WO1996000311A2 - Steel for rail-bound vehicle wheels, preferably for railway vehicle wheels - Google Patents

Steel for rail-bound vehicle wheels, preferably for railway vehicle wheels Download PDF

Info

Publication number
WO1996000311A2
WO1996000311A2 PCT/CZ1995/000013 CZ9500013W WO9600311A2 WO 1996000311 A2 WO1996000311 A2 WO 1996000311A2 CZ 9500013 W CZ9500013 W CZ 9500013W WO 9600311 A2 WO9600311 A2 WO 9600311A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
steel
temperature
hours
vehicle wheels
Prior art date
Application number
PCT/CZ1995/000013
Other languages
German (de)
French (fr)
Other versions
WO1996000311A3 (en
Inventor
Jir^¿í JUREC^¿EK
Rudolf Faja
Original Assignee
Zdb A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zdb A.S. filed Critical Zdb A.S.
Publication of WO1996000311A2 publication Critical patent/WO1996000311A2/en
Publication of WO1996000311A3 publication Critical patent/WO1996000311A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Definitions

  • the solution relates to the chemical composition of the steel for rail vehicles, preferably for the wheel tires of the railway wheels and the subsequent heat processing of this steel, whereby the required mechanical and metallographic properties of the end product are achieved.
  • the individual steel grades must meet the requirements set in this area by the international regulations.
  • the wheel tires of rail vehicles have so far been produced from steels which, in addition to iron, contain 0.60% to 0.65% by weight of carbon, 0.80% by weight of manganese, 0.40% by weight of silicon, 0.030% by weight of phosphorus, 0.030 % By weight of sulfur, 0.30% by weight of chromium, 0.30% by weight of nickel, 0.30% by weight of copper, 0.080% by weight of molybdenum and 0.080% by weight of vanadium, all details permitting the maximum Show content of individual elements.
  • the method of heat treatment depends on the carbon and manganese content in the steel.
  • the hardening temperature is 870 ° C
  • the cooling time in the water is between 110 and 220 seconds
  • the tempering takes 4 to 5 hours at a temperature between 490 and 510 ° C.
  • This steel has a strength limit between 920 and 1050 MPa, minimum ductility 12% and notch toughness 10 J.
  • a disadvantage of these heat-treated steels used hitherto is that they have a steep gradient in the mechanical and metallographic properties because of their low hardenability. For example, the difference between the material hardnesses 5 mm and 35 mm deep below the surface is 45 to 50 HB.
  • the properties of the steels previously used are already unsatisfactory.
  • the material crumbles from the outer circumference of the wheel tire, which causes the material to fatigue. Mechanical abrasion of the wheels is great. The material tends to break and the life of the part and operational safety are shortened.
  • a steel which essentially consists in that, apart from iron, it contains 0.58 to 0.65% by weight of the carbon, 0.75 to 0.90 ww% of manganese, 0.25 to 0.40 ww% of silicon, maximum 0.008 ww% of phosphorus, maximum 0.005 ww% of sulfur, 0.10 to 0.20 ww% of nickel, 0.90 to 1.10 ww% of chromium, 0.070 to 0.150 ww% of molybdenum, 0.070 to 0.120 ww% of vanadium, minimally 0.014 ww% of aluminum and which is so heat-treated that it is heated to a temperature between 800 and 815 ° C cooled for 4 to 5 hours and kept at this temperature for 2 hours for 120 to 150 seconds in the circulating water at a temperature of 50 to 70 ° C.
  • the specific method of heat treating the steel depends on the specific chemical composition, in particular on the carbon, manganese, chromium, molybdenum and vanad content.
  • the resulting microstructure is formed by bainite and partly by eutectoid pearlite.
  • An advantage of this steel is its mechanical and metallographic properties, which increase the contact fatigue of the material and resistance to consumption, but at the same time do not increase the tendency of the material to break. This increases both the life of the parts and the safety of the whole device where the wheels are used. These advantageous properties are determined by the homogeneity of the structure between the material surface and the center of the material. For example, the difference in hardness in the 5 mm and 35 mm depths below the surface is a maximum of 20 HB. The yield point is 75 to 80% of the strength limit, which is dependent on the carbon content in the steel and the heat treatment.
  • the strength limit reaches the values from 900 to 1000 MPa and with a carbon content of 0.60 to 0.65 Gw% the values from 980 to 1080 MPa, whereby the notched toughness is always at least 20 J and the elongation at break is at least 14%.
  • An example of the invention is a steel which, in addition to iron, contains 0.64% by weight of carbon, 0.81% by weight of manganese, 0.38% by weight of silicon, 0.008% by weight of phosphorus, 0.005% by weight of sulfur, 12% by weight of nickel, 1.08% by weight of chromium, 0.08% by weight of molybdenum, 0.11% by weight of vanad, 0.018% by weight of aluminum.
  • This steel is heat-treated so that after heating for 4 hours at the temperature of 800 ° C. and maintaining this temperature for 2 hours, the steel is cooled in the circulating water at 50 ° C. for 150 seconds and then for 4 hours at the temperature of 650 ° C. tempered and finally cooled down at a rate of 50 ° C per hour.
  • This steel has the resulting strength limit 1036 MPa, yield strength 815 MPa, the elongation at break 16%, notch toughness 21 J and the difference in hardness in the 5 mm and 35 mm depths below the surface is 8 HB.
  • the next embodiment is a steel which, in addition to iron, contains 0.60% by weight of carbon, 0.85% by weight of manganese, 0.38% by weight of silicon, 0.008% by weight of phosphorus, 0.005% by weight of sulfur, 0.12% by weight of nickel, 0.95 ww% of chromium, 0.11 % By weight of molybdenum, 0.09% by weight of vanad, 0.014% by weight of aluminum.
  • the steel is heat treated so that after heating for 4.5 hours at 810 ° C and after reaching this temperature for 2 hours, the steel is cooled in circulating water at 60 ° C for 120 seconds and then for 4 hours at temperature Start at 640 * C and then cool down at 50 "C per hour.
  • This steel has the resulting strength limit 990 MPa, yield strength 780 MPa, elongation at break 16%, notch toughness 22 J and difference in hardness in the 5 mm and 35 mm depths below the surface is 10 HB.
  • the heat-treated steel of the chemical composition specified above according to the invention is suitable for the production of the wheels of the rail vehicles, preferably for the wheel tires of the railroad wheels, that is to say on the part of the wheels which comes into contact with rails.

Abstract

Steel for rail-bound vehicle wheels, preferably for railway vehicle wheels, contains besides iron 0.58 to 0.65 % by weight carbon, 0.75 to 0.90 % by weight manganese, 0.25 to 0.40 % by weight silicon, maximum 0.008 % by weight phosphorus, maximum 0.005 % by weight sulphur, 0.10 to 0.20 % by weight nickel, 0.90 to 1.10 % by weight chromium, 0.070 to 0.150 % by weight molybdenum, 0.070 to 0.120 % by weight vanadium, minimum 0.014 % by weight aluminium. This steel is thermally treated in that it is heated up to a temperature from 800 to 815 °C during 4 to 5 hours, is kept at this temperature during 2 hours, is cooled down during 120 to 150 seconds in circulating water at a temperature from 50 to 70 °C, is tempered during 4 to 4.5 hours at a temperature from 630 to 650 °C, and is then finally cooled at a speed of 50 °C per hour.

Description

STAHL FÜR RÄDER DER SCHIENENFAHRZEUGE, VORZUGSWEISE FÜR DIE RADREIFEN DER EISENBAHNRÄDERSTEEL FOR WHEELS OF RAIL VEHICLES, PREFERRED FOR THE WHEELS OF RAILWAYS
Gebiet der TechnikTechnical field
Die Lösung betrifft die chemische Zusammensetzung des Stahls für Schienenfahrzeuge, vorzugsweise für die Radreifen der Eisenbahnräder und die nachfolgende- Wärmeverarbeitung dieses Stahls, wodurch die geforderten mechanischen und metallo- grafischen Eigenschaften des Endprodukts erreicht werden. Die einzelnen Stahlqualitäten müssen dabei die auf dieses Gebiet durch die internationalen Vorschriften gestellten Anforderungen erfüllen.The solution relates to the chemical composition of the steel for rail vehicles, preferably for the wheel tires of the railway wheels and the subsequent heat processing of this steel, whereby the required mechanical and metallographic properties of the end product are achieved. The individual steel grades must meet the requirements set in this area by the international regulations.
Stand der TechnikState of the art
Die Radreifen der Schienenfahrzeuge werden bisher aus Stählen erzeugt, die außer Eisen 0,60 Gw% bis 0,65 Gw% des Kohlenstoffs, 0,80 Gw% des Mangans, 0,40 Gw% des Siliziums, 0,030 Gw% des Phosphors, 0,030 Gw% des Schwefels, 0,30 Gw% des Chroms, 0,30 Gw% des Nickels, 0,30 Gw% des Kupfers, 0,080 Gw% des Molybdens und 0,080 Gw% des Vanadiums ent¬ halten, wobei alle Angaben den maximal erlaubten Gehalt an einzelnen Elementen darstellen. Methode der Wärmebehandlung hängt von dem Kohlenstoff- und Mangangehalt im Stahl ab.The wheel tires of rail vehicles have so far been produced from steels which, in addition to iron, contain 0.60% to 0.65% by weight of carbon, 0.80% by weight of manganese, 0.40% by weight of silicon, 0.030% by weight of phosphorus, 0.030 % By weight of sulfur, 0.30% by weight of chromium, 0.30% by weight of nickel, 0.30% by weight of copper, 0.080% by weight of molybdenum and 0.080% by weight of vanadium, all details permitting the maximum Show content of individual elements. The method of heat treatment depends on the carbon and manganese content in the steel.
Beim Stahl mit dem Kohlenstoffgehalt maximal 0,60 Gw% wird bisher die Erwärmung auf die Härtungstemperatur 820 bis 870 °C durchgeführt, wonach Kühlung im Wasser für 50 bis 120 Sekunden und Anlaßbehandlung für 4 bis 5 Stunden auf der Temperatur 500 bis 610 °C folgt. Stahl dieser Zusammen¬ setzung und Wärmebehandlung weist Festigkeitsgrenze 800 bis 920 MPa, Dehnbarkeit minimal 14 % und Kerbzähigkeit 15 J auf.In the case of steel with a carbon content of up to 0.60% by weight, heating to the hardening temperature of 820 to 870 ° C. has been carried out, after which cooling in the water for 50 to 120 seconds and tempering treatment for 4 to 5 hours on the Temperature 500 to 610 ° C follows. Steel of this composition and heat treatment has a strength limit of 800 to 920 MPa, a minimum ductility of 14% and an impact strength of 15 J.
Beim Stahl mit dem Kohlenstoffgehalt maximal 0,65 Gw% ist die Härtungstemperatur 870 °C, Kühlungszeit im Wasser bewegt sich zwischen 110 und 220 Sekunden und das Anlassen verläuft während 4 bis 5 Stunden auf einer Temperatur zwischen 490 und 510 °C. Dieser Stahl weist die Festigkeitsgrenze zwischen 920 und 1050 MPa, Dehnbarkeit minimal 12 % und Kerbzähigkeit 10 J auf.For steel with a carbon content of maximum 0.65% by weight, the hardening temperature is 870 ° C, the cooling time in the water is between 110 and 220 seconds and the tempering takes 4 to 5 hours at a temperature between 490 and 510 ° C. This steel has a strength limit between 920 and 1050 MPa, minimum ductility 12% and notch toughness 10 J.
Ein Nachteil dieser bisher verwendeten wärmebehandelten Stählen ist, daß sie wegen kleiner Durchhärtbarkeit einen steilen Gradient der mechanischen und metallografischen Eigenschaften aufweisen. Zum Beispiel Unterschied zwischen den Materialhärten 5 mm und 35 mm tief unter der Oberfläche ist 45 bis 50 HB. Bei derzeitiger Beanspruchung der Räder, d.h. bei großen Geschwindigkeiten, großen Achsendrücken, intensivem Bremsen, Wärmebeanspruchung usw sind die Eigen¬ schaften der bisher verwendeten Stählen schon unbefriedi¬ gend. Es kommt das Abbröckeln des Materials aus dem Außenumfang des Radreifens vor, was die Werkstoffermudung des Materials verursacht. Mechanischer Abrieb der Räder ist groß. Das Material neigt zum Bruch und die Lebensdauer des Teils und die Betriebssicherheit werden verkürzt.A disadvantage of these heat-treated steels used hitherto is that they have a steep gradient in the mechanical and metallographic properties because of their low hardenability. For example, the difference between the material hardnesses 5 mm and 35 mm deep below the surface is 45 to 50 HB. With the current load on the wheels, i.e. at high speeds, high axle pressures, intensive braking, thermal stress, etc., the properties of the steels previously used are already unsatisfactory. The material crumbles from the outer circumference of the wheel tire, which causes the material to fatigue. Mechanical abrasion of the wheels is great. The material tends to break and the life of the part and operational safety are shortened.
Beim erhöhten Kohlenstoffgehalt in den härtbaren Stählen über den Wert 0,60 Gw% und bei der Festigkeitsgrenze über 1030 MPa erhöht sich das Risiko des Materialbruchs, was dem Sicherheitspunkt nicht entspricht und umgekehrt bei der Senkung des Kohlenstoffgehalts unter 0,50 Gw% und der Festigkeitsgrenze unter 850 MPa werden die Werkstoffermüdung des Materials im Kontakt und Widerstand gegen Abrieb wesentlich verringert. Das Wesen der ErfindungWith the increased carbon content in hardenable steels above 0.60 Gw% and with the strength limit above 1030 MPa, the risk of material breakage increases, which does not correspond to the safety point and vice versa when the carbon content is reduced below 0.50 Gw% and the strength limit below 850 MPa the material fatigue of the material in contact and resistance to abrasion are significantly reduced. The essence of the invention
Die oben angeführten Nachteile der Stähle für Schienenfahr¬ zeugen, insbesondere der Radreifen der Eisenbahnräder werden im beträchtlichen Maße durch einen Stahl beseitigt, der im wesentlichen darin besteht, daß er außer Eisen 0,58 bis 0,65 Gw% des Kohlenstoffs, 0,75 bis 0,90 Gw% des Mangans, 0,25 bis 0,40 Gw% des Siliziums, maximal 0,008 Gw% des Phosphors, maximal 0,005 Gw% des Schwefels, 0,10 bis 0,20 Gw% des Nickels, 0,90 bis 1,10 Gw% des Chroms, 0,070 bis 0,150 Gw% des Molybdens, 0,070 bis 0,120 Gw% des Vanadiums, minimal 0,014 Gw% des Alluminiums beinhaltet und der so wärmebehandelt wird, daß er nach Erwärmung auf eine Temperatur zwischen 800 und 815 °C während 4 bis 5 Stunden und dem Aufbewahren auf dieser Temperatur für 2 Stunden während 120 bis 150 Sekunden im zirkulierenden Wasser mit Temperatur 50 bis 70 °C gekühlt und danach während 4 bis 4,5 Stunden auf einer Temperatur zwischen 630 bis 650 °C mit Endnachkühlung mit der Geschwindigkeit 50 "C pro Stunde angelassen wird. Die konkrete Methode der Wärmebehandlung des Stahls hängt von der spezifischen chemischen Zusammen¬ setzung, insbesondere von dem Kohlenstof-, Mangan-, Chrom-, Molybden- und Vanadgehalt, ab.The above-mentioned disadvantages of steels for rail vehicles, in particular the wheel tires of railroad wheels, are substantially eliminated by a steel which essentially consists in that, apart from iron, it contains 0.58 to 0.65% by weight of the carbon, 0.75 to 0.90 ww% of manganese, 0.25 to 0.40 ww% of silicon, maximum 0.008 ww% of phosphorus, maximum 0.005 ww% of sulfur, 0.10 to 0.20 ww% of nickel, 0.90 to 1.10 ww% of chromium, 0.070 to 0.150 ww% of molybdenum, 0.070 to 0.120 ww% of vanadium, minimally 0.014 ww% of aluminum and which is so heat-treated that it is heated to a temperature between 800 and 815 ° C cooled for 4 to 5 hours and kept at this temperature for 2 hours for 120 to 150 seconds in the circulating water at a temperature of 50 to 70 ° C. and then at a temperature between 630 to 650 ° C. for 4 to 4.5 hours Final cooling at a speed of 50 "C per hour The specific method of heat treating the steel depends on the specific chemical composition, in particular on the carbon, manganese, chromium, molybdenum and vanad content.
Nach der Wärmeverarbeitung dieses Stahls ist die resul¬ tierende Mikrostruktur durch Bainit und teilweise durch eutektoidisches Perlit gebildet. Ein Vorteil dieses Stahls, sind seine mechanischen und metallografischen Eigenschaften, die die Kontaktermüdung des Materials und Resistenz gegen Verbrauch erhöhen, die aber gleichzeitig die Neigung zum Bruch des Materials nicht erhöhen. Dadurch wird sowohl Lebensdauer der Teile, als auch Sicherheit der ganzen Vorrichtung, wo die Räder verwendet werden, erhöht. Diese vorteilhaften Eigenschaften sind durch die Homogenität der Struktur zwischen der Materialoberfläche und der Mitte des Materials bestimmt. Zum Beispiel Unterschied der Härten in den 5 mm und 35 mm Tiefen unter der Oberfläche is maximal 20 HB. Die Fließgrenze beträgt 75 bis 80 % der Festigkeits¬ grenze, die vom Kohlenstoffgehalt im Stahl und der Wärme¬ bearbeitung abhängig ist. Bei dem Kohlenstoffgehalt 0,58 bis 0,62 Gw% erreicht die Festigkeitsgrenze die Werten von 900 bis 1000 MPa und beim Kohlenstoffgehalt 0,60 bis 0,65 Gw% die Werten von 980 bis 1080 MPa, wobei die Kerbzähigkeit immer minimal 20 J und die Bruchdehnung minimal 14 % sind.After the heat processing of this steel, the resulting microstructure is formed by bainite and partly by eutectoid pearlite. An advantage of this steel is its mechanical and metallographic properties, which increase the contact fatigue of the material and resistance to consumption, but at the same time do not increase the tendency of the material to break. This increases both the life of the parts and the safety of the whole device where the wheels are used. These advantageous properties are determined by the homogeneity of the structure between the material surface and the center of the material. For example, the difference in hardness in the 5 mm and 35 mm depths below the surface is a maximum of 20 HB. The yield point is 75 to 80% of the strength limit, which is dependent on the carbon content in the steel and the heat treatment. With a carbon content of 0.58 to 0.62 Gw%, the strength limit reaches the values from 900 to 1000 MPa and with a carbon content of 0.60 to 0.65 Gw% the values from 980 to 1080 MPa, whereby the notched toughness is always at least 20 J and the elongation at break is at least 14%.
Ausführungsbeispieleembodiments
Ein Beispiel der Erfindung ist ein Stahl, der außer Eisen noch 0,64 Gw% des Kohlenstoffs, 0,81 Gw% des Mangans, 0,38 Gw% des Siliziums, 0,008 Gw% des Phosphors, 0,005 Gw% des Schwefels, 0,12 Gw% des Nickels, 1,08 Gw% des Chroms, 0,08 Gw% des Molybdens, 0,11 Gw% des Vanads, 0,018 Gw% des Aluminiums beinhaltet. Dieser Stahl wird so wärmebehandelt, daß nach Erwärmung während 4 Stunden auf die Temperatur 800 °C und Haltung dieser Temperatur für 2 Stunden der Stahl im zirkulirenden Wasser mit Temperatur 50 °C für 150 Sekunden gekühlt und danach für 4 Stunden auf der Temperatur 650 °C angelassen und am Ende mit der Geschwindigkeit 50 °C pro Stunde nachgekühlt wird.An example of the invention is a steel which, in addition to iron, contains 0.64% by weight of carbon, 0.81% by weight of manganese, 0.38% by weight of silicon, 0.008% by weight of phosphorus, 0.005% by weight of sulfur, 12% by weight of nickel, 1.08% by weight of chromium, 0.08% by weight of molybdenum, 0.11% by weight of vanad, 0.018% by weight of aluminum. This steel is heat-treated so that after heating for 4 hours at the temperature of 800 ° C. and maintaining this temperature for 2 hours, the steel is cooled in the circulating water at 50 ° C. for 150 seconds and then for 4 hours at the temperature of 650 ° C. tempered and finally cooled down at a rate of 50 ° C per hour.
Dieser Stahl weist die resultierende Festigkeitsgrenze 1036 MPa, Fließgrenze 815 MPa, die Bruchdehnung 16 %, Kerbzähig¬ keit 21 J auf und Unterschied der Härten in den 5 mm und 35 mm Tiefen unter der Oberfläche beträgt 8 HB.This steel has the resulting strength limit 1036 MPa, yield strength 815 MPa, the elongation at break 16%, notch toughness 21 J and the difference in hardness in the 5 mm and 35 mm depths below the surface is 8 HB.
Der nächste Ausführungsbeispiel ist ein Stahl der außer Eisen 0,60 Gw% des Kohlenstoffs, 0,85 Gw% des Mangans, 0,38 Gw% des Siliziums, 0,008 Gw% des Phosphors, 0,005 Gw% des Schwefels, 0,12 Gw% des Nickels, 0,95 Gw% des Chroms, 0,11 Gw% des Molybdens, 0,09 Gw% des Vanads, 0,014 Gw% des Aluminiums beinhaltet. Der Stahl ist so wärmebehandelt, daß nach Erwärmung währen 4,5 Stunden auf Temperatur 810 °C und nach dem Erreichen dieser Temperatur für 2 Stunden wird der Stahl im zirkulierendem Wasser mit Temperatur 60 °C währen 120 Sekunden gekühlt und dann für 4 Stunden auf Temperatur 640 *C angelassen und dann mit der Geschwindigkeit 50 "C pro Stunde nachgekühlt.The next embodiment is a steel which, in addition to iron, contains 0.60% by weight of carbon, 0.85% by weight of manganese, 0.38% by weight of silicon, 0.008% by weight of phosphorus, 0.005% by weight of sulfur, 0.12% by weight of nickel, 0.95 ww% of chromium, 0.11 % By weight of molybdenum, 0.09% by weight of vanad, 0.014% by weight of aluminum. The steel is heat treated so that after heating for 4.5 hours at 810 ° C and after reaching this temperature for 2 hours, the steel is cooled in circulating water at 60 ° C for 120 seconds and then for 4 hours at temperature Start at 640 * C and then cool down at 50 "C per hour.
Dieser Stahl weist die resultierende Festigkeitsgrenze 990 MPa, Fließgrenze 780 MPa, Bruchdehnung 16 %, Kerbzähigkeit 22 J und Unterschied der Härten in den 5 mm und 35 mm Tiefen unter der Oberfläche beträgt 10 HB.This steel has the resulting strength limit 990 MPa, yield strength 780 MPa, elongation at break 16%, notch toughness 22 J and difference in hardness in the 5 mm and 35 mm depths below the surface is 10 HB.
Industrielle AnwendbarkeitIndustrial applicability
Der wärmebehandelter Stahl der oben angegebenen chemischen Zusammensetzung gemäß der Erfindung eignet sich zur Herstellung der Räder der Schienenfahrzeuge, vorzugsweise für die Radreifen der Eisenbahnräder, das heißt auf den Teil der Räder, der in Kontakt mit Schienen kommt. The heat-treated steel of the chemical composition specified above according to the invention is suitable for the production of the wheels of the rail vehicles, preferably for the wheel tires of the railroad wheels, that is to say on the part of the wheels which comes into contact with rails.

Claims

PatentanspruchClaim
Stahl für Räder der Schienenfahrzeuge, vorzugsweise für die Radreifen der Eisenbahnräder, dadurch gekennzeichnet, daß er außer Eisen 0,58 bis 0,65 Gw% des Kohlenstoffs, 0,75 bis 0,90 Gw% des Mangans, 0,25 bis 0,40 Gw% des Siliziums, maximal 0,008 Gw% des Phosphors, maximal 0,005 Gw% des Schwefels, 0,10 bis 0,20 Gw% des Nickels, 0,90 bis 1,10 Gw% des Chroms, 0,070 bis 0,150 Gw% des Molybdens, 0,070 bis 0,120 Gw% des Vanadiums, minimal 0,014 Gw% des Alluminiums beinhaltet und der so wärmebehandelt wird, daß er nach Erwärmung auf eine Temperatur zwischen 800 und 815 °C während 4 bis 5 Stunden und dem Aufbewahren auf dieser Temperatur für 2 Stunden während 120 bis 150 Sekunden im zirkulierenden Wasser mit Temperatur 50 bis 70 °C gekühlt und danach während 4 bis 4 ,5 Stunden auf einer Temperatur zwischen 630 bis 650 °C angelassen wird, wonach Endnach¬ kühlung mit der 50 °C pro Stunde Geschwindigkeit statt¬ findet. Steel for wheels of rail vehicles, preferably for the wheel tires of railroad wheels, characterized in that, in addition to iron, it contains 0.58 to 0.65% by weight of carbon, 0.75 to 0.90% by weight of manganese, 0.25 to 0, 40% by weight of silicon, maximum 0.008% by weight of phosphorus, maximum 0.005% by weight of sulfur, 0.10 to 0.20% by weight of nickel, 0.90 to 1.10% by weight of chromium, 0.070 to 0.150% by weight of Molybdenum, 0.070 to 0.120% by weight of the vanadium, minimally 0.014% by weight of the aluminum, and which is heat-treated in such a way that, after heating to a temperature between 800 and 815 ° C. for 4 to 5 hours and being kept at this temperature for 2 hours cooled for 120 to 150 seconds in the circulating water at a temperature of 50 to 70 ° C and then left for 4 to 4.5 hours at a temperature between 630 to 650 ° C, after which final cooling takes place at the rate of 50 ° C per hour ¬ finds.
PCT/CZ1995/000013 1994-06-27 1995-06-26 Steel for rail-bound vehicle wheels, preferably for railway vehicle wheels WO1996000311A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CZPV1568-94 1994-06-27
CZ941568A CZ156894A3 (en) 1994-06-27 1994-06-27 Steel for railway vehicle wheels, particularly for railway wheel tyres

Publications (2)

Publication Number Publication Date
WO1996000311A2 true WO1996000311A2 (en) 1996-01-04
WO1996000311A3 WO1996000311A3 (en) 1996-02-22

Family

ID=5463479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CZ1995/000013 WO1996000311A2 (en) 1994-06-27 1995-06-26 Steel for rail-bound vehicle wheels, preferably for railway vehicle wheels

Country Status (2)

Country Link
CZ (1) CZ156894A3 (en)
WO (1) WO1996000311A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344470A2 (en) 2002-03-16 2003-09-17 Geka Brush Gmbh Mascara brush
WO2017199079A1 (en) * 2016-05-19 2017-11-23 Rail 1520 Ip Ltd Steel for producing railway wheels
CN111270154A (en) * 2020-04-08 2020-06-12 马鞍山钢铁股份有限公司 Medium-carbon wheel steel suitable for trucks in alpine regions and method for producing wheels by using medium-carbon wheel steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783610B2 (en) * 2001-03-05 2004-08-31 Amsted Industries Incorporated Railway wheel alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3111420A1 (en) * 1981-03-13 1982-10-14 Schweizerische Lokomotiv- Und Maschinenfabrik, Winterthur Objects, in particular locomotive wheel tyres and rails, having enhanced resistance to surface damage due to rolling and/or frictional phenomena, in particular formation of grooves or short ripples in running operation
US4364772A (en) * 1981-05-28 1982-12-21 Titanium Metals Corporation Of America Rail wheel alloy
US4767475A (en) * 1985-10-24 1988-08-30 Nippon Kokan Kabushiki Kaisha Wear resistant rails having capability of preventing propagation of unstable rupture
US4895605A (en) * 1988-08-19 1990-01-23 Algoma Steel Corporation Method for the manufacture of hardened railroad rails
EP0469560A1 (en) * 1990-07-30 1992-02-05 Burlington Northern Railroad Company High-strength, damage-resistant rail

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3111420A1 (en) * 1981-03-13 1982-10-14 Schweizerische Lokomotiv- Und Maschinenfabrik, Winterthur Objects, in particular locomotive wheel tyres and rails, having enhanced resistance to surface damage due to rolling and/or frictional phenomena, in particular formation of grooves or short ripples in running operation
US4364772A (en) * 1981-05-28 1982-12-21 Titanium Metals Corporation Of America Rail wheel alloy
US4767475A (en) * 1985-10-24 1988-08-30 Nippon Kokan Kabushiki Kaisha Wear resistant rails having capability of preventing propagation of unstable rupture
US4895605A (en) * 1988-08-19 1990-01-23 Algoma Steel Corporation Method for the manufacture of hardened railroad rails
EP0469560A1 (en) * 1990-07-30 1992-02-05 Burlington Northern Railroad Company High-strength, damage-resistant rail

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASTM JOURNAL OF TESTING AND EVALUATION, vol. 20, no. 6, November 1992 pages 408-415, BOWLES, C.Q., ROLAND, J.R. 'Comparison of the Fracture Behaviour of Conventional Class U Railway Wheels and an Experimental Alloy Wheel.' *
HUTNIK, vol. 28, no. 4, 1978 PRAGUE, pages 149-153, AREL MITURA, TAKAR ZARYBNICKYS 'Heat Treatment of Solid Railway Wheels with an Improved Service Life' *
VANADIUM IN RAIL STEELS , CENTS. PROC. CONF. , CHICAGO, ILL., US., November 1979 pages 23-40, MARICH, S. 'Development of Improved Rail and Wheel Materials.' *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344470A2 (en) 2002-03-16 2003-09-17 Geka Brush Gmbh Mascara brush
WO2017199079A1 (en) * 2016-05-19 2017-11-23 Rail 1520 Ip Ltd Steel for producing railway wheels
CN111270154A (en) * 2020-04-08 2020-06-12 马鞍山钢铁股份有限公司 Medium-carbon wheel steel suitable for trucks in alpine regions and method for producing wheels by using medium-carbon wheel steel

Also Published As

Publication number Publication date
CZ156894A3 (en) 1996-01-17
WO1996000311A3 (en) 1996-02-22

Similar Documents

Publication Publication Date Title
EP0849368B1 (en) Shaped rolled product and method of making the same
DE2439338C2 (en) Process for the heat treatment of rails from the rolling heat
JP3915043B2 (en) Steel for forging production and method for producing forging
KR19980064836A (en) Method for manufacturing steel parts formed by steel and cold plastic deformation
EP0136613A2 (en) Rail having a high wear resistance in the head and a high resistance to rupture in the base
KR830009235A (en) Manufacturing method of high ductility, high strength wire rod, steel bar
DE69629161T2 (en) METHOD FOR PRODUCING RAILS WITH HIGH WEAR RESISTANCE AND HIGH RESISTANCE TO INNER DEFECTS
DE60003553T2 (en) ROLLER BEARING STEEL WITH A SURFACE FINISH
EP0620865B1 (en) Railway-track elements and method of manufacturing them
WO1996000311A2 (en) Steel for rail-bound vehicle wheels, preferably for railway vehicle wheels
DE69928463T2 (en) Process for the production of steel components
DE4234192C2 (en) Heavy-duty full wheels and wheel tires for rail traction vehicles and cars
JP5690949B2 (en) Cold drawn high toughness non-heat treated wire and method for producing the same
EP0160616A2 (en) Use of a steel in atmospheres containing hydrogen sulfide
DE2309531A1 (en) METHOD OF MANUFACTURING FULL WHEELS FROM STEEL
DE2820784A1 (en) High tensile railway track section made of carbon-manganese steel - subjected to controlled quenching on leaving hot rolling mill
US4203783A (en) Process for improving the quality of steel sections
DE4313569C1 (en) Heat treatment of spheroidal graphite cast iron - to improve mechanical properties.
US6315844B1 (en) Method for producing high-strength track element and track element thus obtained
EP1476586A1 (en) Steel, solid wheel, and tire for rail vehicles and method for producing parts of this type
DE2541978B2 (en) PROCESS FOR THE HEAT TREATMENT OF SOFT PARTS IN A CONTINUOUS PROCESS
JPS6219488B2 (en)
AT401359B (en) METHOD FOR PRODUCING A HEART PIECE
EP0065678B1 (en) Process and apparatus for heat treating sections of ferrous workpieces
DE19757359A1 (en) Carbon steel for hot forged connecting rod

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): HU PL RU SK UA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): HU PL RU SK UA

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase