reciprocated or unidirectionally vibrated to excavate while loosening the earth or to remove the earth and sand. Rolling work while compacting is possible. In the following, when at least one of the work machines for work equipment 5, 7, and 9 is indicated, it is referred to as work equipment A.
次に、 本発明の第 1 実施例について詳述する。  Next, a first embodiment of the present invention will be described in detail.
図 2 において、 ァクチユエ一夕駆動用油圧源 1 0 ( 1 0 a ) (以下、 油圧源 1 0 a という) は第 1方向切換弁 1 1 に接続している。 第 1方向切換弁 1 1 力 <、 管 路 1 8 a , 1 8 bにより回転式振動弁 1 5に接続し、 回転式振動弁 1 5の下流側 には、 振動モー ド切換弁 1 7を配設している。 振動モー ド切換弁 1 7 は、 管路 1 8 e により、 ァクチユエ一夕 Aの各ボ トム油室 5 a , 7 a , 9 a と接続している 。 また振動モー ド切換弁 1 7 は、 管路 1 8 dにより、 ァクチユエ一夕 Aの各へッ ド油室 5 b, 7 b. 9 bに接続している。 以下、 ボトム油室 5 a , 7 a , 9 a、 及びヘッ ド油室 5 b, 7 b, 9 bの内、 少なく とも一つのボトム油室及びヘッ ド 油室を指す場合、 ボトム油室 5 A及びへッ ド油室 5 Bという。 なお、 ァクチユエ 一夕 Aに対して 1つの油圧制御系を図示して説明するが、 各作業機用ァクチユエ 一夕 5、 7、 9は、 個々に操作制御できるものである。 この例は、 第 7実施例で 説明する。 In FIG. 2, a hydraulic source 10 (10 a) (hereinafter referred to as a hydraulic source 10 a) for driving the actuator is connected to the first directional control valve 11. 1-way directional control valve 11 1 Force <, connected to rotary vibration valve 15 via lines 18a and 18b, and vibration mode switching valve 17 downstream of rotary vibration valve 15 It is arranged. The vibration mode switching valve 17 is connected to each of the bottom oil chambers 5 a, 7 a, and 9 a of the factory A through a line 18 e. In addition, the vibration mode switching valve 17 is connected to each of the actuators A by piping 18 d. Oil chamber 5 b, 7 b. Connected to 9 b. Hereinafter, when referring to at least one of the bottom oil chambers 5a, 7a, 9a and the head oil chambers 5b, 7b, 9b, the bottom oil chamber 5 A and head oil chamber 5B. Although one hydraulic control system is illustrated and described for the factory A, each of the work equipments 5, 7, and 9 can be individually operated and controlled. This example will be described in a seventh embodiment.
油圧源 1 0 ( 1 0 b) (以下、 油圧源 1 0 bという) と接続する第 2方向切換 弁 1 3は、 管路 1 9 aを介して管路 1 8 eに接铳すると共に、 管路 1 9 bを介し て管路 1 8 dに接铳している。 油圧源 1 0 ( 1 0 c ) (以下、 油圧源 1 0 cとい う) と接続する油圧モータ ONZO F F切換弁 1 2 (以下、 モータ切換弁 1 2 と いう) は、 管路 1 2 bにより流量調整弁 1 6に接続している。 管路 1 2 dにより 流量調整弁 1 6と接続する油圧モータ 1 4は、 回転式振動弁 1 5を回転可能にし ている。 1 2 cは戻り管路である。 なお、 油圧源 1 0は、 分かりやすくするため 、 油圧源 1 0 a, 1 0 b, 1 0 cとして図示すると共に説明するが、 その数量は 、 必要に応じて、 1つ又は複数の油圧源 1 0が使用される。  The second directional control valve 13 connected to the hydraulic pressure source 10 (10b) (hereinafter referred to as the hydraulic pressure source 10b) is connected to the pipeline 18e via the pipeline 19a, It is connected to pipeline 18d via pipeline 19b. The hydraulic motor ONZO FF switching valve 12 (hereinafter referred to as the motor switching valve 12) connected to the hydraulic pressure source 10 (10c) (hereinafter referred to as the hydraulic pressure source 10c) is connected to the line 12b. Connected to flow control valve 16. The hydraulic motor 14 connected to the flow control valve 16 via the conduit 12 d enables the rotary vibration valve 15 to rotate. 1 2c is a return line. The hydraulic sources 10 are illustrated and described as hydraulic sources 10a, 10b, and 10c for the sake of simplicity. However, the number of the hydraulic sources 10 may be one or more as necessary. 10 is used.
本実施例のパイロッ ト操作回路について説明する。 パイロッ ト用油圧源 2 0、 及び振動モー ド切換操作部 2·1の操作部材 2 1 cは、 パイロ ッ ト弁 2 1 A ( 2 1 a , 2 1 b ) と接铳している。 ノ、。イロ ッ 卜弁 2 1 aは、 パイロッ 卜管路 2 2及び 分岐管路 2 2 aを介して、 第 1方向切換弁 1 1の操作部 1 1 aと接続している。 パイロッ ト弁 2 1 bは、 パイロッ ト管路 2 3、 分岐管路 2 3 aを介して、 第 1方 向切換弁 1 1の操作部 1 1 bに接続している。  The pilot operation circuit according to the present embodiment will be described. The hydraulic pressure source 20 for the pilot and the operating member 21c of the vibration mode switching operating section 2.1 are in contact with the pilot valve 21A (21a, 21b). No ,. The pilot valve 21a is connected to the operating portion 11a of the first directional control valve 11 via a pilot line 22 and a branch line 22a. The pilot valve 21 b is connected to the operating section 11 b of the first directional control valve 11 via a pilot pipe 23 and a branch pipe 23 a.
2つのパイロッ ト管路 2 2、 2 3は、 それぞれ振動モー ド切換弁 1 7の操作部 1 7 a 1 7 bと接続している。 2つのパイロッ ト管路 2 2, 2 3の分岐管路 2 2 b, 2 3 bの間に配設されるシャ トル弁 2 5は、 パイロッ ト管路 2 4により、 モータ切換弁 1 2の操作部 1 2 aに接続している。  The two pilot lines 22 and 23 are respectively connected to the operation units 17 a 17 b of the vibration mode switching valve 17. The shuttle valve 25 disposed between the branch pipes 22 b and 23 b of the two pilot pipes 22 and 23 is connected to the motor switching valve 12 by the pilot pipe 24. Connected to operation unit 1 2 a.
操作レバー 2 6に備えられるパイロッ 卜弁 2 4 A ( 2 4 a. 2 4 b) は、 パイ 口ッ ト用油圧源 1 0に接続している。 パイロ ッ ト弁 2 4 aからのパイロ ッ ト管路 2 8 aは、 第 2方向切換弁 1 3の操作部 1 3 a と接続している。 また、 パイロ ッ 卜弁 2 4 bからのパイロッ ト管路 2 8 bは、 第 2方向切換弁 1 3の操作部 1 3 b に接続している。 2 7 はタ ンクである。 The pilot valve 24 A (24 a. 24 b) provided on the operation lever 26 is connected to the hydraulic port 10 for the pilot port. Pilot valve 24 Pilot line from 4a 28 a is connected to the operation unit 13 a of the second directional control valve 13. Further, a pilot line 28 b from the pilot valve 24 b is connected to the operation unit 13 b of the second directional switching valve 13. 27 is a tank.
図 3 において、 油圧モータ 1 4の駆動軸 1 4 aは、 スプライ ン 1 4 bにより、 回転式振動弁 1 5のロータ 1 5 hと結合している。 ロータ 1 5 hの外周には、 複 数の通路孔 1 5 a〜 1 5 d (図 4 A、 図 5 A参照) が形成されている。 本図は、 第 1方向切換弁 1 1 と振動モー ド切換弁 1 7 にパイ口ッ 卜圧が作用していない状 態を示し、 振動モー ド切換弁 1 7のスプール 1 7 gは中立位置にある。 スプール 1 7 gが中立位置にある時、 振動モー ド切換弁 1 7の通路 1 7 i , 1 7 j , 1 7 kと通路 1 7 d , 1 7 e , 1 7 f は閉じた状態にある。 第 1方向切換弁 1 1 は管 路 1 8 aにより回転式振動弁 1 5の通路 1 5 aに接続している。 油圧モータ 1 4 が駆動されていないので、 ァクチユエ一夕 Aは停止している。  In FIG. 3, the drive shaft 14a of the hydraulic motor 14 is connected to the rotor 15h of the rotary vibration valve 15 by a spline 14b. A plurality of passage holes 15a to 15d (see FIGS. 4A and 5A) are formed on the outer periphery of the rotor 15h. This drawing shows a state in which the pilot pressure is not acting on the first directional switching valve 11 and the vibration mode switching valve 17, and the spool 17 g of the vibration mode switching valve 17 is in the neutral position It is in. When the spool 17 g is in the neutral position, the passages 17 i, 17 j, 17 k and the passages 17 d, 17 e, and 17 f of the vibration mode switching valve 17 are closed. . The first directional control valve 11 is connected to the passage 15a of the rotary vibration valve 15 by a pipe 18a. Since the hydraulic motor 14 is not driven, Actuyue A is stopped.
