WO1996006802A1 - Method for the preparation of trisilane from monosilane - Google Patents
Method for the preparation of trisilane from monosilane Download PDFInfo
- Publication number
- WO1996006802A1 WO1996006802A1 PCT/FR1995/001093 FR9501093W WO9606802A1 WO 1996006802 A1 WO1996006802 A1 WO 1996006802A1 FR 9501093 W FR9501093 W FR 9501093W WO 9606802 A1 WO9606802 A1 WO 9606802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- monosilane
- trisilane
- disilane
- gas
- reaction zone
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/04—Hydrides of silicon
Definitions
- the invention relates to a process for preparing trisilane from monosilane by electrical discharge and cryogenic trapping.
- the quality of the screen is notably linked to the size of the silicon grains: this level of quality is all the more high as the grain size is large.
- a grain size of the order of 0.5 micron is obtained.
- disilane it is possible to multiply the size of the polycrystalline silicon grains by approximately a factor of 10.
- the deposition rate is, any other parameter equal, approximately 20 times greater in the case of disilane than in the case of monosilane.
- the gas mixture is then brought into contact, in this reaction method, in the reaction zone under electrical discharge, with a wall cooled to a temperature sufficiently low that the saturated vapor pressure of the disilane is negligible. but not low enough for the monosilane to be condensable at working pressure.
- the temperature of the cold wall is preferably in the range [-120 ° C, -145 ° C]. Requirement above also describes a reactor suitable in particular for the implementation of this process.
- the process for producing disilane described in the document already cited, additionally mainly generates disilane, by-products in very small quantities such as hydrogenated amorphous silicon but also trisilane.
- the Applicant has continued the work leading to the above-mentioned process, so as to propose a new process dedicated to the synthesis of trisilane.
- the present invention therefore aims to provide a process for the synthesis of trisilane, allowing, using sufficient yields, to reach concentrations of trisilane of at least 10 to 20% in the collected mixture, which can then, depending on the concentration requirements. expressed by the user, be used as is or serve as the basis for a possible subsequent concentration by distillation.
- the present invention therefore relates to a process for producing trisilane from monosilane, according to which gaseous monosilane is passed through a reaction zone where it is subjected to an electric discharge generated by a high frequency current, characterized in that: a) the monosilane is used in the form of a mixture with at least one inert gas chosen from the group formed by helium and argon; b) the pressure of the gas mixture in the reaction zone is between 0.1 and 3 10 5 Pa, and c) the gas mixture is brought into contact, in the reaction zone under electrical discharge, with a wall cooled to a strictly temperature greater than -120 ° C and less than or equal to -90 ° C, preferably situated in the range [-115 ° C, -100 ° C].
- the process of the invention is therefore based on the joint use of an electrical discharge which forms plasma and an adequate cryogenic trap in the reaction zone itself.
- the electric discharge which is of the so-called silent or dielectric barrier type (for example a corona discharge), acts on the molecules of monosilane to create ions, radicals, excited molecules, these species reacting with each other to form in the first place disilane.
- the latter which taking into account the cold wall temperature conditions practiced is not trapped, then also undergoes electric shock to in turn form excited species which react, in particular with those of monosilane, to form trisilane.
- the trisilane formed is trapped by condensation on the cold walls of the reactor, it is therefore extracted from the active area and does not undergo discharge.
- the feeding of the gaseous mixture is advantageously stopped, advantageously the reactor being purged using an inert gas such as helium and then placing the reactor under vacuum, in order to expel light gases (helium, hydrogen, monosilane, etc.), the trisilane is then collected in the form of a gaseous mixture with possibly traces of helium and disilane.
- the absolute pressure of the gas mixture can range from 0.1 to 3 10 ⁇ Pa, preferably from 1 to 1.3 10 ⁇ Pa.
- the composition of the gaseous mixture obtained will very largely depend on the operating pressure. Indeed, it appears that the partial pressure of the starting monosilane can advantageously be between 0.01 and 0.110 ⁇ Pa, preferably between 0.04 and 0.08 10 ⁇ Pa, a partial pressure of less than 0 , 01 10 ⁇ Pa giving rise to a low productivity of trisilane and a partial pressure of monosilane of more than 0.110 ⁇ Pa requiring a high initiation voltage of the electric discharge which can cause damaging breakdowns in the material.
- the operation is carried out at a pressure close to the minimum pressure of 0.110 ⁇ Pa, it is advantageously possible to use a starting gaseous mixture which is predominantly a monosilane. If one operates at atmospheric pressure or slightly above, the starting gas mixture advantageously contains 1 to 10%, preferably 4 to 8% by volume of silane, and 90 to 99%, preferably 92 to 96% by volume. volume of inert gas. It should be noted that the gas mixture can include, in addition to the monosilane and the inert gas, a small amount of hydrogen (less than 10% by volume for example) without this being detrimental to the process.
- the frequency of the electrical current adopted seems to influence the yield of trisilane.
- a frequency of 3 kHz appreciably improves the yield of trisilane compared to a frequency of 50 kHz.
- the frequency may therefore advantageously (in the current state of knowledge) be between 1 and 50 kHz, preferably between 1 and 10 kHz, and more preferably between 2 and 5 kHz.
- the residence time of the gas mixture in the reaction zone is advantageously short, for example less than 10 seconds, preferably less than 4 seconds, and better still less than 2 seconds.
- the temperature of the cold wall is an important element of the process, it must be low enough for the saturated vapor pressure of the trisilane to be negligible but insufficiently low for the disilane to be trapped in large quantities. It has been found that a cold wall temperature strictly greater than -120 ° C and less than or equal to -90 ° C, and preferably situated in the range [-115 ° C, -100 ° C1 constitute satisfactory conditions meeting the objectives sought. Below -120 ° C, the conditions for obtaining the disilane would be favored, and above -90 ° C, the trisilane would be insufficiently trapped.
- the cold wall temperature used corresponds to the yields of conversion of the silane transformed into disilane or into trisilane.
- the given composition of the recovered gas corresponds to the gas composition which is obtained after the synthesis by discharge and evacuating the reactor after purging with helium to expel light gases (helium, hydrogen, monosilane, etc.).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Method for the production of trisilane from monosilane, by which gaseous monosilane is passed into a reactive area where it is subjected to an electric discharge produced by a high frequency current. The method is characterized in that a) the monosilane is used in the form of a mixture with at least one inert gas chosen from the group consisting of helium and argon; b) the pressure of the gaseous mixture in the reactive area is from 0.1 to 3 105 Pa, and c) the gaseous mixture is placed in contact, within the reactive area under the electric discharge, with a wall cooled to a temperature which must be over -120 °C and at most -90 °C, preferably in the range of 115 °C - 100 °C. The invention is for use, in particular, in the electronic industry.
Description
PROCEDE DE PREPARATION DE TRISI LANE A PARTIR DE MONOSI LANE PROCESS FOR THE PREPARATION OF TRISI LANE FROM MONOSI LANE
L'invention concerne un procédé de préparation de trisilane à partir du monosilane par décharge électrique et piégeage cryogénique.The invention relates to a process for preparing trisilane from monosilane by electrical discharge and cryogenic trapping.
L'emploi de polysilanes dans l'industrie de la micro-électronique soulève un très grand intérêt. Ainsi, l'utilisation du disilane pour réaliser des dépôts de silicium amorphe semi-conducteur, en remplacement du monosilane, présente de très importants avantages : augmentation des vitesses de dépôt et abaissement de la température de dépôt.The use of polysilanes in the microelectronics industry is of great interest. Thus, the use of disilane to produce semiconductor amorphous silicon deposits, in replacement of monosilane, has very important advantages: increased deposition rates and lowering of the deposition temperature.
Ainsi, en considérant l'exemple des dépôts de silicium polycristallin sur écran plat haute résolution, il a été démontré que la qualité de l'écran se trouve notamment liée à la taille des grains de silicium : ce niveau de qualité est d'autant plus élevé que la taille des grains est grande. Lorsqu'on utilise à titre de précurseur du silicium le monosilane, on obtient une taille de grains de l'ordre de 0,5 micron. Des travaux de recherche visant à l'amélioration de la taille des grains ont démontré que par l'utilisation du disilane, il était possible de multiplier la taille des grains de silicium polycristallin par environ un facteur 10. Par ailleurs, il a pu être démontré, que la vitesse de dépôt est, tout autre paramètre égal par ailleurs, environ 20 fois plus importante dans le cas du disilane que dans le cas du monosilane.Thus, by considering the example of polycrystalline silicon deposits on high resolution flat screen, it has been shown that the quality of the screen is notably linked to the size of the silicon grains: this level of quality is all the more high as the grain size is large. When monosilane is used as the precursor of silicon, a grain size of the order of 0.5 micron is obtained. Research aimed at improving the grain size has shown that by using disilane, it is possible to multiply the size of the polycrystalline silicon grains by approximately a factor of 10. Furthermore, it has been possible to demonstrate , that the deposition rate is, any other parameter equal, approximately 20 times greater in the case of disilane than in the case of monosilane.
Ces avantages considérables se heurtent néanmoins au prix très élevé du disilane (environ 10 fois plus important que celui du monosilane). La Demanderesse a récemment proposé, dans la demande de brevet français publiée sous le numéro FR-2, 702,467, intégrée ici pour référence, un procédé de production du disilane à partir du monosilane, selon lequel on fait passer du monosilane gazeux dans une zone réactionnelle où il est soumis à une décharge électrique engendrée par un courant haute fréquence, le monosilane étant utilisé en mélange avec au moins un gaz inerte choisi parmi l'hélium et l'argon et la pression du mélange gazeux dans la zone réactionnelle étant comprise entre 0, 1 et 3 10^ Pa. On met alors en contact, selon ce procédé, le mélange gazeux, dans la zone réactionnelle sous décharge électrique, avec une paroi refroidie à une température suffisamment basse pour que la pression de vapeur saturante du disilane soit négligeable mais pas assez basse pour que le monosilane soit condensable à la pression de travail. La température de la paroi froide se situe préférentiellement dans la gamme [-120°C, -145°C]. La demande
précitée décrit également un réacteur convenant notamment pour la mise en oeuvre de ce procédé.These considerable advantages nevertheless run up against the very high price of disilane (approximately 10 times higher than that of monosilane). The Applicant recently proposed, in the French patent application published under the number FR-2, 702.467, integrated here for reference, a process for the production of disilane from monosilane, according to which gaseous monosilane is passed through a reaction zone where it is subjected to an electric discharge generated by a high frequency current, the monosilane being used in mixture with at least one inert gas chosen from helium and argon and the pressure of the gaseous mixture in the reaction zone being between 0 , 1 and 3 10 ^ Pa. The gas mixture is then brought into contact, in this reaction method, in the reaction zone under electrical discharge, with a wall cooled to a temperature sufficiently low that the saturated vapor pressure of the disilane is negligible. but not low enough for the monosilane to be condensable at working pressure. The temperature of the cold wall is preferably in the range [-120 ° C, -145 ° C]. Requirement above also describes a reactor suitable in particular for the implementation of this process.
Les industriels développant la technologie des écrans plats ont récemment montré un intérêt certain pour le fait de pouvoir effectuer des expérimentations comparatives entre le disilane et un autre silane supérieur qui est le trisilane, l'extrapolation des résultats obtenus avec le monosilane et le disilane laissant envisager une taille de grains et une vitesse de dépôt encore améliorés, en d'autres termes, une meilleure qualité d'écran et une productivité renforcée.Industrialists developing flat screen technology have recently shown a certain interest in being able to carry out comparative experiments between disilane and another higher silane which is trisilane, extrapolating the results obtained with monosilane and disilane leaving to consider even better grain size and deposition speed, in other words, better screen quality and increased productivity.
Néanmoins, les expérimentations mettant en oeuvre du trisilane se révèlent en pratique difficiles à mener. La raison essentielle en est que l'approvisionnement en trisilane est actuellement très marginal, seules de très faibles quantités de trisilane étant disponibles sur le marché et les prix pratiqués étant généralement dissuasifs. Ces prix dissuasifs sont le résultat de grandes difficultés de mise en oeuvre des procédés de synthèse du trisilane (rappelons que le trisilane est actuellement obtenu par réaction chimique de silanes supérieurs chlorés sur de l'hydrure d'aluminium lithium, réaction délicate générant des quantités importantes de déchets).However, the experiments using trisilane prove in practice difficult to carry out. The main reason for this is that the supply of trisilane is currently very marginal, only very small quantities of trisilane being available on the market and the prices charged being generally dissuasive. These dissuasive prices are the result of great difficulties in implementing the processes for synthesizing trisilane (it should be remembered that trisilane is currently obtained by chemical reaction of chlorinated higher silanes on lithium aluminum hydride, a delicate reaction generating large quantities of waste).
Il apparaît alors que le développement du marché du trisilane, en liaison avec de réels besoins exprimés par les industriels de la micro-électronique, passent avant tout par la mise au point d'un procédé performant et peu onéreux de synthèse de ce composé.It then appears that the development of the trisilane market, in conjunction with real needs expressed by microelectronics manufacturers, requires above all the development of an efficient and inexpensive process for the synthesis of this compound.
Le procédé de production de disilane, décrit dans le document déjà cité, génère outre majoritairement du disilane, des sous-produits en très faibles quantités comme du silicium amorphe hydrogéné mais aussi du trisilane. Dans ce contexte, la Demanderesse a poursuivi les travaux ayant conduit au procédé susmentionné, de façon à proposer un nouveau procédé dédié à la synthèse du trisilane.The process for producing disilane, described in the document already cited, additionally mainly generates disilane, by-products in very small quantities such as hydrogenated amorphous silicon but also trisilane. In this context, the Applicant has continued the work leading to the above-mentioned process, so as to propose a new process dedicated to the synthesis of trisilane.
La présente invention vise alors à fournir un procédé de synthèse du trisilane, permettant à l'aide de rendements suffisants, d'atteindre des concentrations de trisilane d'au moins 10 à 20 % dans le mélange recueilli, pouvant alors selon les besoins en concentration exprimés par l'utilisateur, être utilisé tel que ou bien servir de base à une éventuelle concentration ultérieure par distillation.The present invention therefore aims to provide a process for the synthesis of trisilane, allowing, using sufficient yields, to reach concentrations of trisilane of at least 10 to 20% in the collected mixture, which can then, depending on the concentration requirements. expressed by the user, be used as is or serve as the basis for a possible subsequent concentration by distillation.
La présente invention concerne alors un procédé de production de trisilane à partir de monosilane, selon lequel on fait passer du monosilane gazeux dans une zone réactionnelle où il est soumis à une décharge électrique engendrée par un courant haute fréquence, se caractérisant en ce que :
a) le monosilane est utilisé sous forme d'un mélange avec au moins un gaz inerte choisi dans le groupe formé par l'hélium et l'argon ; b) la pression du mélange gazeux dans la zone réactionnelle est comprise entre 0,1 et 3 105 Pa, et c) on met en contact le mélange gazeux, dans la zone réactionnelle sous décharge électrique, avec une paroi refroidie à une température strictement supérieure à -120°C et inférieure ou égale à -90°C, se situant préférentiellement dans la gamme [-115°C , -100°C].The present invention therefore relates to a process for producing trisilane from monosilane, according to which gaseous monosilane is passed through a reaction zone where it is subjected to an electric discharge generated by a high frequency current, characterized in that: a) the monosilane is used in the form of a mixture with at least one inert gas chosen from the group formed by helium and argon; b) the pressure of the gas mixture in the reaction zone is between 0.1 and 3 10 5 Pa, and c) the gas mixture is brought into contact, in the reaction zone under electrical discharge, with a wall cooled to a strictly temperature greater than -120 ° C and less than or equal to -90 ° C, preferably situated in the range [-115 ° C, -100 ° C].
Le procédé de l'invention est donc basé sur l'utilisation conjointe d'une décharge électrique formatrice de plasma et d'un piège cryogénique adéquat dans la zone réactionnelle même.The process of the invention is therefore based on the joint use of an electrical discharge which forms plasma and an adequate cryogenic trap in the reaction zone itself.
La décharge électrique, qui est du type dit silencieux ou à barrière diélectrique (par exemple une décharge couronne), agit sur les molécules de monosilane pour créer des ions, des radicaux, des molécules excitées, ces espèces réagissant entre elles pour former en premier lieu du disilane. Ce dernier, qui compte tenu des conditions de température de paroi froide pratiquées n'est pas piégé, subit alors également la décharge électrique pour former à son tour des espèces excitées qui réagissent, notamment avec celles du monosilane, pour former du trisilane. Le trisilane formé est lui piégé par condensation sur les parois froides du réacteur, il est donc extrait de la zone active et ne subit pas la décharge.The electric discharge, which is of the so-called silent or dielectric barrier type (for example a corona discharge), acts on the molecules of monosilane to create ions, radicals, excited molecules, these species reacting with each other to form in the first place disilane. The latter, which taking into account the cold wall temperature conditions practiced is not trapped, then also undergoes electric shock to in turn form excited species which react, in particular with those of monosilane, to form trisilane. The trisilane formed is trapped by condensation on the cold walls of the reactor, it is therefore extracted from the active area and does not undergo discharge.
Les phases en présence durant le processus de décharge/piégeage sont donc notamment les suivantes :The phases involved during the discharge / trapping process are therefore in particular the following:
- une phase gazeuse comprenant du disilane, du gaz inerte, de l'hydrogène, mais aussi des traces de monosilane n'ayant pas réagi,- a gas phase comprising disilane, inert gas, hydrogen, but also traces of unreacted monosilane,
- une phase solide sous forme de particules de silicium amorphe hydrogéné, eta solid phase in the form of particles of hydrogenated amorphous silicon, and
- une phase liquide composée essentiellement de trisilane dans laquelle a pu néanmoins être solubilisé en plus ou moins faible quantité du disilane. A la fin de la période de réaction, en vue de récupérer le trisilane stocké sous forme liquide, on procède, après avoir stoppé l'alimentation en mélange gazeux, avantageusement à la purge du réacteur à l'aide d'un gaz inerte tel que l'hélium puis à la mise sous vide du réacteur, en vue de chasser les gaz légers (hélium, hydrogène, monosilane..), le trisilane est alors recueilli sous forme d'un mélange gazeux avec éventuellement des traces d'hélium et de disilane.- A liquid phase consisting essentially of trisilane in which it could nevertheless be dissolved in more or less small amount of the disilane. At the end of the reaction period, with a view to recovering the trisilane stored in liquid form, the feeding of the gaseous mixture is advantageously stopped, advantageously the reactor being purged using an inert gas such as helium and then placing the reactor under vacuum, in order to expel light gases (helium, hydrogen, monosilane, etc.), the trisilane is then collected in the form of a gaseous mixture with possibly traces of helium and disilane.
La pression absolue du mélange gazeux peut aller de 0,1 à 3 10^ Pa, de préférence de 1 à 1,3 10^ Pa.
La composition du mélange gazeux obtenu va très largement dépendre de la pression opératoire. En effet, il apparaît que la pression partielle du monosilane de départ peut se situer avantageusement entre 0,01 et 0, 1 10^ Pa, de préférence entre 0,04 et 0,08 10^ Pa, une pression partielle de moins de 0,01 10^ Pa donnant lieu à une faible productivité de trisilane et une pression partielle de monosilane de plus de 0, 1 10^ Pa nécessitant une tension d'amorçage élevée de la décharge électrique qui peut provoquer des claquages dommageables au matériel.The absolute pressure of the gas mixture can range from 0.1 to 3 10 ^ Pa, preferably from 1 to 1.3 10 ^ Pa. The composition of the gaseous mixture obtained will very largely depend on the operating pressure. Indeed, it appears that the partial pressure of the starting monosilane can advantageously be between 0.01 and 0.110 ^ Pa, preferably between 0.04 and 0.08 10 ^ Pa, a partial pressure of less than 0 , 01 10 ^ Pa giving rise to a low productivity of trisilane and a partial pressure of monosilane of more than 0.110 ^ Pa requiring a high initiation voltage of the electric discharge which can cause damaging breakdowns in the material.
Si l'on opère à une pression voisine de la pression minimale de 0, 1 10^ Pa, on pourra avantageusement utiliser un mélange gazeux de départ fortement majoritaire en monosilane. Si l'on opère à la pression atmosphérique ou légèrement au dessus, le mélange gazeux de départ contient avantageusement 1 à 10 %, de préférence 4 à 8 % en volume de silane, et 90 à 99%, de préférence 92 à 96 % en volume du gaz inerte. II est à noter que le mélange gazeux peut inclure outre le monosilane et le gaz inerte, une petite quantité d'hydrogène (moins de 10 % en volume par exemple) sans que cela soit préjudiciable au procédé.If the operation is carried out at a pressure close to the minimum pressure of 0.110 ^ Pa, it is advantageously possible to use a starting gaseous mixture which is predominantly a monosilane. If one operates at atmospheric pressure or slightly above, the starting gas mixture advantageously contains 1 to 10%, preferably 4 to 8% by volume of silane, and 90 to 99%, preferably 92 to 96% by volume. volume of inert gas. It should be noted that the gas mixture can include, in addition to the monosilane and the inert gas, a small amount of hydrogen (less than 10% by volume for example) without this being detrimental to the process.
La fréquence du courant électrique adoptée semble influencer le rendement en trisilane. Ainsi par exemple, il a pu être constaté qu'avec l'installation utilisée pour les exemples décrits ci-dessous, une fréquence de 3 kHz améliorait sensiblement le rendement en trisilane par rapport à une fréquence de 50 kHz. La fréquence pourra donc avantageusement (en l'état actuel des connaissances) se situer entre 1 et 50 kHz, préférentiellement entre 1 et 10 kHz, et plus préférentiellement entre 2 et 5 kHz. Le temps de séjour du mélange gazeux dans la zone réactionnelle est avantageusement bref, par exemple inférieur à 10 secondes, de préférence inférieur à 4 secondes, et mieux encore inférieur à 2 secondes.The frequency of the electrical current adopted seems to influence the yield of trisilane. Thus, for example, it has been found that with the installation used for the examples described below, a frequency of 3 kHz appreciably improves the yield of trisilane compared to a frequency of 50 kHz. The frequency may therefore advantageously (in the current state of knowledge) be between 1 and 50 kHz, preferably between 1 and 10 kHz, and more preferably between 2 and 5 kHz. The residence time of the gas mixture in the reaction zone is advantageously short, for example less than 10 seconds, preferably less than 4 seconds, and better still less than 2 seconds.
La température de la paroi froide est un élément important du procédé, elle doit être suffisamment basse pour que la pression de vapeur saturante du trisilane soit négligeable mais insuffisamment basse pour que le disilane soit piégé en grande quantité. On a trouvé qu'une température de paroi froide strictement supérieure à -120°C et inférieure ou égale à -90°C, et se situant préférentiellement dans la gamme [-115°C , -100°C1 constituaient des conditions satisfaisantes répondant aux objectifs recherchés. Au dessous de -120°C, on favoriserait les conditions d'obtention du disilane, et au dessus de -90°C, le trisilane serait insuffisamment piégé.The temperature of the cold wall is an important element of the process, it must be low enough for the saturated vapor pressure of the trisilane to be negligible but insufficiently low for the disilane to be trapped in large quantities. It has been found that a cold wall temperature strictly greater than -120 ° C and less than or equal to -90 ° C, and preferably situated in the range [-115 ° C, -100 ° C1 constitute satisfactory conditions meeting the objectives sought. Below -120 ° C, the conditions for obtaining the disilane would be favored, and above -90 ° C, the trisilane would be insufficiently trapped.
A l'aide d'un réacteur tel que celui décrit dans le document précité et intégré pour référence, on a conduit plusieurs synthèses de mélanges
comprenant des quantités significatives de trisilane. Les conditions expérimentales communes à tous ces exemples de mise en oeuvre sont les suivantes :Using a reactor such as that described in the above-mentioned document and integrated for reference, several syntheses of mixtures have been carried out. comprising significant amounts of trisilane. The experimental conditions common to all these examples of implementation are as follows:
- débit total du mélange gazeux alimentant le réacteur = 100 cm^/min. ; - concentration de silane dans le mélange gazeux entrant = 5 % ;- total flow of the gas mixture feeding the reactor = 100 cm ^ / min. ; - concentration of silane in the incoming gas mixture = 5%;
- gaz porteur neutre = hélium ;- neutral carrier gas = helium;
- pression dans la zone réactionnelle = 1, 1 10^ Pa .- pressure in the reaction zone = 1, 1 10 ^ Pa.
Pour chacun des quatre exemples décrits ci-dessous, les informations suivantes seront données et commentées : la température de paroi froide pratiquée, les rendements obtenus en disilane et en trisilane, ainsi que la composition du gaz récupéré. Les rendements donnés correspondent aux rendements de conversion du silane transformé en disilane ou en trisilane. La composition donnée du gaz récupéré correspond à la composition de gaz que l'on obtient après la synthèse par décharge et mise sous vide du réacteur après purge à l'hélium pour chasser les gaz légers (hélium, hydrogène, monosilane..).For each of the four examples described below, the following information will be given and commented on: the cold wall temperature used, the yields obtained in disilane and in trisilane, as well as the composition of the recovered gas. The yields given correspond to the yields of conversion of the silane transformed into disilane or into trisilane. The given composition of the recovered gas corresponds to the gas composition which is obtained after the synthesis by discharge and evacuating the reactor after purging with helium to expel light gases (helium, hydrogen, monosilane, etc.).
Exemple j. (selon l'invention) :Example j. (according to the invention):
Température = - 100°C ; puissance électrique = 9,3 Watt.Temperature = - 100 ° C; electrical power = 9.3 Watt.
Composition du gaz récupéré : disilane = 70,9 %, trisilane = 29, 1 %.Composition of the recovered gas: disilane = 70.9%, trisilane = 29, 1%.
Rendement (disilane) = 6 % Rendement (trisilane) = 3,7 %.Yield (disilane) = 6% Yield (trisilane) = 3.7%.
Exemple 2 (selon l'invention) :Example 2 (according to the invention):
Température = -110°C ; puissance électrique : 8,3 WattTemperature = -110 ° C; electrical power: 8.3 Watt
Composition du gaz récupéré : disilane = 85,4 %, trisilane = 14,6 %.Composition of the recovered gas: disilane = 85.4%, trisilane = 14.6%.
Rendement (disilane) = 32,8 % Rendement (trisilane) = 8,4 %.Yield (disilane) = 32.8% Yield (trisilane) = 8.4%.
Exemple 3 (comparatif) :Example 3 (comparative):
Température = -120°C ; puissance électrique : 8,8 WattTemperature = -120 ° C; electrical power: 8.8 Watt
Composition du gaz récupéré : disilane = 96,14 %, trisilane = 3,86 %.Composition of the recovered gas: disilane = 96.14%, trisilane = 3.86%.
Rendement (disilane) = 56,9 % Rendement (trisilane) = 3,4 %.Yield (disilane) = 56.9% Yield (trisilane) = 3.4%.
Exemple 4 (comparatif) :Example 4 (comparative):
Température = -135°C ; puissance électrique : 8,6 WattTemperature = -135 ° C; electrical power: 8.6 Watt
Composition du gaz récupéré : disilane = 96,64 %, trisilane = 3,36 %.Composition of the recovered gas: disilane = 96.64%, trisilane = 3.36%.
Rendement (disilane) = 50, 1 % Rendement (trisilane) = 2,6 %.Yield (disilane) = 50.1% Yield (trisilane) = 2.6%.
Les résultats obtenus pour les deux premiers exemples de mise en oeuvre montrent qu'il est possible d'obtenir un gaz comprenant au moins 10 % de
trisilane, pouvant être selon les besoins utilisé tel quel ou pouvant servir de base à une concentration ultérieure par distillation.The results obtained for the first two examples of implementation show that it is possible to obtain a gas comprising at least 10% of trisilane, which can be used as necessary or as a base for further concentration by distillation.
Les conditions pratiquées pour le premier exemple de mise en oeuvreThe conditions for the first example of implementation
(température située dans le haut de la gamme de température), donnent lieu, par la formation non négligeable de poudres, à un rendement relativement faible, mais à une pureté en trisilane relativement élevée due au fait que l'on piège assez peu de disilane dans la phase liquide.(temperature located at the top of the temperature range), give rise, by the significant formation of powders, to a relatively low yield, but to a relatively high purity of trisilane due to the fact that relatively little disilane is trapped in the liquid phase.
Pour le second exemple de mise en oeuvre où l'on se situe dans le milieu de la gamme de température, on observe au contraire un piégeage plus important du disilane dans la phase liquide, et donc une pureté en trisilane plus réduite.For the second example of implementation where we are in the middle of the temperature range, we observe on the contrary a higher trapping of the disilane in the liquid phase, and therefore a lower purity of trisilane.
Les deux exemples qui suivent, comparatifs, sont mis en oeuvre dans des conditions de basse température, pour lesquels on retombe sur des conditions favorisant l'obtention de mélanges composés majoritairement de disilane.The two comparative examples which follow are used under low temperature conditions, for which we fall back on conditions favoring the obtaining of mixtures composed mainly of disilane.
Il va de soi que les modes de réalisation décrits ne sont que des exemples et que l'on pourrait les modifier, notamment par substitution d'équivalents techniques, sans sortir pour cela du cadre de l'invention.It goes without saying that the embodiments described are only examples and that they could be modified, in particular by substitution of technical equivalents, without departing from the scope of the invention.
Par exemple, on pourrait faire fonctionner de façon alternée deux réacteurs du genre décrit, l'un de ceux-ci alimentant une application en trisilane produit dans une opération de synthèse précédente, tandis que l'autre est en cours de synthèse de trisilane, de façon que l'utilisateur puisse disposer d'une source continue de trisilane.
For example, one could alternately operate two reactors of the kind described, one of these supplying an application with trisilane produced in a previous synthesis operation, while the other is in the process of synthesis of trisilane, so that the user can have a continuous source of trisilane.
Claims
1. Procédé de production de trisilane à partir de monosilane, selon lequel on fait passer du monosilane gazeux dans une zone réactionnelle où il est soumis à une décharge électrique engendrée par un courant haute fréquence, caractérisé en ce que : a) le monosilane est utilisé sous forme d'un mélange avec au moins un gaz inerte choisi dans le groupe formé par l'hélium et l'argon ; b) la pression du mélange gazeux dans la zone réactionnelle est comprise entre 0, 1 et 3 105 Pa , et c) on met en contact le mélange gazeux, dans la zone réactionnelle sous décharge électrique, avec une paroi refroidie à une température strictement supérieure à -120°C et inférieure ou égale à -90°C, préférentiellement située dans la gamme [-115°C, -100°C] . 1. Method for producing trisilane from monosilane, according to which gaseous monosilane is passed through a reaction zone where it is subjected to an electric discharge generated by a high frequency current, characterized in that: a) the monosilane is used in the form of a mixture with at least one inert gas chosen from the group formed by helium and argon; b) the pressure of the gas mixture in the reaction zone is between 0, 1 and 3 10 5 Pa, and c) the gas mixture is brought into contact, in the reaction zone under electrical discharge, with a wall cooled to a strictly temperature greater than -120 ° C and less than or equal to -90 ° C, preferably situated in the range [-115 ° C, -100 ° C].
2. Procédé selon la revendication 1, caractérisé en ce que la pression est comprise entre 1 et 1,3 10^ Pa.2. Method according to claim 1, characterized in that the pressure is between 1 and 1.3 10 ^ Pa.
3. Procédé selon la revendication 1, caractérisé en ce que le mélange gazeux contient 1 à 10 % en volume de monosilane et 90 à 99 % en volume de gaz inerte. 3. Method according to claim 1, characterized in that the gas mixture contains 1 to 10% by volume of monosilane and 90 to 99% by volume of inert gas.
4. Procédé selon la revendication 3, caractérisé en ce que le mélange gazeux contient 4 à 8 % en volume de monosilane et 92 % à 96 % en volume de gaz inerte.4. Method according to claim 3, characterized in that the gas mixture contains 4 to 8% by volume of monosilane and 92% to 96% by volume of inert gas.
5. Procédé selon la revendication 1, caractérisé en ce que la fréquence du courant engendrant la décharge électrique se situe entre 1 et 50 kHz, préférentiellement entre 1 et 10 kHz, et plus préférentiellement entre 2 et 5 kHz. 5. Method according to claim 1, characterized in that the frequency of the current generating the electric discharge is between 1 and 50 kHz, preferably between 1 and 10 kHz, and more preferably between 2 and 5 kHz.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9410529A FR2724162B1 (en) | 1994-09-01 | 1994-09-01 | PROCESS FOR THE PREPARATION OF TRISILANE FROM MONOSILANE, BY ELECTRIC SHOCK AND CRYOGENIC TRAP |
FR94/10529 | 1994-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996006802A1 true WO1996006802A1 (en) | 1996-03-07 |
Family
ID=9466635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR1995/001093 WO1996006802A1 (en) | 1994-09-01 | 1995-08-17 | Method for the preparation of trisilane from monosilane |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2724162B1 (en) |
WO (1) | WO1996006802A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015090996A1 (en) * | 2013-12-16 | 2015-06-25 | Evonik Industries Ag | Process and plant for producing high-purity semi-metal compounds |
CN114105148A (en) * | 2021-12-01 | 2022-03-01 | 全椒亚格泰电子新材料科技有限公司 | Method for synthesizing high-order silane by utilizing plasma ball milling and cracking |
DE102020211833A1 (en) | 2020-09-22 | 2022-03-24 | Evonik Operations Gmbh | Process for the production of oligomeric hydridosilanes from SiH4 |
CN117383565A (en) * | 2023-09-06 | 2024-01-12 | 中船(邯郸)派瑞特种气体股份有限公司 | Method and system for preparing disilane through discharge reaction |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106411A (en) * | 1984-10-27 | 1986-05-24 | Seitetsu Kagaku Co Ltd | Preparation of higher silane |
JPS62132720A (en) * | 1985-12-02 | 1987-06-16 | Fuji Electric Co Ltd | Method for forming high-order silane |
JPS62132721A (en) * | 1985-12-02 | 1987-06-16 | Fuji Electric Co Ltd | Formation for forming high-order silane |
-
1994
- 1994-09-01 FR FR9410529A patent/FR2724162B1/en not_active Expired - Fee Related
-
1995
- 1995-08-17 WO PCT/FR1995/001093 patent/WO1996006802A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61106411A (en) * | 1984-10-27 | 1986-05-24 | Seitetsu Kagaku Co Ltd | Preparation of higher silane |
JPS62132720A (en) * | 1985-12-02 | 1987-06-16 | Fuji Electric Co Ltd | Method for forming high-order silane |
JPS62132721A (en) * | 1985-12-02 | 1987-06-16 | Fuji Electric Co Ltd | Formation for forming high-order silane |
Non-Patent Citations (4)
Title |
---|
CHEMICAL ABSTRACTS, vol. 107, no. 16, 19 October 1987, Columbus, Ohio, US; abstract no. 137029p, page 163; * |
CHEMICAL ABSTRACTS, vol. 107, no. 16, 19 October 1987, Columbus, Ohio, US; abstract no. 137030g, page 164; * |
M. AKHTAR, SYNTHESIS AND REACTIVITY IN INORGANIC AND METAL-ORGANIC CHEMISTRY, vol. 16, no. 5, NEW YORK US, pages 729 - 748 * |
PATENT ABSTRACTS OF JAPAN vol. 10, no. 287 (C - 375)<2343> 30 September 1986 (1986-09-30) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015090996A1 (en) * | 2013-12-16 | 2015-06-25 | Evonik Industries Ag | Process and plant for producing high-purity semi-metal compounds |
DE102020211833A1 (en) | 2020-09-22 | 2022-03-24 | Evonik Operations Gmbh | Process for the production of oligomeric hydridosilanes from SiH4 |
WO2022063680A1 (en) | 2020-09-22 | 2022-03-31 | Evonik Operations Gmbh | Process for preparing oligomeric hydridosilanes from sih4 |
CN114105148A (en) * | 2021-12-01 | 2022-03-01 | 全椒亚格泰电子新材料科技有限公司 | Method for synthesizing high-order silane by utilizing plasma ball milling and cracking |
CN114105148B (en) * | 2021-12-01 | 2022-08-12 | 全椒亚格泰电子新材料科技有限公司 | Method for synthesizing high-order silane by utilizing plasma ball milling and cracking |
CN117383565A (en) * | 2023-09-06 | 2024-01-12 | 中船(邯郸)派瑞特种气体股份有限公司 | Method and system for preparing disilane through discharge reaction |
Also Published As
Publication number | Publication date |
---|---|
FR2724162A1 (en) | 1996-03-08 |
FR2724162B1 (en) | 1997-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1290157C (en) | CVD device with cleaning mechanism using fluorine gas and method of cleaning CVD device with fluorine gas | |
CN1170398A (en) | Preparation of perfluorocarbons | |
EP0461096B1 (en) | Process for the production of N-phenylmaleimide | |
CA1138896A (en) | Process for preparing directly beta-methylthiopropionaldehyde | |
EP3074367A1 (en) | Process for producing 1,3-butadiene from a feedstock comprising ethanol | |
WO1996006802A1 (en) | Method for the preparation of trisilane from monosilane | |
EP0181803A1 (en) | Process for the manufacture of ultrapure silicon rods | |
FR2841893A1 (en) | CALCIUM NITRIDE SYNTHESIS PROCESS | |
EP0128818B1 (en) | Process for the preparation of higher chloromethanes | |
EP0952147B1 (en) | Process for the photochemical sulfochlorination of gaseaous alkanes | |
FR2559753A1 (en) | PROCESS FOR PRODUCING DISILANE BY REDUCING HEXACHLORODISILANE | |
EP1339676A1 (en) | Method for photochemical sulphochlorination of gaseous alkanes | |
FR2710054A1 (en) | Process for the preparation of trifluoroethylene | |
EP0172596A1 (en) | Process for the pyrolytic dehydrochlorination of halogenoalkanes in the presence of a chlorinated product as an iniator, and such an iniator | |
WO1999040027A1 (en) | METHOD FOR MAKING HEXAFLUOROPHOSPHATE OF A METAL, M(PF6)n, PARTICULARLY OF LiPF6 | |
FR3051467A1 (en) | CONVERSION OF BUTANEDIOL TO BUTADIENE WITH DIESTER WASH | |
WO2007066036A2 (en) | Method for synthesising methanol or oxo alcohols used for recycling a residual gas | |
EP0399913B1 (en) | Process for the synthesis of "oxo" products through the plasma route and plant comprising a plasma reactor useful in the process | |
FR2483917A1 (en) | PRODUCTION OF MERCAPTO-2 ETHANOL-1 | |
JP3208274B2 (en) | Method for producing semiconductor thin film and plasma CVD apparatus used for the method | |
JPH08288228A (en) | Method of manufacturing semiconductor thin film and plasma cvd apparatus using the method | |
FR2963337A1 (en) | RECYCLING OF SILICON SAWING SLUDGE FOR THE PREPARATION OF INGOTS OR PLATES BY THERMAL PLASMA | |
BE437920A (en) | ||
CN1872672A (en) | Method for fabricating Nano carbon fibers | |
FR2892112A1 (en) | Process useful for preparing fullerene solutions, comprises treating an aerosol comprising finely divided carbon by a plasmagen arc in helium, the reaction suspension brought back by a solvent in a nozzle with convergent divergent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |