WO1995032744A1 - Process for the surface coating of metal implants with hydroxiapatite - Google Patents

Process for the surface coating of metal implants with hydroxiapatite Download PDF

Info

Publication number
WO1995032744A1
WO1995032744A1 PCT/ES1995/000065 ES9500065W WO9532744A1 WO 1995032744 A1 WO1995032744 A1 WO 1995032744A1 ES 9500065 W ES9500065 W ES 9500065W WO 9532744 A1 WO9532744 A1 WO 9532744A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxyapatite
calcium
solutions
coating
deposition
Prior art date
Application number
PCT/ES1995/000065
Other languages
Spanish (es)
French (fr)
Inventor
Rafael Rodriguez Clemente
Original Assignee
Consejo Superior Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior Investigaciones Cientificas filed Critical Consejo Superior Investigaciones Cientificas
Publication of WO1995032744A1 publication Critical patent/WO1995032744A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite

Definitions

  • the invention consists of a new technique for coating with hydroxyapatite, (Ca 10 (OH) 2 (PO 4 ) 5 ), well crystallized and stoichiometric, from aqueous solutions, the surfaces of metal prostheses that will be in contact with tissues alive of the human body.
  • Implants must be designed so that they can be accepted by the body in order to perform the substitute function.
  • acceptance is achieved by calcium phosphate coatings, especially hydroxyapatite, of metal surfaces in contact with living tissues.
  • hydroxyapatite is the natural inorganic component of bones, most efforts have been focused on achieving coatings of this material (4).
  • the conditions required to measure the success of each coating method are the following (WR Lacefield, Hydroxyapatite coatings, Annals of the New York Academy of Sciences, Vol. 523 (1988) 72-80): 1) The hydroxyapatite should not be altered irreversible during the deposition process.
  • plasma spray or thermal lance consisting of introducing into the plasma or flame hydroxyapatite powder and projecting the semi-molten powder onto the surface to be coated (JGC Wolke, JMA of Blieck-Hogervorst, WJA Dhert, CPAT Klein and K. de Groot, Studies on the thermal spraying of apatite bioceramics, J. Thermal Spray Tech., 1 (1992) 75-82).
  • This method has the disadvantage of transforming part of the hydroxyapatiro into oxyapatite or tricalcium phosphate, with the consequent loss of condition 1) set forth above.
  • Electrophoretic deposition of hydroxyapatite particles is another of the methods tested (R. Damoong and BM Moudgil, Electrophoretic deposition of calcium phosphate from non-aqueous media, Colloids and Surfaces A, 80 (1993) 191-195) to obtain a green "that can be further processed by conventional ceramic techniques. This method has the disadvantage of its high cost and the need for further processing.
  • techniques for obtaining hydroxyapatite coatings have recently been tested using a polymeric route (T. Brendel, A. Engel and C. Rüssel, Hydroxyapatite coatings by a polymeric route, J. Mat.
  • Ion-beam sputtering hydroxyapatite deposition (LC Lucas, WR Lacefield, JL Ong and RY whitehead, Calcium phosphate coating for medical and dental implants, Colloids and Surfaces A, 77 (1993) 141-147) produces fairly uniform layers and well bonded of very soluble amorphous material. This solubility can be reduced by a sintering treatment during which crystalline phases are formed in the coating. As in the previous case, the high cost of this technique makes it not recommended yet for its industrial exploitation.
  • Hydroxyapatite deposition using pulsed laser is a variant of the "Sputtering" techniques that employ laser activation.
  • well-bonded and fairly homogeneous coatings are obtained, consisting of nodules of 1 to 3 microns. These coatings correspond to various phases of calcium phosphates according to experimental conditions, but for substrate temperatures between 400 and 700 ⁇ C, it has been possible to obtain hydroxyapatite coatings, as shown by the diffraction diagrams.
  • the hydroxyapatite coating in metal prostheses has traditionally been addressed by techniques based on the projection on the metal surface of the partially molten solid material, with the consequent loss of the composition control, obtaining an adhesion based on the roughness existing in the interface
  • the wet techniques tested usually produce precursor systems that need subsequent heat treatments.
  • This invention describes a method of obtaining surface coating of hydroxyapatite (Ca 10 (P0 4 ) 6 (OH) 2 ) (PAH) on titanium implants or Ti alloys.
  • hydroxyapatite Ca 10 (P0 4 ) 6 (OH) 2 ) (PAH)
  • Titanium implants, or their alloys are used in dentistry and traumatology, due to their excellent resistance to corrosion and good biocompatibility, meaning the absence of rejection of the natural formation of tissue on its surface, thus establishing a continuous interface .
  • the HAP coating must completely cover the metal surface and be firmly adhered to it.
  • Our technique consists in producing direct hydroxyapatite coatings from aqueous solutions taking advantage of the inverse solubility of the hydroxyapatite, its relative stability against other calcium phosphates, in aqueous solutions, at temperatures above 70QC, and the possibility of obtaining metastable solutions, with high induction time for precipitation, by complexing the calcium ion by a suitable ligand such as the citrate anion, among others.
  • a suitable ligand such as the citrate anion
  • the experimental procedure comprises the following steps: a thorough cleaning treatment is carried out, at room temperature, of the surfaces of the prostheses with dilute nitric acid. Then, in a high temperature thermostated reactor, 70-80 Q C, and also in an acid medium, the metal surface is treated with dilute phosphoric acid and hydrogen peroxide for about three hours, in order to obtain a phosphating thereof. After the phosphating process, the surfaces are washed with distilled water.
  • the next step is to submerge the surfaces of the prostheses to be coated, in a circulating and cooled solution formed by mixing solutions of potassium phosphate and calcium citrate, with the pH adjusted to alkaline conditions by means of an NH 3 / NH 4 buffer solution OH, and cause an elevated temperature, higher than 80SC, on the surface of the prosthesis by local heating.
  • the basicity of the medium and the high temperature cause the deposition on the surface of the prosthesis, previously phosphated, of the insoluble hydroxyapatite phase in the form of well crystallized prismatic particles, and well adhered to the substrate thanks to the existence of the intermediate phosphating layer between Metal and ceramics
  • the invention consists of a process for producing localized coatings, from aqueous solutions, of insoluble mineral salts on metal surfaces, previously treated with agents that allow incorporating at least one of the components of the insoluble salt on the surfaces.
  • the novelty lies in preventing the precipitation of mineral salts by proceeding to the mixing of constituents dissolved, by complexing at least one of the constituents, usually the cation, and forcing local precipitation on the surfaces of the insoluble salt, by thermal excitation through the surface of the complexes present in the solution. This procedure simulates the formation of insoluble salt scale in solution conduit pipes.
  • the coating technique has been used with pure Ti inserts and Ti alloy cylinders previously coated with Ti microspheres.
  • Plates of pure titanium 0.5 mm thick and dimensions 18.5 x 16.5 mm are used. Prior to treatment, they are polished and cleaned using ultrasound. To clean them, they are treated with dilute nitric acid at room temperature for 1 h.
  • the complexing of calcium allows us to cause an induction time for the precipitation of calcium phosphates, which we use to bring the solution into contact with the hot surfaces of the prosthesis.
  • the high temperature of the surfaces of the prostheses creates in that place the most favorable conditions to decompose the calcium citrate complex and cause the direct precipitation of the hydroxyapataite, without giving rise to the formation of other metastable calcium phosphates.
  • n indicates an undetermined number of protons bound to the citrate ion.
  • buffered solutions (NH 3 / NH 4 C1 buffer) at pH 11 of CaCL 2 .2H 2 0 / K 3 C 6 H 5 0 7 .H 2 0 and KH are prepared under flow of N 2 and separately 2 P0 4 to obtain a final buffered solution at pH 11, with the following concentrations:
  • This solution is placed in a thermostated reactor that maintains it at a temperature of about 102C and from which the solution can be extracted by means of a pump, to circulate it through a closed circuit where the prostheses are located and where there is a column filled with pieces of glass , before the solution is returned to the thermostated reactor.
  • the procedure in a non-restrictive device of the object of the invention is described below:
  • the titanium prostheses are placed on a device that allows only the local heating of its outer surfaces.
  • This device is placed within the circuit of the generating solutions, so that the circulating solutions directly affect the heated surfaces of the prostheses.
  • the high surface temperature causes instantaneous precipitation on it of the hydroxyapatite, which is adhered by the formation of physical and chemical bonds with the phosphated intermediate layer.
  • the thickness of the layer formed depends on how long we keep the prosthesis immersed in the circulating solution. Hydroxyapatite deposition takes place throughout the heated surface
  • the prosthesis is removed from the circuit, washed repeatedly with deionized water and dried for 10 hours in an oven heated to 120SC.
  • the X-ray diffraction diagrams of the coated titanium inserts show the most important lines of the hydroxyapatite next to those of the Ti.
  • Adhesion measurements have been made between the Ti base and the layer deposited by the tensile method, consisting of gluing two Ti bars with the cyanoacrylic cement over the coated basal surface, and stretching until the rupture occurs. This rupture occurs at the Ti-Hydroxyapatite interface and the applied force / surface ratio gives us an adhesion value of the order of 6.7 MPa.