図 4 A及び図 4 Bは、 油圧モータ 1 4が駆動状態を示し、 回転式振動弁 1 5が b位置にある。 この時、 振動モー ド切換弁 1 7及び第 1方向切換弁 1 1 は、 操作 部 1 7 b , 1 1 bにパイロッ ト圧が作用することにより、 共に b位置に切換わつ ている。 共に b位置の場合、 通路 1 5 a と通路 1 5 bが連通している。 通路 1 5 bは、 振動モー ド切換弁 1 7の通路 1 7 j , 1 7 e に連通している。 通路 1 7 e は、 管路 1 8 dを介して、 へッ ド油室 5 Bに接続している。 ボ トム油室 5 Aと接 続する管路 1 8 eは、 順次、 通路 1 7 d , 1 7 i , 1 5 c , 1 7 k , 1 7 f と連 通し、 管路 1 8 aを介してタ ンク 2 7 と接続している。  4A and 4B show a state where the hydraulic motor 14 is driven, and the rotary vibration valve 15 is at the position b. At this time, the vibration mode switching valve 17 and the first directional switching valve 11 are both switched to the position b by the pilot pressure acting on the operation units 17b and 11b. When both are at position b, passage 15a and passage 15b are in communication. The passage 15 b communicates with the passages 17 j and 17 e of the vibration mode switching valve 17. The passage 17e is connected to the head oil chamber 5B via a line 18d. The pipeline 18 e connected to the bottom oil chamber 5 A is sequentially communicated with the passages 17 d, 17 i, 15 c, 17 k, and 17 f via the pipeline 18 a. To tank 27.
図 5 A及び図 5 Bは、 回転式振動弁 1 5が a位置にある時を示し、 回転式振動 弁 1 5が、 順次、 通路 1 5 a , 1 5 d , 1 7 i , 1 7 d及び管路 1 8 eを介して 、 ボ トム油室 5 Aに接铳している。 へッ ド油室 5 Bは、 管路 1 8 d、 通路 1 7 e , 1 7 j , 1 7 k , 1 7 f 及び管路 1 8 aを介して、 タ ンク 2 7 と接铳している 図 6 A及び図 6 Bは、 回転式振動弁 1 5が a位置にある時を示し、 第 1方向切 換弁 1 1 と振動モー ド切換弁 1 7が共に a位置に切換わっても、 回転式振動弁 1 5の通路 1 5 a , 1 5 bと、 振動モー ド切換弁 1 Ίの通路 1 7 e〜 1 7 f とは連 通しない。 FIGS. 5A and 5B show the case where the rotary vibration valve 15 is at the position a, and the rotary vibration valve 15 is sequentially connected to the passages 15a, 15d, 17i, and 17d. And the bottom oil chamber 5A via a pipe 18e. Head oil chamber 5B is connected to tank 27 via line 18d, passages 17e, 17j, 17k, 17f and line 18a. Figures 6A and 6B show when the rotary vibration valve 15 is in the a position.Even if both the first directional switching valve 11 and the vibration mode switching valve 17 are switched to the a position, Rotary vibration valve 1 The passages 15a and 15b of No. 5 do not communicate with the passages 17e to 17f of the vibration mode switching valve 1 弁.
図 7 A及び図 7 Bは、 回転式振動弁 1 5が b位置にある時を示し、 第 1方向切 換弁 1 1 と振動モー ド切換弁 1 7が共に a位置に切換わることにより、 回転式振 動弁 1 5が、 順次、 通路 1 5 a , 1 5 d , 1 7 i , 1 7 d及び管路 1 8 eを介し て、 ボトム油室 5 Aに接続している。 へッ ド油室 5 Bは、 順次、 管路 1 8 d、 通 路 1 7 e , 1 7 f 及び管路 1 8 bを介して、 タンク 2 7と接続している。  FIGS.7A and 7B show the case where the rotary vibration valve 15 is at the position b, and the first direction switching valve 11 and the vibration mode switching valve 17 are both switched to the position a. The type vibration valve 15 is sequentially connected to the bottom oil chamber 5A via passages 15a, 15d, 17i, 17d and a pipe 18e. The head oil chamber 5B is sequentially connected to the tank 27 via the pipeline 18d, the pipelines 17e and 17f, and the pipeline 18b.
かかる第 1実施例の構成による作動について説明する。  The operation according to the configuration of the first embodiment will be described.
図 2の構成によれば、 作業機 1 aに振動を与えて掘削モー ドにて作業する時、 振動モー ド切換操作部 2 1 の操作部材 2 1 cを掘削側に操作することにより、 第 1方向切換弁 1 1 と振動モー ド切換弁 1 7が共に a位置に切換わる。 また、 モー タ切換弁 1 2 も a位置に切り換わって、 油圧源 1 0 Cからの圧油が流量調整弁 1 6を介して油圧モータ 1 4 に流入し、 油圧モータ 1 4の回 が開始する。 油圧モ 一夕 1 4の回転数は、 流 S調整弁 1 6の開口度により増減するようになつており 、 制御手段 (図示せず) で調整可能である。  According to the configuration of FIG. 2, when working in the excavation mode by applying vibration to the work implement 1 a, the operation member 21 c of the vibration mode switching operation unit 21 is operated to the excavation side, so that Both the one-way switching valve 11 and the vibration mode switching valve 17 switch to the a position. Motor switching valve 12 also switches to position a, and hydraulic oil from hydraulic source 10 C flows into hydraulic motor 14 via flow control valve 16, and rotation of hydraulic motor 14 starts. I do. The rotation speed of the hydraulic motor 14 is increased or decreased by the opening degree of the flow S adjusting valve 16 and can be adjusted by control means (not shown).
回転式振動弁 1 5は、 油圧モータ 1 4の回転数に応じた振動数で、 a位置と b 位置とへ交互に連続的に切り換わる。 従って、 油圧源 1 0 aからの圧油は、 第 1 方向切換弁 1 1の a位置から管路 1 8 aを経て、 回転式振動弁 1 5から断続的に 吐出され、 振動モー ド切換弁 1 7の a位置から管路 1 8 eを通ってァクチユエ一 タ Aのボトム油室 5 Aに断続的に供給される。 一方、 へッ ド油室 5 Bの油は、 管 路 1 8 d , 1 8 bを経て、 タンク 2 7へドレーンされる。  The rotary vibration valve 15 is alternately and continuously switched to the position a and the position b at a vibration frequency corresponding to the rotation speed of the hydraulic motor 14. Therefore, the pressure oil from the hydraulic pressure source 10a is intermittently discharged from the rotary valve 15 through the line 18a from the position a of the first directional control valve 11 and the vibration mode switching valve. It is intermittently supplied from the a position 17 to the bottom oil chamber 5A of the actuator A through the line 18e. On the other hand, the oil in the head oil chamber 5B is drained to the tank 27 via the pipes 18d and 18b.
このようであるから、 ァクチユエ一夕 Aは一方向の振動を発生し、 固い地盤の 土砂に振動を与えことにより、 掘削を容易にすることが可能となる。  Because of this, Actuyue A generates one-way vibration, and it becomes possible to excavate easily by applying vibration to the hard soil.
—方、 作業機 1 aに振動を与えて転圧モードにて作業を行う時、 振動モー ド切 換弁 2 1 の操作部材 2 1 cを転圧側に操作することにより、 第 1方向切換弁 1 1 と振動モード切換弁 1 7が共に b位置に切換わる。 モータ切換弁 1 2 も a位置に 切り換わり、 上記と同様に、 油圧源 1 0 aからの圧油により、 油圧モータ 1 4は 回転を開始する。 油圧モータ 1 4 の回転数に応じた振動数で、 回転式振動弁 1 5 は、 a位置と b位置とが交互に切り換わって、 連続的に作動する。 On the other hand, when performing work in the compaction mode by applying vibration to the work equipment 1a, the operating member 21c of the vibration mode switching valve 21 is operated to the compaction side so that the first directional control valve 1 1 and the vibration mode switching valve 17 both switch to position b. The motor switching valve 12 also switches to the position a, and, similarly to the above, the hydraulic motor 14 is driven by the hydraulic oil from the hydraulic pressure source 10a. Start rotation. At a vibration frequency corresponding to the rotation speed of the hydraulic motor 14, the rotary vibration valve 15 is operated continuously by switching between the a position and the b position alternately.
前記回転式振動弁 1 5の a位置と b位置に交互に連铳的に作動する状態におい て、 振動モー ド切換弁 1 7の b位置は 3ポー 卜となっている。 これにより、 油圧 源 1 0 aからの圧油は、 管路 1 8 b , 1 8 c . 1 8 dを経てヘッ ド油室 5 Bに供 給される圧油と、 管路 1 8 b . 1 8 c , 1 8 eを経てボトム油室 5 Aに供給され る圧油とに、 連铳的に切換えられて袷油される。 この切換え給油により、 ァクチ ユエータ Aの各ピス ト ンは、 往復による振動を発生し、 土砂に振動を与えて締固 める転圧を容易に行うことが可能となる。  In a state where the rotary vibration valve 15 is operated alternately and continuously at the positions a and b, the position b of the vibration mode switching valve 17 is three ports. Thus, the pressure oil from the hydraulic pressure source 10a is supplied to the head oil chamber 5B via the pipes 18b, 18c, 18d and the pipe 18b. It is continuously switched to pressurized oil supplied to the bottom oil chamber 5A via 18c and 18e to make lined oil. By this switching refueling, each piston of the actuator A generates a reciprocating vibration, and it is possible to easily perform the compaction by vibrating the soil and compacting.
また、 操作レバー 2 6を矢印 2 6 A方向に操作して、 ァクチユエ一夕 Aの伸長 側又は短縮側にすることにより、 パイロッ ト用油圧源 2 0からの圧油は、 パイ口 ッ ト弁 2 4 a又は 2 4 bから第 2方向切換弁 1 3の操作部 1 3 a又は 1 3 bに作 用する。 これにより、 第 2方向切換弁 1 3は、 中立位置 nから、 a位置又は b位 置に切換わるので、 第 2方向切換弁 1 3から吐出する圧油により、 ァクチユエ一 夕 Aの駆動が可能となる。 即ち、 操作レバ一 2 6の操作により、 ァクチユエ一夕 Aでの通常の駆動が可能である。  By operating the operation lever 26 in the direction of the arrow 26 A to extend or contract the actuator A, the hydraulic oil from the pilot hydraulic power source 20 is supplied with the pilot valve. Acts on 24 a or 24 b to the operation section 13 a or 13 b of the second directional control valve 13. As a result, the second directional control valve 13 is switched from the neutral position n to the a position or the b position, so that the hydraulic oil A discharged from the second directional control valve 13 can drive the actuator A. Becomes That is, by operating the operation lever 26, normal driving with the actuator A is possible.
従って、 振動モー ド切換操作部 2 1を掘削側又は転圧側に操作することにより 、 ァクチユエ一タ Aは、 掘削モー ド又は転圧モー ドによる振動が可能である。 ま た、 操作レバー 2 6により、 ァクチユエータ Aが伸縮するので、 ァクチユエ一夕 Aによる油圧ショベルでの通常作業もできる。  Therefore, by operating the vibration mode switching operation section 21 to the excavation side or the compaction side, the actuator A can vibrate in the excavation mode or the compaction mode. In addition, since the actuator A expands and contracts by the operation lever 26, normal work with the hydraulic excavator using the actuator A can be performed.
転圧モー ドの作動詳細を説明する。 図 4 Aにおいて、 上述のように、 油圧モ一 夕 1 4が駆動状態であり、 通路 1 5 a , 1 5 bが連通しているので、 油圧源 1 0 aからの圧油は、 通路 1 5 b , 1 7 i , 1 7 e、 管路 1 8 dを経てヘッ ド油室 5 Bに流入し、 ァクチユエ一夕 Aを縮小させる。 続いて、 油圧モータ 1 4の回転に より、 図 5 Aに示すように、 回転式振動弁 1 5が b位置から a位置に切換わるの で、 油圧源 1 0 aからの圧油は、 通路 1 5 a , 1 5 d , 1 7 a , 1 7 d , 管路 1 8 eを経てボトム油室 5 Αに流入し、 ァクチユエ一夕 Aを伸長させる。 従って、 回転式振動弁 1 5が a位置と b位置に交互に切換わることにより、 ァクチユエ一 夕 Aは伸縮 (往復動) を繰り返して、 転圧モー ドの振動を発生させる。 The operation details of the compaction mode will be described. In FIG. 4A, as described above, since the hydraulic motor 14 is in the driving state and the passages 15a and 15b are in communication, the hydraulic oil from the hydraulic pressure source 10a passes through the passage 1 5b, 17i, 17e, and the pipeline 18d, flow into the head oil chamber 5B, and reduce the size of Akuchiue A. Subsequently, the rotation of the hydraulic motor 14 switches the rotary vibration valve 15 from the position b to the position a as shown in FIG. 5A, so that the hydraulic oil from the hydraulic source 10 a It flows into the bottom oil chamber 5 mm through 15 a, 15 d, 17 a, 17 d, and the pipeline 18 e, and the actuator A is extended. Therefore, When the rotary vibration valve 15 is alternately switched between the a position and the b position, the actuator A repeatedly expands and contracts (reciprocates) to generate vibration in the rolling mode.
掘削モー ドの作動詳細を説明する。 図 6 Aは、 上述のように、 回転式振動弁 1 5が a位置にあるので、 油圧源 1 0 aからの圧油が振動モー ド切換弁 1 7でプロ ッ クされている。 従って、 圧油がァクチユエ一夕 Aへ流入しない状態、 即ち掘削 モー ドの停止状態である。 この状態から回転式振動弁 1 5が b位置に切換わった 時、 図 7 Aに示すように、 油圧源 1 0 aからの圧油は、 通路 1 5 a , 1 5 d , 1 7 i , 1 7 d , 管路 1 8 eを経て、 ボトム油室 5 Aに流入し、 ァクチユエ一夕 A を伸長させる。 従って、 回転式振動弁 1 5が a位置と b位置に交互に切換わるこ とにより、 ァクチユエ一夕 Aが伸長 (一方向) するので、 掘削モー ドの振動発生 が可能となる。  The details of the operation of the excavation mode will be described. In FIG. 6A, as described above, since the rotary vibration valve 15 is at the position a, the pressure oil from the hydraulic pressure source 10 a is blocked by the vibration mode switching valve 17. Therefore, the pressurized oil does not flow into the factory A, that is, the excavation mode is stopped. When the rotary vibration valve 15 is switched to the position b from this state, as shown in FIG. 7A, the pressure oil from the hydraulic pressure source 10a passes through the passages 15a, 15d, 17i, It flows into the bottom oil chamber 5 A through 17 d and the pipeline 18 e, and the length of the water A is extended. Therefore, when the rotary vibration valve 15 is alternately switched between the position a and the position b, the actuator A is extended (one direction), so that the vibration in the excavation mode can be generated.
図 8 A、 図 8 B及び図 8 Cは、 振動モー ド切換弁 1 7のスプール 1 7 gに、 絞 り 1 7 hを設けた場合である。 ボ トム油室 5 Aは、 順次、 管路 1 8 e、 通路 1 7 d , 1 5 c , 1 7 k、 絞り 1 7 h、 通路 1 7 e, 1 7 f 及び管路 1 8 bを介して 、 タ ンク 2 7 と接続している。  FIGS. 8A, 8B and 8C show the case where a throttle 17 h is provided on the spool 17 g of the vibration mode switching valve 17. The bottom oil chamber 5A is sequentially connected via line 18e, passages 17d, 15c, 17k, throttle 17h, passages 17e, 17f, and line 18b. To tank 27.
かかる構成により、 ァクチユエ一夕 Aが停止状態の時、 圧油は、 通路 1 7 k、 絞り 1 7 h、 通路 1 7 e、 1 7 f 、 管路 1 8 b及びボ トム油室 5 Aに流入してブ ロッ クされているが、 この圧油の一部が、 絞り 1 7 hを介して、 通路 1 8 bから タンク 2 7へ ドレーンされる。 この ドレーンによりボ トム油室 5 A等の油圧が低 滅して、 ァクチユエ一夕 Aに加わる外部負荷 (例えばバゲッ ト 8 に加わる振動掘 削時の負荷) 力く、 ァクチユエ一夕 Aを短縮させるので、 ァクチユエ一夕 Aの伸長 しすぎを補正することが可能となる。  With this configuration, when Actuate A is stopped, pressurized oil flows to passage 17k, throttle 17h, passages 17e and 17f, pipeline 18b, and bottom oil chamber 5A. A part of this pressurized oil is drained from the passage 18b to the tank 27 through the throttle 17h. This drain reduces the hydraulic pressure in the bottom oil chamber 5A, etc., and reduces the external load applied to the actuator A (for example, the load applied to the bagg 8 during vibration excavation), shortening the actuator A. However, it is possible to correct excessive extension of the factor A.
次に、 本発明の第 2実施例について説明する。 図 9 A、 図 9 B及び図 9 Cにお いて、 作業機 1 aは、 図 1 Aに示すバゲッ ト用リ ンク 9 j に換えて、 振動用ァク チユエ一夕 3 0を備えている。 振動用ァクチユエ一夕 3 0 は、 振動モ一 ド切換弁 1 7 に接続すると共に、 ァクチユエ一夕 Aは、 油圧ショベル 1 の通常作業の駆動 用と している。 かかる構成により、 振動用ァクチユエータ 3 0で振動を与えつつ 、 ァクチユエ一タ Aで掘削及び転圧作業が可能となる。 本実施例では、 振動用ァ クチユエ一夕 3 0 は、 一端をチル ト レバー 9 hと連結し、 他端をバゲッ ト 8 と連 結しているが、 連結位置を限定するものではない。 Next, a second embodiment of the present invention will be described. 9A, 9B and 9C, the work machine 1a is provided with a vibration actuator 30 instead of the baguette link 9j shown in FIG. 1A. . The vibration actuator 30 is connected to the vibration mode switching valve 17, and the actuator A is used to drive the hydraulic excavator 1 for normal work. With this configuration, the vibration actuator 30 applies vibration while applying vibration. Drilling and compaction work can be performed with Actuator A. In this embodiment, one end of the vibration actuator 30 has one end connected to the tilt lever 9h and the other end connected to the baggage 8, but the connection position is not limited.
本発明の第 3実施例について説明する。 本実施例は、 第 1実施例の油圧式に対 して、 電気式にしたものである。  A third embodiment of the present invention will be described. In this embodiment, an electric system is used instead of the hydraulic system of the first embodiment.
図 1 0 において、 油圧源 3 1 aからの圧油を流量制御する第 1電磁式方向切換 弁 3 2 は、 管路 4 1 aを介して回転式振動弁 3 5及び電磁式振動モー ド切換弁 3 In FIG. 10, the first solenoid-operated directional control valve 32 for controlling the flow rate of the pressure oil from the hydraulic pressure source 31a is connected to the rotary vibration valve 35 and the electromagnetic vibration mode via the conduit 41a. Valve 3
6 と接続すると共に、 管路 4 1 bを介して電磁式振動モー ド切換弁 3 6 と接続し ている。 電磁式振動モー ド切換弁 3 6からの圧油は、 管路 4 1 eを介してボ トム 油室 5 Aに、 及び管路 4 1 dを介してへッ ド油室 5 Bに、 流入する。 油圧源 3 1 bからの圧油を流量制御する第 2電磁式方向切換弁 3 3 は、 管路 4 2 aを介して 管路 4 1 eに、 及び管路 4 2 bを介して管路 4 1 dに、 接続している。 6 as well as to the electromagnetic vibration mode switching valve 36 via the line 41b. Pressure oil from the electromagnetic vibration mode switching valve 36 flows into the bottom oil chamber 5A via the line 41e and into the head oil chamber 5B via the line 41d. I do. The second solenoid-operated directional control valve 33 for controlling the flow rate of the pressure oil from the hydraulic pressure source 31b is connected to the line 41e via the line 42a and to the line 41e via the line 42b. 4 1d, connected.
電気回路について説明する。 電気式振動モー ド切換操作部 4 5の掘削モー ドス イ ッチ 4 5 a及び転圧モー ドスイ ッチ 4 5 b、 電気レバー 3 7の操作角度を検出 する レバ一傾斜角センサ 3 8、 及び電気モータ用操作ボッ クス 3 9 は、 各々信号 入力可能に、 コ ン トローラ 4 0 と接続している。 掘削モー ドスィ ッチ 4 5 aを 0 Nにすると、 コン トローラ 4 0を介して、 第 1電磁式方向切換弁 3 2の操作部 3 The electric circuit will be described. Drilling mode switch 45a and electric compaction mode switch 45b of electric vibration mode switching operation section 45, lever angle sensor 38 that detects the operation angle of electric lever 37, and The operation box 39 for the electric motor is connected to the controller 40 so that signals can be input. When the excavation mode switch 45 a is set to 0 N, the operation unit 3 of the first solenoid-operated directional control valve 32 is controlled via the controller 40.
2 a及び電磁式振動モー ド切換弁 3 6の操作部 3 6 aに、 信号を出力する。 また 、 転圧モー ドスィ ッチ 4 5 bを O Nにすると、 コン トローラ 4 0を介して、 第 1 電磁式方向切換弁 3 2の操作部 3 2 b及び電磁式振動モー ド切換弁 3 6の操作部A signal is output to 2a and the operation unit 36a of the electromagnetic vibration mode switching valve 36. Also, when the compression mode switch 45b is turned on, the operation section 32b of the first electromagnetic directional switching valve 32 and the electromagnetic vibration mode switching valve 36 are turned on via the controller 40. Operation unit
3 6 bに信号を出力する。 3 Output the signal to 6b.
電気レバー 3 7を、 矢印で示すァクチユエ一タ伸長側にすると、 コ ン 卜ローラ When the electric lever 37 is set to the actuator extension side indicated by the arrow, the controller
4 0を介して第 2電磁式方向切換弁 3 3の操作部 3 3 a に、 信号が出力される。 一方、 電気レバー 3 7を、 ァクチユエータ縮小側にすると、 コ ン トローラ 4 0を 介して第 2電磁式方向切換弁 3 3の操作部 3 3 bに、 信号が出力される。 電気モ 一夕用操作ボッ クス 3 9の振動周波数コン トロール操作手段 3 9 a , 3 9 bから 出力される信号は、 コ ン トローラ 4 0を介して、 電気モータ 3 4の回転数を制御 している。 電気モータ 3 4には、 回転式振動弁 3 5が連結されている。 かかる構成により、 作業機 1 aに振動を与えて掘削モー ドにて作業を行う時、 掘削モー ドスイッチ 4 5 aを O Nにして、 振動周波数コン トロール操作手段 3 9 a又は 3 9 bを操作する。 これにより、 回転式振動弁 3 5は、 電気モータ 3 4の 回転数に応じた振動数で、 a位置と b位置に交互に連続的に切り換わる。 この切 り換わりに対応して、 油圧源 3 1 aからの圧油は、 第 1電磁式方向切換弁 3 2の a位置及び管路 4 1 aを経て、 回転式振動弁 3 5から断続的に吐出される。 この 吐出油は、 電磁式振動モー ド切換弁 3 6の a位置から管路 4 1 eを通って、 ボト ム油室 5 Aに断続的に供給される。 この時、 へッ ド油室 5 Bの油は、 管路 4 1 d , 4 l bを通ってタンク 4 1へドレーンされる。 これらにより、 ァクチユエ一夕 Aは一方向の振動発生が可能となり、 固い地盤の土砂に振動を与えて、 掘削を容 易にする。 A signal is output to the operating section 33 a of the second electromagnetic directional switching valve 33 via 40. On the other hand, when the electric lever 37 is set to the actuator reducing side, a signal is output to the operation section 33 b of the second electromagnetic directional switching valve 33 via the controller 40. The signal output from the vibration frequency control operation means 39 a and 39 b of the electric motor overnight operation box 39 controls the number of rotations of the electric motor 34 via the controller 40. are doing. A rotary vibration valve 35 is connected to the electric motor 34. With this configuration, when performing work in the excavation mode by applying vibration to the work equipment 1a, the excavation mode switch 45a is turned on and the vibration frequency control operation means 39a or 39b is operated. I do. As a result, the rotary vibration valve 35 is alternately and continuously switched to the position a and the position b at a frequency corresponding to the rotation speed of the electric motor 34. In response to this switching, the pressure oil from the hydraulic pressure source 31a intermittently flows from the rotary vibration valve 35 through the a position of the first electromagnetic directional switching valve 32 and the line 41a. Is discharged. This discharge oil is intermittently supplied to the bottom oil chamber 5A from the position a of the electromagnetic vibration mode switching valve 36 through the conduit 41e. At this time, the oil in the head oil chamber 5B is drained to the tank 41 through the pipelines 41 d and 4 lb. As a result, Actuyue A can generate vibrations in one direction, and vibrate the hard soil to facilitate excavation.
また、 作業機 1 aに振動を与えて転圧モードにて作業を行う時、 掘削モードス イ ッチ 4 5 bを O Nにして、 振動周波数コン トロール操作手段 3 9 a又は 3 9 b を操作する。 これにより、 回転式振動弁 3 5は a位置と b位置に交互に切り換わ り、 油圧源 3 1 aからの圧油は、 第 1電磁式方向切換弁 3 2の b位置から管路 4 1 bを通って、 回転式振動弁 3 5から断続的に吐出される。 電磁式振動モー ド切 換弁 3 6の b位置は 3ポー トとなつているので、 油圧源 3 1 aからの圧油は、 管 路 4 1 b , 4 1 c , 4 1 dからヘッ ド油室 5 Bに供給される圧油、 又は管路 4 1 b , 4 1 c , 4 1 eからボトム油室 5 Aに供給される圧油となって、 連続的に切 換わる。 これにより、 ァクチユエ一夕 Aのピス ト ンは往復振動を発生し、 上記実 施例と同様に、 容易な転圧作業が可能になる。  Also, when performing work in the compaction mode by applying vibration to the work equipment 1a, set the excavation mode switch 45b to ON and operate the vibration frequency control operation means 39a or 39b. . As a result, the rotary vibration valve 35 is alternately switched between the position a and the position b, and the pressure oil from the hydraulic pressure source 31 a is supplied from the position b of the first electromagnetic directional switching valve 32 to the line 4. It is intermittently discharged from the rotary vibration valve 35 through 1b. Since the b position of the electromagnetic vibration mode switching valve 36 is 3 ports, the pressure oil from the hydraulic power source 31a is supplied from the lines 41b, 41c, 41d to the head oil. The pressure oil supplied to the chamber 5B or the pressure oil supplied to the bottom oil chamber 5A from the pipelines 41b, 41c, 41e is continuously switched. As a result, the piston of the actuator A generates a reciprocating vibration, and the rolling operation can be easily performed as in the above embodiment.
また、 電気レバー 3 7をァクチユエ一夕伸長側に操作することにより、 レバー 傾斜角センサ 3 8からの信号に応じて、 コン トローラ 4 0からの信号が第 2電磁 式方向切換弁 3 3の操作部 3 3 aに出力される。 一方、 電気レバー 3 7をァクチ ユエ一夕縮小側に操作する場合、 信号が、 操作部 3 3 bに出力される。 これによ り、 第 2電磁式方向切換弁 3 3力 中立位置 nから、 a位置又は b位置に切換わ るので、 吐出する圧油は、 管路 4 2 a , 4 1 e介してボ トム油室 5 Aに供給され るか、 管路 4 2 b , 4 1 dを介してへッ ド油室 5 Bに供給される。 従って、 電気 レバー 3 7を伸長側又は短縮側にすることにより、 ァクチユエ一夕 Aが駆動され て、 掘削等の通常作業が行われる。 By operating the electric lever 37 to the extension side of the actuator, the signal from the controller 40 is operated according to the signal from the lever inclination angle sensor 38 to operate the second electromagnetic directional control valve 33. Output to part 3 3a. On the other hand, when the electric lever 37 is operated to the reduction side, the signal is output to the operation unit 33b. As a result, the second solenoid-operated directional control valve 33 is switched from the neutral position n to the position a or b. Therefore, the pressure oil to be discharged is supplied to the bottom oil chamber 5A via the pipes 42a and 41e or the head oil chamber 5 via the pipes 42b and 41d. Supplied to B. Therefore, by setting the electric lever 37 to the extension side or the contraction side, the actuator A is driven, and normal work such as excavation is performed.
次に、 本発明の第 4実施例について説明する。 本実施例は、 第 3実施例ではァ クチユエ一夕 Aで振動発生と通常作業とを可能と しているのに対して、 振動用ァ クチユエ一夕と作業機用ァクチユエ一夕 Aとを個別に備える例である。  Next, a fourth embodiment of the present invention will be described. In the present embodiment, the vibration generation and the normal work are enabled in the actuator A in the third embodiment, whereas the actuator A for the vibration and the actuator A for the working machine are separately provided. It is an example to prepare for.
図 1 1 において、 電磁式振動モー ド切換弁 3 6 は、 管路 4 1 eにより振動用ァ クチユエ一夕 3 0のボ トム油室 3 0 a と接続すると共に、 管路 4 1 dにより振動 用ァクチユエ一夕 3 0のへッ ド油室 3 O b と接続している。 振動用ァクチュエー 夕 3 0 は、 図 9 Aと同様に配設してある。 第 2電磁式方向切換弁 3 3 は、 管路 4 2 aによりァクチユエ一夕 Aのボ トム油室 5 Aと接続すると共に、 管路 4 2 bに よりァクチユエ一夕 Aのへッ ド油室 5 Bと接続している。  In FIG. 11, the electromagnetic vibration mode switching valve 36 is connected to the bottom oil chamber 30a of the vibration actuator 30 by a pipe 41e and vibrated by a pipe 41d. It is connected to the head oil chamber 3 Ob at 30 hours. The vibration actuator 30 is arranged in the same way as in Fig. 9A. The second solenoid-operated directional control valve 33 is connected to the bottom oil chamber 5A of the factory A via the pipe 42a, and the head oil chamber of the factory A is used by the pipe 42b. 5 Connected to B.
かかる構成により、 振動用ァクチユエ一夕 3 0で振動を与えながらァクチユエ 一夕 Aを駆動することにより、 掘削又は転圧作業が可能となる。  With this configuration, the excavation or compaction work can be performed by driving the actuator A while applying vibration with the vibration actuator 30.
本発明の第 5実施例について説明する。 本実施例は、 第 2実施例の図 9 Cに対 して、 ブーム用ァクチユエ一夕の油圧回路にアキュムレータを連設する例である 図 1 2において、 油圧源 1 0 b と接続する第 2方向切換弁 1 3 は、 管路 1 9 a によりブーム用ァクチユエ一夕 5のボ トム油室 5 a と、 また管路 1 9 bによりブ 一ム用ァクチユエ一夕 5のへッ ド油室 5 b と、 それぞれ接続している。 管路 1 9 bに接続する分岐管路 1 9 c は、 アキュムレータ用切換弁 2 9を接続している。 アキュムレータ用切換弁 2 9の下流側には、 絞り 2 9 b及びアキュムレー夕 2 9 cが連設されている。 アキュムレータ用切換弁 2 9の操作部 2 9 aは、 分岐管路 2 4 aにより、 シャ トル弁 2 5 と接続している。  A fifth embodiment of the present invention will be described. This embodiment is an example in which an accumulator is continuously connected to the hydraulic circuit of the boom actuator in FIG. 9C of the second embodiment. The directional control valve 13 is connected to the bottom oil chamber 5a of the boom actuator 5 by the pipe 19a and the head oil chamber 5 of the boiler actuator 5 by the pipe 19b. b and are connected respectively. The branch pipe 19 c connected to the pipe 19 b connects the switching valve 29 for the accumulator. A throttle 29 b and an accumulator 29 c are provided downstream of the accumulator switching valve 29. The operation part 29 a of the switching valve 29 for the accumulator is connected to the shuttle valve 25 by a branch line 24 a.
かかる構成により、 へッ ド油室 5 bに接続する管路 1 9 bに圧力変動が生じた 場合、 へッ ド油室 5 b内の油がアキュムレータ 2 9 c に流入し、 アキュムレータ 2 9 cのパネ作用と絞り 2 9 bの圧損による減衰作用とにより、 振動エネルギー が吸収される。 これにより、 ブーム用ァクチユエ一タ 5の振動が抑制される。 な お、 アキュムレータ用切換弁 2 9、 絞り 2 9 b及びアキュムレータ 2 9 cを、 管 路 1 9 aに連設して、 ボ トム油室 5 aでの圧力変動による振動を抑制するように しても良い。 With such a configuration, when a pressure fluctuation occurs in the pipeline 19b connected to the head oil chamber 5b, the oil in the head oil chamber 5b flows into the accumulator 29c and the accumulator 29b. The vibration energy is absorbed by the panel action of 29 c and the damping action due to the pressure loss of the throttle 29 b. Thereby, the vibration of the boom actuator 5 is suppressed. The switching valve 29 for the accumulator, the throttle 29b and the accumulator 29c are connected to the pipe 19a so as to suppress the vibration caused by the pressure fluctuation in the bottom oil chamber 5a. May be.
本発明の第 6実施例について説明する。 本実施例は、 第 4実施例の図 1 1 に対 して、 ブーム用ァクチユエ一夕の油圧回路にアキュムレー夕を連設する例である 図 1 3 において、 油圧源 3 1 bと接続する第 2電磁式方向切換弁 3 3 は、 管路 4 2 aによりブーム用ァクチユエ一夕 5のボ トム油室 5 a と接続すると共に、 管 路 4 2 bによりブーム用ァクチユエ一夕 5のへッ ド油室 5 bと接続している。 管 路 4 2 bに接続する分岐管路 4 2 cには、 図 1 2の連設と同様に、 アキュムレー 夕用切換弁 4 3、 絞り 4 3 b及びアキュムレータ 4 3 cを連設している。 アキュ ムレ一夕用切換弁 4 3の操作部 4 3 aには、 掘削モー ドスィ ッチ 4 5 a又は転圧 モー ドスィ ッチ 4 5 bの信号が、 コ ン トラーラ 4 0より入力される。  A sixth embodiment of the present invention will be described. This embodiment is an example in which an accumulator is connected to the hydraulic circuit for the boom actuator in FIG. 11 of the fourth embodiment. (2) The solenoid-operated directional control valve 33 is connected to the bottom oil chamber 5a of the boom actuator 5 by a pipe 42a, and the head of the boom actuator 5 is connected by a pipe 42b. Connected to oil chamber 5b. The branch line 42c connected to the line 42b is provided with an accumulator switching valve 43, a throttle 43b, and an accumulator 43c in the same manner as in the case of Fig. 12. . The signal of the excavation mode switch 45a or the compaction mode switch 45b is input from the controller 40 to the operation unit 43a of the changeover valve 43 for accumulation.
かかる構成により、 へッ ド油室 5 bに接続するた管路 4 2 bに圧力変動が生じ た場合、 へッ ド油室 5 b内の油がアキュムレータ 4 3 cに流入し、 第 5実施例と 同様な作用により、 振動エネルギーが吸収されて、 ブーム用ァクチユエ一夕 5の 振動が抑制される。 また、 アキュムレータ用切換弁 4 3、 絞り 4 3 b及びアキュ ムレー夕 4 3 c は、 管路 4 2 に連設してもよい。  With this configuration, when a pressure fluctuation occurs in the pipeline 42b connected to the head oil chamber 5b, the oil in the head oil chamber 5b flows into the accumulator 43c, and the fifth embodiment By the same action as in the example, the vibration energy is absorbed, and the vibration of the boom actuator 5 is suppressed. The accumulator switching valve 43, the throttle 43b, and the accumulator 43c may be connected to the pipeline 42.
本発明の第 7実施例について説明する。 本実施例は、 第 】 実施例に対して、 ァ クチユエ一タ Aを個別に制御すると共に、 振動用ァクチュエータを備える例であ る。  A seventh embodiment of the present invention will be described. The present embodiment is an example in which the actuator A is individually controlled and a vibration actuator is provided, in contrast to the third embodiment.
図 1 4 において、 油圧源 1 0 b と接続するブーム用方向切換弁 1 3 c は、 管路 1 8 e lによりブーム用ァクチユエ一夕 5のボ トム油室 5 a と接続すると共に、 管 路 1 8 d lによりへッ ド油室 5 b と接続している。 管路 1 8 d lと接铳する圧力検出 管路 5 3 aは、 圧力スィ ツチ 5 3 と接続している。 また、 油圧源 1 0 b と接続す るアーム用方向切換弁 1 3 dは、 管路 1 8 e2によりアーム用ァクチユエ一夕 7の ボ トム油室 7 a と接続すると共に、 管路 1 8 dによりへッ ド油室 7 bに接続して いる。 管路 1 8 d2接続する圧力検出管路 5 4 a は、 圧力スィ ッチ 5 4 を接統して いる。 In FIG. 14, the boom directional control valve 13 c connected to the hydraulic pressure source 10 b is connected to the bottom oil chamber 5 a of the boom actuator 5 by a line 18 el, and is connected to the line 1. It is connected to the head oil chamber 5 b by 8 dl. The pressure detection pipe 53 a connected to the pipe 18 dl is connected to the pressure switch 53. Also, connect to the hydraulic pressure source 10b. The arm directional switching valve 13 d is connected to the bottom oil chamber 7 a of the arm actuator 7 through line 18 e2 and to the head oil chamber 7 b through line 18 d. are doing. Line 18 d2 The pressure detecting line 54 a to be connected connects the pressure switch 54.
さ らに、 油圧源 1 O b と接続するバゲッ ト用方向切換弁 1 3 e は、 管路 1 8 e3 によりバゲッ ト用ァクチユエ一夕 9のボ 卜厶油室 9 a と接続すると共に、 管路 1 In addition, the baguette directional control valve 13 e connected to the hydraulic pressure source 1 O b is connected to the bottom oil chamber 9 a of the baggage actuator 9 via a line 18 e3, Road 1
8 d3によりへッ ド油室 9 bと接続している。 管路 1 8 e3と接続する圧力検出管路Connected to head oil chamber 9 b by 8 d3. Pressure line connected to line 18 e3
5 5 aは、 圧力スィ ッチ 5 5 と接続している。 なお、 ブーム用、 アーム用及びバ ケッ 卜用の各方向切換弁 1 3 c , 1 3 d , 1 3 e は、 図 2 に示す第 2方向切換弁55 a is connected to the pressure switch 55. The boom, arm, and bucket directional switching valves 13c, 13d, and 13e are the second directional switching valves shown in FIG.
1 3 と同一部品である。 Same parts as 13
圧力スィ ッチ 5 3、 5 4、 5 5からの各信号が、 コン トローラ 6 0 に入力され ると共に、 各信号に対応する信号が、 コ ン トローラ 6 0から比例電磁切換弁 6 1 に出力される。 油圧源 5 6 と接铳する比例電磁切換弁 6 1 は、 パイロ ッ ト管路 6 Each signal from the pressure switch 53, 54, 55 is input to the controller 60, and a signal corresponding to each signal is output from the controller 60 to the proportional solenoid valve 61. Is done. The proportional solenoid-operated directional control valve 61 connected to the hydraulic pressure source 56 is connected to the pilot line 6
1 a及び分岐管路 6 1 bを経て、 振動用方向切換弁 6 2の操作部 6 2 a と接続し ている。 また、 パイロ ッ 卜管路 6 1 a は、 分岐管路 6 1 cを介してモータ切換弁It is connected to the operating part 62 a of the directional switching valve 62 for vibration via 1 a and the branch pipe 61 b. Further, the pilot line 61 a is connected to the motor switching valve via the branch line 61 c.
1 2の操作部 1 2 a と接続すると共に、 振動モー ド切換弁 6 3 と接続している。 なお、 油圧モータ 1 4 、 回転式振動弁 1 5、 振動モー ド切換弁 1 7等は、 各ァク チユエ一夕 5、 7、 9毎に配設されている。 It is connected to the operation unit 12 a of 12 and to the vibration mode switching valve 63. The hydraulic motor 14, the rotary vibration valve 15 and the vibration mode switching valve 17 are provided for each of the factories 5, 7, and 9, respectively.
かかる構成により、 圧力スィ ッチ 5 3、 5 4、 5 5 は、 ブーム用ァクチユエ一 夕 5のブーム下げ側圧力、 アーム用ァクチユエ一夕 7の掘削側圧力、 及びバケツ ト用ァクチユエ一夕 9のチル ト圧力を検出している。 ァクチユエ一夕 Aの内、 少 なく と も一つに駆動圧が発生したことを検出した時、 振動用方向切換弁 6 2、 モ 一夕切換弁 1 2及び振動モー ド切換弁 6 3がいずれも a位置に切換ることにより 、 自動的に振動用ァクチユエ一夕 3 0のボ トム油室 3 0 aに圧油が供給されて、 一方向の掘削振動が可能となる。 従って、 作業機 1 aによる各作業中、 振動用ァ クチユエ一夕 3 0が自動的に振動を発生しているので、 作業性が向上する。  With this configuration, the pressure switches 53, 54, and 55 are connected to the boom lowering pressure of the boom actuator 5, the digging pressure of the arm actuator 7, and the bucket actuator 9 Detects tilt pressure. When it is detected that at least one drive pressure has been generated among the actuators A, one of the vibration directional switching valve 62, the mode switching valve 12 and the vibration mode switching valve 6 3 The pressure oil is automatically supplied to the bottom oil chamber 30a of the vibration actuator 30 by switching to the position a, thereby enabling one-way excavation vibration. Accordingly, during each operation by the work machine 1a, the vibration actuator 30 automatically generates vibration, thereby improving workability.
次に、 本発明の第 8実施例について説明する。 本実施例は、 ァクチユエ一夕 A 及び振動用ァクチユエ一夕を個別に制御する油圧式の第 7実施例 (図 1 4参照) に対して、 第 3実施例の電気式制御を適用する例である。 Next, an eighth embodiment of the present invention will be described. In this embodiment, the This is an example in which the electric control of the third embodiment is applied to the seventh embodiment (refer to FIG. 14) of a hydraulic system which individually controls the vibration factor and the vibration actuator.
図 1 5において、 ブーム用、 アーム用及びバケツ ト用の各電磁式方向切換弁 3 3 -1、 3 3 -2、 3 3 -3 (第 2電磁式方向切換弁 3 3 と同一部品) は、 それぞれ管 路 4 1 el、 4 1 e2、 4 1 e3を介して、 それぞれボトム油室 5 a , 7 a , 9 aと接 続している。 また、 各電磁式方向切換弁 3 3 -1、 3 3 -2、 3 3 -3は、 それぞれ管 路 4 1 dl、 4 1 d2、 4 1 d3を介して、 それぞれへッ ド油室 5 b , 7 b , 9 bと接 fet L し 、る。  In Fig. 15, each of the boom, arm and bucket solenoid directional control valves 33-1, 33-2, 33-3 (the same parts as the second solenoid directional control valve 33) These are connected to the bottom oil chambers 5a, 7a, and 9a, respectively, via lines 41el, 41e2, and 41e3. In addition, each of the solenoid directional valves 33-1, 33-2, 33-3 is connected to a head oil chamber 5b via a line 41dl, 41d2, 41d3, respectively. , 7 b, 9 b fet L contact.
さらに、 管路 4 1 dl、 4 1 d2、 4 1 d3とそれぞれ接続する圧力検出管路 5 3 a , 5 4 a , 5 5 aは、 それぞれ圧力スィツチ 5 3、 5 4、 5 5と接続している。 圧力スィ ッチ 5 3、 5 4、 5 5と接続するコン トローラ 6 0は、 振動用電磁式方 向切換弁 8 1、 電磁式振動モー ド切換弁 8 2及び電気モータ 3 4 と接続している 。 なお、 回転式振動弁 3 5、 電磁式振動モー ド切換弁 3 6等は、 各ァクチユエ一 夕 5、 7、 9毎に配設されている。  Further, the pressure detection lines 53a, 54a, 55a, which are connected to the lines 41dl, 41d2, 41d3, respectively, are connected to the pressure switches 53, 54, 55, respectively. ing. The controller 60 connected to the pressure switches 53, 54, 55 is connected to the electromagnetic directional switching valve 81 for vibration, the electromagnetic vibration mode switching valve 82, and the electric motor 34. There. The rotary vibration valve 35, the electromagnetic vibration mode switching valve 36, and the like are provided for each of the factories 5, 7, and 9, respectively.
かかる構成により、 圧力スィッチ 5 3、 5 4、 5 5は、 それぞれ、 ブーム用ァ クチユエータ 5のブーム下げ側圧力、 アーム用ァクチユエ一夕 7の掘削側圧力、 及びバケツ ト用ァクチユエ一夕 9のチルト圧力を検出している。 検出により、 少 なく とも一つの駆動圧発生がコン トローラ 6 0に入力された時、 振動用電磁式方 向切換弁 8 1力 閉位置 cから開位置 aに切換わると共に、 電磁式振動モー ド切 換弁 8 2力く、 閉位置 cから開位置 aに切換わる。 これらの切換わりにより、 油圧 源 3 1 aからの圧油が、 自動的に振動用ァクチユエ一夕 3 0に供給されて、 掘削 振動させる。 産業上の利用可能性  With this configuration, the pressure switches 53, 54, and 55 respectively provide the boom lowering side pressure of the boom actuator 5, the excavation side pressure of the arm actuator 7, and the tilt of the bucket actuator 9, respectively. Pressure is being detected. When at least one drive pressure is input to the controller 60 by detection, the electromagnetic directional switching valve 8 1 for vibration is switched from the closed position c to the open position a and the electromagnetic vibration mode Switching valve 8 2 forces to switch from closed position c to open position a. By these switching, the pressure oil from the hydraulic pressure source 31a is automatically supplied to the vibration actuator 30 to excavate and vibrate. Industrial applicability
本発明は、 作業機の転圧モー ド又は掘削モー ドを任意に選択することにより、 掘削作業及び転圧作業が容易になって、 作業性を向上できる油圧ショベルの作業 機振動装置と して有用である。 また、 振動作業中に地盤の位置が下がった場合で も、 空打ちが防止されて安全性が向上する。 更に、 振動をアキュームレータで抑 制できるので、 乗り心地が良い。 作業機用ァクチユエ一夕が駆動中、 振動用ァク チユエ一夕が連動して自動振動するので、 作業性が向上する。 The present invention provides a working machine vibration device for a hydraulic shovel that can easily perform excavating work and compacting work by arbitrarily selecting a compacting mode or a excavating mode of a working machine, thereby improving workability. Useful. Also, when the ground position goes down during vibration work, In addition, safety is improved by preventing idle hits. Furthermore, since the vibration can be suppressed by the accumulator, riding comfort is good. While the work equipment work is being driven, the vibration work is automatically vibrated in conjunction with the work equipment, improving workability.

Claims

請 求 の 範 囲 The scope of the claims
1 . ァクチユエータ駆動用油圧源と、 前記油圧源からの圧油により駆動される複 数の作業機用ァクチユエ一夕及び 又は振動用ァクチユエ一夕と、 ブーム、 ァー ム及びバケツ トを有する作業機とを備え、 前記作業機用ァクチユエ一夕の少なく とも一つ又は前記振動用ァクチユエ一夕により、 前記作業機を振動させる油圧シ ョベルの作業機振動装置において、 1. A working machine having a hydraulic source for driving an actuator, a plurality of working and / or vibrating working units driven by pressure oil from the hydraulic source, and a boom, arm and bucket. A working machine vibrating device of a hydraulic shovel that vibrates the working machine by at least one of the working machine working machine or the vibrating working machine.
前記油圧源(10)からの圧油を連続的に切換えて吐出する回転式振動弁(15)と、 前記回転式振動弁(15)により切換えられた吐出油を連続して一方向に吐出する位 置と、 交互に切換えて吐出する位置との二つの位置を有する振動モー ド切換弁(1 7)とを備え、 A rotary vibration valve (15) for continuously switching and discharging the pressure oil from the hydraulic pressure source (10); and a discharge oil switched by the rotary vibration valve (15) for continuously discharging in one direction. A vibration mode switching valve (17) having two positions, a position and a position for alternately switching and discharging.
前記振動モー ド切換弁(17)からの吐出油を前記作業機用ァクチユエ一夕(5, 7, 9) 又は前記振動用ァクチユエ一夕(30)に供袷することを特徴とする油圧ショベルの 作業機振動装置。 A hydraulic excavator, characterized in that oil discharged from the vibration mode switching valve (17) is supplied to the work equipment work equipment (5, 7, 9) or the vibration work equipment work (30). Work machine vibration device.
2 . 請求の範囲 1記載の油圧ショベルの作業機振動装置において、 2. The working machine vibration device for a hydraulic shovel according to claim 1,
前記油圧源(10)からの圧油を切換えて、 前記回転式振動弁(15)及び前記振動モー ド切換弁(17)を介して、 振動用ァクチユエ一夕(30)に供袷する第 1方向切換弁(1 1 )と、 The first oil, which switches the pressure oil from the hydraulic pressure source (10) and is supplied to the vibration actuator (30) via the rotary vibration valve (15) and the vibration mode switching valve (17). Directional valve (1 1)
前記油圧源(10)と前記作業機用ァクチユエ一夕(5, 7, 9) とをそれぞれ接続する菅 路と、 A pipeline connecting the hydraulic power source (10) and the working machine actuator (5, 7, 9), respectively;
前記菅路に配設されて、 前記作業機用ァクチユエ一夕(5. 7, 9) の少なく とも一つ への給油をパイロッ 卜弁(24A) により切換える第 2方向切換弁(13)とを設けるこ とを特徵とする。 A second directional control valve (13), which is disposed in the channel and switches at least one of the working machine actuators (5.7, 9) by a pilot valve (24A); It is specially provided.
3 . 請求の範囲 1記載の油圧ショベルの作業機振動装置において、 3. The working machine vibration device for a hydraulic shovel according to claim 1,
前記油圧源(10)からの圧油を切換えて、 前記回転式振動弁(15)及び前記振動モー ド切換弁(17)を介して前記作業機用ァクチユエータ(5,7.9) の少なく とも一つに 供給する第 1方向切換弁(11)と、 By switching the pressure oil from the hydraulic pressure source (10), the rotary vibration valve (15) and the vibration mode are switched. A first directional switching valve (11) for supplying at least one of the working machine actuators (5,7.9) via a switching valve (17);
前記油圧源(10)と前記作業機用ァクチユエ一夕(5,7,9) の少なく とも他の一つと を接続する菅路と、 A pipe connecting the hydraulic power source (10) and at least one of the working machine actuators (5, 7, 9);
前記菅路に配設されて、 前記少なく とも他の一つへの給油をパイロッ 卜弁(24Α) により切換える第 2方向切換弁(13)とを設けることを特徴とする。 A second directional control valve (13) that is provided in the channel and that switches oil supply to at least the other one by a pilot valve (24 °).
4. 請求の範囲 3記載の油圧ショベルの作業機振動装置において、 4. The working machine vibration device for a hydraulic shovel according to claim 3,
前記第 1方向切換弁(11)により切換制御される前記作業機用ァクチユエ一夕(5,7 ,9) の少なく とも一つは、 バケツ ト用ァクチユエ一夕(9) であることを特徴とす る。 At least one of the work implement actuators (5, 7, 9) controlled to be switched by the first directional switching valve (11) is a bucket actuator (9). You.
5. 請求の範囲 2〜 4のいずれか一に記載の油圧ショベルの作業機振動装置にお いて、 5. The working machine vibration device for a hydraulic shovel according to any one of claims 2 to 4,
前記第 1方向切換弁(11)の切換は、 振動モー ド切換操作部(21)からの信号により 行われることを特徴とする。 The switching of the first direction switching valve (11) is performed by a signal from a vibration mode switching operation section (21).
6. 請求の範囲 2〜 4のいずれか一に記載の油圧シ ョベルの作業機振動装置にお いて、 6. In the working machine vibration device for a hydraulic shovel according to any one of claims 2 to 4,
前記回転式振動弁(15)を駆動する油圧モータ(14)と、 A hydraulic motor (14) for driving the rotary vibration valve (15),
前記油圧源(10)からの圧油の供袷を制御する油圧モータ ON/0 F F切換弁(12) と、 A hydraulic motor ON / 0 F F switching valve (12) for controlling the supply of pressure oil from the hydraulic source (10);
前記油圧モータ ONZO F F切換弁(12)からの流量を調整する流量調整弁(16)と を設け、 A flow control valve (16) for adjusting the flow from the hydraulic motor ONZO F F switching valve (12);
前記流量調整弁(16)からの調整された流量により前記油圧モータ(14)が回転する と共に、 前記油圧モータ(14)の回転数に応じて前記回転式振動弁(15)の振動周波 数が制御されることを特徴とする。 The hydraulic motor (14) is rotated by the adjusted flow rate from the flow control valve (16), and the vibration frequency of the rotary vibration valve (15) is changed according to the rotation speed of the hydraulic motor (14). It is characterized by being controlled.
7 . 請求の範囲 2又は 3記載の油圧ショベルの作業機振動装置において、 前記第 2方向切換弁(13)により切換給油される前記作業機用ァクチユエ一夕はブ 一ム用ァクチユエ一夕(5) であり、 7. The working machine vibration device for a hydraulic shovel according to claim 2 or 3, wherein the working machine operated by the second directional switching valve (13) is refueled by a switch. ) And
前記第 2方向切換弁(13)と前記ブーム用ァクチユエ一夕(5) との間の前記菅路に 、 アキュムレータ用切換弁(29)の流入側を接続すると共に、 前記アキュムレータ 用切換弁(29)の吐出側にアキュムレー夕(29c ) を接続し、 An inflow side of an accumulator switching valve (29) is connected to the pipe between the second directional switching valve (13) and the boom actuator (5), and the accumulator switching valve (29) is connected. Connect the accumulator (29c) to the discharge side of
前記第 1方向切換弁(13)及び前記アキュムレータ用切換弁(29)が、 前記パイ口ッ ト弁(24A) からのパイロッ ト圧信号又は電気式振動モー ド切換操作部(45)からの 電気信号により切換わることを特徴とする。 The first directional switching valve (13) and the accumulator switching valve (29) are provided with a pilot pressure signal from the pilot port valve (24A) or an electric signal from an electric vibration mode switching operation unit (45). Switching is performed by a signal.
8 . 請求の範囲 2又は 3記載の油圧ショベルの作業機振動装置において、 前記作業機用ァクチユエ一夕(5, 7, 9) の圧力を検出する圧力スィ ツチ(53, 54. 55) を設け、 8. The working machine vibration device for a hydraulic shovel according to claim 2 or 3, further comprising: a pressure switch (53, 54. 55) for detecting a pressure of the working machine actuator (5, 7, 9). ,
前記検出圧力に基づいて、 前記作業機用ァクチユエ一夕(5. 7, 9) の少なく とも一 つが駆動状態の場合、 前記振動用ァクチユエ一夕(30)へ圧油を供給することを特 徴とする。 Based on the detected pressure, when at least one of the working machine tools (5.7, 9) is in a driving state, a pressure oil is supplied to the vibration machine tool (30). And
PCT/JP1995/002010 1994-10-05 1995-10-03 Vibrating device for an operating machine for a hydraulic shovel WO1996011306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95932957A EP0785312A4 (en) 1994-10-05 1995-10-03 Vibrating device for an operating machine for a hydraulic shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26443394A JP3562730B2 (en) 1994-10-05 1994-10-05 Hydraulic excavator work equipment vibration device
JP6/264433 1994-10-05

Publications (1)

Publication Number Publication Date
WO1996011306A1 true WO1996011306A1 (en) 1996-04-18

Family

ID=17403125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002010 WO1996011306A1 (en) 1994-10-05 1995-10-03 Vibrating device for an operating machine for a hydraulic shovel

Country Status (5)

Country Link
EP (1) EP0785312A4 (en)
JP (1) JP3562730B2 (en)
KR (1) KR0161616B1 (en)
CN (1) CN1159843A (en)
WO (1) WO1996011306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651594B4 (en) * 1996-04-30 2006-07-27 Volvo Construction Equipment Holding Sweden Ab Apparatus and method for automatically shaking working parts of motor vehicles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057044B (en) * 2004-11-17 2012-08-29 株式会社小松制作所 Swing control device and construction machinery
CN103882902A (en) * 2014-03-12 2014-06-25 中国人民解放军63983部队 Control system of embedded automatic vibration mining device
CN104674866A (en) * 2015-01-30 2015-06-03 福建农林大学 Vibration excavator adjustable in amplitude and frequency
JP7171317B2 (en) * 2018-08-30 2022-11-15 日立建機株式会社 working machine
CN114197568A (en) * 2021-12-17 2022-03-18 无锡广泰凿岩设备有限公司 Liquid-driven automatic vibration controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0169903U (en) * 1987-10-27 1989-05-10
JPH07139522A (en) * 1993-11-12 1995-05-30 Teijin Seiki Co Ltd Fluid circuit for working cylinder of civil engineering construction machine
JPH07158616A (en) * 1993-12-07 1995-06-20 Teijin Seiki Co Ltd Fluid cylinder control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929732B2 (en) * 1979-12-25 1984-07-23 修作 「よし」野 pile punching machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0169903U (en) * 1987-10-27 1989-05-10
JPH07139522A (en) * 1993-11-12 1995-05-30 Teijin Seiki Co Ltd Fluid circuit for working cylinder of civil engineering construction machine
JPH07158616A (en) * 1993-12-07 1995-06-20 Teijin Seiki Co Ltd Fluid cylinder control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0785312A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651594B4 (en) * 1996-04-30 2006-07-27 Volvo Construction Equipment Holding Sweden Ab Apparatus and method for automatically shaking working parts of motor vehicles

Also Published As

Publication number Publication date
JPH08105077A (en) 1996-04-23
CN1159843A (en) 1997-09-17
EP0785312A4 (en) 1998-01-28
EP0785312A1 (en) 1997-07-23
KR960014552A (en) 1996-05-22
JP3562730B2 (en) 2004-09-08
KR0161616B1 (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JP5060723B2 (en) Configurable hydraulic control system
JP5060734B2 (en) Hydraulic system with variable back pressure control
JP5026055B2 (en) Multiple actuator pressure based flow control system
US7726125B2 (en) Hydraulic circuit for rapid bucket shake out
JP6134614B2 (en) Drive device for work machine
WO2014192481A1 (en) Work vehicle and method for controlling work vehicle
US20140166362A1 (en) Implement Pose Control System and Method
WO1996011306A1 (en) Vibrating device for an operating machine for a hydraulic shovel
KR101791233B1 (en) power matching system for excavator and controlling method of the same
JP4446851B2 (en) Hydraulic drive device for work machine
JP3537520B2 (en) Drilling control device
JP2567442Y2 (en) Drive device for bucket with breaker
JPH1018339A (en) Arm position control method of construction machine and controller thereof
JP3594148B2 (en) Variable bucket edge force device for hydraulic excavator
JPH11229444A (en) Hydraulic controller for construction machinery and its hydraulic control method
JP2020147907A (en) Work machine
US11608610B2 (en) Control of a hydraulic system
KR101807883B1 (en) Construction equipment auto control system and method of electricity joystick control base
JPH0776453B2 (en) Work machine trajectory control device
JPH0693630A (en) Construction equipment service bucket control device
JP3938889B2 (en) Hydraulic circuit for construction machinery
JP3579232B2 (en) High / low speed switching circuit for earth drill
JPH08284197A (en) Bucket-type excavator
KR20210109334A (en) Construction machinery
KR101983328B1 (en) Construction equipment auto control system and method of Hydraulic electricity joystick control base

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95195479.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1997 809842

Country of ref document: US

Date of ref document: 19970402

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1995932957

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995932957

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995932957

Country of ref document: EP