WO1996000305A1 - Method of increasing the yield strength of cold formed steel sections - Google Patents
Method of increasing the yield strength of cold formed steel sections Download PDFInfo
- Publication number
- WO1996000305A1 WO1996000305A1 PCT/AU1995/000378 AU9500378W WO9600305A1 WO 1996000305 A1 WO1996000305 A1 WO 1996000305A1 AU 9500378 W AU9500378 W AU 9500378W WO 9600305 A1 WO9600305 A1 WO 9600305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- steel
- steel section
- section
- strain
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 66
- 239000010959 steel Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000001965 increasing effect Effects 0.000 title claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 238000005482 strain hardening Methods 0.000 claims abstract description 16
- 238000005246 galvanizing Methods 0.000 claims abstract description 12
- 230000032683 aging Effects 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 230000003028 elevating effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 5
- 230000006698 induction Effects 0.000 abstract description 5
- 238000010791 quenching Methods 0.000 abstract description 3
- 238000007493 shaping process Methods 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
Definitions
- the present invention therefore provides a method of increasing the yield strength of cold rolled steel sections as part of an in-line manufacturing process, comprising the steps of passing a steel section which has been at least partially cold worked and thereby subjected to a predetermined amount of strain, through a heating stage wherein the temperature of the steel section is elevated to a range between 200°C and 500°C, and holding the temperature of the steel section in that temperature range for a time range between two and thirty seconds, the temperature and time combination being selected within the said ranges to achieve a predetermined degree of strain ageing.
- the method includes steps of cooling the steel section after heating and strain ageing and then performing subsequent cold working on the steel section.
- the step of passing the steel section through a heating stage comprises heating the steel section to a temperature between 200 and 450°C over a time between two and thirty seconds and holding the temperature at at least 440°C for between one and fifteen seconds.
- the step of passing the steel section through a heating stage comprises heating the steel section to a temperature between 350 and 400°C over a time between two and ten seconds and holding the temperature between 440 and 460°C for between two and six seconds.
- the step of cooling the steel section reduces the temperature of the section to below 90°C and preferably to between 25 and 45°C before subsequent cold working.
- the steps of elevating the temperature and holding that elevated temperature are performed by the preheating and subsequent coating of the
- the steel section has a steel composition containing between 0.01 and 0.25% carbon and between 0.001 and 0.006% nitrogen.
- Fig. 1 is a line diagram of a mill for the continuous forming by cold working of heavy gauge hollow sections from steel strip;
- Fig. 2 is a graph of the temperature of a steel section passing through the mill shown in Fig. 1. MODES FOR CARRYING OUT THE INVENTION
- the heating of the steel strip after initial cold working is performed as part of an in-line galvanising process although it will be appreciated that the heating could be performed independently of galvanising on a plain black steel section.
- the cold working mill shown in the attached drawing takes coils of hot rolled steel strip 1 which are placed in a coil feed magazine 2 before the strip is unrolled and passed through an uncoiling station 3, pinch rolls 4 and leveller rollers 5 to flatten the strip and remove any coil set.
- the strip then passes through a splice welding station 6 where subsequent coils are joined end- to-end to form a continuous feed strip for the mill.
- the strip is then pulled by pinch rolls 7 into an accumulation system 8 and then fed through a shot blast station 9 to prepare the surface of the steel strip.
- the initial roll forming of the strip is performed in the shape preparation machine 10 where the initial cold working takes place as the steel section is deformed to its initial configuration at approximately atmospheric temperature and, where it is desired to form a hollow section, longitudinal edge welding of the strip takes place.
- the steel section 11 then passes into a cooling section 12 to cool the metal after the welding operation.
- a cooling section 12 to cool the metal after the welding operation.
- the section then passes through an acid pickling stage 13 and a rinsing stage 14 with wiping of the surface being effected after each stage by air knives 15 to remove excess liquid.
- the section then passes into heating apparatus 16 which may be by any suitable form but is preferably conducted by electric induction heating. This may be carried out in an inert gas atmosphere in order to preserve the surface condition of the steel section.
- the induction heating phase raises the temperature of the section to between 200 and 450°C over a time period between two and thirty seconds. In the preferred form of the invention the induction heating raises the temperature to between 350 and 400°C over an exposure time of between two and six seconds.
- the heated section then passes rapidly into an in ⁇ line galvanising stage 17 where, as part of the galvanising process, the temperature of the section is held between 440°C and 460°C for between one and fifteen seconds.
- the temperature in the galvanising stage is held between 445°C and 455°C for between two and six seconds.
- the section then passes through a quenching station 18 where the temperature of the section is reduced to between 25 and 45°C.
- the section may be dried by air knives 22 and a final coating, e.g. of clear polymer may be applied.
- a final coating e.g. of clear polymer
- section passes through a drying station 23 to a flying saw 24 where it is cut into desired lengths and passed to an unloading station 25.
- a "strain aging" operation is performed on the steel section which considerably enhances the yield strength and the ultimate tensile strength of the product compared with cold formed steel sections which are not heated between the initial and final cold rolling operation.
- this increase in strength is typically 55MPa for the yield strength and 50MPa for the ultimate tensile strength.
- this increase in strength is typically 30 MPa for the yield strength and 30 MPa for the ultimate tensile strength.
- the degree of strength enhancement depends on the amount of cold working occurring in the initial and final forming operation, the temperature and duration of the heating in stages 16 and 17 and the chemical composition of the steel, particularly the carbon content.
- the degree of strength enhancement can therefore be tailored to any desired end product either by controlling the parameters of the heating and strain ageing process as set forth above or more particularly by controlling the amount of cold working occurring in the initial operation, i.e. typically in the shape-forming rolls 10.
- a certain amount of inherent strain will occur in preforming the base steel strip to the desired shape before galvanising but if this is insufficient to achieve the desired amount of yield or strength enhancement, an "artificial" degree of strain may be added at this point. This may be achieved either by longitudinal working of the metal strip, e.g. to a curved profile and then back to a flat profile or by lateral working by passing the flat steel strip in an "S" profile or similar, i.e. through a sinusoidal path or between pairs of bridal rolls. As the strain ageing process builds upon the strain induced by the initial cold working it is therefore possible to tailor the ultimate yield characteristics of the finished product by controlling the amount of initial strain in this manner.
- the chemical composition of the steel and in particular the carbon composition have also been found to have a significant effect on the degree of yield enhancement relating from the initial strain and subsequent strain ageing.
- the effect has been found to be applicable over carbon ranges between 0.01% and 0.25% carbon in the steel and nitrogen ranges between 0.0015% and 0.0045%. Particularly advantageous results have been achieved with carbon contents in the 0.04% to 0.17% ranges.
- the effect has been found to be equally applicable to hot rolled strip and standard general purpose cold rolled strip base materials with carbon and nitrogen contents in these ranges.
- the increased yield strength effect is independent of whether the section is galvanised or not as it is the heating in stages 16 and 17 which contributes to the strain aging of the steel section. It is of course possible to omit the galvanising station 17 and simply to heat the black steel section in the heating stage 16 and hold it over the defined temperature range for the defined time in order to obtain the increased strength properties of the steel section.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Coating With Molten Metal (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT95923125T ATE207972T1 (en) | 1994-06-27 | 1995-06-27 | METHOD FOR INCREASING THE EXTENSION LIMIT OF COLD-FORMED STEEL PROFILES |
JP50264996A JP3763041B2 (en) | 1994-06-27 | 1995-06-27 | A method to increase the yield strength of cold formed steel shapes. |
BR9508144A BR9508144A (en) | 1994-06-27 | 1995-06-27 | Method to increase the limit load of cold rolled steel profiles that is part of an in-line manufacturing process |
NZ288531A NZ288531A (en) | 1994-06-27 | 1995-06-27 | Strain ageing cold rolled steel sections |
US08/765,316 US5895534A (en) | 1994-06-27 | 1995-06-27 | Method of increasing the yield strength of cold formed steel sections |
DE69523589T DE69523589T2 (en) | 1994-06-27 | 1995-06-27 | METHOD FOR INCREASING THE STRETCH LIMIT OF COLD FORMED STEEL PROFILES |
KR1019960707619A KR100340816B1 (en) | 1994-06-27 | 1995-06-27 | How to increase yield strength of cold rolled steel |
CA002193349A CA2193349C (en) | 1994-06-27 | 1995-06-27 | Method of increasing the yield strength of cold formed steel sections |
EP95923125A EP0763140B1 (en) | 1994-06-27 | 1995-06-27 | Method of increasing the yield strength of cold formed steel sections |
AU27802/95A AU2780295A (en) | 1994-06-27 | 1995-06-27 | Method of increasing the yield strength of cold formed steel sections |
FI965205A FI110788B (en) | 1994-06-27 | 1996-12-23 | Method of raising the yield strength of cold-formed profile steel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPM6483A AUPM648394A0 (en) | 1994-06-27 | 1994-06-27 | Method of increasing the yield strength of cold formed steel sections |
AUPM6483 | 1994-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996000305A1 true WO1996000305A1 (en) | 1996-01-04 |
Family
ID=3781052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1995/000378 WO1996000305A1 (en) | 1994-06-27 | 1995-06-27 | Method of increasing the yield strength of cold formed steel sections |
Country Status (18)
Country | Link |
---|---|
US (1) | US5895534A (en) |
EP (1) | EP0763140B1 (en) |
JP (1) | JP3763041B2 (en) |
KR (1) | KR100340816B1 (en) |
CN (1) | CN1066489C (en) |
AT (1) | ATE207972T1 (en) |
AU (1) | AUPM648394A0 (en) |
BR (1) | BR9508144A (en) |
CA (1) | CA2193349C (en) |
DE (1) | DE69523589T2 (en) |
ES (1) | ES2167441T3 (en) |
FI (1) | FI110788B (en) |
MY (1) | MY113388A (en) |
NZ (1) | NZ288531A (en) |
TR (1) | TR199500761A2 (en) |
TW (1) | TW267955B (en) |
WO (1) | WO1996000305A1 (en) |
ZA (1) | ZA955322B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000068443A2 (en) * | 1999-05-10 | 2000-11-16 | Mannesmannröhren-Werke Ag | Method for producing welded steel pipes with a high degree of strength, ductility and deformability |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2378934C (en) | 2002-03-26 | 2005-11-15 | Ipsco Inc. | High-strength micro-alloy steel and process for making same |
US7220325B2 (en) * | 2002-04-03 | 2007-05-22 | Ipsco Enterprises, Inc. | High-strength micro-alloy steel |
JP4819305B2 (en) | 2003-09-04 | 2011-11-24 | 日産自動車株式会社 | Method for manufacturing reinforcing member |
US8407966B2 (en) | 2003-10-28 | 2013-04-02 | Ispan Systems Lp | Cold-formed steel joist |
US20050108978A1 (en) * | 2003-11-25 | 2005-05-26 | Best Joint Inc. | Segmented cold formed joist |
CA2652587C (en) | 2006-05-18 | 2014-12-02 | Paradigm Focus Product Development Inc. | Light steel trusses and truss systems |
CA2742742C (en) * | 2008-09-08 | 2015-11-17 | Ispan Systems Lp | Adjustable floor to wall connectors for use with bottom chord and web bearing joists |
CA2778223C (en) | 2009-07-22 | 2017-08-15 | Ispan Systems Lp | Roll formed steel beam |
US8943776B2 (en) | 2012-09-28 | 2015-02-03 | Ispan Systems Lp | Composite steel joist |
CA2953741C (en) | 2014-07-03 | 2021-08-10 | Arcelormittal | Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet |
CA3009294C (en) | 2015-12-29 | 2022-06-21 | Arcelormittal | Method for producing a ultra high strength galvannealed steel sheet and obtained galvannealed steel sheet |
CA3050000A1 (en) | 2019-07-16 | 2021-01-16 | Invent To Build Inc. | Concrete fillable steel joist |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113523A (en) * | 1973-07-25 | 1978-09-12 | Nippon Kokan Kabushiki Kaisha | Process of making high tension cold-reduced al-killed steel excellent in accelerated aging property |
JPS6019301B2 (en) * | 1976-07-21 | 1985-05-15 | 森下製薬株式会社 | 4,5-dihydro-3(2H)-pyridazinone derivative |
JPS6043431A (en) * | 1983-08-19 | 1985-03-08 | Nippon Steel Corp | Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing |
JPS59133324A (en) * | 1983-08-22 | 1984-07-31 | Sumitomo Metal Ind Ltd | Manufacture of high-tension cold-rolled steel plate with superior formability |
JPS6067627A (en) * | 1983-09-22 | 1985-04-18 | Nippon Steel Corp | Preparation of steel plate for soft surface treatment excellent in fluting resistance by continuous annealing |
-
1994
- 1994-06-27 AU AUPM6483A patent/AUPM648394A0/en not_active Abandoned
- 1994-06-30 TW TW083106059A patent/TW267955B/zh not_active IP Right Cessation
-
1995
- 1995-06-27 TR TR95/00761A patent/TR199500761A2/en unknown
- 1995-06-27 US US08/765,316 patent/US5895534A/en not_active Expired - Lifetime
- 1995-06-27 CA CA002193349A patent/CA2193349C/en not_active Expired - Fee Related
- 1995-06-27 NZ NZ288531A patent/NZ288531A/en not_active IP Right Cessation
- 1995-06-27 JP JP50264996A patent/JP3763041B2/en not_active Expired - Fee Related
- 1995-06-27 ES ES95923125T patent/ES2167441T3/en not_active Expired - Lifetime
- 1995-06-27 EP EP95923125A patent/EP0763140B1/en not_active Expired - Lifetime
- 1995-06-27 ZA ZA9505322A patent/ZA955322B/en unknown
- 1995-06-27 BR BR9508144A patent/BR9508144A/en not_active IP Right Cessation
- 1995-06-27 CN CN95193842A patent/CN1066489C/en not_active Expired - Fee Related
- 1995-06-27 WO PCT/AU1995/000378 patent/WO1996000305A1/en active IP Right Grant
- 1995-06-27 KR KR1019960707619A patent/KR100340816B1/en not_active IP Right Cessation
- 1995-06-27 DE DE69523589T patent/DE69523589T2/en not_active Expired - Lifetime
- 1995-06-27 AT AT95923125T patent/ATE207972T1/en active
- 1995-06-27 MY MYPI95001751A patent/MY113388A/en unknown
-
1996
- 1996-12-23 FI FI965205A patent/FI110788B/en not_active IP Right Cessation
Non-Patent Citations (8)
Title |
---|
DERWENT ABSTRACT, Accession No. 85-131062/22, Class M24 (M27); & JP,A,60 067 627 (NIPPON STEEL CORP), 18 April 1985. * |
DERWENT ABSTRACT, Accession No. 92-328563/40, Class M24 (M27); & JP,A,04 236 722 (NIPPON STEEL CORP), 25 August 1992. * |
DERWENT ABSTRACT, Accession No. 95-137266/18, Class M27; & JP,A,07 062 486 (KAWA SAKI STEEL CORP), 7 March 1995. * |
PATENT ABSTRACTS OF JAPAN, C-253, page 69; & JP,A,59 133 324 (SUMITOMO KINZOKU KOGYO K.K.), 31 July 1984. * |
PATENT ABSTRACTS OF JAPAN, C-291, page 131; & JP,A,60 043 431 (SHIN NIPPON SEITETSU K.K.), 8 March 1985. * |
PATENT ABSTRACTS OF JAPAN, C-298, page 46; & JP,A,60 067 627 (SHIN NIPPON SEITETSU K.K.), 18 April 1985. * |
PATENT ABSTRACTS OF JAPAN, C-844, page 127; & JP,A,03 082 738 (KOBE STEEL LTD), 8 April 1991. * |
PATENT ABSTRACTS OF JAPAN, M-348, page 138; & JP,A,59 153 521 (SHIN NIPPON SEITETSU K.K.), 1 September 1984. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000068443A2 (en) * | 1999-05-10 | 2000-11-16 | Mannesmannröhren-Werke Ag | Method for producing welded steel pipes with a high degree of strength, ductility and deformability |
WO2000068443A3 (en) * | 1999-05-10 | 2001-04-26 | Mannesmann Ag | Method for producing welded steel pipes with a high degree of strength, ductility and deformability |
US6648209B2 (en) | 1999-05-10 | 2003-11-18 | Mannesmannröhren-Werke Ag | Process for producing welded steel pipes with a high degree of strength, ductility and deformability |
Also Published As
Publication number | Publication date |
---|---|
FI965205A (en) | 1996-12-23 |
DE69523589D1 (en) | 2001-12-06 |
CN1066489C (en) | 2001-05-30 |
DE69523589T2 (en) | 2002-08-22 |
BR9508144A (en) | 1997-11-04 |
EP0763140A4 (en) | 1998-09-23 |
TW267955B (en) | 1996-01-11 |
ZA955322B (en) | 1998-06-29 |
JP3763041B2 (en) | 2006-04-05 |
NZ288531A (en) | 1999-04-29 |
ATE207972T1 (en) | 2001-11-15 |
CN1151765A (en) | 1997-06-11 |
FI110788B (en) | 2003-03-31 |
US5895534A (en) | 1999-04-20 |
MY113388A (en) | 2002-02-28 |
TR199500761A2 (en) | 1996-07-21 |
EP0763140A1 (en) | 1997-03-19 |
AUPM648394A0 (en) | 1994-07-21 |
JPH10502126A (en) | 1998-02-24 |
FI965205A0 (en) | 1996-12-23 |
CA2193349A1 (en) | 1996-01-04 |
ES2167441T3 (en) | 2002-05-16 |
CA2193349C (en) | 2002-09-10 |
KR100340816B1 (en) | 2002-11-07 |
EP0763140B1 (en) | 2001-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5895534A (en) | Method of increasing the yield strength of cold formed steel sections | |
EP2171104B1 (en) | Method for annealing a strip of steel having a variable thickness in length direction | |
KR970703439A (en) | ULTRALOW-CARBON COLD-ROLLED SHEET AND GALVANIZED SHEET BOTH EXCELLENT IN FATIGUE CHARACTERISTICS AND PROCESS FOR PRODUCING BOTH | |
JP2003510186A (en) | Carbon steel strip, in particular a method for producing a steel strip for packaging, and the steel strip thus produced | |
MXPA97002792A (en) | Procedure for manufacturing steel tubes without cost | |
JP2000514499A (en) | Method for producing cold-rolled sheet or strip with good formability | |
US4016740A (en) | Method and an apparatus for the manufacture of a steel sheet | |
US5542995A (en) | Method of making steel strapping and strip and strapping and strip | |
WO2002092250A1 (en) | Heat-treated deformed steel wire, and method and apparatus for manufacturing the same | |
AU708379B2 (en) | Method of increasing the yield strength of cold formed steel sections | |
WO1999039019A1 (en) | Method for making can end and tab stock | |
JP2003112205A (en) | METHOD AND DEVICE FOR MANUFACTURING Mg OR Mg ALLOY BAND PLATE | |
JP2745823B2 (en) | Manufacturing method of as-roll type ultra-high tensile ERW steel pipe for vehicle door impact bar excellent in flattening test characteristics | |
JP2890198B2 (en) | Method for producing long member made of steel or steel alloy having low deformability | |
JP2845020B2 (en) | Manufacturing method of as-roll type ultra-high tensile electric resistance welded steel pipe | |
US5690757A (en) | Method for continuous recrystallization annealing of a steel strip | |
JPH05271755A (en) | Manufacture of nonaging extra thin steel sheet for soft vessel by continuous annealing | |
US6379481B2 (en) | Method and apparatus for carrying out the annealing step of a galvannealing process | |
JPH09285801A (en) | Method and equipment for manufacturing stainless steel shapes | |
JPH11151524A (en) | Manufacture of steel tube | |
JPH09227955A (en) | Production of cold rolled extra low carbon steel sheet by continuous annealing | |
CN114369701A (en) | Method for improving pickling quality of Cr-containing hot forming steel | |
JPH09235616A (en) | Production of hot rolled steel plate excellent in surface characteristic and acid pickling property by continuous hot rolling process | |
US20040163742A1 (en) | Method of forming a splined shaft | |
JPS6043892B2 (en) | High tensile strength wire manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95193842.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1199690459 Country of ref document: VN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 288531 Country of ref document: NZ Ref document number: 1995923125 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2193349 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 965205 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08765316 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019960707619 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1995923125 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995923125 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 965205 Country of ref document: FI |