Abstract

The invention relates to a new process for coating with hydroxiapatite, (Ca10(OH)2(PO4)6), well crystallized and stoichiometric, from aqueous solutions, the surfaces of metal prostheses which are in contact with living tissues of the human body, the process comprising the following steps: a) functionalisation of the surfaces to be coated; b) immersion of the surfaces into a circulating solution and c) local heating of the surface of the prosthesis to a temperature higher than 80 °C.

Description

PROCEDIMIENTO PARA EL RECUBRIMIENTO SUPERFICIAL CON HIDROXIAPATITO DE IMPLANTES METÁLICOSPROCEDURE FOR SURFACE COVERING WITH METAL IMPLANTS HYDROXIAPATITO
Objeto de la invenciónObject of the invention
La invención consiste en una nueva técnica para recubrir con hydroxyapatito, (Ca10(OH)2(PO4 )5) , bien cristalizado y estequiométrico, a partir de soluciones acuosas, las superficies de prótesis metálicas que vayan a estar en contacto con tejidos vivos del cuerpo humano.The invention consists of a new technique for coating with hydroxyapatite, (Ca 10 (OH) 2 (PO 4 ) 5 ), well crystallized and stoichiometric, from aqueous solutions, the surfaces of metal prostheses that will be in contact with tissues alive of the human body.
Estado de la técnica.State of the art
Uno de los problemas principales de la medicina es el rechazo por el cuerpo humano de todos los objetos extraños. Los implantes, por ello, deben diseñarse de manera que puedan ser aceptados por el cuerpo para poder realizar la función sustitutoria. En el caso de los implantes metálicos usados para funciones mecánicas, tales como las prótesis dentales, de cadera, placas, etc, la aceptación se consigue mediante recubrimientos con fosfatos de calcio, especialmente hidroxiapatito, de las superficies metálicas en contacto con los tejidos vivos.One of the main problems of medicine is the rejection by the human body of all foreign objects. Implants, therefore, must be designed so that they can be accepted by the body in order to perform the substitute function. In the case of metal implants used for mechanical functions, such as dental, hip, plaque, etc., acceptance is achieved by calcium phosphate coatings, especially hydroxyapatite, of metal surfaces in contact with living tissues.
Estos recubrimientos de fosfato de calcio presentan buena biocompatibilidad, es decir, habilidad para realizar sus funciones con una buena respuesta del sujeto en una aplicación especifica" (D.F. Williams, Biofunctionality and Biocompatibility, in "Medical and Dental Materials", Ed. by D.F. Williams, VCH Verlagsgesellschaf mbH, Weinheim, RFA, 1992). Dicha respuesta debe incluir el no rechazo y, en algunos casos, la bioactividad ó capacidad del sujeto para disolver localmente el recubrimiento y usar el material de disolución para generar la fracción inorgánica del tejido óseo. Alternativamente, una buena biocompatibilidad puede manifestarse por la habilidad del implante para promover la creación de nuevo tejido óseo, sin necesidad de disolución previa del recubrimiento (H. Solnic -Legg and K. Legg, Ion beam and plasma technology for improved biocompatible curfaces, MRS Bull., 17(4) (1989) 27-30), a través de superficies porosas que permitan el desarrollo de las células en los poros (S.D. Cook, K.A. Thomas, J.F. Kay, M. Jarcho, Hydroxyapatite-Coated Titanium for Orthopedic Implant Applications, Clin. Orthop. 232 (1988) 225-243).These calcium phosphate coatings have good biocompatibility, that is, ability to perform their functions with a good response from the subject in a specific application "(DF Williams, Biofunctionality and Biocompatibility, in" Medical and Dental Materials ", Ed. By DF Williams , VCH Verlagsgesellschaf mbH, Weinheim, RFA, 1992) This response must include non-rejection and, in some cases, the subject's bioactivity or ability to dissolve the coating locally and use the dissolution material to generate the inorganic bone tissue fraction Alternatively, good biocompatibility can be manifested by the ability of the implant to promote the creation of new bone tissue, without the need for prior dissolution of the coating (H. Solnic-Leggg and K. Legg, Ion beam and plasma technology for improved biocompatible curfaces, MRS Bull., 17 (4) (1989) 27-30), through porous surfaces that allow the development of cells in the pores (SD Cook, KA Thomas, JF Kay, M. Jarcho, Hydroxyapatite-Coated Titanium for Orthopedic Implant Applications, Clin. Orthop. 232 (1988) 225-243).
Dado que el hidroxiapatito es el componente inorgánico natural de los huesos, la mayor parte de esfuerzos se han centrado en conseguir recubrimientos de este material (4). Las condiciones exigidas para medir el éxito de cada método de recubrimiento son las siguientes (W.R. Lacefield, Hydroxyapatite coatings, Annals of the New York Academy of Sciences, Vol.523 (1988) 72-80): 1 ) El hidroxiapatito no debe sufrir alteraciones irreversibles durante el proceso de deposición.Since hydroxyapatite is the natural inorganic component of bones, most efforts have been focused on achieving coatings of this material (4). The conditions required to measure the success of each coating method are the following (WR Lacefield, Hydroxyapatite coatings, Annals of the New York Academy of Sciences, Vol. 523 (1988) 72-80): 1) The hydroxyapatite should not be altered irreversible during the deposition process.
2) Las propiedades mecánicas del sustrato no deben ser afectadas por las operaciones de deposición.2) The mechanical properties of the substrate should not be affected by deposition operations.
3 ) La adherencia entre el sustrato y el recubrimiento debe ser suficiente para garantizar que no habrá un fallo interfacial durante la vida del implante.3) The adhesion between the substrate and the coating must be sufficient to ensure that there will be no interfacial failure during the life of the implant.
4) El coste añadido del proceso de recubrimiento no debe aumentar significativamente el coste del implante.4) The added cost of the coating process should not significantly increase the cost of the implant.
Hasta la fecha se han empleado numerosas técnicas para obtener recubrientos de hidroxiapatito. La más empleada es el pulverizado por plasma ó lanza térmica "plasma or fíame spray", consistente en introducir dentro del plasma ó llama polvo de hidroxiapatito y proyectar el polvo semifundido sobre la superficie a recubrir (J.G.C. Wolke, J.M.A. de Blieck- Hogervorst, W.J.A. Dhert, C.P.A.T. Klein and K. de Groot, Studies on the thermal spraying of apatite bioceramics, J. Thermal Spray Tech., 1 (1992)75-82). Este método tiene el inconveniente de transformar parte del hidroxiapatiro en oxiapatito ó fosfato tricalcico, con la consiguiente perdida de la condición 1) enunciada arriba. Por otro lado, produce superficies con poca porosidad y la aparición de fisuras durante el proceso de enfriamiento (L.C. Lucas, W.R. Lacefield, J.L. Ong and R.Y. whitehead, Calcium phosphate coating for medical and dental implants, Colloids and Surfaces A, 77 (1993) 141-147).To date, numerous techniques have been used to obtain hydroxyapatite coatings. The most commonly used is plasma spray or thermal lance "plasma or trust spray", consisting of introducing into the plasma or flame hydroxyapatite powder and projecting the semi-molten powder onto the surface to be coated (JGC Wolke, JMA of Blieck-Hogervorst, WJA Dhert, CPAT Klein and K. de Groot, Studies on the thermal spraying of apatite bioceramics, J. Thermal Spray Tech., 1 (1992) 75-82). This method has the disadvantage of transforming part of the hydroxyapatiro into oxyapatite or tricalcium phosphate, with the consequent loss of condition 1) set forth above. On the other hand, it produces surfaces with little porosity and the appearance of fissures during the cooling process (LC Lucas, WR Lacefield, JL Ong and RY whitehead, Calcium phosphate coating for medical and dental implants, Colloids and Surfaces A, 77 (1993) 141-147).
La deposición electroforética de partículas de hidroxiapatito es otro de los métodos ensayados (R. Damodaran and B.M. Moudgil, Electrophoretic deposition of calcium phosphate from non-aqueous media, Colloids and Surfaces A, 80 (1993) 191-195) para obtener un "green" que pueda ser procesado posteriormente mediante técnicas cerámicas convencionales. Este método tiene el inconveniente de su alto coste y la necesidad de procesado posterior. Por otro lado, recientemente se han ensayado técnicas de obtención de recubrimientos de hidroxiapatito mediante una via polimérica (T. Brendel, A. Engel and C. Rüssel, Hydroxyapatite coatings by a polymeric route, J. Mat. Sci.: Materials in Medicine, 3 (1992) 175-179), consistente en producir un gel precursor por reacción entre Fenildiclorofosfina (C6H5PC12), hidrolizada por agua en presencia de acetona, y nitrato calcico disuelto en acetona. Se sumerge la prótesis en la solución viscosa y se calcina posteriormente a temperaturas entre 1200 y 1300ΩC, obteniéndose un hidroxiapatito muy reactivo como recubrimiento.Electrophoretic deposition of hydroxyapatite particles is another of the methods tested (R. Damodaran and BM Moudgil, Electrophoretic deposition of calcium phosphate from non-aqueous media, Colloids and Surfaces A, 80 (1993) 191-195) to obtain a green "that can be further processed by conventional ceramic techniques. This method has the disadvantage of its high cost and the need for further processing. On the other hand, techniques for obtaining hydroxyapatite coatings have recently been tested using a polymeric route (T. Brendel, A. Engel and C. Rüssel, Hydroxyapatite coatings by a polymeric route, J. Mat. Sci .: Materials in Medicine, 3 (1992) 175-179), consisting of producing a precursor gel by reaction between Phenyl dichlorophosphine (C 6 H 5 PC1 2 ), hydrolyzed by water in the presence of acetone, and calcium nitrate dissolved in acetone. The prosthesis is immersed in the viscous solution and subsequently calcined at temperatures between 1200 and 1300ΩC, obtaining a very reactive hydroxyapatite as a coating.
La deposición de hidroxiapatito por "ion-beam sputtering" (L.C. Lucas, W.R. Lacefield, J.L. Ong and R.Y. whitehead, Calcium phosphate coating for medical and dental implants, Colloids and Surfaces A, 77 (1993) 141-147) produce capas bastante uniforme y bien adheridas de material amorfo muy soluble. Esta solubilidad puede reducirse mediante un tratamiento de sinterizado durante el que se forman fases cristalinas en el recubrimiento. Como en el caso anterior, el alto coste de esta técnica la hace no recomendable todavía para su explotación industrial.Ion-beam sputtering hydroxyapatite deposition (LC Lucas, WR Lacefield, JL Ong and RY whitehead, Calcium phosphate coating for medical and dental implants, Colloids and Surfaces A, 77 (1993) 141-147) produces fairly uniform layers and well bonded of very soluble amorphous material. This solubility can be reduced by a sintering treatment during which crystalline phases are formed in the coating. As in the previous case, the high cost of this technique makes it not recommended yet for its industrial exploitation.
La deposición de hidroxiapatito mediante el uso de láser pulsado (C.M. Cotell and K.S. Grabowski, Novel materials applications of pulsed láser deposition, MRS Bull., 17(2) (1992) 44-53) es una variante de las técnicas de "Sputtering" que emplea la activación láser. Como en el caso anterior, se obtienen recubrimientos bien adheridos y bastante homogéneos, compuestos de nodulos de 1 a 3 mieras. Estos recubrimientos corresponden a diversas fases de los fosfatos de calcio según las condiciones experimentales, pero para temperaturas del sustrato comprendidas entre 400 y 700ΩC, ha sido posible obtener recubrimientos de hidroxiapatito, según muestran los diagramas de difracción.Hydroxyapatite deposition using pulsed laser (CM Cotell and KS Grabowski, Novel materials applications of pulsed laser deposition, MRS Bull., 17 (2) (1992) 44-53) is a variant of the "Sputtering" techniques that employ laser activation. As in the previous case, well-bonded and fairly homogeneous coatings are obtained, consisting of nodules of 1 to 3 microns. These coatings correspond to various phases of calcium phosphates according to experimental conditions, but for substrate temperatures between 400 and 700ΩC, it has been possible to obtain hydroxyapatite coatings, as shown by the diffraction diagrams.
Como puede apreciarse, el recubrimiento de hidroxiapatito en las prótesis metálicas ha sido tradicionalmente abordado por técnicas basadas en la proyección sobre la superficie metálica del material sólido parcialmente fundido, con la consiguiente perdida del control de composición, obteniéndose una adherencia basada en la rugosidad existente en la interfase. Las técnicas por via húmeda ensayadas suelen producir sistemas precursores que necesitan tratamientos térmicos posteriores.As can be seen, the hydroxyapatite coating in metal prostheses has traditionally been addressed by techniques based on the projection on the metal surface of the partially molten solid material, with the consequent loss of the composition control, obtaining an adhesion based on the roughness existing in the interface The wet techniques tested usually produce precursor systems that need subsequent heat treatments.
Nuestra técnica es la primera descrita que produce recubrimientos directos de hidroxiapatito a partir de soluciones acuosas aprovechando la solubilidad inversa del hidroxiaptito, su estabilidad relativa frente a otros fosfatos de calcio a temperaturas superiores a 70 C, y la posibilidad de obtener soluciones metaestables, con alto tiempo de inducción para la precipitación, mediante el acomplejamiento del ion calcio por un ligando adecuado tal como el anión citrato, entre otros. Estas condiciones nos permiten proceder a provocar la deposición del hidroxiapatito a partir de soluciones tamponadas a pH básicos y frías de ion fosfato e ion calcio acomplejado, que hacemos circular sobre las superficies calientes del implante, previamente fosfatada. De alguna manera, el fenómeno que provocamos es similar a la deposición de costras de sales insolubles en las tuberías de conducción de soluciones. • Descripción de la invención.Our technique is the first described that produces direct coatings of hydroxyapatite from aqueous solutions taking advantage of the inverse solubility of the hydroxyaptite, its relative stability against other calcium phosphates at temperatures above 70 C, and the possibility of obtaining metastable solutions, with high Induction time for precipitation, by complexing the calcium ion by a suitable ligand such as citrate anion, among others. These conditions allow us to proceed to cause the deposition of the hydroxyapatite from cold and basic pH buffered solutions of phosphate ion and complexed calcium ion, which we circulate on the hot surfaces of the implant, previously phosphated. In some ways, the phenomenon we cause is similar to the deposition of insoluble salt crusts in the solution conduit pipes. • Description of the invention
Esta invención describe un método de obtención de recubrimiento superficial de hidroxiapatito (Ca10(P04)6(OH)2) (HAP) sobre implantes de titanio ó de aleaciones de Ti. Los implantes de titanio, ó sus aleaciones, se emplean en odontología y traumatología, debido a su excelente resistencia a la corrosión y buena biocompatibilidad, entendiéndose por tal la ausencia de rechazo a la formación natural de tejido en su superficie, estableciéndose así una interfase continua. El recubrimiento de HAP debe cubrir completamente la superficie metálica y estar firmemente adherido a ella.This invention describes a method of obtaining surface coating of hydroxyapatite (Ca 10 (P0 4 ) 6 (OH) 2 ) (PAH) on titanium implants or Ti alloys. Titanium implants, or their alloys, are used in dentistry and traumatology, due to their excellent resistance to corrosion and good biocompatibility, meaning the absence of rejection of the natural formation of tissue on its surface, thus establishing a continuous interface . The HAP coating must completely cover the metal surface and be firmly adhered to it.
A fin de conseguir que la capa de hidroxiapatito se ancle firmemente sobre el metal, hemos diseñado un procedimiento consistente en depositar una capa intermedia entre el metal y el hidroxiapatito, que establece la ligazón entre ambos materiales por verdaderos enlaces químicos. Dado que entre el titanio y el HAP no existen elementos comunes, y que los enlaces químicos existentes en ambas estructuras son distintos, el procedimiento seguido consiste en fosfatar primero la superficie del metal, lo que genera una capa de un fosfato de titanio que actuaría como interfase entre el metal y la capa de fosfato de calcio que se depositaría a continuación.In order to ensure that the hydroxyapatite layer is anchored firmly on the metal, we have designed a procedure consisting of depositing an intermediate layer between the metal and the hydroxyapatite, which establishes the bond between both materials by true chemical bonds. Since there are no common elements between titanium and PAH, and the chemical bonds existing in both structures are different, the procedure followed consists in first phosphating the metal surface, which generates a layer of a titanium phosphate that would act as interface between the metal and the calcium phosphate layer that would be deposited next.
Nuestra técnica consiste en producir recubrimientos directos de hidroxiapatito a partir de soluciones acuosas aprovechando la solubilidad inversa del hidroxiapatito, su estabilidad relativa frente a otros fosfatos de calcio, en soluciones acuosas, a temperaturas superiores a 70QC, y la posibilidad de obtener soluciones metaestables, con alto tiempo de inducción para la precipitación, mediante el acomplejamiento del ion calcio por un ligando adecuado tal como el anión citrato, entre otros. Estas condiciones nos permiten proceder a provocar la deposición del hidroxiapatito a partir de soluciones tamponadas a pH básicos y frías de ion fosfato e ion calcio acomplejado, que hacemos circular sobre las superficies calientes del implante, previamente fosfatadas. De alguna manera, el fenómeno que provocamos es similar a la deposición de costras de sales insolubles en las tuberías de conducción de soluciones.Our technique consists in producing direct hydroxyapatite coatings from aqueous solutions taking advantage of the inverse solubility of the hydroxyapatite, its relative stability against other calcium phosphates, in aqueous solutions, at temperatures above 70QC, and the possibility of obtaining metastable solutions, with high induction time for precipitation, by complexing the calcium ion by a suitable ligand such as the citrate anion, among others. These conditions allow us to proceed to cause the deposition of the hydroxyapatite from cold and basic pH buffered solutions of phosphate ion and complexed calcium ion, which we circulate on hot surfaces of the implant, previously phosphated. In some ways, the phenomenon we cause is similar to the deposition of insoluble salt crusts in the solution conduit pipes.
El procedimiento experimental comprende los siguientes pasos: se realiza un tratamiento de limpieza a fondo, a temperatura ambiente, de las superficies de las prótesis con ácido nítrico diluido. A continuación, en un reactor termostatado a alta temperatura, 70-80QC, e igualmente en medio ácido, se trata la superficie metálica con ácido fosfórico diluido y agua oxigenada durante unas tres horas, a fin de obtener una fosfatación de la misma. Después del proceso de fosfatación, se lavan las superficies con agua destilada. El paso siguiente consiste en sumergir las superficies de las prótesis a recubrir, en una solución circulante y enfriada formada por mezcla de soluciones de fosfato de potasio y citrato calcico, con el pH ajustado a condiciones alcalinas mediante una solución tampón de NH3/NH4OH, y provocar una temperatura elevada, superior a 80SC, en la superficie de la prótesis mediante calentamiento local. La basicidad del medio y la alta temperatura provocan la deposición en la superficie de la prótesis, previamente fosfatada, de la fase insoluble hidroxiapatito en forma de partículas prismáticas bien cristalizadas, y bien adheridas al sustrato gracias a la existencia de la capa intermedia de fosfatación entre el metal y la cerámica.The experimental procedure comprises the following steps: a thorough cleaning treatment is carried out, at room temperature, of the surfaces of the prostheses with dilute nitric acid. Then, in a high temperature thermostated reactor, 70-80 Q C, and also in an acid medium, the metal surface is treated with dilute phosphoric acid and hydrogen peroxide for about three hours, in order to obtain a phosphating thereof. After the phosphating process, the surfaces are washed with distilled water. The next step is to submerge the surfaces of the prostheses to be coated, in a circulating and cooled solution formed by mixing solutions of potassium phosphate and calcium citrate, with the pH adjusted to alkaline conditions by means of an NH 3 / NH 4 buffer solution OH, and cause an elevated temperature, higher than 80SC, on the surface of the prosthesis by local heating. The basicity of the medium and the high temperature cause the deposition on the surface of the prosthesis, previously phosphated, of the insoluble hydroxyapatite phase in the form of well crystallized prismatic particles, and well adhered to the substrate thanks to the existence of the intermediate phosphating layer between Metal and ceramics
Descripción detallada de la invención.Detailed description of the invention.
El invento consiste en un procedimiento para producir recubrimientos localizados, a partir de soluciones acuosas, de sales minerales insolubles sobre superficies metálicas, previamente tratadas con agentes que permitan incorporar al menos uno de los componentes de la sal insoluble sobre las superficies. La novedad estriba en evitar la precipitación de las sales minerales al proceder a la mezcla de constituyentes disueltos, mediante el acomplejamiento de, al menos, uno de los constituyentes, normalmente el catión, y en forzar la precipitación local en las superficies de la sal insoluble, mediante excitación térmica a través de la propia superficie de los complejos presentes en la solución. Este procedimiento simula la formación de incrustaciones de sales insolubles en tuberías de conducción de soluciones.The invention consists of a process for producing localized coatings, from aqueous solutions, of insoluble mineral salts on metal surfaces, previously treated with agents that allow incorporating at least one of the components of the insoluble salt on the surfaces. The novelty lies in preventing the precipitation of mineral salts by proceeding to the mixing of constituents dissolved, by complexing at least one of the constituents, usually the cation, and forcing local precipitation on the surfaces of the insoluble salt, by thermal excitation through the surface of the complexes present in the solution. This procedure simulates the formation of insoluble salt scale in solution conduit pipes.
Dada su importancia en medicina restaurativa, hemos aplicado los conceptos descritos arriba a la obtención de recubrimientos de hidroxiapatito, bien cristalizado y con composición estequiométrica, sobre prótesis de Ti. Hemos utilizado citrato como agente acomplejante del calcio.Given its importance in restorative medicine, we have applied the concepts described above to obtain hydroxyapatite coatings, well crystallized and stoichiometric composition, on Ti prostheses. We have used citrate as a complexing agent for calcium.
Para realizar la deposición localizada, hemos elaborado un dispositivo que permite calentar, por transmisión de calor a través de sólidos, prótesis cilindricas fijadas firmemente en orificios externos, de su mismo diámetro, practicados a un bloque de acero inoxidable. Este bloque está aislado de las soluciones circulantes, excepto a través de los orificios externos, por protecciones cerámicas y de Teflon, y es calentado por una resistencia situada en un orificio cilindrico practicado en su interior. La temperatura en el interior del bloque está regulada mediante un controlador y un termopar situado en otro orificio interno. De esta manera, la mayoría de la superficies metálicas calentadas por la resistencia y en contacto con las soluciones frías circulantes, corresponden a las prótesis, por lo que, cuando la temperatura en dichas superficies es mayor de 802C, provocamos sobre ellas la deposición directa del hidroxiapatito. La capa de fosfatación creada con anterioridad, permite la creación de enlaces químicos entre el sustrato y la capa depositada.To perform the localized deposition, we have developed a device that allows heating, by heat transmission through solids, cylindrical prostheses firmly fixed in external holes, of the same diameter, made of a stainless steel block. This block is isolated from the circulating solutions, except through the external holes, by ceramic and Teflon protections, and is heated by a resistor located in a cylindrical hole made inside. The temperature inside the block is regulated by a controller and a thermocouple located in another internal hole. In this way, most of the metal surfaces heated by the resistance and in contact with the circulating cold solutions, correspond to the prostheses, so, when the temperature on these surfaces is higher than 802C, we cause them to directly deposit the hydroxyapatite The phosphating layer created previously allows the creation of chemical bonds between the substrate and the deposited layer.
Con este invento reivindicamos una técnica de deposición a partir de soluciones, acuosas ó de otros solventes, basada en la creación de soluciones metaestables de sales insolubles, mediante el acomplejamiento de alguno de sus constituyentes, y en la precipitación ocal de las sales sobre superficies calentadas que provocan la deposición de la sal.With this invention we claim a deposition technique from solutions, aqueous or other solvents, based on the creation of metastable solutions of insoluble salts, by complexing some of its constituents, and in the ocal precipitation of salts on heated surfaces that cause salt deposition.
Ejemplo de realización.Example of realization.
La técnica de recubrimiento se ha usado con plaquitas de Ti puro y cilindros de aleación de Ti recubiertos, previamente, con microesferas de Ti.The coating technique has been used with pure Ti inserts and Ti alloy cylinders previously coated with Ti microspheres.
La realización de un recubrimiento de plaquitas de Ti comprende los siguientes pasos:The realization of a coating of Ti inserts comprises the following steps:
1. Limpieza de las piezas de titanio. 2. Fosfatación de las piezas de titanio.1. Cleaning the titanium parts. 2. Phosphation of titanium parts.
3. Síntesis y deposición de hidroxiapatito.3. Synthesis and deposition of hydroxyapatite.
1. Limpieza de las piezas de titanio1. Cleaning the titanium parts
Se usan plaquitas de titanio puro de 0.5 mm de espesor y dimensiones 18.5 x 16.5 mm. Previamente al tratamiento se pulen y se limpian mediante ultrasonidos. Para limpiarlas, se tratan con ácido nítrico diluido a temperatura ambiente durante 1 h.Plates of pure titanium 0.5 mm thick and dimensions 18.5 x 16.5 mm are used. Prior to treatment, they are polished and cleaned using ultrasound. To clean them, they are treated with dilute nitric acid at room temperature for 1 h.
2. Fosfatación de las piezas de titanio2. Phosphation of titanium parts
Una vez limpia la placa se sumerge en un baño agitado de la siguiente composición: 6 mi H3P04 (85%) en un volumen total de 600 mi solución. Condiciones del baño: T = 80°C pH0 ( inicial )= 1.5 tiempo = 3 h. Pasado este tiempo se añade al baño un oxidante, 11 mi H202, manteniendo la misma temperatura y procediendo durante 1 hora más.Once the plate is cleaned, it is immersed in a stirred bath of the following composition: 6 ml H 3 P0 4 (85%) in a total volume of 600 ml. Bath conditions: T = 80 ° C pH 0 (initial) = 1.5 time = 3 h. After this time, an oxidant, 11 ml H 2 0 2 , is added to the bath, maintaining the same temperature and proceeding for an additional hour.
3. Síntesis y deposición de hidroxiapatito La precipitación de hidroxiapatito a partir de soluciones acuosas básicas tiene lugar de forma directa, es decir sin formación de substancias sólidas precursoras, a temperaturas superiores a 80SC. Al ser los fosfatos de calcio materiales muy insolubles, precipitarían inmediatamente al mezclar las soluciones que contienen el fosfato y el Calcio. Para evitarlo acomplejamos previamente el calcio con citrato o cualquier ligando orgánico con grupos carboxilos,, obteniendo un complejo soluble de Ca-citrato, en el caso de utilizar citrato, que, al mezclarse con soluciones contenedoras de ion fosfato, por ejemplo fosfatos de amonio, dificulta la precipitación inmediata de los fosfatos de calcio. El acomplejamiento del calcio nos permite provocar un tiempo de inducción para la precipitación de los fosfatos de calcio, que usamos para poner en contacto la solución con las superficies calientes de la prótesis. La alta temperatura de las superficies de las prótesis, nos crea en ese lugar las condiciones más favorables para descomponer el complejo citrato calcico y provocar la precipitación directa del hidroxiapataito, sin dar lugar a la formación de otros fosfatos calcicos metaestables.3. Synthesis and deposition of hydroxyapatite The precipitation of hydroxyapatite from basic aqueous solutions takes place directly, that is to say without formation of solid precursor substances, at temperatures above 80SC. Since calcium phosphates are very insoluble materials, they would precipitate immediately when mixing the solutions containing phosphate and calcium. To avoid this, we first complex calcium with citrate or any organic ligand with carboxyl groups, obtaining a soluble complex of Ca-citrate, in the case of using citrate, which, when mixed with phosphate ion containing solutions, for example ammonium phosphates, hinders the immediate precipitation of calcium phosphates. The complexing of calcium allows us to cause an induction time for the precipitation of calcium phosphates, which we use to bring the solution into contact with the hot surfaces of the prosthesis. The high temperature of the surfaces of the prostheses, creates in that place the most favorable conditions to decompose the calcium citrate complex and cause the direct precipitation of the hydroxyapataite, without giving rise to the formation of other metastable calcium phosphates.
Reacción:Reaction:
6 KH2PO4+10 Ca-Cit+2 OH" >Ca10(P04)6(OH)2+ 6 K* +10 Hn-Cit6 KH 2 PO 4 +10 Ca-Cit + 2 OH " > Ca 10 (P0 4 ) 6 (OH) 2 + 6 K * +10 H n -Cit
donde n indica un número no determinado de protones ligados al ion citrato.where n indicates an undetermined number of protons bound to the citrate ion.
Preparación de las soluciones generadoras de hidroxiapatito:Preparation of hydroxyapatite generating solutions:
Se hierve agua destilada y desionizada para extraer elDistilled and deionized water is boiled to extract the
C02 disuelto. Con este agua, se preparan bajo flujo de N2 y por separado soluciones tamponadas (tampón NH3/NH4C1) a pH 11 de CaCL2.2H20/K3C6H507.H20 y KH2P04 para obtener una solución final tamponada a pH 11, con las siguientes concentraciones:C0 2 dissolved. With this water, buffered solutions (NH 3 / NH 4 C1 buffer) at pH 11 of CaCL 2 .2H 2 0 / K 3 C 6 H 5 0 7 .H 2 0 and KH are prepared under flow of N 2 and separately 2 P0 4 to obtain a final buffered solution at pH 11, with the following concentrations:
- KH2P04 = 3.10'4 M/l - K3Cit = 10"3 M/l- KH 2 P0 4 = 3.10 '4 M / l - K 3 Cit = 10 "3 M / l
- Ca2C1 . 2H20 = 5 . 10"4 M/1- Ca 2 C1. 2H 2 0 = 5. 10 "4 M / 1
Esta solución se sitúa en un reactor termostatado que la mantiene a una temperatura de unos 102C y del que puede extraerse la solución mediante una bomba, para hacerla circular por un circuito cerrado donde estén situadas las prótesis y donde halla una columna rellena de piezas de vidrio, antes de la vuelta de la solución al reactor termostatado.This solution is placed in a thermostated reactor that maintains it at a temperature of about 102C and from which the solution can be extracted by means of a pump, to circulate it through a closed circuit where the prostheses are located and where there is a column filled with pieces of glass , before the solution is returned to the thermostated reactor.
A manera de ejemplo, se describe a continuación la realización del procedimiento en un dispositivo, no restrictivo del objeto de la invención: Se colocan las prótesis de titanio sobre un dispositivo que permita solo el calentamiento local de sus superficies exteriores. Este dispositivo se sitúa dentro del circuito de las soluciones generadoras, de manera que las soluciones circulantes incidan directamente sobre las superficies calentadas de las prótesis.By way of example, the procedure in a non-restrictive device of the object of the invention is described below: The titanium prostheses are placed on a device that allows only the local heating of its outer surfaces. This device is placed within the circuit of the generating solutions, so that the circulating solutions directly affect the heated surfaces of the prostheses.
Establecemos un régimen de circulación de las soluciones, y procedemos a calentar las prótesis de tal manera que la temperatura en las superficies exteriores en contacto con la solución sea superior a 80SC.We establish a circulation regime of the solutions, and proceed to heat the prostheses in such a way that the temperature on the outer surfaces in contact with the solution is higher than 80SC.
La alta temperatura en la superficie provoca la precipitación instantánea sobre ella del hidroxiapatito, que queda adherido mediante la formación de enlaces físicos y químicos con la capa intermedia fosfatada. El espesor de la capa formada depende del tiempo que mantengamos la prótesis sumergida en la solución circulante. La deposición del hidroxiapatito tiene lugar por toda la superficie calentada
Figure imgf000012_0001
The high surface temperature causes instantaneous precipitation on it of the hydroxyapatite, which is adhered by the formation of physical and chemical bonds with the phosphated intermediate layer. The thickness of the layer formed depends on how long we keep the prosthesis immersed in the circulating solution. Hydroxyapatite deposition takes place throughout the heated surface
Figure imgf000012_0001
Una vez realizada la operación de recubrimiento, se extrae la prótesis del circuito, se lava repetidamente con agua desionizada y se seca durante 10 horas en una estufa calentada a 120SC.Once the coating operation is performed, the prosthesis is removed from the circuit, washed repeatedly with deionized water and dried for 10 hours in an oven heated to 120SC.
Caracterización de las muestras recubiertas:Characterization of the coated samples:
-Difracción de rayos X-X-ray diffraction
Los diagramas de difracción de Rayos X de las plaquita de titanio recubiertas muestran las líneas más importantes del hidroxiapatito junto a las del Ti.The X-ray diffraction diagrams of the coated titanium inserts show the most important lines of the hydroxyapatite next to those of the Ti.
-Observación con microscopio electrónico-Observation with electron microscope
La observación al microscopio electrónico de las placas se realiza sin metalizado previo. Se observa que la superficie de Ti está completamente recubierta con microcristales prismáticos que presentan la morfología teórica del hidroxiapatito. El tamaño de estos microcristales es bastante homogéneo con una dimensión máxima de 1-3 mieras y anchura de 0.1 miera.The observation under the electron microscope of the plates is performed without prior metallization. It is observed that the surface of Ti is completely covered with prismatic microcrystals that have the theoretical morphology of the hydroxyapatite. The size of these microcrystals is quite homogeneous with a maximum dimension of 1-3 microns and width of 0.1 miera.
-Medida de la adherencia de la capa-Measurement of the adhesion of the layer
Se han realizado mediciones de la adherencia entre la base de Ti y la capa depositada mediante el método de tracción, consistente en pegar con un cemento cianoacrílico dos barritas de Ti por la superficie basal recubierta, y estirar hasta que se produce la ruptura. Dicha ruptura se produce en la interfase Ti-Hidroxiapatito y la relación fuerza aplicada/superficie nos da un valor de adherencia del orden de 6.7 MPa. Adhesion measurements have been made between the Ti base and the layer deposited by the tensile method, consisting of gluing two Ti bars with the cyanoacrylic cement over the coated basal surface, and stretching until the rupture occurs. This rupture occurs at the Ti-Hydroxyapatite interface and the applied force / surface ratio gives us an adhesion value of the order of 6.7 MPa.

Claims

REIVINDICACIONES
1. PROCEDIMIENTO PARA EL RECUBRIMIENTO SUPERFICIAL CON HIDROXIAPATITO DE IMPLANTES MET LICOS de titanio o aleaciones de titanio, caracterizado por las siguientes etapas: a) funcionalización de las superficies a recubrir, que incluye limpieza de las prótesis, fosfatación y lavado de las mismas. b) inmersión de las superficies en una solución circulante, enfriada a una temperatura inferior a 20°C, formada por una mezcla de soluciones de fosfato potásico y citrato calcico, con el pH ajustado entre 9 y 11, preferentemente no mayor de 11, en condiciones alcalinas mediante una solución tampón de NH3/NH4OH. c) calentamiento local de la superficie de la prótesis a una temperatura superior a 80°C.1. PROCEDURE FOR SURFACE COATING WITH HYDROXIAPATITE METALLIC IMPLANTS of titanium or titanium alloys, characterized by the following stages: a) functionalization of the surfaces to be coated, which includes cleaning the prostheses, phosphating and washing them. b) immersion of the surfaces in a circulating solution, cooled to a temperature below 20 ° C, formed by a mixture of solutions of potassium phosphate and calcium citrate, with the pH adjusted between 9 and 11, preferably not greater than 11, in alkaline conditions by means of a buffer solution of NH 3 / NH 4 OH. c) local heating of the surface of the prosthesis at a temperature above 80 ° C.
2. Procedimiento según reivindicación 1 caracterizado porque la inmersión de las superficies se realiza con una mezcla de fosfato calcico y cualquier ligando orgánico con grupos carboxilos.2. Method according to claim 1 characterized in that the immersion of the surfaces is carried out with a mixture of calcium phosphate and any organic ligand with carboxyl groups.
3. Procedimiento según reivindicaciones anteriores caracterizado porque se precipita la solución circulante sobre la superficie del implante de manera que se obtienen diferentes espesores de recubrimiento en función del tiempo de inmersión. 3. Method according to previous claims characterized in that the circulating solution is precipitated on the surface of the implant so that different coating thicknesses are obtained depending on the immersion time.
PCT/ES1995/000065 1994-05-31 1995-05-31 Process for the surface coating of metal implants with hydroxiapatite WO1995032744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9401192 1994-05-31
ES09401192A ES2088767B1 (en) 1994-05-31 1994-05-31 PROCEDURE FOR SURFACE COATING WITH HYDROXIAPATITE OF METALLIC IMPLANTS.

Publications (1)

Publication Number Publication Date
WO1995032744A1 true WO1995032744A1 (en) 1995-12-07

Family

ID=8286446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1995/000065 WO1995032744A1 (en) 1994-05-31 1995-05-31 Process for the surface coating of metal implants with hydroxiapatite

Country Status (2)

Country Link
ES (1) ES2088767B1 (en)
WO (1) WO1995032744A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021380A1 (en) * 1996-11-12 1998-05-22 Universidad De Vigo Method for improving the osteointegration of osseous fixing implants
WO1999042631A1 (en) * 1998-02-19 1999-08-26 Universidad De Vigo Biocompatible coatings produced by means of laser
US20120288705A1 (en) * 2010-11-08 2012-11-15 The Board Of Regents For Oklahoma State University Hydroxyapatite coated metal surface and method for producing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3709457A1 (en) * 1986-03-24 1987-10-01 Permelec Electrode Ltd TITANIUM COMPOSITES COATED WITH A CALCIUM PHOSPHATE COMPOUND AND METHOD FOR THE PRODUCTION THEREOF
EP0285826A2 (en) * 1987-04-04 1988-10-12 BK LADENBURG GmbH, Gesellschaft für chemische Erzeugnisse Implant with a bioactive coating
EP0548365A1 (en) * 1991-06-18 1993-06-30 Kabushiki Kaisya Advance Process for producing implant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447583A1 (en) * 1984-12-28 1986-07-10 Battelle-Institut E.V., 6000 Frankfurt METHOD FOR PRODUCING IMPLANTABLE BONE REPLACEMENT MATERIALS
US5164187A (en) * 1990-04-05 1992-11-17 Norian Corporation Hydroxyapatite prosthesis coatings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3709457A1 (en) * 1986-03-24 1987-10-01 Permelec Electrode Ltd TITANIUM COMPOSITES COATED WITH A CALCIUM PHOSPHATE COMPOUND AND METHOD FOR THE PRODUCTION THEREOF
EP0285826A2 (en) * 1987-04-04 1988-10-12 BK LADENBURG GmbH, Gesellschaft für chemische Erzeugnisse Implant with a bioactive coating
EP0548365A1 (en) * 1991-06-18 1993-06-30 Kabushiki Kaisya Advance Process for producing implant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021380A1 (en) * 1996-11-12 1998-05-22 Universidad De Vigo Method for improving the osteointegration of osseous fixing implants
ES2113834A1 (en) * 1996-11-12 1998-06-01 Univ Vigo Method for improving the osteointegration of osseous fixing implants
WO1999042631A1 (en) * 1998-02-19 1999-08-26 Universidad De Vigo Biocompatible coatings produced by means of laser
ES2143938A1 (en) * 1998-02-19 2000-05-16 Univ Vigo Biocompatible coatings produced by means of laser
US20120288705A1 (en) * 2010-11-08 2012-11-15 The Board Of Regents For Oklahoma State University Hydroxyapatite coated metal surface and method for producing

Also Published As

Publication number Publication date
ES2088767B1 (en) 1997-03-16
ES2088767A1 (en) 1996-09-01

Similar Documents

Publication Publication Date Title
Barrere et al. Influence of ionic strength and carbonate on the Ca-P coating formation from SBF× 5 solution
Wei et al. Optimising the bioactivity of alkaline-treated titanium alloy
Jonášová et al. Biomimetic apatite formation on chemically treated titanium
Kuroda et al. Hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their osteoconductivity
ES2226094T3 (en) NEW MINERALS AND PROCEDURES FOR THEIR PRODUCTION AND USE.
JPH02255515A (en) Coating method for bioactive hydroxylapatite film
KR100775537B1 (en) Method of fabricating implant with improved surface properties and implant fabiricated by the same method
JPH08299429A (en) Method for surface treatment of titanium implant and bio-compatible titanium implant
Peron et al. Comparing physiologically relevant corrosion performances of Mg AZ31 alloy protected by ALD and sputter coated TiO2
Katić et al. The potential-assisted deposition as valuable tool for producing functional apatite coatings on metallic materials
US6974532B2 (en) Method for producing adherent coatings of calcium phosphate phases on titanium and titanium alloy substrates by electrochemical deposition
Kaur et al. Characterization of hydroxyapatite coating on 316L stainless steel by sol–gel technique
US7785648B2 (en) Adherent apatite coating on titanium substrate using chemical deposition
JP4188275B2 (en) Method for producing polymeric sol of calcium phosphate compound and its metal implant
Zhu et al. Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium
Fatehi et al. In vitro biomimetic deposition of apatite on alkaline and heat treated Ti6A14V alloy surface
WO1995013101A1 (en) A method of applying a coating of a bioactive material to implants
Hameed et al. Evaluation of corrosion behavior by measuring passivation current density of dental implant coated with bioceramic materials
WO1995032744A1 (en) Process for the surface coating of metal implants with hydroxiapatite
EP2296718B1 (en) Calcium phosphate coating of ti6ai4v by a na-lactate and lactic acid-buffered body fluid solution
JP2003235954A (en) Bone conductive biomaterial and manufacturing method therefor
Shikha et al. Corrosion, wettability and thrombogenicity investigation of ion beam modified HAP/Al2O3
Morejon-Alonso et al. Apatite coatings on chemically modified titanium using a new accelerated biomimetic route
Edathazhe et al. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V
Dorozhkin Surface modification of magnesium and its biodegradable alloys by calcium orthophosphate coatings to improve corrosion resistance and biocompatibility

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase