WO1995032233A1 - Process for producing carboxylated polymer - Google Patents

Process for producing carboxylated polymer Download PDF

Info

Publication number
WO1995032233A1
WO1995032233A1 PCT/JP1994/001995 JP9401995W WO9532233A1 WO 1995032233 A1 WO1995032233 A1 WO 1995032233A1 JP 9401995 W JP9401995 W JP 9401995W WO 9532233 A1 WO9532233 A1 WO 9532233A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
component
polymer
reaction
acid
Prior art date
Application number
PCT/JP1994/001995
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kimura
Yasuhisa Fukumoto
Yukinaga Yokota
Shoichi Jho
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP13501494A external-priority patent/JPH0741554A/en
Application filed by Kao Corporation filed Critical Kao Corporation
Publication of WO1995032233A1 publication Critical patent/WO1995032233A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00

Definitions

  • the present invention relates to a method for producing a polymer having a lipoxyl group.
  • the present invention relates to a method for producing a polymer having a carbonyl group. More specifically, the present invention relates to a method for producing a carboxyl-containing polymer useful as a detergent builder, a neutralizer, a thickener, a polymer material, or a water-absorbing polymer material.
  • a carboxyl-containing polymer useful as a detergent builder, a neutralizer, a thickener, a polymer material, or a water-absorbing polymer material.
  • Polyboronic acid typified by a copolymer with polyacrylic acid or maleic acid
  • builder U has an extremely high calcium-capturing ability and is an excellent detergent builder, the high price of the raw materials still poses a problem in terms of practicality. Therefore, if a biodegradable polymer builder such as builder U can be produced at low cost using inexpensive raw materials, the ripple effect is incalculable.
  • German Offenlegungsschrift No. 2 347 738 discloses that polyglycerin oxide obtained by oxidizing polyglycerol derived from glycerin, which is a cheap material, is used as a biodegradable builder. The method is described ing. However, since the polymerization degree of polyglycerin is generally at most 10 at most, the number of carboxy groups in the polyglycerin oxide obtained by the method is small, and the function as a polycarboxylic acid, for example, the chelating function, is low. It is of low quality and its performance as a detergent builder is not satisfactory.
  • JP-A-62-211243 and JP-A-62-192026 disclose that, in the presence of a transesterification catalyst, a high temperature (200 or less), A method of dehydrating and condensing tartronic acid or its ester under reduced pressure (50 torr or less) is described. However, under such conditions, the formed polymer is likely to decompose. It is expected to develop a method for expressing the high Ca capture ability with little degradation of the generated polymer by reacting in step (1). Disclosure of the invention
  • the present inventors have made inexpensive raw materials glycerin, glyceric acid, ethylen glycol, propylene glycol, hydroxyacetone, lactic acid, a salt of glyceric acid or a salt of lactic acid, or Presence of the specified catalyst composition and oxidizing agent, starting from tartronic acid, which is an oxide of glycerin, decarboxylated decomposition product of tartronic acid, or glycolic acid, which is an oxide of ethylene glycol, or a salt thereof
  • tartronic acid which is an oxide of glycerin, decarboxylated decomposition product of tartronic acid, or glycolic acid, which is an oxide of ethylene glycol, or a salt thereof
  • the gist of the present invention is:
  • a hydroxyl group compound is prepared in the presence of the following catalyst composition and oxidizing agent.
  • a method for producing a carboxyl-containing polymer which comprises producing a monomer having a carboxyl group by catalytic oxidation and polymerizing the monomer.
  • One or more elements selected from the group consisting of palladium, platinum, rhodium, and ruthenium are used as the catalyst first component, and one or more elements selected from the group consisting of bismuth, tellurium, tin, lead, antimony, and selenium are used as the catalyst first component.
  • a supported catalyst consisting of any of
  • the weight average molecular weight of the polymer having a carboxyl group is from 500 to 1,000, 000 by gel filtration chromatography, according to any one of the above (1) to (9).
  • FIG. 1 shows a schematic diagram of the reaction scheme in the present invention.
  • FIG. 2 is showing a Chiya one Bok of GPC of the reaction mixture obtained in Example 1 (gel permeatio n chromatography)
  • Peak 1 (area 3.05%) in the figure is the polymer of the present invention (weight average molecular weight 4.503 X 10 *), and beak 2 (area 3.98%) is the present invention.
  • Polymer weight average molecular weight 7.32 4 10 3
  • beak 3 area 46.06%) is a raw material low molecular oxide (weight average molecular weight 3
  • FIG. 3 shows a GPC chart of the reaction mixture obtained in Example 8. . Peaks in FIG. 1 (area 5.0%), the polymer of the present invention (weight average molecular weight 6. 6 X 1 0 6), peak 2 (area 1 7.0%), the present onset Ming polymerization Product (weight average molecular weight 8.2 ⁇ 10 4 ), peak 3 (area 3.0) is the polymer of the present invention (weight average molecular weight 3.7 ⁇ 10 4 ), peak 4 (area 30%) The polymer of the present invention (weight average molecular weight 2.
  • peak 5 (area 25%) is the polymer of the present invention (weight average molecular weight 600,000), and peaks 6, 7, 8 have a weight average molecular weight of 20
  • the polymerization in the present invention is mainly oxidative dehydrogenation polymerization.
  • active hydrogen at the polymerization site of the monomer precursor (hereinafter sometimes abbreviated as monomer precursor), which is a reaction raw material, reacts with oxygen supplied from the bulk on the catalyst surface to form water.
  • a monomer having an aldehyde group or a carbonyl group (hereinafter, sometimes abbreviated as a monomer) which is directly involved in polymerization is formed on the catalyst surface, and the polymerization reaction of the monomer proceeds. It is.
  • Examples of the monomer precursor in the present invention include (1) glycerin, glycerin, or a salt of glyceric acid, (2) tartronic acid or a salt thereof, (3) ethylene glycol, glycolic acid, or glycol. Salts of phosphoric acid, (4) provylene glycol, hydroxyacetone, lactate and phosphoric acid salts can be used. ⁇ :::
  • Glyceric acid and tanothrenic acid are oxides of glycerin, and glycolic acid is a decarboxylated product of tartronic acid or ethylene glycol. Is an oxide of As shown in the reaction scheme in Fig. 1, these are formed sequentially by the catalytic oxidation of glycerin, ethylene glycol, and propylene glycol, so that glycerin, ethylene glycol, and propylene glycol are It is the cheapest starting material.
  • monomers involved in direct polymerization include glyceric acid, tartronic acid, glycolic acid, lactic acid or their salts, which are obtained by catalytic oxidation of their salts, ketomalonic acid, glyoxylic acid, pyruvine, respectively.
  • An acid or a salt thereof is used, and these monomers may be those synthesized separately by a synthesis method.
  • reaction mechanism for producing the polymer of the present invention by further polymerizing the monomer produced using these monomer precursors has not been completely elucidated. It is estimated as follows.
  • reaction of the present invention is carried out as follows: (1) an oxidation reaction part for producing a monomer precursor and a monomer; (2) a polymerization part to a polymer having a carboxyl group; and (3) It is roughly divided into three parts: decarboxylation of polymer.
  • glyceric acid is produced via glyceraldehyde.
  • Glyceric acid is further oxidized to produce tartronic aldehyde, one of the monomers in the present invention.
  • the tartronic acid aldehyde is further oxidized to produce tartronic acid, which in turn produces ketomalonic acid, one of the monomers in the present invention.
  • Tartronic acid produces glycolic acid by decarboxylation, and further produces glyoxylic acid, which is one of the monomers in the present invention.
  • glycol When ethylene glycol is used as a starting material, it is oxidized to glycolic acid via the corresponding aldehyde, which is the same as that produced by decarboxylation of tartronic acid. Glycolic acid is further oxidized to produce monomeric glyoxylic acid.
  • the polymerized portion to the polymer having a carboxyl group is roughly classified into the following five routes ((a) to (e)) corresponding to the above oxidation reaction route.
  • aldolcarboxylic acid (V) containing a hydroxyl group is generated via aldol generated from glyceraldehyde (route 4).
  • the pH is 9 or more and the reaction temperature is 50 ° C or more.
  • borike tomalonic acid (I), polymesoxal aldehyde (IV) or salts thereof are thermodynamically unstable. Therefore, it is presumed that under high temperature, it easily decarboxylates and decomposes to boroglioxylic acid (II) or its salt.
  • raw materials such as glycerin, ethylene glycol, glyceric acid, tartronic acid or glycolic acid or a salt thereof, for example, 1,2-propylene glycol, 1,3-propylene glycol And monohydric alcohols such as methanol, ethanol, propyl alcohol, and isopropyl alcohol, or aldehydes such as formaldehyde and acetate aldehyde.
  • aldehyde or ketone which is an oxide of the polyhydric alcohol or monohydric alcohol, or the structural unit of the aldehyde is incorporated into the main chain of the polymer having a carboxyl group of the present invention.
  • a platinum-based noble metal catalyst is effective. That is, at least one element selected from the group consisting of palladium, platinum, rhodium, and ruthenium is used as the catalyst first component, and at least one element selected from the group consisting of bismuth, tellurium, tin, lead, antimony, and selenium.
  • the element is the catalyst second component and one or more elements selected from rare earth elements are the catalyst third component, (a) a catalyst composition combining the first catalyst component and the second catalyst component; A catalyst composition combining the first component and the third catalyst component, (c) a catalyst composition combining the first catalyst component, the second catalyst component and the third catalyst component, and (ii) a catalyst composition comprising only the first catalyst component.
  • Catalyst compositions are used.
  • the polymer having a carboxyl group of the present invention is thermally unstable and easily undergoes decarboxylation
  • the above-mentioned noble metal catalyst having a low-temperature activity capable of promoting oxidative polymerization under mild conditions. Is particularly effective It is.
  • oxidation and oxidative polymerization using other general oxidation catalysts or inorganic or organic reagents can also be used in combination.
  • the catalyst composition (a) in which the catalyst first component and the catalyst second component are combined is a preferable catalyst composition in terms of suppressing a decrease in catalyst activity due to oxygen poisoning.
  • the second component of the catalyst include bismuth, tellurium, tin, lead, antimony, and selenium, and although not particularly limited, antimony, bismuth, tellurium, and lead are particularly effective.
  • P b ⁇ P d / C a C 0 8 catalyst known as re-emission Dollar catalysts can also be used as catalysts of the present invention.
  • Bismuth, tellurium and antimony are particularly useful.
  • bismuth is particularly effective as the second catalyst component in the present invention.
  • bismuth has a surface of the main catalyst element represented by palladium or platinum, particularly
  • ad-atom structure or ad-layerr structure is easily formed in the 1 1 1) plane, and as a result, adsorption of the produced polymer is greatly suppressed.
  • This specificity of bismuth is measured by measuring the amount of adsorption of C0 of a two-component catalyst with palladium or platinum.In the case of bismuth, the adsorption amount of palladium is different from that of other catalysts such as tellurium and lead.
  • the atomic ratio of PdZBi and Pt / Bi on the catalyst surface calculated from the dispersity and surface area of palladium or platinum is 3 It can be understood from becoming.
  • the catalyst composition (mouth) combining the first catalyst component and the third catalyst component is a combination of the third catalyst component from the viewpoint of achieving high-speed reactivity.
  • rare earth elements lanthanum, cerium, brassium, neovisium, etc. are effective. This is because the addition of the rare earth element, which is a basic element, makes the first component of the catalyst, such as palladium, into a highly dispersed state and imparts basicity to the catalyst surface, thereby achieving high-speed reactivity. .
  • the catalyst composition (C) in which the first catalyst component, the second catalyst component, and the third catalyst component are combined is a composition having both the properties of the catalyst compositions (a) and (mouth) described above. However, it is possible to obtain an effect of suppressing a decrease in catalytic activity due to oxygen poisoning and achieving high-speed reactivity.
  • a catalyst composition Although not particularly limited, for example, CeBiPd, CeBe * Pd, SeBi * Pd, CeBiSePd, C e-Bi-Te-Pd, Bi-Pt-Pd, Ce-Bi-Pt-Pd.
  • the catalyst composition (c) those in which the first component of the catalyst is palladium and platinum, the second component of the catalyst is bismuth and / or tellurium, and the third component of the catalyst is cellium and / or lanthanum are preferably used.
  • a catalyst system having a low-temperature activity can be reformed by using a plurality of catalyst first components, in particular, platinum as a co-catalyst.
  • the four-component catalyst of Ce'Bi'Pt'Pd has remarkable low-temperature activity and polymerization activity, and gives a polycarboxylic acid having high Ca-capturing ability. That is, a four-component catalyst of Ce'Bi'Pt'Pd that uses two kinds of catalysts, palladium and platinum, as the first component of the catalyst, uses bismuth as the second component of the catalyst, and cerium as the third component of the catalyst.
  • Catalyst composition (c)) is one of the high-performance low-temperature active catalysts in which the functions of individual elements are highly complexed. Each element has the following functions.
  • This four-component catalyst is composed of a composite of a Ce ⁇ Bi-Pd catalyst system that exhibits primary hydroxyl oxidizing ability and a Bi ⁇ Pt catalyst system that exhibits secondary hydroxyl oxidizing ability. Therefore, for example, when glycerin is used as a starting material, the primary hydroxyl groups of glycerin are oxidized by the Ce, Bi, and Pd catalysts. The secondary hydroxyl group of the resulting tartaric acid is efficiently oxidized by the Bi-Pt catalyst to induce keto- ⁇ -acid.
  • the composition of the other components (Pt, Bi, Ce) with respect to palladium as the main catalytic element can greatly control the catalytic performance and product composition.
  • the catalyst composition (2) for example, palladium alone may be used as the catalyst composition in the present invention, but preferably, the catalyst composition is combined with the second component of the catalyst (catalyst composition (a)) By combining with the third catalyst component (catalyst composition (mouth)) and further combining with the second catalyst component and third catalyst component (catalyst composition (c)), two more catalyst components can be used. By using them together, the catalytic activity and selectivity can be dramatically improved.
  • the composition of the multi-component catalyst in the present invention is important and has a significant effect on catalytic activity. Accordingly, the following range of the atomic ratio R 1 of the bulk of the second catalyst component to the first catalyst component is selected depending on the type of the second catalyst component.
  • R 1 is 0.05 to 0.3, preferably 0.05 to 0.10.
  • R 1 is 0.05 to 1.5, preferably 0.1 to 0.5.
  • the optimum R 1 is 0.2. At this time, it is estimated that the surface structure has a ⁇ 3X ⁇ 3R30 ° structure.
  • the amount of catalyst supported affects the molecular weight of the polymer produced, and the lower the supported amount, the higher the molecular weight.
  • the supported amount of the first component of the catalyst is usually 0.1 to 10% by weight, preferably 0.1 to 5% by weight, particularly preferably 0.1 to 3% by weight of the total supported catalyst (including the catalyst support). % By weight.
  • the first component of the catalyst is palladium
  • when used alone, or when combined with the second and third components of the catalyst to form a composite Is preferably 0.5 to 10% by weight, more preferably 1 to 6% by weight. If the amount is less than 0.5% by weight, the reaction rate is low. If the amount exceeds 10% by weight, there is a problem in cost.
  • the loading amount of the second component of the catalyst depends on R 1 described above, but is usually 0.1 to 10% by weight, preferably 0.1 to 5% by weight, particularly preferably 0.1 to 5% by weight from the viewpoint of catalytic activity. 5 to 3% by weight.
  • the atomic ratio R2 of the bulk of the third catalyst component to the first catalyst component is usually 0.01 to 1.0, preferably 0.05 to 0.5, and more preferably 0.1, from the viewpoint of catalytic activity. ⁇ 0.3.
  • the loading amount of the third component of the catalyst is usually 0.1 to 5% by weight, preferably 0.3 to 3% by weight, particularly preferably 0.3 to 5% by weight from the viewpoint of catalytic activity.
  • the catalyst composition according to the present invention comprises a catalyst component supported on a catalyst carrier in water by a usual impregnation method, co-impregnation method, immersion method, or co-precipitation method, formalin, hydrazine, sodium borohydride, hydrogen, It can be easily prepared by a usual method such as reduction treatment with low alcohol (methanol, ethanol, glycerin, ethylene glycol, etc.).
  • a highly active catalyst can be easily obtained by carrying out the reduction treatment in the water in a dispersed state without dehydrating and drying the catalyst precursor after the support.
  • the outer layer eg, eggshe 11 type
  • the catalyst component is mainly supported on the outer layer of the catalyst carrier
  • the reaction of the present invention is a polymerization reaction.
  • Bismuth which is the second component of the catalyst used as an oxygen poisoning inhibitor, is particularly effective for the effect of supporting the outer layer. This is because, as described above, bismuth has an ad-atom structure or ad-1 ayer structure in comparison with the other catalyst second component. This is likely to be due to the large suppression of the adsorption of the formed polymer.
  • the surface structure of the outer layer-supported catalyst largely depends on the preparation method, but basically depends on the surface properties of the main catalyst element palladium and the second catalyst component.
  • the supporting time is also an important factor. In the liquid phase equilibrium adsorption stage loading method performed in the present invention, the loading time is 5 hours or less, preferably 2 hours or less.
  • the catalyst carrier examples include activated carbon, carbon black, calcium carbonate, silica, alumina, molecular sieves, asbestos, oxides of rare earth elements, and the like, and activated carbon, carbon black, alumina and silica having a high surface area are more preferable. . Among them, activated carbon is particularly effective.
  • Activated carbon as a catalyst carrier used in the present invention may be derived from any of coconut shell, woody, coal-based, beet coal-based or petroleum pitch-based raw materials, but in particular, ignition residue or ash content It is effective to use coconut shell, woody or petroleum pitch based on low oil content.
  • the activated carbon may be activated by either steam activation or chemical activation, but a water vapor activated product may be more effective as a carrier.
  • Commercially available activated carbon as the catalyst carrier used in the present invention may be used as it is, but it may be used after adjusting the pore distribution or reducing ash content by appropriate pretreatment, for example, acid treatment. Good.
  • granular and powdered activated carbon used in the present invention, those for general water treatment and for water-soluble food purification are used.
  • granular white purple series (WH, Sx, KL) and powdered activated carbon represented by carboraffin granular activated carbon manufactured by Norit (R0X, RAX, DARCO, C, ELORIT, etc.) and powdered products (AZ0, PN, ZN, etc.)
  • Kureha Chemical bead-shaped activated carbon BAC
  • carbon black is also effective as a catalyst carrier for carrying out the reaction in the present invention, and includes, for example, carbon black manufactured by Cablack Corporation.
  • the activated carbon and carbon black used in the present invention are not particularly limited to these activated carbon and carbon black.
  • the reaction temperature in the present invention is a very important factor, and greatly affects the yield of the polymer having a carbonyl group of the present invention. That is, in order to suppress the decomposition of the carboxyl group in the polymer by decarboxylation as much as possible, it is desirable to carry out the reaction at the lowest possible temperature in both the oxidation reaction section and the polymerization section of the reaction scheme.
  • the reaction can be carried out at a temperature of from 130 to 100, but preferably from 110 to 60, more preferably from 0 to 60, in order to suppress decarboxylation of the produced polymer as much as possible. It is preferably carried out at 50, particularly preferably at 20 to 40.
  • the optimal reaction temperature in the monomer formation stage and the polymer formation stage is different.The former is less than 60 and the latter is less than 30.However, in order to give priority to polymer production, the reaction should be performed at as low a temperature as possible. Is good. Furthermore, lower temperatures are more advantageous in terms of oxygen solubility. Therefore, the use of the catalyst composition having a low temperature activity in the present invention allows the oxidation polymerization at room temperature to proceed efficiently.
  • the reaction time largely depends on the reaction temperature, the type of catalyst and its concentration, etc., but usually 1 to 30 hours Is preferred.
  • the resulting polymer is generally a carboxylate. Therefore, it is preferable to set the concentration of the starting material in consideration of the solubility of the polymer produced at the applied reaction temperature. That is, the raw material concentration is usually preferably from 1 to 80% by weight, more preferably from 5 to 50% by weight. If the raw material concentration is less than 1%, the concentration of the obtained polymer is too low to be practical, and if it exceeds 80% by weight, the viscosity becomes too high and the mass transfer rate is reduced, resulting in a large reaction rate. descend.
  • the synthesis of a monomer precursor and a monomer by an oxidation reaction in a basic atmosphere and the progress of the oxidative polymerization reaction require sodium hydroxide, potassium hydroxide, and hydroxide as alkaline agents required for the synthesis.
  • Hydroxides of alkali metals such as lithium, amines such as monoethanolamine and diethanolamine, and ammonia are used.
  • the excess amount of alcohol becomes an important reaction factor and controls pH during the reaction, and has a great influence on the structure and degree of polymerization of the polymer of the present invention.
  • C a as a builder for detergents is obtained. It has a significant effect on capture performance.
  • sodium hydroxide for example, is used as an alcohol agent in a molar amount twice that of glycerin.
  • sodium hydroxide is consumed in the same amount up to polyketomalonic acid, but boriketomalonic acid is thermodynamically unstable, so that part of carboxyl is easily decarboxylated.
  • glyoxylic acid skeleton is present in the polymer chain and excess sodium hydroxide is generated. This excess sodium hydroxide usually reacts with decarbonated carbon dioxide to produce sodium bicarbonate-sodium carbonate.
  • the equivalent ratio of charged sodium hydroxide is preferably 0.50 to 0.90 with respect to glycerin.
  • sodium hydroxide may be 0.5 equivalent or less, and when a mixture of glycerin and ethylene glycol is used as a raw material, water based on the above points is taken into consideration. It is preferable to adjust the excess of sodium oxide and to set the pH of the aqueous solution of the reaction mixture so as to meet the conditions of the present invention.
  • the pH at the time of the reaction is preferably 7 to 13 when producing the monomer.
  • the pH is preferably 7 or less, preferably 6.0 to 2.5, and particularly preferably 4.5 to 3.0.
  • the pH is preferably from 9 to 14 for both the production of the monomer and the polymerization.
  • the PH is set to 7 to 10 when the production of the monomer is mainly at the beginning of the reaction, and the polymerization reaction during the middle to the end of the reaction is mainly performed. At this point, it is advisable to control the feed rate of the raw materials (alkaline and oxidizing agents) so that the pH is 7 or less.
  • the production of mozomers mainly proceeds in the upper stage of the reaction tower, and the polymerization reaction proceeds in the middle to lower stages of the reaction tower. Mainly progress. In this case, the PH in the height direction of the reaction tower tends to drop greatly from the upper stage to the lower stage, and the raw materials (alkaline agent, oxidizing agent) are supplied from a plurality of locations in the middle stage of the reaction tower as needed. It is preferable to maintain the pH of the reaction mixture at the outlet of the reaction column at 6.5 to 2.0.
  • the outlet pH is preferably maintained at 9 to 14, preferably at least 10.
  • oxidizing agent used in the present invention pure oxygen, a mixed gas of pure oxygen and nitrogen, or air can be used. Although not particularly limited, air is economical.
  • the amount of oxygen supplied is preferably increased with the increase in the molecular weight of the produced polymer, preferably 3 times or less of the equivalent, particularly preferably 0.5 to 2 times the equivalent. Is good. Excessive increases in oxygen supply, on the other hand, also result in self-poisoning of the catalyst by oxygen.
  • the reaction in the present invention is a stirred tank type reaction depending on the form of the catalyst composition Vessel or fixed bed reactor (tricklebed).
  • a fixed bed reactor it is preferable to dilute and fill the catalyst composition of the present invention with a diluent (reactive inert particulate matter).
  • the catalyst composition is preferably diluted with 0.5 to 20 parts by weight of a diluent with respect to 1 part by weight of the catalyst composition, and more preferably 4 to 15 parts by weight.
  • a diluent reactive inert particulate matter
  • the catalyst when the fixed bed reactor is filled with the catalyst as described above, the catalyst is mixed with a diluent and charged, thereby increasing the catalyst effectiveness coefficient, and as a result, the catalyst activity is increased by two to three times. There is.
  • the material of the diluent may be any material that does not adversely affect the reaction of the present invention, and examples thereof include reaction-inactive particulates such as porcelain, ceramics, polymers, glass and metals.
  • the particle size of the diluent is not particularly limited, but is preferably 1/2 to 5 times the size of the catalyst carrier.
  • the choice of the reactor is not particularly limited, but if the obtained polymer has a weight-average molecular weight of 100,000 or more and a high-viscosity polymer is produced, use a stirred tank reactor. Is preferred. However, when the weight average molecular weight is about 500 to 100,000, a fixed bed reactor can be applied, and in this case, there is an advantage that the catalyst separation step can be simplified. You.
  • an aqueous glycerin solution is used as a starting material.
  • a stirrer, thermometer, pH meter, Feed gas oxygen, air, etc.
  • An aqueous glycerin solution and a catalyst composition are charged into a stirred tank batch reactor equipped with an inlet pipe and waste gas line, set to a predetermined temperature, and oxygen or air as an oxidizing agent. Is introduced, and an aqueous solution of sodium hydroxide is added continuously so as to maintain a predetermined pH.
  • the polymerization reaction proceeds together with the production of the monomer by the oxidation reaction, and the polymer having a carboxyl group of the present invention is produced.
  • the molded catalyst composition is mixed with a diluent and charged into a reaction tower, and the mixture is placed in a reaction tower before the oxidation reaction of the present invention is carried out. It is preferable to perform a reactivation treatment of the charged catalyst. The reason for this is that the surface of the catalyst reduced during the preparation of the catalyst may be oxidized during the storage period and the catalytic activity may decrease.
  • a basic substance such as sodium hydroxide
  • aqueous solution This is achieved by feeding a 20% by weight aqueous solution to the reaction tower all day and night at a temperature between room temperature and 50 under an air supply.
  • an aqueous glycerin solution, an aqueous sodium hydroxide solution, and oxygen or air as an oxidizing agent may be supplied from the top of the reaction tower in a downward cocurrent flow.
  • the liquid hourly space velocity of the total standard of Ryohara charge aqueous solution is 0 5-0 0 1 -.. 1, the preferred properly set to 0. 2 to 0 0 5 h- 1...
  • composition of the product up to 24 to 48 hours after the start of the raw material supply is 40 to 60% by weight of the monomer, and the polymer component is 60 to 40% by weight.
  • the amount decreases, and at the same time, the ability of the polymer obtained to capture Ca greatly increases. Changes in the monomer content of the reaction product over time were measured by HPLC (high-performance liquid chromatography). E) and GPC (Gel Vermillion Chromatography), but the HPLC baseline is usually significantly disrupted by polymer formation.
  • Separation of the resulting polymer from the reaction mixture should be carried out by lyophilization by dehydration ⁇ Dialysis using a membrane filter ⁇ ⁇ Solvent reprecipitation using a solvent such as isopropyl alcohol, ethanol or methanol Can be done.
  • the reaction mixture is subjected to freeze-drying or reprecipitation by a solvent reprecipitation method, the polymer according to the present invention can be obtained as a white powder by drying after the solvent is separated.
  • the aqueous solution of the oxidative polymerization reaction mixture discharged from the reaction tower is mixed with a detergent slurry and spray-dried without separating the polymer.
  • a detergent slurry and spray-dried without separating the polymer.
  • the weight average molecular weight of the polymer obtained in this way reaches 500 to 1,000,000 by gel filtration (GPC) analysis, and that of the conventional polyglycerin (molecular weight 500,000). 1 100 000).
  • GPC gel filtration
  • molecular weight 500,000 molecular weight 500,000
  • it is preferably from 100,000 to 100,000, particularly preferably from 200,000 to 20,000 in terms of chelating ability.
  • the polymer may be easily adsorbed on the column ⁇ or may be decarboxylated depending on the type of the packing material. Hit the measurement It is necessary to select the optimal column system.
  • the polymer of the present invention absorption peaks of carboxylate vibrational vibration and ether bond vibrational vibration of the carboxylate are obtained from the infrared absorption spectrum, and proton NMR and C 13 NMR spectra are obtained. From the vector, the absorption peaks of the proton and the etheric carbon bonded to the etheric carbon are obtained. This proves that the polymer in the present invention is a polymer having a large amount of carboxyl groups.
  • the structure includes any one of the formulas (i), (ii), (iii), (iv), (V), and (vi), or includes two or more structural units. It is presumed to consist of a structure. This is derived from the fact that the polymerization reaction proceeds during the oxidation reaction, and is a characteristic of the production method of the present invention.
  • M is a hydrogen atom, an alkali metal, an ammonium group
  • the percentages indicated with respect to the amount of catalyst carried indicate weight%.
  • the conversion rate of the hydroxyl compound indicates the ratio of the number of moles consumed in the oxidation reaction to the charged hydroxyl compound. All conversion percentages are by weight.
  • the reaction mixture was reprecipitated by a solvent reprecipitation method using ethyl alcohol, and the solvent was separated, followed by drying.
  • the obtained hygroscopic white powder was analyzed by infrared absorption spectrum, NMR spectrum and gel filtration chromatography (GPC).
  • the GPC measurement conditions are shown below.
  • the polymer fractionated in the following examples its ability to capture Ca was measured by the following method. That is, the separated aqueous solution of the polymer was freeze-dried to obtain a dried product of the polymer. The 0.1 g was precisely weighed and adjusted to 100 ml with 0.1 ⁇ ⁇ ⁇ - ⁇ 4 C 1 -NH * OH buffer solution (pH 10.0) to obtain an aqueous polymer solution. After inserting a calcium ion electrodes in the solution, under stirring at Maguneti Kkusutara, C a C 1 2 aqueous solution (pH 1 0 corresponding to 2 0, 0 0 0 p pm at C a C 0 3 conversion calculated. 0) was dropped by a burette, and the Ca ion concentration in the liquid was measured by an ion analyzer. The Ca capture ability was determined from the inflection point by plotting the relationship between the titer and the residual Ca ion concentration.
  • Wood-based activated carbon from Takeda Pharmaceutical Co., Ltd., catalyzes WH 2 C (specific surface area: 1200 m 2 / g, bulk density: 500 / liter, pore volume: 0.8 ml Zg)
  • a three-component catalyst consisting of 0.9% Ce '3. Q% i-3.0%? DZC as a carrier was prepared by the following method.
  • 93 g of activated carbon dried with hot air at 120 ° C for 24 hours was dispersed in 125 ml of ion-exchanged water. Meanwhile, cerium chloride (C e C l 3 ⁇ 7 ⁇ 2 0) 2.
  • the pH of the aqueous dispersion of the catalyst precursor was maintained at about 12 with a 20% aqueous sodium hydroxide solution, and a 37% aqueous solution of formalin 20 m 1 Was added.
  • the temperature was raised to 80, and a reduction treatment was performed at 80 at 30 minutes.
  • the resulting catalyst was allowed to cool to room temperature, washed three times with 1500 ml of ion-exchanged water, and filtered under reduced pressure.
  • 0.9 g of 0.9% Ce ⁇ 3.0% Bi ⁇ 3.0% PdZC catalyst having a water content of about 50% was obtained in terms of a dry product.
  • Example 1 0.9% Ce'3.0% Bi3.0% PdZC catalyst prepared in the preparation example of the catalyst composition was prepared with a jacketed inner diameter of 2 Omm and a height of 700 mm.
  • a fixed-bed reactor made of Pyrex having an m of 1 was charged with 100 g in terms of a dried product.
  • the reaction temperature was set at 50, and a mixed solution of 100 parts of a 50% aqueous glycerin solution and 130 parts of a 30% aqueous sodium hydroxide solution was poured from the top of the reaction tower with a liquid hourly space velocity (LHSV )
  • LHSV liquid hourly space velocity
  • oxygen gas was supplied in a downward cocurrent flow at a flow rate of 5 N liter r.
  • Example 2 The same conditions as in Example 1 except that a mixed solution of 100 parts of 50% glyceric acid aqueous solution and 130 parts of 26% aqueous sodium hydroxide solution was used. Reaction. GPC measurement of the reaction mixture revealed that 16% of a polymer having a weight average molecular weight of 62,000 based on sodium borostyrene sulfonate was present. From the infrared absorption spectrum and the NMR spectrum, it was estimated that the structure of one component of the polymer obtained by dialysis separation was composed of the structural units of the formulas (i) to (iv). In addition, as a result of measuring the C a ion trapping ability, it was found to be 450 mg-C a C 03 / g per unit weight of the preparative polymer.
  • the reaction was carried out in the same manner as in Example 1 except that the catalyst composition was 0.9% Ce and 5% Te ⁇ 3.0% Pd / C.
  • a colorless and transparent viscous liquid pH approx. 10
  • the conversion of glycerin was 100% and the selectivity of residual taltronic acid was 15%.
  • Glyceric acid selectivity was 22%.
  • GPC measurement confirmed that 25% of a polymer having a weight average molecular weight of 58,000 based on sodium polystyrenesulfonate was present.
  • the reaction was carried out under the same conditions as in Example 3 except that a mixed solution of 100 parts of an aqueous solution of 50 tartronic acid and 130 parts of an aqueous solution of 233 ⁇ 4 sodium hydroxide was used. From the GPC measurement of the reaction mixture, It was found that 19% of a polymer having a weight average molecular weight of 47,000 based on sodium phosphate was present. From the infrared absorption spectrum and the NMR spectrum, the structure of the polymer component obtained by dialysis-separating the polymer component was estimated to be composed of the structural units of formulas (i) to (iv). Also, as a result of measuring the Ca ion trapping ability, 45 O mg-Ca C Os was given per unit weight of the preparative polymer.
  • the catalyst composition of the first reaction tower was 0.8% Ce'l. 5% Bi-0.75% Pt-3.0% ⁇ CNO C, Example 6 except that the catalyst composition of the second reaction tower (same reactor as used in Example 1) was 0.6% Bi '3.0% Pt ZC.
  • the reaction was performed similarly. The reaction mixture leaving the first reaction tower was directly introduced into the second reaction tower at the same flow rate. The pH of the distillate at the outlet of the reaction tower was 3.5, and white crystals were precipitated in the receiver. It was identified as ketomalonic acid by HPLC. Table 1 summarizes the polymer yield and Ca ion capture capacity.
  • the structure of the polymer component was estimated to be composed of the structural units of formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
  • the reaction was carried out in the same manner as in Example 8, except that glycerin and ethylene glycol were mixed at a molar ratio of 1: 1.
  • the pH of the distillate at the outlet of the reaction tower was 3.5.
  • Table 1 summarizes the polymer yield and Ca ion trapping ability.
  • the structure of the polymer component was estimated to be composed of the structural units of formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
  • Example 7 Same as Example 7 except that the catalyst composition of Example 7 was diluted 4 times in terms of weight using glass beads with a diameter of 0.8 mm as a diluent and then charged into the reaction tower used in Example 1. The reaction was performed. The pH of the distillate at the outlet of the reaction tower was 5.4. Table 1 summarizes the polymer yield and Ca ion trapping ability. The structure of the polymer component was estimated to be composed of the structural units of formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
  • Example 7 500 g of a mixed solution of 25% glycerin and 15% sodium hydroxide in a 1 liter round bottom flask equipped with a thermometer, stirrer, gas inlet, sampling port and exhaust gas port 100 g of the catalyst composition used in Example 7 was charged and reacted at a reaction temperature of 25 at an oxygen supply rate of 1 liter Zh for 20 hours.
  • the pH of the reaction mixture was 7.2.
  • Table 1 summarizes the polymer yield and Ca ion trapping ability.
  • the structure of the polymer component was estimated to be composed of the structural units of the formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
  • Example 12 the catalyst composition was replaced with 0.6% Bi, 3.0% Pt / C, 100 g, and the air supply rate was changed to 3.0 liter Zh.
  • Example 12 except that the reactant of 12 was used as a raw material. Reacted similarly.
  • the pH of the reaction mixture was 6.2.
  • Table 1 summarizes the volima yield and Ca ion trapping ability.
  • the structure of the polymer component was estimated from the infrared absorption spectrum and the NMR spectrum to be composed of the structural units of the formulas (i) to (iv).
  • the reaction was carried out in the same manner as in Example 7, except that the raw material was ethylen glycol.
  • Table 1 summarizes the polymer yield and Ca ion trapping ability.
  • the pH of the distillate at the outlet of the reaction tower was 5.3.
  • the structure of the polymer component was estimated from the infrared absorption spectrum and the NMR spectrum to be composed of the structural unit of the formula (ii).
  • the reaction was carried out in the same manner as in Example 7, except that the starting material was glycolic acid.
  • Table 1 summarizes the polymer yield and Ca ion trapping ability.
  • the pH of the distillate at the outlet of the reaction tower was 5.3.
  • the structure of the polymer component was estimated from the infrared absorption spectrum and the NMR spectrum to be composed of the structural unit of the formula (ii).
  • the reaction was carried out in the same manner as in Example 7, except that the raw material was propylene glycol.
  • Table 1 summarizes the polymer yield and the ability to capture C ion.
  • the pH of the distillate at the outlet of the reaction tower was 5.7.
  • the structure of the polymer component was presumed to be composed of the structural unit of the formula (vi) from the infrared absorption spectrum and the NMR spectrum.
  • the reaction was carried out in the same manner as in Example 7, except that the raw material was hydroxyacetone.
  • Table 1 summarizes the polymer yield and Ca ion trapping ability.
  • the pH of the distillate at the outlet of the reaction tower was 6.2.
  • the structure of the polymer component The structure was estimated to consist of the structural unit of formula (vi) from the infrared absorption spectrum and the NMR spectrum.
  • the reaction was carried out in the same manner as in Example 7, except that the raw material was lactic acid.
  • Table 1 summarizes the polymer yield and Ca ion capture ability.
  • the pH of the distillate at the outlet of the reaction tower was 5.7.
  • the structure of the polymer component was estimated to be composed of the structural unit of the formula (vi) from the infrared absorption spectrum and the NMR spectrum.
  • the reaction was carried out under the same conditions as in Example 1 except that a 40% aqueous sodium hydroxide solution was used and the reaction temperature was 60.
  • the structure of the polymer component was estimated from the infrared spectrum and the NMR spectrum to be composed of the structure of the formula (V). Further, C a ion trapping ability of the reaction mixture was 1 2 Omg- C a C0 3 Zg .
  • a polymer having a carboxyl group which is useful as a biodegradable detergent builder or the like, having a unique function such as high ion exchange ability, can be efficiently produced using inexpensive raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for producing a carboxylated polymer which comprises catalytically oxidizing a hydroxy compound in the presence of a specified catalyst composition and an oxidizing agent to yield a carboxylated monomer and polymerizing the monomer. The catalyst composition used comprises a supported catalyst mixture suitably selected from those composed of at least one element selected from the group consisting of palladium, platinum, rhodium and ruthenium as the first catalyst component, at least one element selected from the group consisting of bismuth, tellurium, tin, lead, antimony and selenium as the second catalyst component, and at least one element selected from rare earth elements as the third catalyst component.

Description

明 細 書 力ルポキシル基を有する重合物の製造方法 技 分野  TECHNICAL FIELD The present invention relates to a method for producing a polymer having a lipoxyl group.
本発明は、 力ルポキシル基を有する重合物の製造方法に関する。 さらに詳しく は、 洗剤用ビルダー、 中和剤、 増粘剤、 ポリマー原料 、 あるいは吸水性ボリマー原料等として有用なカルボキシル基を有 する重合物の製造方法に関する。 背景技術  The present invention relates to a method for producing a polymer having a carbonyl group. More specifically, the present invention relates to a method for producing a carboxyl-containing polymer useful as a detergent builder, a neutralizer, a thickener, a polymer material, or a water-absorbing polymer material. Background art
ポリアク リル酸又はマレイン酸との共重合物に代表されるボリ力 ルボン酸は、 カルボキシル基を有する重合物として吸水性ポリマー を初め洗剤用ビルダーにも利用されているが、 非生分解性であるこ とが問題になってきている。 米国モンサン ト社は高価なグリォキシ ル酸エステルを原料に生分解性ボリマーであるボリカルボン酸塩 ( ボリ グリオキシル酸, ビルダー U ) の合成研究を行い、 特公昭 6 2 - 3 7 0 4 4号公報 (U S P 4 1 4 4 2 2 6 ) に開示している。 ビ ルダー Uのカルシウム捕捉能は極めて大であり洗剤用ビルダーとし て優れたものであるが、 原料が高価格であることから実用性の点で 問題が残されている。 従って、 ビルダー Uのような生分解性高分子 ビルダーを安価原料を利用して安価に製造することが出来ればその 波及効果は測り知れないものである。  Polyboronic acid, typified by a copolymer with polyacrylic acid or maleic acid, is used as a carboxyl-containing polymer in water-absorbing polymers and other detergent builders, but is non-biodegradable. Is becoming a problem. Monsanto of the United States has been conducting research on the synthesis of a biodegradable polymer, polycarboxylate (polyglyoxylic acid, builder U), using expensive glyoxylate as a raw material, and has disclosed Japanese Patent Publication No. 62-37044. USP 4 1 4 4 2 2 6). Although builder U has an extremely high calcium-capturing ability and is an excellent detergent builder, the high price of the raw materials still poses a problem in terms of practicality. Therefore, if a biodegradable polymer builder such as builder U can be produced at low cost using inexpensive raw materials, the ripple effect is incalculable.
一方、 ドイツ国公開公報第 2 3 4 7 5 3 8号には、 安価原料であ るグリセリ ンから誘導されるボリ グリセリ ンを酸化してなるポリグ リセリ ン酸化物を生分解性ビルダーとして使用する方法が記載され ている。 しかし、 一般にボリ グリセリ ンの重合度は高々 1 0である ことから、 該方法で得られるポリ グリセリ ン酸化物中のカルボキシ ル基の数は少なく、 ポリカルボン酸としての機能、 例えばキレー ト 能が低位であり洗剤用ビルダーとしての性能は満足のいく ものでは ない。 On the other hand, German Offenlegungsschrift No. 2 347 738 discloses that polyglycerin oxide obtained by oxidizing polyglycerol derived from glycerin, which is a cheap material, is used as a biodegradable builder. The method is described ing. However, since the polymerization degree of polyglycerin is generally at most 10 at most, the number of carboxy groups in the polyglycerin oxide obtained by the method is small, and the function as a polycarboxylic acid, for example, the chelating function, is low. It is of low quality and its performance as a detergent builder is not satisfactory.
又、 特開昭 6 2 - 2 1 2 4 2 3号公報と特開昭 6 2 — 2 0 1 9 2 6号公報には、 エステル交換触媒の存在下、 高温 ( 2 0 0で以下) 、 減圧下 ( 5 0 t o r r以下) にタルトロン酸又はそのエステルを 脱水縮合する方法が記載されているが、 かかる条件下では生成ポリ マーの分解が起こりやすくなるため、 温和な条件下 (常温 ' 常圧) で反応させ、 生成ボリマーの分解がほとんどなく高い C a捕捉能を 発現させる方法の開発が期待される。 発明の開示  In addition, JP-A-62-211243 and JP-A-62-192026 disclose that, in the presence of a transesterification catalyst, a high temperature (200 or less), A method of dehydrating and condensing tartronic acid or its ester under reduced pressure (50 torr or less) is described. However, under such conditions, the formed polymer is likely to decompose. It is expected to develop a method for expressing the high Ca capture ability with little degradation of the generated polymer by reacting in step (1). Disclosure of the invention
かかる状況にかんがみ、 本発明者等は安価原料であるグリセリ ン 、 グリセリ ン酸、 ェチレングリ コール、 プロピレングリ コール、 ヒ ドロキシアセ トン、 乳酸、 グリセリ ン酸の塩又は乳酸の塩を原料と して、 あるいはグリセリ ンの酸化物であるタルトロン酸、 タルトロ ン酸の脱炭酸分解物又はエチレングリコールの酸化物であるグリ コ ール酸、 またはそれらの塩を原料として、 所定の触媒組成物および 酸化剤の存在下に接触酸化させてカルボキシル基を有するモノマー を生成させるとともに重合反応を進行させた結果、 多量のカルボキ シル基を有する重合物が生成することを見い出し、 本発明を完成す るに到った。  In view of such a situation, the present inventors have made inexpensive raw materials glycerin, glyceric acid, ethylen glycol, propylene glycol, hydroxyacetone, lactic acid, a salt of glyceric acid or a salt of lactic acid, or Presence of the specified catalyst composition and oxidizing agent, starting from tartronic acid, which is an oxide of glycerin, decarboxylated decomposition product of tartronic acid, or glycolic acid, which is an oxide of ethylene glycol, or a salt thereof As a result of producing a monomer having a carboxyl group by catalytic oxidation below and proceeding the polymerization reaction, it was found that a polymer having a large amount of a carboxyl group was formed, and the present invention was completed.
即ち、 本発明の要旨は、  That is, the gist of the present invention is:
( 1 ) 水酸基化合物を下記の触媒組成物および酸化剤の存在下に 接触酸化させてカルボキシル基を有するモノマーを生成させるとと もに、 該モノマーを重合させることを特徵とするカルボキシル基を 有する重合物の製造方法、 (1) A hydroxyl group compound is prepared in the presence of the following catalyst composition and oxidizing agent. A method for producing a carboxyl-containing polymer, which comprises producing a monomer having a carboxyl group by catalytic oxidation and polymerizing the monomer.
触媒組成物 :  Catalyst composition:
パラジウム、 白金、 ロジウム、 およびルテニウムからなる群より 選ばれる一種以上の元素を触媒第一成分とし、 ビスマス、 テルル、 スズ、 鉛、 アンチモン、 およびセレンからなる群より選ばれる一種 以上の元素を触媒第二成分とし、 希土類元素から選ばれる一種以上 の元素を触媒第三成分とし、  One or more elements selected from the group consisting of palladium, platinum, rhodium, and ruthenium are used as the catalyst first component, and one or more elements selected from the group consisting of bismuth, tellurium, tin, lead, antimony, and selenium are used as the catalyst first component. Two or more components, one or more elements selected from rare earth elements as the third component of the catalyst,
(ィ) 触媒第一成分及び触媒第二成分  (B) Catalyst first component and catalyst second component
(口) 触媒第一成分及び触媒第三成分  (Mouth) Catalyst first component and catalyst third component
(ハ) 触媒第一成分、 触媒第二成分及び触媒第三成分、 又は (二) 触媒第一成分のみ  (C) Catalyst first component, catalyst second component and catalyst third component, or (2) Catalyst first component only
のいずれかよりなる担持触媒、  A supported catalyst consisting of any of
( 2 ) 水酸基化合物がグリセリ ン、 グリセリ ン酸又はグリセリ ン 酸の塩であることを特徴とする前記 ( 1 ) 記載の製造方法、  (2) The method according to (1), wherein the hydroxyl group compound is glycerin, glyceric acid or a salt of glyceric acid.
( 3 ) 水酸基化合物がタルト口ン酸又はその塩であることを特徵 とする前記 ( 1 ) 記載の製造方法、  (3) The production method according to the above (1), wherein the hydroxyl compound is tart baltic acid or a salt thereof.
( 4 ) 水酸基化合物がエチレングリ コール、 グリ コール酸または グリコール酸の塩であることを特徴とする前記 ( 1 ) 記載の製造方 法、  (4) The method according to (1), wherein the hydroxyl compound is a salt of ethylene glycol, glycolic acid or glycolic acid.
ドロキシァセ ト ( 1 ) 記載の製  Droxacet (1)
コールの混合物
Figure imgf000005_0001
Cole mixture
Figure imgf000005_0001
であることを特徵とする前記 ( 1 ) 記載の製造方法、 ( 7 ) (ハ) の触媒組成物の触媒第一成分がパラジウムと白金、 触媒第二成分がビスマス及び 又はテルル、 触媒第三成分がセリゥ ム及ぴ Z又はランタンである前記 ( 1 ) 〜 ( 6 ) いずれか記載の製 造方法、 The production method according to the above (1), wherein (7) The catalyst composition of (c), wherein the first catalyst component is palladium and platinum, the second catalyst component is bismuth and / or tellurium, and the third catalyst component is cerium and Z or lanthanum. 6) Any of the manufacturing methods described,
( 8 ) 触媒組成物を充塡した固定床反応装置で反応させることを 特徴とする前記 ( 1 ) 〜 ( 6 ) いずれか記載の製造方法、  (8) The method according to any one of the above (1) to (6), wherein the reaction is carried out in a fixed bed reactor filled with the catalyst composition.
( 9 ) 触媒組成物 1重量部に対して 0. 5〜 1 0重量部の希釈剤 で希釈して充填することを特徴とする前記 ( 8 ) 記載の製造方法、 (9) The method according to (8), wherein the catalyst composition is diluted with 0.5 to 10 parts by weight of diluent per 1 part by weight of the catalyst composition and filled.
( 1 0 ) カルボキシル基を有する重合物の重量平均分子量が、 ゲ ル濾過クロマ トグラフィー法で 5 0 0〜 1 , 0 0 0, 0 0 0である 前記 ( 1 ) 〜 ( 9 ) いずれか記載の製造方法、 並びに (10) The weight average molecular weight of the polymer having a carboxyl group is from 500 to 1,000, 000 by gel filtration chromatography, according to any one of the above (1) to (9). A method of manufacturing, and
( 1 1 ) カルボキシル基を有する重合物のカルシウム捕捉能が 1 0 0〜6 0 O m g - C a C 08 Zgであることを特徴とする前記 ( 1 ) 〜 ( 1 0 ) いずれか記載の製造方法、 に関する。 図面の簡単な説明 (1 1) calcium trapping ability of the polymer having a carboxyl group is 1 0 0~6 0 O mg - C a C 0 8 above, wherein the a Zg (1) ~ (1 0) according to any one Manufacturing method. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明における反応スキームの概略図を示す。  FIG. 1 shows a schematic diagram of the reaction scheme in the present invention.
第 2図は実施例 1で得られた反応混合物の G P C (gel permeatio n chromatography) のチヤ一卜を示す 0 0 Figure 2 is showing a Chiya one Bok of GPC of the reaction mixture obtained in Example 1 (gel permeatio n chromatography)
図中のピーク 1 (面積 3. 0 5 %) は、 本発明の重合物 (重量平 均分子量 4. 5 0 3 X 1 0 * ) 、 ビーク 2 (面積 3. 9 8 %) は、 本発明の重合物 (重量平均分子量 7. 3 2 4 1 03 ) , ビーク 3 (面積 4 6. 0 6 %) は、 原料 低分子酸化物 (重量平均分子量 3Peak 1 (area 3.05%) in the figure is the polymer of the present invention (weight average molecular weight 4.503 X 10 *), and beak 2 (area 3.98%) is the present invention. Polymer (weight average molecular weight 7.32 4 10 3 ), beak 3 (area 46.06%) is a raw material low molecular oxide (weight average molecular weight 3
. 8 2 6 X 1 02 ) 、 ピーク 4 (面積 4 6. 7 7 は、 溶離液を 示す。 826 × 10 2 ) and peak 4 (area 46.777) indicate the eluent.
第 3図は実施例 8で得られた反応混合物の G P Cチヤ一トを示す 。 図中のピーク 1 (面積 5. 0 %) は、 本発明の重合物 (重量平 均分子量 6. 6 X 1 06 ) , ピーク 2 (面積 1 7. 0 %) は、 本発 明の重合物 (重量平均分子量 8. 2 X 1 04 ) 、 ピーク 3 (面積 3 . 0 は、 本発明の重合物 (重量平均分子量 3. 7 X 1 04 ) 、 ピーク 4 (面積 3 0 %) は、 本発明の重合物 (重量平均分子量 2.FIG. 3 shows a GPC chart of the reaction mixture obtained in Example 8. . Peaks in FIG. 1 (area 5.0%), the polymer of the present invention (weight average molecular weight 6. 6 X 1 0 6), peak 2 (area 1 7.0%), the present onset Ming polymerization Product (weight average molecular weight 8.2 × 10 4 ), peak 3 (area 3.0) is the polymer of the present invention (weight average molecular weight 3.7 × 10 4 ), peak 4 (area 30%) The polymer of the present invention (weight average molecular weight 2.
0 X 1 04 ) 、 ピーク 5 (面積 2 5 %) は、 本発明の重合物 (重量 平均分子量 6 0 0 0 ) 、 ピーク 6、 7、 8は重量平均分子量が 2 00 X 10 4 ), peak 5 (area 25%) is the polymer of the present invention (weight average molecular weight 600,000), and peaks 6, 7, 8 have a weight average molecular weight of 20
0〜 1 0 0 0のオリゴマーとモノマーである。 発明を実施するための最良の形態 0 to 1000 oligomers and monomers. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における反応スキームについて、 第 1図を用いて以下に説 明する。  The reaction scheme in the present invention is described below with reference to FIG.
まず、 本発明における重合とは、 主に酸化脱水素重合である。 即 ち、 反応原料であるモノマーの前駆体 (以下、 モノマー前駆体と略 す場合がある) の重合部位の活性水素が触媒表面上でバルクから供 給される酸素と接触的に反応して水が生成して重合に直接関与する アルデヒ ド基またはカルボ二ル基を有するモノマー (以下、 モノマ 一と略す場合がある) が触媒表面上に生成し、 該モノマーの重合反 応が進行するというものである。  First, the polymerization in the present invention is mainly oxidative dehydrogenation polymerization. In other words, active hydrogen at the polymerization site of the monomer precursor (hereinafter sometimes abbreviated as monomer precursor), which is a reaction raw material, reacts with oxygen supplied from the bulk on the catalyst surface to form water. A monomer having an aldehyde group or a carbonyl group (hereinafter, sometimes abbreviated as a monomer) which is directly involved in polymerization is formed on the catalyst surface, and the polymerization reaction of the monomer proceeds. It is.
本発明におけるモノマー前駆体としては、 ( 1 ) グリセリ ン、 グ リセリ ン 、 またはグリセリ ン酸の塩、 ( 2 ) タルトロン酸又はそ の塩、 ( 3 ) エチレングリコ一ル、 グリコール酸、 またはグリ コー ル酸の塩、 ( 4 ) プロビレングリコール、 ヒ ドロキシァセトン、 乳 酸又ほ ¾酸の塩が使用ざれる。 ^ : : :  Examples of the monomer precursor in the present invention include (1) glycerin, glycerin, or a salt of glyceric acid, (2) tartronic acid or a salt thereof, (3) ethylene glycol, glycolic acid, or glycol. Salts of phosphoric acid, (4) provylene glycol, hydroxyacetone, lactate and phosphoric acid salts can be used. ^:::
グリセリ ン酸、 タノレトロン酸はグリセリンの酸化物であり、 グリ コール酸は、 タルトロン酸の脱炭酸分解物又はエチレングリ コール の酸化物である。 これらは第 1 図の反応スキームに示したように、 グリセリ ン、 エチレングリ コール、 プロピレングリ コールの接触酸 化によって逐次的に生成するものであるため、 グリセリ ンとェチレ ングリ コール、 プロピレングリ コールが最も安価な初期原料となる 。 また、 直接重合に関与するモノマーとしては、 グリセリ ン酸、 タルトロン酸、 グリ コール酸、 乳酸またはそれらの塩の接触酸化に よつてそれぞれ得られる夕ルトロン酸アルデヒ ド、 ケ トマロン酸、 グリオキシル酸、 ピルビン酸またはそれらの塩であるが、 これらの モノマーは、 別途合成法により合成したものを用いてもよい。 Glyceric acid and tanothrenic acid are oxides of glycerin, and glycolic acid is a decarboxylated product of tartronic acid or ethylene glycol. Is an oxide of As shown in the reaction scheme in Fig. 1, these are formed sequentially by the catalytic oxidation of glycerin, ethylene glycol, and propylene glycol, so that glycerin, ethylene glycol, and propylene glycol are It is the cheapest starting material. In addition, monomers involved in direct polymerization include glyceric acid, tartronic acid, glycolic acid, lactic acid or their salts, which are obtained by catalytic oxidation of their salts, ketomalonic acid, glyoxylic acid, pyruvine, respectively. An acid or a salt thereof is used, and these monomers may be those synthesized separately by a synthesis method.
これらのモノマー前駆体を用いて生成するモノマーをさらに重合 させて本発明の重合物を生成する反応機構については、 完全には解 明されていないが接触酸化についての従来の知見より第 1図のよう に推定される。  The reaction mechanism for producing the polymer of the present invention by further polymerizing the monomer produced using these monomer precursors has not been completely elucidated. It is estimated as follows.
即ち、 本発明の反応は以下のように、 ( 1 ) モノマー前駆体およ びモノマーの生成のための酸化反応部、 ( 2 ) カルボキシル基を有 する重合物への重合部、 および ( 3 ) 重合物の脱炭酸分解部の三つ に大別される。  That is, the reaction of the present invention is carried out as follows: (1) an oxidation reaction part for producing a monomer precursor and a monomer; (2) a polymerization part to a polymer having a carboxyl group; and (3) It is roughly divided into three parts: decarboxylation of polymer.
モノマー前駆体およびモノマーの生成のための酸化反応部として は、 例えばグリセリ ンの接触酸化に始まり、 グリセルアルデヒ ドを 経由してグリセリ ン酸が生成する。 グリセリ ン酸はさらに酸化され て本発明におけるモノマーの一つであるタルトロン酸アルデヒ ドを 生成する。 あるいは、 このタルトロン酸アルデヒ ドはさらに酸化さ れてタルトロン酸を生成し、 次いで本発明におけるモノマーの一つ であるケトマロン酸を生成する。 また、 タルトロン酸は脱炭酸分解 によりグリコール酸を生成し、 さらに本発明におけるモノマーの一 つであるグリォキシル酸を生成する。 また、 エチレングリ コールを出発原料にした場合には、 対応する アルデヒ ドを経てグリ コール酸へ酸化されるが、 これはタルトロン 酸の脱炭酸分解で生成したものと同じものである。 グリ コール酸は さらに酸化されてモノマーであるグリオキシル酸が生成する。 In the oxidation reaction section for producing the monomer precursor and the monomer, for example, catalytic oxidation of glycerin starts, and glyceric acid is produced via glyceraldehyde. Glyceric acid is further oxidized to produce tartronic aldehyde, one of the monomers in the present invention. Alternatively, the tartronic acid aldehyde is further oxidized to produce tartronic acid, which in turn produces ketomalonic acid, one of the monomers in the present invention. Tartronic acid produces glycolic acid by decarboxylation, and further produces glyoxylic acid, which is one of the monomers in the present invention. When ethylene glycol is used as a starting material, it is oxidized to glycolic acid via the corresponding aldehyde, which is the same as that produced by decarboxylation of tartronic acid. Glycolic acid is further oxidized to produce monomeric glyoxylic acid.
また、 プロピレングリ コールを出発原料にした場合には、 ヒ ドロ キンァセ トン又は乳酸を経てモノマーであるピルビン酸が生成する o  In addition, when propylene glycol is used as a starting material, pyruvate, which is a monomer, is produced via hydroquinacetone or lactic acid.o
カルボキシル基を有する重合物への重合部としては、 上記の酸化 反応ルー トに対応して次の 5つのルー ト ( ( a ) 〜 ( e ) ) に大別 される。  The polymerized portion to the polymer having a carboxyl group is roughly classified into the following five routes ((a) to (e)) corresponding to the above oxidation reaction route.
( a ) タルトロン酸またはその塩をモノマー前駆体とする場合で あり、 このルー トではその 2极水酸基が酸化脱水素を受けながら、 見かけ上ケ トマ口ン酸をモノマーとする重合反応が進行する (ルー ト 1 ) 。 これによりボリケトマロン酸 ( I ) またはその塩が重合物 として生成する。  (a) In the case where tartronic acid or a salt thereof is used as a monomer precursor, in this route, the polymerization reaction using apparently ketosulfonic acid as a monomer proceeds while its 2-hydroxyl group undergoes oxidative dehydrogenation. (Root 1). This produces boriketomalonic acid (I) or a salt thereof as a polymer.
( b ) グリセリ ン、 グリセリ ン酸、 またはグリセリ ン酸の塩をモ ノマー前駆体とする場合であり、 このルー トではモノマーとなるタ ルトロン酸アルデヒ ドまたはその塩がその直前のモノマー前駆体で あるグリセリン酸またはその塩の一級水酸基の酸化によって生成し 、 そのアルデヒ ド基がエーテル結合に変換されながら重合反応が進 行する (ルー ト 2 ) 。 これによりボリタルトロン酸アルデヒ ド (I I I)またはその塩が重合物として生成し、 さらにその 2級水酸基が酸 化されて重合物であるボリ メソキサルアルデヒ ド酸 (IV) またはそ の塩が生成すると推定される。  (b) When glycerin, glyceric acid, or a salt of glyceric acid is used as the monomer precursor, in this route, the tartaronic acid aldehyde or its salt, which is a monomer, is the monomer precursor immediately before it. The polymerization reaction proceeds by oxidation of the primary hydroxyl group of a certain glyceric acid or a salt thereof, and the aldehyde group is converted into an ether bond (route 2). As a result, boritaltronic acid aldehyde (III) or a salt thereof is formed as a polymer, and its secondary hydroxyl group is oxidized to form polymerized polymesoxal aldehyde (IV) or a salt thereof. Presumed.
( c ) タルトロン酸またはその塩自体も前記のように脱炭酸を受 けそグリ コール酸またはその塩になる。 この場合、 モノマー前駆体 であるグリ コール酸またはその塩は、 さらに酸化されてグリオキシ ル酸またはその塩をモノマーとする重合反応が進行する (ルー ト 3 ) 。 これによりポリ グリオキシル酸 (I I ) またはその塩が重合物と して生成する。 又、 エチレングリ コールをモノマー前駆体とする場 合もグリコール酸、 グリオキシル酸を経て同様にボリ グリオキシル 酸 (I I ) を生成する。 (c) Tartronic acid or a salt thereof also undergoes decarboxylation as described above to become glycolic acid or a salt thereof. In this case, the monomer precursor The glycolic acid or a salt thereof is further oxidized, and a polymerization reaction using glyoxylic acid or a salt thereof as a monomer proceeds (route 3). As a result, polyglyoxylic acid (II) or a salt thereof is produced as a polymer. When ethylene glycol is used as a monomer precursor, polyglyoxylic acid (II) is similarly produced via glycolic acid and glyoxylic acid.
( d ) グリセルアルデヒ ドから生成するアルドールを経由し、 力 ルポキシル基含有のアルドールカルボン酸 (V ) が生成する場合で ある (ルー ト 4 ) 。 この場合は p Hが 9以上で、 反応温度が 5 0 °C 以上で生成しやすいが生分解性を有していない。  (d) In this case, aldolcarboxylic acid (V) containing a hydroxyl group is generated via aldol generated from glyceraldehyde (route 4). In this case, the pH is 9 or more and the reaction temperature is 50 ° C or more.
( e ) プロピレングリ コール、 ヒ ドロキンアセトン、 乳酸または 乳酸の塩をモノマー前駆体とする場合であって、 いずれもピルビン 酸 経由してポリ ビルビン酸 (VI ) を生成する (ルー ト 5 ) 。  (e) Propylene glycol, hydroquinone acetone, lactic acid or a salt of lactic acid as a monomer precursor, all of which produce polyvirbic acid (VI) via pyruvic acid (route 5).
重合物 ( ( I ) および (IV) ) の脱炭酸分解部としては、 ボリケ トマロン酸 ( I ) やボリ メソキサルアルデヒ ド酸 (I V) またはそれ らの塩が熱力学的に不安定とされていることからも、 高温下では容 易に脱炭酸してボリグリォキシル酸 (I I ) またはその塩にまで分解 すると推定される。  As the decarboxylation part of the polymer ((I) and (IV)), borike tomalonic acid (I), polymesoxal aldehyde (IV) or salts thereof are thermodynamically unstable. Therefore, it is presumed that under high temperature, it easily decarboxylates and decomposes to boroglioxylic acid (II) or its salt.
このような反応スキームから明らかなように、 重合物の脱炭酸に よるカルボキシル基の消失を出来るだけ抑制することが、 多量の力 ルポキシル基を有する重合体を製造する上で効果的である。  As is clear from such a reaction scheme, it is effective to suppress the disappearance of the carboxyl group due to decarboxylation of the polymer as much as possible in producing a polymer having a large amount of hydroxyl group.
また、 本発明においてグリセリ ンとエチレングリコールの混合物 (例えば等モル混合物) を出発原料として使用した場合、 ルー ト 1 〜 3に従って同様の重合反応が進行する。 この場合、 ルー ト 1 のケ トマロン酸のホモボリマーに比べ、 ケトマロン酸とグリオキシル酸 とのランダム共重合物が生成するため重合性もよく、 熱安定性のよ い共重合物が生成する。 Further, when a mixture of glycerin and ethylene glycol (for example, an equimolar mixture) is used as a starting material in the present invention, the same polymerization reaction proceeds according to Routes 1 to 3. In this case, a random copolymer of ketomalonic acid and glyoxylic acid is generated, so that the polymer has better polymerizability and higher thermal stability than the ketomalonic acid homopolymer of root 1. A copolymer is formed.
また、 本発明においてはグリセリ ン、 エチレングリ コール、 グリ セリ ン酸、 タルトロン酸またはグリ コール酸またはそれらの塩等の 原料の他、 例えば 1 , 2 —プロピレングリ コール、 1 , 3 —プロピ レングリコール等の多価アルコール、 メタノール、 エタノール、 プ 口ピルアルコール、 ィソブロピルアルコール等の一価アルコール、 またはホルムアルデヒ ド、 ァセ トアルデヒ ド等のアルデヒ ド類を共 存させることができる。 この場合も、 本発明のカルボキシル基を有 する重合物の主鎖にこれらの多価アルコール、 一価アルコールの酸 化物である対応するアルデヒ ドあるいはケ トン、 またはアルデヒ ド 類の構造ュニッ トが取り込まれ (ランダム共重合) 、 生成ポリマー の熱力学的安定性によりグリセリ ンまたはその酸化物を出発原料と する場合よりも洗剤用高分子ビルダーとしては有効な場合がある。 本発明で使用する触媒組成物としては、 白金系貴金属触媒が有効 である。 即ち、 パラジウム、 白金、 ロジウム、 およびルテニウムか らなる群より選ばれる一種以上の元素を触媒第一成分とし、 ビスマ ス、 テルル、 スズ、 鉛、 アンチモン、 およびセレンからなる群より 選ばれる一種以上の元素を触媒第二成分とし、 希土類元素から選ば れる一種以上の元素を触媒第三成分とする場合、 (ィ) 触媒第一成 分及び触媒第二成分を組み合わせた触媒組成物、 (口) 触媒第一成 分及び触媒第三成分を組み合わせた触媒組成物、 (ハ) 触媒第一成 分、 触媒第二成分及び触媒第三成分を組み合わせた触媒組成物、 ( 二) 触媒第一成分のみからなる触媒組成物が使用される。  In the present invention, in addition to raw materials such as glycerin, ethylene glycol, glyceric acid, tartronic acid or glycolic acid or a salt thereof, for example, 1,2-propylene glycol, 1,3-propylene glycol And monohydric alcohols such as methanol, ethanol, propyl alcohol, and isopropyl alcohol, or aldehydes such as formaldehyde and acetate aldehyde. Also in this case, the corresponding aldehyde or ketone, which is an oxide of the polyhydric alcohol or monohydric alcohol, or the structural unit of the aldehyde is incorporated into the main chain of the polymer having a carboxyl group of the present invention. However, due to the thermodynamic stability of the resulting polymer, it may be more effective as a polymer builder for detergents than when glycerin or its oxide is used as a starting material. As the catalyst composition used in the present invention, a platinum-based noble metal catalyst is effective. That is, at least one element selected from the group consisting of palladium, platinum, rhodium, and ruthenium is used as the catalyst first component, and at least one element selected from the group consisting of bismuth, tellurium, tin, lead, antimony, and selenium. When the element is the catalyst second component and one or more elements selected from rare earth elements are the catalyst third component, (a) a catalyst composition combining the first catalyst component and the second catalyst component; A catalyst composition combining the first component and the third catalyst component, (c) a catalyst composition combining the first catalyst component, the second catalyst component and the third catalyst component, and (ii) a catalyst composition comprising only the first catalyst component. Catalyst compositions are used.
本発明のカルボキシル基を有する重合物は、 熱的に不安定で脱炭 酸分解を併発しやすいため、 温和な条件で酸化重合を進行せしめる ことの可能な低温活性を有する前記のような貴金属触媒が特に有効 である。 しかし、 他の一般の酸化触媒、 あるいは無機、 有機試剤 ( 過酸化水素、 過酢酸等) による酸化および酸化重合も併用すること が出来る。 Since the polymer having a carboxyl group of the present invention is thermally unstable and easily undergoes decarboxylation, the above-mentioned noble metal catalyst having a low-temperature activity capable of promoting oxidative polymerization under mild conditions. Is particularly effective It is. However, oxidation and oxidative polymerization using other general oxidation catalysts or inorganic or organic reagents (hydrogen peroxide, peracetic acid, etc.) can also be used in combination.
触媒第一成分及び触媒第二成分を組み合わせた触媒組成物 (ィ) は、 酸素被毒による触媒活性の低下を抑制するという点において好 ましい触媒組成物である。 触媒第二成分としては、 ビスマス、 テル ル、 スズ、 鉛、 アンチモン、 およびセレンが挙げられ、 特に限定さ れるものではないが、 アンチモン、 ビスマス、 テルルおよび鉛が特 に有効である。 例えば、 パラジウムとビスマス又はテルルとの複合 化により酸素被毒を回避して酸化反応速度と原料の転化率を大き く 向上させることが出来る。 また、 リ ン ドラー触媒として知られる P b · P d / C a C 0 8 触媒も本発明の触媒として使用出来る。 特に ビスマスとテルルおよびアンチモンが有用である。 The catalyst composition (a) in which the catalyst first component and the catalyst second component are combined is a preferable catalyst composition in terms of suppressing a decrease in catalyst activity due to oxygen poisoning. Examples of the second component of the catalyst include bismuth, tellurium, tin, lead, antimony, and selenium, and although not particularly limited, antimony, bismuth, tellurium, and lead are particularly effective. For example, by combining palladium with bismuth or tellurium, oxygen poisoning can be avoided, and the oxidation reaction rate and the conversion of raw materials can be greatly improved. Also, P b · P d / C a C 0 8 catalyst, known as re-emission Dollar catalysts can also be used as catalysts of the present invention. Bismuth, tellurium and antimony are particularly useful.
本発明ではモノマー生成とともに重合反応を併発せしめるため、 物質移動の影響が大きく出て、 その結果生成ボリマーに由来する生 成物被毒が重要な問題となる。 物質移動の促進にあたっては、 後述 する希釈剤の併用、 外層担持法、 酸素供給量の制御等の 3つの方法 が提案されるが、 これらは直接的な方法ではない。 原子 .分子レべ ルでポリマー由来の生成物被毒を抑制するためには、 固体触媒表面 における生成ボリマーと触媒表面との物理化学的相互作用を考慮す る必要がある。 それを考慮しつつ、 生成ボリマーに由来する生成物 被毒を解消することにより、 固定床反応装置を重合反応に適用する V、う従来に無い新しい方法を提供することが出来る。  In the present invention, since the polymerization reaction occurs simultaneously with the production of the monomer, the influence of the mass transfer is large, and as a result, the poisoning of the product derived from the produced polymer becomes an important problem. In order to promote mass transfer, three methods are proposed, such as the use of a diluent described later, the outer layer supporting method, and the control of the amount of oxygen supply, but these methods are not direct methods. In order to suppress the poisoning of polymer-derived products at the atomic and molecular levels, it is necessary to consider the physicochemical interaction between the formed polymer and the catalyst surface on the solid catalyst surface. In consideration of this, by eliminating the poisoning of the product derived from the formed polymer, it is possible to provide an unprecedented new method of applying a fixed bed reactor to a polymerization reaction.
その具体的方法としては、 表面科学に立脚して固体表面を改質す るとぃゔ発想が必要となり、 この効果を達成するには、 下地の主触 媒元素の表面に触媒第二成分をいかに有効に高分散担持させ得るか どうかによって決定される。 これは、 下地金属と触媒第二成分の物 性によって決定されるが、 触媒調製方法に大き く依存するものであ る。 本発明で採用している液相平衡吸着段階担持法は極めて有効な 方法であり、 触媒の大量生産にも適用出来るものである。 As a concrete method, if the solid surface is modified based on the surface science, an idea is needed. To achieve this effect, how the catalyst second component is applied to the surface of the underlying main catalyst element Can high dispersion be supported effectively? Is determined by This is determined by the physical properties of the base metal and the second component of the catalyst, but largely depends on the catalyst preparation method. The liquid phase equilibrium adsorption stage loading method employed in the present invention is a very effective method and can be applied to mass production of catalysts.
これらの知見より、 本発明における触媒第二成分としては、 ビス マスが特に有効である。 即ち、 ビスマスが他の触媒第二成分と比較 してパラジウムまたは白金に代表される主触媒元素の表面、 特に ( From these findings, bismuth is particularly effective as the second catalyst component in the present invention. In other words, bismuth has a surface of the main catalyst element represented by palladium or platinum, particularly
1 1 1 ) 面において a d— a t o m構造、 または a d— l a y e r 構造を取りやすく、 その結果、 生成ポリマーの吸着を大き く抑制し ていると考えられる。 ビスマスのこの特異性は、 パラジウムまたは 白金との二成分触媒の C 0吸着量の測定により、 ビスマスの場合は 他の触媒第二成分であるテルル、 鉛と違って、 その吸着量がパラジ ゥムまたは白金単独の場合に比べて 1 Z 5〜 1ノ 6に激減し、 さら にパラジウムまたは白金の分散度と表面積から求めた触媒表面の P d Z B i、 P t / B i の原子比が 3になることからも理解出来る。 触媒第一成分及び触媒第三成分を組み合わせた触媒組成物 (口) は、 高速反応性を達成させるという点から触媒第三成分を組み合わ せたものである。 希土類元素としては、 ランタン、 セリウム、 ブラ セォジゥム、 ネオビジゥム等が有効である。 これは、 塩基性元素で ある希土類元素の添加により触媒第一成分であるパラジウム等が高 分散状態になるとともに触媒表面上に塩基性が与えられ、 その結果 高速反応性が達成されるからである。 It is likely that the ad-atom structure or ad-layerr structure is easily formed in the 1 1 1) plane, and as a result, adsorption of the produced polymer is greatly suppressed. This specificity of bismuth is measured by measuring the amount of adsorption of C0 of a two-component catalyst with palladium or platinum.In the case of bismuth, the adsorption amount of palladium is different from that of other catalysts such as tellurium and lead. Alternatively, the atomic ratio of PdZBi and Pt / Bi on the catalyst surface calculated from the dispersity and surface area of palladium or platinum is 3 It can be understood from becoming. The catalyst composition (mouth) combining the first catalyst component and the third catalyst component is a combination of the third catalyst component from the viewpoint of achieving high-speed reactivity. As rare earth elements, lanthanum, cerium, brassium, neovisium, etc. are effective. This is because the addition of the rare earth element, which is a basic element, makes the first component of the catalyst, such as palladium, into a highly dispersed state and imparts basicity to the catalyst surface, thereby achieving high-speed reactivity. .
触媒第一成分、 触媒第二成分及び触媒第三成分を組み合わせた触 媒組成物 (ハ) は、 前記の (ィ) と (口) の触媒組成物の性質を共 に備えた組成物であり、 酸素被毒による触媒话性の低下の抑制と高 速反応性の達成効果が得られる。 このような触媒組成物としては、 特に限定されるものではないが、 例えば C e · B i · P d、 C e · 丁 e * P d、 S e · B i * P d、 C e · B i · S e · P d , C e - B i · T e · P d, B i · P t · P d , C e - B i - P t - P d. 等が例示される。 The catalyst composition (C) in which the first catalyst component, the second catalyst component, and the third catalyst component are combined is a composition having both the properties of the catalyst compositions (a) and (mouth) described above. However, it is possible to obtain an effect of suppressing a decrease in catalytic activity due to oxygen poisoning and achieving high-speed reactivity. As such a catalyst composition, Although not particularly limited, for example, CeBiPd, CeBe * Pd, SeBi * Pd, CeBiSePd, C e-Bi-Te-Pd, Bi-Pt-Pd, Ce-Bi-Pt-Pd.
なかでも (ハ) の触媒組成物としては、 触媒第一成分がバラジゥ ムと白金、 触媒第二成分がビスマス及び 又はテルル、 触媒第三成 分がセリゥム及び 又はランタンであるものが好適に用いられる。 また、 このように本発明においては、 触媒第一成分を複数個、 特に 白金を助触媒として併用することにより低温活性な触媒系に改質す るこ とが出来る。  Above all, as the catalyst composition (c), those in which the first component of the catalyst is palladium and platinum, the second component of the catalyst is bismuth and / or tellurium, and the third component of the catalyst is cellium and / or lanthanum are preferably used. . As described above, in the present invention, a catalyst system having a low-temperature activity can be reformed by using a plurality of catalyst first components, in particular, platinum as a co-catalyst.
特に C e ' B i ' P t ' P dの 4成分触媒は低温活性と重合活性 が顕著であり、 高い C a捕捉能を有するポリカルボン酸を与える。 即ち、 触媒第一成分としてパラジウムと白金の 2種を併用し、 触 媒第二成分としてビスマスおよび触媒第三成分としてセリウムを使 用する C e ' B i ' P t ' P dの 4成分触媒 (触媒組成物 (ハ) ) は、 個々の元素の機能が高度に複合化された高性能低温活性触媒の 1つであり、 各元素は以下の機能を有する。  Particularly, the four-component catalyst of Ce'Bi'Pt'Pd has remarkable low-temperature activity and polymerization activity, and gives a polycarboxylic acid having high Ca-capturing ability. That is, a four-component catalyst of Ce'Bi'Pt'Pd that uses two kinds of catalysts, palladium and platinum, as the first component of the catalyst, uses bismuth as the second component of the catalyst, and cerium as the third component of the catalyst. (Catalyst composition (c)) is one of the high-performance low-temperature active catalysts in which the functions of individual elements are highly complexed. Each element has the following functions.
C e : P dと P tの高分散化剤、 塩基性付与剤  C e: Pd and Pt high dispersing agent, basicity imparting agent
B i :酸素被毒抑制剤、 生成物被毒抑制剤  B i: oxygen poisoning inhibitor, product poisoning inhibitor
P t : 低温活性化剤  P t: Low temperature activator
P d : 1极水酸基酸化能 (塩基性下において) 、 主触媒元素 B i · P t : 2級水酸基酸化能 (酸性下において)  P d: 1 极 hydroxyl oxidizing ability (under basic conditions), main catalytic element B i · P t: Secondary hydroxyl oxidizing ability (under acidic conditions)
この 4成分触媒は 1級水酸基酸化能を発現する C e · B i - P d 触媒システムと 2級水酸基酸化能を発現する B i · P t触媒システ ムとの複合より成る。 従って、 例えばグリセリ ンを出発原料にした 場合、 グリセリ ンの 1級水酸基が C e · B i · P d触媒により酸化 されて生成したタルトロン酸の 2級水酸基を B i · P t触媒が効率 良く酸化してケ トマ σン酸に誘導する。 主触媒元素としてのパラジ ゥムに対する他の成分 ( P t、 B i、 C e ) の組成により触媒性能 と生成物の組成を大き く制御することが出来る。 This four-component catalyst is composed of a composite of a Ce · Bi-Pd catalyst system that exhibits primary hydroxyl oxidizing ability and a Bi · Pt catalyst system that exhibits secondary hydroxyl oxidizing ability. Therefore, for example, when glycerin is used as a starting material, the primary hydroxyl groups of glycerin are oxidized by the Ce, Bi, and Pd catalysts. The secondary hydroxyl group of the resulting tartaric acid is efficiently oxidized by the Bi-Pt catalyst to induce keto-σ-acid. The composition of the other components (Pt, Bi, Ce) with respect to palladium as the main catalytic element can greatly control the catalytic performance and product composition.
本発明における触媒組成物は、 触媒組成物 (二) に示されるよう に、 例えばパラジウムを単独で使用しても良いが、 好ましく は触媒 第二成分との複合化 (触媒組成物 (ィ) ) 、 触媒第三成分との複合 化 (触媒組成物 (口) ) 、 さらに触媒第二成分および触媒第三成分 との複合化 (触媒組成物 (ハ) ) により、 さらに、 各触媒成分を 2 種以上併用することにより飛躍的に触媒活性と選択性を向上させる ことが出来る。  As shown in the catalyst composition (2), for example, palladium alone may be used as the catalyst composition in the present invention, but preferably, the catalyst composition is combined with the second component of the catalyst (catalyst composition (a)) By combining with the third catalyst component (catalyst composition (mouth)) and further combining with the second catalyst component and third catalyst component (catalyst composition (c)), two more catalyst components can be used. By using them together, the catalytic activity and selectivity can be dramatically improved.
本発明における多成分触媒の組成は、 重要であり触媒活性に大き な影響を与える。 従って、 触媒第一成分に対する触媒第二成分のバ ルクの原子比 R 1 は、 触媒第二成分の種類により、 次の範囲が選択 される。 触媒第二成分がセレンの場合は、 R 1 は 0 . 0 5〜 0 . 3 、 好ましくは 0 . 0 5〜0 . 1 0である。 触媒第二成分がテルル、 ビスマス、 アンチモン、 スズの場合には R 1 は 0 . 0 5〜 1 . 5、 好ましく は 0 . 1〜0 . 5である。 触媒第二成分がビスマスまたは テルルの場合の最適の R 1 は 0 . 2であり、 この時表面構造は^ 3 X ^ 3 R 3 0 ° 構造をとつていると推定される。  The composition of the multi-component catalyst in the present invention is important and has a significant effect on catalytic activity. Accordingly, the following range of the atomic ratio R 1 of the bulk of the second catalyst component to the first catalyst component is selected depending on the type of the second catalyst component. When the second component of the catalyst is selenium, R 1 is 0.05 to 0.3, preferably 0.05 to 0.10. When the second component of the catalyst is tellurium, bismuth, antimony, or tin, R 1 is 0.05 to 1.5, preferably 0.1 to 0.5. When the second component of the catalyst is bismuth or tellurium, the optimum R 1 is 0.2. At this time, it is estimated that the surface structure has a ^ 3X ^ 3R30 ° structure.
触媒担持量は生成する重合物の分子量に影響を与え、 低担持量の 方が分子量が大きくなる傾向にある。 触媒第一成分の担持量は、 全 担持触媒 (触媒担体を含む) 中、 通常 0 . 1〜 1 0重量%、 好まし くは 0 . 1〜 5重量%、 特に好ましくは 0 . 1〜 3重量%である。 なかでも触媒第一成分がパラジウムの場合は、 単独で用いる場合、 あるいは触媒第二成分、 触媒第三成分と併用して複合化させる場合 のいずれも 0. 5〜 1 0重量%が好ましく、 1〜 6.重量%が更に好 ましい。 0. 5重量%未満では反応速度が遅く、 1 0重量%を超え るとコス トの点で問題となる。 The amount of catalyst supported affects the molecular weight of the polymer produced, and the lower the supported amount, the higher the molecular weight. The supported amount of the first component of the catalyst is usually 0.1 to 10% by weight, preferably 0.1 to 5% by weight, particularly preferably 0.1 to 3% by weight of the total supported catalyst (including the catalyst support). % By weight. In particular, when the first component of the catalyst is palladium, when used alone, or when combined with the second and third components of the catalyst to form a composite Is preferably 0.5 to 10% by weight, more preferably 1 to 6% by weight. If the amount is less than 0.5% by weight, the reaction rate is low. If the amount exceeds 10% by weight, there is a problem in cost.
触媒第二成分の担持量は既述の R 1 に依存するが、 触媒活性の点 より、 通常 0. 1〜 1 0重量%、 好ましくは 0. 1〜 5重量%、 特 に好ましく は 0. 5〜 3重量%である。  The loading amount of the second component of the catalyst depends on R 1 described above, but is usually 0.1 to 10% by weight, preferably 0.1 to 5% by weight, particularly preferably 0.1 to 5% by weight from the viewpoint of catalytic activity. 5 to 3% by weight.
触媒第一成分に対する触媒第三成分のバルクの原子比 R 2は触媒 活性の点より、 通常 0. 0 1〜 1 . 0、 好ましく は 0. 0 5〜 0. 5、 さらに好ましく は 0. 1 〜 0. 3である。  The atomic ratio R2 of the bulk of the third catalyst component to the first catalyst component is usually 0.01 to 1.0, preferably 0.05 to 0.5, and more preferably 0.1, from the viewpoint of catalytic activity. ~ 0.3.
触媒第三成分の担持量は、 触媒活性の点より、 通常 0. 1〜 5重 量%、 好ましく は 0. 3〜 3重量%、 特に好ましくは 0. 3〜 5重量%である。  The loading amount of the third component of the catalyst is usually 0.1 to 5% by weight, preferably 0.3 to 3% by weight, particularly preferably 0.3 to 5% by weight from the viewpoint of catalytic activity.
本発明における触媒組成物は、 通常の含浸法、 共含浸法、 浸漬法 、 共沈法により、 触媒成分を水中で触媒担体に担持させ、 ホルマリ ン、 ヒ ドラジン、 水素化ホウ素ナト リウム、 水素、 低极アルコール (メタノール、 エタノール、 グリセリ ン、 エチレングリコール等) 等による還元処理を行う等、 通常の方法によって容易に調製するこ とが出来る。 特に、 水溶液中で触媒担体に触媒成分を担持させる場 合、 担持後、 触媒前駆体を脱水乾燥させることなく、 水中で分散状 態のまま還元処理を行うことにより活性の高い触媒が出来やすい。 触媒調製にあたって、 主に触媒担体の外層に触媒成分が担持され た外層担持 ( e g g s h e 1 1型) は、 本発明の反応が重合反応 であることから物質移動的に非常に有効である。 この外層担持の効 果は酸素被毒抑制剤として使用する触媒第二成分のビスマスが特に 有効である。 これは、 前述のようにビスマスが他の触媒第二成分と 比较して a d - a t om構造、 または a d— 1 a y e r構造を取り やすく、 その結果、 生成ボリマーの吸着を大きく抑制することに由 来すると考えられる。 ビスマスのこの特異性は、 パラジウムとの二 成分触媒の C 0吸着量の測定により、 ビスマスの場合は他の触媒第 二成分であるテルル、 鉛と違って、 その吸着量がパラジウム単独の 場合に比べて前述のように激減することからも理解することが出来 る。 外層担持触媒の表面構造は、 その調製方法に大き く依存するが 、 基本的には主触媒元素であるパラジウムと触媒第二成分の表面物 性に依存する。 外層担持触媒の調製にあたっては、 担持時間も重要 な因子となる。 本発明で行う液相平衡吸着段階担持法においては担 持時間を 5時間以下、 好ましく は 2時間以下にするのがよい。 The catalyst composition according to the present invention comprises a catalyst component supported on a catalyst carrier in water by a usual impregnation method, co-impregnation method, immersion method, or co-precipitation method, formalin, hydrazine, sodium borohydride, hydrogen, It can be easily prepared by a usual method such as reduction treatment with low alcohol (methanol, ethanol, glycerin, ethylene glycol, etc.). In particular, when the catalyst component is supported on the catalyst carrier in an aqueous solution, a highly active catalyst can be easily obtained by carrying out the reduction treatment in the water in a dispersed state without dehydrating and drying the catalyst precursor after the support. In preparing the catalyst, the outer layer (eg, eggshe 11 type) in which the catalyst component is mainly supported on the outer layer of the catalyst carrier is very effective for mass transfer since the reaction of the present invention is a polymerization reaction. Bismuth, which is the second component of the catalyst used as an oxygen poisoning inhibitor, is particularly effective for the effect of supporting the outer layer. This is because, as described above, bismuth has an ad-atom structure or ad-1 ayer structure in comparison with the other catalyst second component. This is likely to be due to the large suppression of the adsorption of the formed polymer. This specificity of bismuth was measured by measuring the amount of C0 adsorbed on the two-component catalyst with palladium.In the case of bismuth, unlike the other second component of the catalyst, tellurium and lead, the amount of adsorbed palladium alone was It can be understood from the sharp decrease as mentioned above. The surface structure of the outer layer-supported catalyst largely depends on the preparation method, but basically depends on the surface properties of the main catalyst element palladium and the second catalyst component. In preparing the outer-layer supported catalyst, the supporting time is also an important factor. In the liquid phase equilibrium adsorption stage loading method performed in the present invention, the loading time is 5 hours or less, preferably 2 hours or less.
触媒担体としては、 活性炭、 カーボンブラッ ク、 炭酸カルシウム 、 シリカ、 アルミナ、 モレキュラーシーブ、 石綿、 希土類元素の酸 化物等が挙げられるが、 高表面積を有する活性炭、 カーボンブラッ ク、 アルミナおよびシリカがより好ましい。 これらの中でも、 特に 活性炭が有効である。  Examples of the catalyst carrier include activated carbon, carbon black, calcium carbonate, silica, alumina, molecular sieves, asbestos, oxides of rare earth elements, and the like, and activated carbon, carbon black, alumina and silica having a high surface area are more preferable. . Among them, activated carbon is particularly effective.
本発明で使用する触媒担体としての活性炭は、 ヤシ殻、 木質系、 石炭系、 ビー ト炭系もしくは石油ピッチ系等のいずれの原料に由来 するものでもよいが、 特に強熱残分もしくは灰分含量の低いヤシ殻 系、 木質系や石油ピッチ系が有効である。 また、 活性炭は水蒸気賦 活もしくは薬品賦活のいずれの方法で賦活したものでもよいが、 水 蒸気陚活品の方が担体として有効な場合がある。 本発明で使用する 触媒担体としての活性炭は市販のものをそのまま使用することも出 来るが、 適当な前処理、 例えば酸処理等により細孔分布を調整した り灰分を低減した後に使用してもよい。 本発明で使用する市販の粒 状及び粉末活性炭としては一般の水処理用及び水溶性の食品精製用 のものが使用され、 例えば、 武田薬品製の粒状白紫シリーズ (WH、 Sx、 KL) 及びカルボラフィ ンを代表とする粉末活性炭、 ノ リ ッ ト社 製の粒状活性炭(R0X、 RAX 、 DARCO 、 C 、 ELOR IT等) 及び粉末品の ( AZ0 、 PN、 ZN等) 、 呉羽化学製ビーズ状成形活性炭 (BAC)が挙げ られる。 Activated carbon as a catalyst carrier used in the present invention may be derived from any of coconut shell, woody, coal-based, beet coal-based or petroleum pitch-based raw materials, but in particular, ignition residue or ash content It is effective to use coconut shell, woody or petroleum pitch based on low oil content. The activated carbon may be activated by either steam activation or chemical activation, but a water vapor activated product may be more effective as a carrier. Commercially available activated carbon as the catalyst carrier used in the present invention may be used as it is, but it may be used after adjusting the pore distribution or reducing ash content by appropriate pretreatment, for example, acid treatment. Good. As the commercially available granular and powdered activated carbon used in the present invention, those for general water treatment and for water-soluble food purification are used. For example, granular white purple series (WH, Sx, KL) and powdered activated carbon represented by carboraffin, granular activated carbon manufactured by Norit (R0X, RAX, DARCO, C, ELORIT, etc.) and powdered products (AZ0, PN, ZN, etc.), Kureha Chemical bead-shaped activated carbon (BAC) is an example.
また、 市販のカーボンブラックも本発明における反応を実施する 際の触媒担体として有効であり、 例えば、 キヤブラック社製のカー ボンブラックが挙げられる。 しかし、 本発明に用いられる活性炭及 びカーボンブラックは特にこれらの活性炭及びカーボンブラックに 限定されるものではない。  Commercially available carbon black is also effective as a catalyst carrier for carrying out the reaction in the present invention, and includes, for example, carbon black manufactured by Cablack Corporation. However, the activated carbon and carbon black used in the present invention are not particularly limited to these activated carbon and carbon black.
本発明における反応温度は極めて重要な因子であり、 本発明の力 ルポキシル基を有する重合物の収率を大きく左右する。 即ち、 重合 物中のカルボキシル基の脱炭酸による分解を出来るだけ抑制するに は、 反応スキームの酸化反応部および重合部ともに出来るだけ低温 で反応を実施することが望ましい。 反応温度は一 3 0〜 1 0 0でで 実施することが出来るが、 生成する重合物の脱炭酸分解を出来るだ け抑制するため、 好ましくは一 1 0〜 6 0で、 さらに好ましく は 0 〜5 0で、 特に好ましくは 2 0〜4 0でで実施するのがよい。  The reaction temperature in the present invention is a very important factor, and greatly affects the yield of the polymer having a carbonyl group of the present invention. That is, in order to suppress the decomposition of the carboxyl group in the polymer by decarboxylation as much as possible, it is desirable to carry out the reaction at the lowest possible temperature in both the oxidation reaction section and the polymerization section of the reaction scheme. The reaction can be carried out at a temperature of from 130 to 100, but preferably from 110 to 60, more preferably from 0 to 60, in order to suppress decarboxylation of the produced polymer as much as possible. It is preferably carried out at 50, particularly preferably at 20 to 40.
即ち、 本発明においては、 反応温度が低い程重合物が生成しやす く、 脱炭酸による炭酸ナトリウムの副生も数%以下に保つことが出 来る。 また、 モノマー生成段階と重合物生成段階の最適反応温度が 異なり、 前者は 6 0で以下、 後者は 3 0で以下が良いが、 重合物の 生成を優先するためには出来るだけ低温で行うのが良い。 更に、 低 温の方が酸素の溶解度の点からも有利となる。 従って、 本発明にお ける低温活性の触媒組成物を使用することにより、 常温での酸化重 合を効率よく進行せしめることが出来る。 反応時間は反応温度、 触 媒の種類およびその濃度等に大きく依存するが、 通常 1〜3 0時間 が好ましい。 That is, in the present invention, the lower the reaction temperature, the more easily a polymer is formed, and the by-product of sodium carbonate due to decarboxylation can be kept at several percent or less. In addition, the optimal reaction temperature in the monomer formation stage and the polymer formation stage is different.The former is less than 60 and the latter is less than 30.However, in order to give priority to polymer production, the reaction should be performed at as low a temperature as possible. Is good. Furthermore, lower temperatures are more advantageous in terms of oxygen solubility. Therefore, the use of the catalyst composition having a low temperature activity in the present invention allows the oxidation polymerization at room temperature to proceed efficiently. The reaction time largely depends on the reaction temperature, the type of catalyst and its concentration, etc., but usually 1 to 30 hours Is preferred.
本発明における反応はカルボキシル基生成工程は塩基性雰囲気で の水溶液下で実施するため、 生成する重合物は一般にカルボン酸塩 となる。 従って、 適用する反応温度において生成する重合物の溶解 度を考慮して出発原料の濃度を設定するのが好ましい。 即ち、 原料 濃度は通常 1 〜 8 0重量%が好ましく、 5〜 5 0重量%がより好ま しい。 原料濃度が 1重量 未満では得られる重合物の濃度が薄すぎ て実用的ではなく、 8 0重量%を越えると粘度が高くなりすぎて物 質移動速度が低下し、 その結果、 反応速度が大きく低下する。  In the present invention, since the carboxyl group generation step is carried out in an aqueous solution in a basic atmosphere, the resulting polymer is generally a carboxylate. Therefore, it is preferable to set the concentration of the starting material in consideration of the solubility of the polymer produced at the applied reaction temperature. That is, the raw material concentration is usually preferably from 1 to 80% by weight, more preferably from 5 to 50% by weight. If the raw material concentration is less than 1%, the concentration of the obtained polymer is too low to be practical, and if it exceeds 80% by weight, the viscosity becomes too high and the mass transfer rate is reduced, resulting in a large reaction rate. descend.
また、 反応溶媒としては水を使用するのが生産性および効率の点 から有効である。  It is effective to use water as the reaction solvent from the viewpoint of productivity and efficiency.
本発明における反応において、 塩基性雰囲気下で酸化反応による モノマー前駆体およびモノマーの合成および酸化重合反応を進行せ しめるには、 それに要するアルカ リ剤として水酸化ナト リウム、 水 酸化カ リウム、 水酸化リチウム等のアルカリ金属の水酸化物、 モノ エタノールァミ ン、 ジエタノールァミ ン等のアミ ン類、 アンモニア 等が使用される。  In the reaction of the present invention, the synthesis of a monomer precursor and a monomer by an oxidation reaction in a basic atmosphere and the progress of the oxidative polymerization reaction require sodium hydroxide, potassium hydroxide, and hydroxide as alkaline agents required for the synthesis. Hydroxides of alkali metals such as lithium, amines such as monoethanolamine and diethanolamine, and ammonia are used.
この場合、 アル力 リ過剰率は重要な反応因子となり反応時の p H を支配するとともに、 本発明の重合物の構造と重合度に大き く影響 を与え、 その結果洗剤用ビルダーとしての C a捕捉能に大きな影響 を与える。 例えば、 グリセリ ンを出発原料として下式のように本発 明を実施した場合、 アル力リ剤としての例えば水酸化ナト リゥムは グリセリ ンの 2倍モル使用する。 CH2 OH C 0 ON a C 0 ON a In this case, the excess amount of alcohol becomes an important reaction factor and controls pH during the reaction, and has a great influence on the structure and degree of polymerization of the polymer of the present invention. As a result, C a as a builder for detergents is obtained. It has a significant effect on capture performance. For example, when the present invention is carried out using glycerin as a starting material as in the following formula, sodium hydroxide, for example, is used as an alcohol agent in a molar amount twice that of glycerin. CH 2 OH C 0 ON a C 0 ON a
I I
CHOH CHOH C = 0 CHOH CHOH C = 0
I I
CH2 OH C 0 ON a C 0 ON a CH 2 OH C 0 ON a C 0 ON a
C 0 ON a C 0 ON a C 0 ON a C 0 ON a
I I  I I
(C一 0) — (C一 0) —  (C-1 0) — (C-1 0) —
I I  I I
C 0 ON a H  C 0 ON a H
その結果、 ポリケ トマロン酸までは水酸化ナ ト リゥムは等量消費 されるが、 ボリケ トマロン酸は熱力学的に不安定であるためカルボ キシルの一部が脱炭酸分解しやすい。 その結果、 グリオキシル酸骨 格が重合物鎖中に存在し余剰の水酸化ナト リゥムが生成する。 この 余剰水酸化ナトリウムは、 通常脱炭酸分解した二酸化炭素と反応し て炭酸水素ナトリウムゃ炭酸ソーダを生成する。 As a result, sodium hydroxide is consumed in the same amount up to polyketomalonic acid, but boriketomalonic acid is thermodynamically unstable, so that part of carboxyl is easily decarboxylated. As a result, glyoxylic acid skeleton is present in the polymer chain and excess sodium hydroxide is generated. This excess sodium hydroxide usually reacts with decarbonated carbon dioxide to produce sodium bicarbonate-sodium carbonate.
従って原料がグリセリ ンの場合には、 水酸化ナト リウムの仕込み 等量比はグリセリ ンに対して 0. 5 0〜0. 9 0が好ましい。 また 、 エチレングリ コールを原料とした場合には水酸化ナト リウムは 0 . 5等量以下でよく、 グリセリ ンとエチレングリコールを混合した ものを原料とする場合には、 以上の点を踏まえて水酸化ナト リウム の過剰率を調整し、 反応混合物水溶液の p Hが本発明の条件に合う ように設定するのが好ましい。  Therefore, when the raw material is glycerin, the equivalent ratio of charged sodium hydroxide is preferably 0.50 to 0.90 with respect to glycerin. Also, when ethylene glycol is used as a raw material, sodium hydroxide may be 0.5 equivalent or less, and when a mixture of glycerin and ethylene glycol is used as a raw material, water based on the above points is taken into consideration. It is preferable to adjust the excess of sodium oxide and to set the pH of the aqueous solution of the reaction mixture so as to meet the conditions of the present invention.
反応時の p Hは、 重合物 (】) 〜 (IV) および (VI) を製造する 場合、 モノマー生成時には 7〜 1 3の塩基性下の方が好ましい。 ― 方、 重合時は pHは 7以下がよく、 好ましくは 6. 0〜2. 5、 特 に好ましくは 4. 5〜3. 0が良い。  In the case of producing the polymers () to (IV) and (VI), the pH at the time of the reaction is preferably 7 to 13 when producing the monomer. On the other hand, during polymerization, the pH is preferably 7 or less, preferably 6.0 to 2.5, and particularly preferably 4.5 to 3.0.
他方、 重合物 (V) を製造する場合はモノマー生成、 重合時とも に pH 9〜 l 4が好ましい。 例えば、 攪拌槽型反応装置を使用して 重合物 ( I ) 〜 (IV) および (VI ) を製造する場合、 反応初期のモ ノマー生成が主の時点では P Hを 7〜 1 0に、 反応中期〜末期にか けての重合反応が主の時点では P Hが 7以下になるように原料 (ァ ルカ リ剤、 酸化剤) 供給速度を制御するのがよい。 On the other hand, when producing the polymer (V), the pH is preferably from 9 to 14 for both the production of the monomer and the polymerization. For example, using a stirred tank reactor When producing the polymers (I) to (IV) and (VI), the PH is set to 7 to 10 when the production of the monomer is mainly at the beginning of the reaction, and the polymerization reaction during the middle to the end of the reaction is mainly performed. At this point, it is advisable to control the feed rate of the raw materials (alkaline and oxidizing agents) so that the pH is 7 or less.
又、 固定床反応装置を使用して重合物 ( I ) 〜 (IV) および (VI ) を製造する場合、 反応塔上段ではモゾマー生成が主に進行し、 反 応塔中〜下段では重合反応が主に進行する。 この場合、 反応塔の高 さ方向の P Hは上段から下段に向かって大き く下降する傾向にあり 、 必要に応じて反応塔中段の複数箇所より原料供給 (アルカ リ剤、 酸化剤) を行い、 反応塔出口の反応混合物の p Hを 6 . 5〜 2 . 0 に維持するのが好ましい。 一方、 重合物 (V ) を固定床反応装置で 製造する場合は、 出口 p Hを 9〜 1 4、 好ましくは 1 0以上に維持 するのが良い。  In addition, when the polymers (I) to (IV) and (VI) are produced using a fixed bed reactor, the production of mozomers mainly proceeds in the upper stage of the reaction tower, and the polymerization reaction proceeds in the middle to lower stages of the reaction tower. Mainly progress. In this case, the PH in the height direction of the reaction tower tends to drop greatly from the upper stage to the lower stage, and the raw materials (alkaline agent, oxidizing agent) are supplied from a plurality of locations in the middle stage of the reaction tower as needed. It is preferable to maintain the pH of the reaction mixture at the outlet of the reaction column at 6.5 to 2.0. On the other hand, when the polymer (V) is produced in a fixed-bed reactor, the outlet pH is preferably maintained at 9 to 14, preferably at least 10.
本発明で用いる酸化剤としては純酸素、 純酸素と窒素との混合ガ ス、 又は空気が使用でき、 特に限定されるものではないが空気が経 済的である。  As the oxidizing agent used in the present invention, pure oxygen, a mixed gas of pure oxygen and nitrogen, or air can be used. Although not particularly limited, air is economical.
本発明の反応においては反応初期はグリセリ ンの酸化物であるモ ノマーが主に生成するが、 反応中期から末期においてはこれらのモ ノマーを原料とする重合反応が進行する。 従って、 高分子生成過程 においては物質移動の影響が顕著となり、 その結果、 生成物被毒に 由来して反応性が大きく低下するため、 酸素供耠量は等量では不充 分となる場合がある。 酸素供耠量は生成高分子の分子量の増大とと もに増加させるのがよく、 好ましぐは等量の 3倍以下、 特に好まし ぐは等量の 0 . 5〜 2倍に設定するのが良い。 過度の酸素供給量の 増大は逆に酸素による触媒の自己被毒を併発する。  In the reaction of the present invention, monomers which are oxides of glycerin are mainly formed in the initial stage of the reaction, but in the middle to late stages of the reaction, the polymerization reaction using these monomers as a raw material proceeds. Therefore, the effect of mass transfer becomes significant in the polymer production process, and as a result, the reactivity is greatly reduced due to the poisoning of the product. is there. The amount of oxygen supplied is preferably increased with the increase in the molecular weight of the produced polymer, preferably 3 times or less of the equivalent, particularly preferably 0.5 to 2 times the equivalent. Is good. Excessive increases in oxygen supply, on the other hand, also result in self-poisoning of the catalyst by oxygen.
本発明における反応は、 触媒組成物の形態によって撹拌槽式反応 器、 固定床反応器 (ト リ クルベッ ド) のいずれでもよい。 なお、 固 定床反応装置を使用する時は希釈剤 (反応不活性な粒状物) で本発 明の触媒組成物を希釈して充填するのが好ましい。 このとき、 触媒 組成物が、 触媒組成物 1重量部に対して 0 . 5〜 2 0重量部の希釈 剤で希釈されていることが好ましく、 より好ましくは 4〜 1 5重量 部である。 希釈剤で希釈することにより生成重合物の吸着に由来す る生成物被毒が著しく緩和され、 高い生産性を達成することが出来 る。 希釈剤で希釈しない場合には、 触媒表面上の重合物の滞留が大 となり、 物質移動速度が大き く低下することにより反応速度が激減 する場合がある。 The reaction in the present invention is a stirred tank type reaction depending on the form of the catalyst composition Vessel or fixed bed reactor (tricklebed). When a fixed bed reactor is used, it is preferable to dilute and fill the catalyst composition of the present invention with a diluent (reactive inert particulate matter). At this time, the catalyst composition is preferably diluted with 0.5 to 20 parts by weight of a diluent with respect to 1 part by weight of the catalyst composition, and more preferably 4 to 15 parts by weight. By diluting with a diluent, product poisoning due to adsorption of the produced polymer is remarkably mitigated, and high productivity can be achieved. If not diluted with a diluent, the retention of the polymer on the catalyst surface will be large, and the reaction rate may decrease drastically due to a large decrease in mass transfer rate.
また、 このように固定床反応装置に触媒を充塡するにあたって、 触媒を希釈剤と混合して充塡することにより触媒有効係数も増大し 、 その結果触媒活性が 2〜 3倍に増大することがある。  In addition, when the fixed bed reactor is filled with the catalyst as described above, the catalyst is mixed with a diluent and charged, thereby increasing the catalyst effectiveness coefficient, and as a result, the catalyst activity is increased by two to three times. There is.
希釈剤の材質としては本発明の反応に悪影響を及ぼさないものな らよく、 例えば磁器、 セラ ミ ックス、 重合物、 ガラスまたは金属等 の反応不活性な粒状物が挙げられる。 希釈剤の粒子径は特に限定さ れないが、 触媒担体の 1 / 2〜 5倍までの粒径が好ましい。  The material of the diluent may be any material that does not adversely affect the reaction of the present invention, and examples thereof include reaction-inactive particulates such as porcelain, ceramics, polymers, glass and metals. The particle size of the diluent is not particularly limited, but is preferably 1/2 to 5 times the size of the catalyst carrier.
反応器の選択は特に限定されないが、 得られる重合物の重量平均 分子量が、 特に 1 0 0 , 0 0 0以上で高粘性の重合物が生成する場 合には、 撹拌槽式反応器の適用が好ましい。 しかし、 重量平均分子 量が 5 0 0〜 1 0 0 , 0 0 0程度の場合には固定床反応器が適用で き、 この場合には触媒分離工程が簡略化出来るというメ リ ッ 卜があ る。  The choice of the reactor is not particularly limited, but if the obtained polymer has a weight-average molecular weight of 100,000 or more and a high-viscosity polymer is produced, use a stirred tank reactor. Is preferred. However, when the weight average molecular weight is about 500 to 100,000, a fixed bed reactor can be applied, and in this case, there is an advantage that the catalyst separation step can be simplified. You.
次に、 本発明における反応方法について、 出発原料としてグリセ リ ン水溶液を用いる場合の例を挙げて説明する。 反応を撹拌槽式反 応器を用いて実施する場合、 撹拌装置、 温度計、 p Hメーター、 原 料ガス (酸素、 空気等) 導入管、 廃ガスライ ンの付いた撹拌槽式回 分反応器にグリセリ ン水溶液と触媒組成物を仕込み、 所定温度に設 定して、 酸化剤としての酸素または空気をパブリ ング導入させ、 所 定の p Hに維持するよう水酸化ナト リゥ厶水溶液を連繞的に添加す る。 所定時間反応させることにより酸化反応によるモノマー生成と 共に、 重合反応が進行し本発明のカルボキシル基を有する重合物が 生成する。 Next, the reaction method of the present invention will be described with reference to an example in which an aqueous glycerin solution is used as a starting material. When the reaction is carried out using a stirred tank reactor, a stirrer, thermometer, pH meter, Feed gas (oxygen, air, etc.) An aqueous glycerin solution and a catalyst composition are charged into a stirred tank batch reactor equipped with an inlet pipe and waste gas line, set to a predetermined temperature, and oxygen or air as an oxidizing agent. Is introduced, and an aqueous solution of sodium hydroxide is added continuously so as to maintain a predetermined pH. By reacting for a predetermined time, the polymerization reaction proceeds together with the production of the monomer by the oxidation reaction, and the polymer having a carboxyl group of the present invention is produced.
また、 ト リ クルべッ ド方式の固定床反応器を使用する場合は、 例 えば成形した触媒組成物を希釈剤と混合して反応塔に充填し、 本発 明の酸化反応を実施する前に充塡触媒の再活性化処理を行うのが好 ましい。 この理由は触媒調製時に還元処理した触媒が保存期間中に 表面が酸化され触媒活性が低下している場合があるからである。 再 活性化の実施にあたっては、 本反応の原料の 1つである塩基性物質 (水酸化ナト リウム等) の供給無しに、 例えば出発原料であるグリ セリ ン、 エチレングリコール等の水酸基化合物の 5〜 2 0重量%水 溶液を空気供給下に常温〜 5 0での温度で反応塔に一昼夜供給する ことによって達成される。 この触媒再活性化後は、 反応塔の塔頂よ りグリセリ ン水溶液、 水酸化ナト リゥ厶水溶液および酸化剤として の酸素または空気を下向き並流で供耠すればよい。 この場合、 両原 料水溶液の合計基準での液空間速度は 0 . 5〜 0 . 0 1 —1、 好ま しく は 0 . 2〜 0 . 0 5 h—1に設定する。 When a trickle bed fixed bed reactor is used, for example, the molded catalyst composition is mixed with a diluent and charged into a reaction tower, and the mixture is placed in a reaction tower before the oxidation reaction of the present invention is carried out. It is preferable to perform a reactivation treatment of the charged catalyst. The reason for this is that the surface of the catalyst reduced during the preparation of the catalyst may be oxidized during the storage period and the catalytic activity may decrease. In carrying out the reactivation, without supplying a basic substance (such as sodium hydroxide), which is one of the starting materials for this reaction, for example, it is possible to use a starting material such as glycerin, ethylene glycol, etc. This is achieved by feeding a 20% by weight aqueous solution to the reaction tower all day and night at a temperature between room temperature and 50 under an air supply. After the reactivation of the catalyst, an aqueous glycerin solution, an aqueous sodium hydroxide solution, and oxygen or air as an oxidizing agent may be supplied from the top of the reaction tower in a downward cocurrent flow. In this case, the liquid hourly space velocity of the total standard of Ryohara charge aqueous solution is 0 5-0 0 1 -.. 1, the preferred properly set to 0. 2 to 0 0 5 h- 1...
原料供給開始後 2 4〜 4 8時間目までの生成物の組成はモノマー が 4 0〜 6 0重量%であり、 重合物成分は 6 0〜 4 0重量%である が、 時間の経過とともにモノマー分は減少していき、 これと並行し て得られる重合物の C a捕捉能が大きく増大していく。 反応生成物 中めモノマー含量の経時変化は H P L C (高速液体クロマ トグラフ ィー) と G P C (ゲルバーミエーシヨ ンクロマ トグラフィー) によ つてモニターすることが出来るが、 重合物生成により H P L Cのべ ースラインは通常大き く乱れる。 The composition of the product up to 24 to 48 hours after the start of the raw material supply is 40 to 60% by weight of the monomer, and the polymer component is 60 to 40% by weight. The amount decreases, and at the same time, the ability of the polymer obtained to capture Ca greatly increases. Changes in the monomer content of the reaction product over time were measured by HPLC (high-performance liquid chromatography). E) and GPC (Gel Vermillion Chromatography), but the HPLC baseline is usually significantly disrupted by polymer formation.
また本発明の反応実施時の P Hが 9を越える場合には、 アルド一 ルカルボン酸 (反応スキームの V ) の生成が促進されるが、 この重 合物もカルボキシル基を有するため、 生分解性は無いが C a捕捉能 を有する。  If the pH of the reaction at the time of carrying out the reaction of the present invention exceeds 9, the production of aldehyde carboxylic acid (V in the reaction scheme) is promoted. However, since this polymer also has a carboxyl group, the biodegradability is low. No, but has C a capture ability.
得られる重合物の反応混合物からの分離は、 凍結乾燥による脱水 ゃメ ンブランフィルターを使用した透析法ゃィソプロピルアルコー ル、 エタノール、 メタノール等の溶剤を使用する溶剤再沈澱法で行 うことが出来る。 反応混合物を凍結乾燥や溶剤再沈澱法によって再 沈澱を行った場合、 溶剤分離後、 乾燥を行うことにより本発明にお ける重合物を白色粉末として得ることができる。  Separation of the resulting polymer from the reaction mixture should be carried out by lyophilization by dehydration 透析 Dialysis using a membrane filter 溶 剤 Solvent reprecipitation using a solvent such as isopropyl alcohol, ethanol or methanol Can be done. When the reaction mixture is subjected to freeze-drying or reprecipitation by a solvent reprecipitation method, the polymer according to the present invention can be obtained as a white powder by drying after the solvent is separated.
しかしながら、 本発明における重合物を洗剤用のビルダーとして 使用する場合は、 反応塔から出た酸化重合反応混合物の水溶液は重 合物を分離することなく、 洗剤スラリーに配合して噴霧乾燥して用 いることができる。  However, when the polymer according to the present invention is used as a builder for a detergent, the aqueous solution of the oxidative polymerization reaction mixture discharged from the reaction tower is mixed with a detergent slurry and spray-dried without separating the polymer. Can be.
このようにして得られる重合物の重量平均分子量は、 ゲル濾過 ( G P C ) 分析により 5 0 0〜 1 , 0 0 0 , 0 0 0にまで達し、 従来 のポリ グリセリ ンのそれ (分子量 5 0 0〜 1 0 0 0 ) を遙かに越え るものである。 しかし、 洗剤用ビルダーとして用いる場合はキレー ト能の点から 1 0 0 0〜 1 0万が好ましく、 2 0 0 0〜 2万が特に よい o  The weight average molecular weight of the polymer obtained in this way reaches 500 to 1,000,000 by gel filtration (GPC) analysis, and that of the conventional polyglycerin (molecular weight 500,000). 1 100 000). However, when it is used as a detergent builder, it is preferably from 100,000 to 100,000, particularly preferably from 200,000 to 20,000 in terms of chelating ability.
本発明で得られる重合物の G P C測定に当たっては、 特に末端安 定化処理を行っていない場合、 カラム內で容易に吸着したり、 充塡 剤の種類によっては脱炭酸分解する場合があるため、 測定に当たつ ては最適なカラム系を選択する必要がある。 In the GPC measurement of the polymer obtained in the present invention, particularly when the terminal stabilization treatment is not performed, the polymer may be easily adsorbed on the column り or may be decarboxylated depending on the type of the packing material. Hit the measurement It is necessary to select the optimal column system.
本発明における重合物は、 その赤外吸収スぺク トルからカルボキ シレー トのカルボ二ル振縮振動およびエーテル結合の振縮振動の吸 収ピークが得られ、 プロ トン NMR及び C13NMRスぺク トルから は、 それぞれエーテル性炭素に結合したプロ トンとエーテル性炭素 の吸収ピークが得られる。 このことから本発明における重合物は、 多量のカルボキシル基を有する重合体であることが判明している。In the polymer of the present invention, absorption peaks of carboxylate vibrational vibration and ether bond vibrational vibration of the carboxylate are obtained from the infrared absorption spectrum, and proton NMR and C 13 NMR spectra are obtained. From the vector, the absorption peaks of the proton and the etheric carbon bonded to the etheric carbon are obtained. This proves that the polymer in the present invention is a polymer having a large amount of carboxyl groups.
1 •  1 •
その構造は、 式 ( i ) 、 式 (ii) 、 式 (iii ) 、 式 (iv) 、 式 ( V) 、 式 (vi) で表されるいずれかの、 又は 2種以上の構造単位を 含む構造からなることが推定される。 これは酸化反応下に重合反応 が進行することに由来するものであり、 本発明の製造方法の特徴の —- 3である。  The structure includes any one of the formulas (i), (ii), (iii), (iv), (V), and (vi), or includes two or more structural units. It is presumed to consist of a structure. This is derived from the fact that the polymerization reaction proceeds during the oxidation reaction, and is a characteristic of the production method of the present invention.
C 0 OM C 0 OM C 0 OM C 0 OM
(C - 0) (C一 0) (ii) C 00M H  (C-0) (C-1 0) (ii) C 00M H
C 0 OM COO C 0 OM COO
C HOH C = 0  C HOH C = 0
(C-0) (iii) (C-0) (iv) H H  (C-0) (iii) (C-0) (iv) H H
COOM COOM
一 (C = C) (v) — ( C一 0) — (vi) MO - 0■ C OH ..·.·■■. ' ' ^ CH8(C = C) (v) — (C-1 0) — (vi) MO-0 ■ C OH ...... '' ^ CH 8 ;
(式中、 Mは水素原子、 アルカリ金属、 アンモニゥム基、  (Where M is a hydrogen atom, an alkali metal, an ammonium group,
モノエタノールァミ ン、 ジエタノールアミ ン等を表わす。 ) また、 本発明において反応混合物からモノマー成分を除去した重 合体は、 1 0 0〜6 0 0 m g - C a C O 3 Zgという高いイオン交 換能を有することから、 洗剤用ビルダーとして有用である。 Represents monoethanolamine, diethanolamine, etc. ) Further, the polymer was removed monomer components from the reaction mixture in the present invention, 1 0 0~6 0 0 mg - from having a C a CO 3 as high as Zg ion exchange換能useful as detergent builders.
以下、 実施例により本発明をさらに詳しく説明するが、 本発明は これらの実施例によりなんら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
以下の実施例において触媒担持量に関して表示する%は重量 ¾を 示す。 また、 水酸基化合物の転化率とは、 仕込み水酸基化合物に対 して酸化反応で消費されたモル数の割合を表す。 また、 転化率につ いての%は、 全て重量%とする。 また、 ポリマー収率とは、 反応混 合物中に残存する水酸基化合物、 モノマーおよびモノマー前駆体の モル基準残存率を除いた値である。 ボリマー収率 (モル = 反応物中の水酸基化合物 +モノ マー十モノ マー前駆体 (モル)  In the following examples, the percentages indicated with respect to the amount of catalyst carried indicate weight%. The conversion rate of the hydroxyl compound indicates the ratio of the number of moles consumed in the oxidation reaction to the charged hydroxyl compound. All conversion percentages are by weight. Further, the polymer yield is a value excluding the molar residual ratio of the hydroxyl compound, the monomer and the monomer precursor remaining in the reaction mixture. Polymer yield (mol = hydroxyl compound in reaction product + monomer 10 monomer precursor (mol)
仕込水酸基化合物 (モル)  Hydroxyl compound charged (mol)
X 1 0 0 また、 実施例において行った各分析等は以下の方法により行った o X 100 Each analysis performed in Examples was performed by the following method.o
(重合物の分析)  (Analysis of polymer)
反応混合物をエチルアルコールを用いる溶剤再沈澱法によって再 沈殿を行い、 溶剤分雜後、 乾燥を行った。 得られた吸湿性の白色粉 末について赤外吸収スぺグ^ル、 NMRスペク トル、 ゲル濾過クロ マトグラフィー (G P C) によって分析を行った。  The reaction mixture was reprecipitated by a solvent reprecipitation method using ethyl alcohol, and the solvent was separated, followed by drying. The obtained hygroscopic white powder was analyzed by infrared absorption spectrum, NMR spectrum and gel filtration chromatography (GPC).
なお、 G P C測定条件を以下に示す。  The GPC measurement conditions are shown below.
' カラム : G 2 0 0 0 S - G 4 0 0 0 SW (東ソ一製シリ 力ゲル充塡カラム) なお、 重合物の分析を行う前にナ フタレンスルホン酸ソーダのホルマリ ン縮合物の水溶 液をカラムに通液して、 この縮合物をシリカゲルに吸 着させることが必要である。 'Column: G 2 0 0 S-G 4 0 0 SW (Tosoichi Before conducting the analysis of the polymer, it is necessary to pass an aqueous solution of a formalin condensate of sodium naphthalene sulfonate through the column and adsorb this condensate to silica gel. It is.
溶媒 0. 1 M-N a C 1水溶液 ァセ トニト リル = 7/3 流速 0. 8m l /m i n  Solvent 0.1 M-N aC 1 aqueous solution acetonitrile = 7/3 Flow rate 0.8 ml / min
温度 2 5 eC Temperature 25 e C
検出器 U V - 8 0 1 1 (東ソ一製) , 2 1 0 n mにて測定 試料濃度 0. 1 %水溶液  Detector U V-8 0 1 1 (manufactured by Tosoichi), measured at 210 nm Sample concentration 0.1% aqueous solution
(HP L Cによる定量分析)  (Quantitative analysis by HP LC)
HP L Cの条件を以下に示す。  The conditions of HPLC are shown below.
' 速液体クロマ トグラフィー : D— 2 5 0 0 / L - 6 0 0 0型 日立製作所 (株) 製  '' High-speed liquid chromatography: D-250 / L-600, manufactured by Hitachi, Ltd.
ディテクター L一 3 3 0 0型 (R Iモニター)  Detector L-330 type (RI monitor)
カラム C - 6 1 0 S  Column C-6 1 0 S
溶離液 0. 5 %リ ン酸水溶液 0. 5 m 1 /m i n 圧力 1 0 K g/ c m2 Eluent 0.5%-phosphate aqueous 0. 5 m 1 / min Pressure 1 0 K g / cm 2
温度 5 0 eC Temperature 50 e C
(C a捕捉能)  (Ca capture ability)
以下の実施例において分取された重合物を用いて、 その C a捕捉 能を以下の方法により測定した。 即ち、 分取した重合物の水溶液を 凍結乾燥し、 重合物の乾燥品を得た。 その 0. 1 gを精秤し、 0. ΓΜ-ΝΗ4 C 1 - N H * OH緩衝液 (pH 1 0. 0) により、 1 0 0m lとし重合物水溶液を得た。 この溶液にカルシウムイオン電 極を挿入後、 マグネティ ックスターラーでの撹拌下、 C a C 03 換 算で 2 0, 0 0 0 p pmに相当する C a C 12 水溶液 (pH 1 0. 0 ) をビューレツ トにより滴下し、 イオンアナライザ一により液中 C aイオン濃度を測定した。 C a捕捉能は、 滴定量一残存 C aィォ ン濃度の関係を作図し、 その変曲点より求めた。 Using the polymer fractionated in the following examples, its ability to capture Ca was measured by the following method. That is, the separated aqueous solution of the polymer was freeze-dried to obtain a dried product of the polymer. The 0.1 g was precisely weighed and adjusted to 100 ml with 0.1 に よ り -ΝΗ4 C 1 -NH * OH buffer solution (pH 10.0) to obtain an aqueous polymer solution. After inserting a calcium ion electrodes in the solution, under stirring at Maguneti Kkusutara, C a C 1 2 aqueous solution (pH 1 0 corresponding to 2 0, 0 0 0 p pm at C a C 0 3 conversion calculated. 0) was dropped by a burette, and the Ca ion concentration in the liquid was measured by an ion analyzer. The Ca capture ability was determined from the inflection point by plotting the relationship between the titer and the residual Ca ion concentration.
(触媒組成物の調製)  (Preparation of catalyst composition)
武田薬品工業 (株) の木質系活性炭、 WH2 C (比表面積 : 1 2 0 0 m2 /g、 嵩密度 : 5 0 0 /リ ッ トル、 細孔容積 : 0. 8 m l Zg) を触媒担体としたときの 0. 9 %C e ' 3. Q % i - 3. 0 %? dZCよりなる三成分触媒を以下の方法により調製した。 1 2 0 °Cで一昼夜、 熱風乾燥した活性炭 9 3 gを 1 2 5 0m lのィォ ン交換水に分散させた。 一方、 塩化セリウム (C e C l 3 · 7 Η2 0) 2. 4 g、 塩化ビスマス (B i C 13 ) 4. 5 gおよび塩化パ ラジウム (P d C l 3 ) 5. 0 gを、 1 5 0m lのイオン交換水に 濃塩酸 2 6 m 1を添加した塩酸水溶液に撹拌下、 均一に溶解させた 。 得られた触媒成分の褐色均一溶液を活性炭の水分散液中に添加し 、 撹拌下、 5時間、 常温で触媒成分の担持操作を行った。 上澄み液 は無色透明になった。 得られた触媒前駆体の還元処理を行うため、 触媒前駆体の水分散液を 2 0 %水酸化ナト リゥム水溶液で p Hを約 1 2に維持し、 3 7 %ホルマリ ン水溶液 2 0 m 1を添加した。 撹拌 下、 8 0でまで昇温し、 8 0でで 3 0分間還元処理を行った。 得ら れた触媒は室温まで放冷し 1 5 0 0 m 1のイオン交換水で 3回洗浄 し、 減圧濾過した。 以上の操作により、 約 5 0 %含水率の 0. 9 % C e · 3. 0 %B i · 3. 0 % P d Z C触媒が乾燥品換算で 1 0 0 g得られた。 一 Wood-based activated carbon from Takeda Pharmaceutical Co., Ltd., catalyzes WH 2 C (specific surface area: 1200 m 2 / g, bulk density: 500 / liter, pore volume: 0.8 ml Zg) A three-component catalyst consisting of 0.9% Ce '3. Q% i-3.0%? DZC as a carrier was prepared by the following method. 93 g of activated carbon dried with hot air at 120 ° C for 24 hours was dispersed in 125 ml of ion-exchanged water. Meanwhile, cerium chloride (C e C l 3 · 7 Η 2 0) 2. 4 g, bismuth chloride (B i C 13) 4. 5 g and chloride palladium (P d C l 3) of 5. 0 g, The mixture was uniformly dissolved in 150 ml of ion-exchanged water with stirring in an aqueous hydrochloric acid solution in which 26 ml of concentrated hydrochloric acid was added. The resulting homogeneous brown solution of the catalyst component was added to an aqueous dispersion of activated carbon, and the catalyst component was loaded at room temperature for 5 hours with stirring. The supernatant became colorless and transparent. In order to carry out the reduction treatment of the obtained catalyst precursor, the pH of the aqueous dispersion of the catalyst precursor was maintained at about 12 with a 20% aqueous sodium hydroxide solution, and a 37% aqueous solution of formalin 20 m 1 Was added. Under stirring, the temperature was raised to 80, and a reduction treatment was performed at 80 at 30 minutes. The resulting catalyst was allowed to cool to room temperature, washed three times with 1500 ml of ion-exchanged water, and filtered under reduced pressure. By the above operation, 0.9 g of 0.9% Ce · 3.0% Bi · 3.0% PdZC catalyst having a water content of about 50% was obtained in terms of a dry product. one
なお、 本実施例における他の触媒組成物についても同様の操作で 調製した。  The other catalyst compositions in this example were prepared in the same manner.
実施例 1 触媒組成物の調製例で調製した 0. 9 %C e ' 3. 0 % B i · 3 . 0 %P dZC触媒をジャケッ ト付きの内径 2 O mm, 高さ 7 0 0 mmの 2 0 0 m 1のパイ レッ クス製固定床反応塔に、 乾燥品換算で 1 0 0 g充塡した。 反応温度を 5 0てに設定し、 反応塔塔頂より 5 0 %グリセリ ン水溶液 1 0 0部と 3 0 %水酸化ナ ト リゥ厶水溶液 1 3 0部の混合溶液を、 液空間速度 (LHSV) 0. 0 7 h r— 1の流 速で、 酸素ガスを 5 Nリ ッ トル rの流速で下向き並流で供給し た。 4 0時間後、 反応塔出口より無色透明の粘調液体 (p H 1 0〜 1 1 ) が留出した。 この液体を高速液体クロマ トグラフィー (HP L C ) で分析したところ、 グリセリ ンは転化率 1 0 0 %、 残存タル ト口ン酸の選択率は 3 0 %、 グリセリ ン酸選択率は 2 5 %であった 0 —方、 G P C (gel permeation chromatography) でこの粘調液体 を分析 (第 2図) したところ、 ボリスチレンスルホン酸ナト リウム 基準の重量平均分子量が 4. 5 0 3 X 1 04.のボリマーが 5. 2重 量 96、 7. 3 2 4 X 1 03 のボリマーが 6. 8重量% (合計 1 2重 量 ) 存在することを確認した。 この粘調液体の透析を行いボリマ 一成分を分取した。 得られたボリマーの赤外吸収スぺク トルより、 カルボキシレー トおよびエーテル結合の存在を確認し、 さらにプロ トン NMRと C13NMRスぺク トルよりエーテル結合の炭素と水素 の存在を確認した。 これらの結果から、 得られたボリマーの構造が 既述の式 ( i ) 〜式 (iv) の構造単位よりなることが推定された。 また、 C aイオン捕捉能を測定した結果、 分取ボリマー単位重量当 たり 4 4 0 m g— C a C 03 /gを与えた。 Example 1 0.9% Ce'3.0% Bi3.0% PdZC catalyst prepared in the preparation example of the catalyst composition was prepared with a jacketed inner diameter of 2 Omm and a height of 700 mm. A fixed-bed reactor made of Pyrex having an m of 1 was charged with 100 g in terms of a dried product. The reaction temperature was set at 50, and a mixed solution of 100 parts of a 50% aqueous glycerin solution and 130 parts of a 30% aqueous sodium hydroxide solution was poured from the top of the reaction tower with a liquid hourly space velocity (LHSV ) At a flow rate of 0.07 hr- 1 , oxygen gas was supplied in a downward cocurrent flow at a flow rate of 5 N liter r. After 40 hours, a colorless and transparent viscous liquid (pH 10 to 11) was distilled off from the reaction tower outlet. When this liquid was analyzed by high performance liquid chromatography (HP LC), the conversion of glycerin was 100%, the selectivity of residual tartaric acid was 30%, and the selectivity of glyceric acid was 25%. 0 which was at - how, GPC (gel permeation Chromatography) analysis of this viscous liquid (FIG. 2) the place, the weight average molecular weight of Helsingborg styrenesulfonic acid sodium criteria 4. 5 0 3 X 1 0 4 . It was confirmed that a polymer of 5.2 was 96 in weight, and a polymer of 7.23 × 10 3 in weight was 6.8% by weight (total 12 weight). This viscous liquid was dialyzed to separate one component of Bolima. From the obtained infrared absorption scan Bae-vector of Borima, confirmed the presence of Karubokishire bets and ether bond, and further confirmed the presence of carbon and hydrogen ether linkages than pro tons NMR and C 13 NMR spectrum . From these results, it was estimated that the structure of the obtained polymer was composed of the structural units of the above-described formulas (i) to (iv). In addition, as a result of measuring the Ca ion trapping ability, it was found to be 440.0 mg—C a C 03 / g per unit weight of the preparative polymer.
実施例 2 Example 2
5 0 %グリセリ ン酸水溶液 1 0 0部、 2 6 %水酸化ナト リウム水 溶液 1 3 0部の混合溶液を使用すること以外は、 実施例 1 と同じ条 件で反応を行った。 反応混合物の G P C測定によりボリスチ レ ンス ルホン酸ナト リゥ厶基準の重量平均分子量が 6 2, 0 0 0のポリマ 一が 1 6 %存在することが分かった。 透析分離して得られたボリマ 一成分の構造は、 赤外吸収スぺク トル、 NMRスぺク トルより式 ( i ) 〜式 (iv) の構造単位よりなることが推定された。 また、 C a イオン捕捉能を測定した結果、 分取ポリマー単位重量当たり 4 6 0 m g - C a C 03 /gを与えた。 The same conditions as in Example 1 except that a mixed solution of 100 parts of 50% glyceric acid aqueous solution and 130 parts of 26% aqueous sodium hydroxide solution was used. Reaction. GPC measurement of the reaction mixture revealed that 16% of a polymer having a weight average molecular weight of 62,000 based on sodium borostyrene sulfonate was present. From the infrared absorption spectrum and the NMR spectrum, it was estimated that the structure of one component of the polymer obtained by dialysis separation was composed of the structural units of the formulas (i) to (iv). In addition, as a result of measuring the C a ion trapping ability, it was found to be 450 mg-C a C 03 / g per unit weight of the preparative polymer.
実施例 3 Example 3
触媒組成物が 0. 9 %C e , し 5 %T e · 3. 0 %P d/Cで ある以外は、 実施例 1 と同様にして反応を行った。 反応塔出口から 留出した無色透明の粘調液体 (p H約 1 0 ) を HP L Cにより分析 したところ、 グリセリ ンは転化率 1 0 0 %、 残存タルトロン酸の選 択率は 1 5 %、 グリセリ ン酸選択率は 2 2 %であった。 一方、 G P C測定によりボリスチレンスルホン酸ナト リゥム基準の重量平均分 子量が 5 8, 0 0 0のボリマーが 2 5 %存在することを確認した。 透析分雜後のボリマーの赤外吸収スぺク トルより、 カルボキシレー トおよびエーテル結合の存在を確認し、 さらにプロ トン NMRと C 13NMRスぺク トルよりエーテル結合の炭素と水素の存在を確認し た。 これらの結果から、 得られたボリマーの構造が既述の式 ( i ) 〜式 (iv) の構造単位よりなることが推定された。 また、 C aィォ ン捕捉 を測定した結果、 分取ポリマー単位重量当たり 4 5 Omg - C a C O 3 / gを与えた。 The reaction was carried out in the same manner as in Example 1 except that the catalyst composition was 0.9% Ce and 5% Te · 3.0% Pd / C. When a colorless and transparent viscous liquid (pH approx. 10) distilled out from the outlet of the reaction tower was analyzed by HP LC, the conversion of glycerin was 100% and the selectivity of residual taltronic acid was 15%. Glyceric acid selectivity was 22%. On the other hand, GPC measurement confirmed that 25% of a polymer having a weight average molecular weight of 58,000 based on sodium polystyrenesulfonate was present. The presence of carboxylate and ether bonds was confirmed from the infrared absorption spectrum of the polymer after dialysis separation, and the presence of carbon and hydrogen at the ether bond was confirmed by proton NMR and C 13 NMR spectra. confirmed. From these results, it was estimated that the structure of the obtained polymer was composed of the structural units of the above-described formulas (i) to (iv). In addition, as a result of measuring Ca ion trapping, 45 Omg-Ca CO 3 / g was obtained per unit weight of the preparative polymer.
実施例 4 Example 4
5 0 タルトロン酸水溶液 1 0 0部、 2 3 ¾水酸化ナトリウム水 溶液 1 3 0部の混合溶液を使用すること以外は、 実施例 3と同じ条 件で反応を行った。 反応混合物の G P C測定よりボリスチレンスル ホン酸ナト リゥム基準の重量平均分子量が 4 7, 0 0 0のポリマー が 1 9 %存在することが分かった。 ポリマー成分を透析分離して得 られたポリマー成分の構造は、 赤外吸収スぺク トル、 NMRスぺク トルより式 ( i ) 〜式 (iv) の構造単位よりなることが推定された 。 また、 C aイオン捕捉能を測定した結果、 分取ポリマー単位重量 当たり 4 5 O mg - C a C Os を与えた。 The reaction was carried out under the same conditions as in Example 3 except that a mixed solution of 100 parts of an aqueous solution of 50 tartronic acid and 130 parts of an aqueous solution of 23¾ sodium hydroxide was used. From the GPC measurement of the reaction mixture, It was found that 19% of a polymer having a weight average molecular weight of 47,000 based on sodium phosphate was present. From the infrared absorption spectrum and the NMR spectrum, the structure of the polymer component obtained by dialysis-separating the polymer component was estimated to be composed of the structural units of formulas (i) to (iv). Also, as a result of measuring the Ca ion trapping ability, 45 O mg-Ca C Os was given per unit weight of the preparative polymer.
実施例 5 Example 5
種々の触媒組成物 ( 1. 5 %T e ' 3. 0 %? d/C, 1. 5 % C e · 3. 0 %P d/C, 3. 0 %P d/C) について実施例 1 と 同様にして反応を行った。 各触媒組成物について、 分取したボリマ 一の重量平均分子量はそれぞれ、 5 8, 0 0 0、 4 3, 0 0 0、 4 0 , 0 0 0であった。 表 1 にボリマーの収率と C aィオン捕捉能を まとめた。 尚、 ポリマー成分の構造は、 赤外吸収スぺク トル、 NM Rスペク トルより式 ( i ) 〜式 (iv) の構造単位よりなることが推 定された。  Examples for various catalyst compositions (1.5% T e '3.0%? D / C, 1.5% Ce · 3.0% P d / C, 3.0% P d / C) The reaction was carried out as in 1. For each catalyst composition, the weight average molecular weight of the fractionated polymer was 58,000, 43,000, 40,000, respectively. Table 1 summarizes the yield of bolimer and the ability to capture C ion. The structure of the polymer component was estimated from the infrared absorption spectrum and the NMR spectrum to be composed of the structural units of formulas (i) to (iv).
実施例 6 Example 6
2 5 %グリセリ ン水溶液 1 0 0部と 1 5 %水酸化ナト リ ウム 1 4 5部の混合水溶液を使用し、 触媒組成物として 0. 7 5 %P t . 3 . 0 %B i - 3. 0 %P dZCを使用し、 反応温度を 2 5でにする 以外は実施例 1 と同様に反応を行った。 表 1にポリマー収率と C a イオン捕捉能をまとめた。 反応塔出口溜出物の p Hは 5. 6であつ た。 尚、 ボリマー成分の構造は、 赤外吸収スペク トル、 NMRスぺ ク トルより式 ( i ) 〜式 (iv) の構造単位よりなることが推定され Using a mixed solution of 100 parts of a 25% glycerin aqueous solution and 150 parts of a 15% sodium hydroxide solution, 0.75% Pt.3.0% Bi-3 as a catalyst composition The reaction was carried out in the same manner as in Example 1 except that 0.0% PdZC was used and the reaction temperature was 25. Table 1 summarizes the polymer yield and C a ion trapping ability. The pH of the distillate at the outlet of the reaction tower was 5.6. The structure of the polymer component is estimated to be composed of the structural units of formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
〜 o ~ O
実施例 7 Example 7
触媒組成物が 0. 8 %C e ' l . 5 ¾B i · 0. 7 5 ¾P t - 3 . 0 %P dZCであること以外は実施例 6 と同様に反応を行った。 表 1にポリマー収率と C aイオン捕捉能をまとめた。 反応塔出口溜 出物の p Hは 5. 6であった。 尚、 ポリマー成分の構造は、 赤外吸 収スぺク トル、 NMRスぺク トルより式 ( i ) 〜式 (iv) の構造単 位よりなることが推定された。 When the catalyst composition is 0.8% C e 'l. 5 ¾B i · 0.75 ¾P t-3 The reaction was carried out in the same manner as in Example 6, except that 0.0% PdZC was used. Table 1 summarizes the polymer yield and Ca ion trapping ability. The pH of the distillate at the outlet of the reaction tower was 5.6. The structure of the polymer component was presumed to be composed of the structural units of the formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
実施例 8 Example 8
第 1反応塔 (実施例 1で用いたものと同様の反応器) の触媒組成 物が 0. 8 %C e ' l . 5 % B i - 0. 7 5 % P t - 3. 0 %Ρ ά ノ C、 第 2反応塔 (実施例 1で用いたものと同様の反応器) の触媒 組成物が 0. 6 %B i ' 3. 0 %P t ZCであること以外は実施例 6と同様に反応を行った。 第 1反応塔を出た反応混合物はそのまま 同じ流速で第 2反応塔に導入した。 反応塔出口溜出物の p Hは 3. 5であり受器の中に白色結晶が析出していた。 このものは HP L C によりケ トマロン酸と同定された。 表 1にボリマー収率と C aィォ ン捕捉能をまとめた。 尚、 ボリマー成分の構造は、 赤外吸収スぺク トル、 NMRスぺク トルより式 ( i ) 〜式 (iv) の構造単位よりな ることが推定された。  The catalyst composition of the first reaction tower (same reactor as used in Example 1) was 0.8% Ce'l. 5% Bi-0.75% Pt-3.0% Ρ CNO C, Example 6 except that the catalyst composition of the second reaction tower (same reactor as used in Example 1) was 0.6% Bi '3.0% Pt ZC. The reaction was performed similarly. The reaction mixture leaving the first reaction tower was directly introduced into the second reaction tower at the same flow rate. The pH of the distillate at the outlet of the reaction tower was 3.5, and white crystals were precipitated in the receiver. It was identified as ketomalonic acid by HPLC. Table 1 summarizes the polymer yield and Ca ion capture capacity. The structure of the polymer component was estimated to be composed of the structural units of formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
実施例 9 Example 9
グリセリ ンとエチレングリ コールをモル比で 1 : 1に混合するこ と以外は実施例 8と同様に反応を行った。 反応塔出口溜出物の pH は 3. 5であった。 表 1にポリマー収率と C aイオン捕捉能をまと めた。 尚、 ボリマー成分の構造は、 赤外吸収スぺク トル、 NMRス ベク トルより式 ( i ) 〜式 (iv) の構造単位よりなることが推定さ れた。  The reaction was carried out in the same manner as in Example 8, except that glycerin and ethylene glycol were mixed at a molar ratio of 1: 1. The pH of the distillate at the outlet of the reaction tower was 3.5. Table 1 summarizes the polymer yield and Ca ion trapping ability. The structure of the polymer component was estimated to be composed of the structural units of formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
実施例 1 0 Example 10
グリセリ ンと 1 , 2—プロピレングリ コールをモル比で 1 : 1に 混合すること以外は実施例 9 と同様に反応を行った。 反応塔出口溜 出物の p Hは 3 . 5であった。 表 1 にボリマー収率と C aイオン捕 捉能をまとめた。 尚、 ポリマー成分の構造は、 赤外吸収スぺク トル 、 N M Rスペク トルより式 ( i ) 〜式 (i v) の構造単位よりなるこ とが推定された。 Glycerin and 1,2-propylene glycol in a molar ratio of 1: 1 The reaction was carried out in the same manner as in Example 9 except for mixing. The pH of the distillate at the outlet of the reaction tower was 3.5. Table 1 summarizes the polymer yield and the ability to capture Ca ions. The structure of the polymer component was estimated to be composed of the structural units of the formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
実施例 1 1 Example 1 1
実施例 7の触媒組成物を直径 0 . 8 m mのガラスビーズを希釈剤 として、 重量換算で 4倍に希釈して実施例 1で使用した反応塔に充 塡すること以外は実施例 7 と同様に反応を行った。 反応塔出口溜出 液の p Hは 5 . 4であった。 表 1 にポリマー収率と C aイオン捕捉 能をまとめた。 尚、 ポリマー成分の構造は、 赤外吸収スぺク トル、 N M Rスぺク トルより式 ( i ) 〜式 (iv) の構造単位よりなること が推定された。  Same as Example 7 except that the catalyst composition of Example 7 was diluted 4 times in terms of weight using glass beads with a diameter of 0.8 mm as a diluent and then charged into the reaction tower used in Example 1. The reaction was performed. The pH of the distillate at the outlet of the reaction tower was 5.4. Table 1 summarizes the polymer yield and Ca ion trapping ability. The structure of the polymer component was estimated to be composed of the structural units of formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
実施例 1 2 Example 1 2
温度計、 攪拌器、 ガス導入口、 サンプリ ング口、 排ガス口をセッ トした 1 リ ッ トルの丸底フラスコに 2 5 %グリセリ ン 1 5 %水酸化 ナト リゥム混合溶液を 5 0 0 g、 実施例 7で使用した触媒組成物を 1 0 0 g仕込み、 反応温度 2 5で、 酸素供給速度 1 リ ッ トル Z hで 2 0時間反応した。 反応混合物の p Hは 7 . 2であった。 ポリマー 収率と C aイオン捕捉能を表 1 にまとめた。 尚、 ポリマー成分の構 造は、 赤外吸収スペク トル、 N M Rスぺク トルより式 ( i ) 〜式 ( iv) の構造単位よりなることが推定された。  500 g of a mixed solution of 25% glycerin and 15% sodium hydroxide in a 1 liter round bottom flask equipped with a thermometer, stirrer, gas inlet, sampling port and exhaust gas port 100 g of the catalyst composition used in Example 7 was charged and reacted at a reaction temperature of 25 at an oxygen supply rate of 1 liter Zh for 20 hours. The pH of the reaction mixture was 7.2. Table 1 summarizes the polymer yield and Ca ion trapping ability. The structure of the polymer component was estimated to be composed of the structural units of the formulas (i) to (iv) from the infrared absorption spectrum and the NMR spectrum.
施例 1 3  Example 1 3
実施例 1 2において触媒組成物を 0 . 6 % B i、 3 . 0 % P t / C、 1 0 0 gと交換し、 空気供耠速度を 3 . 0 リ ツ トル Z hにし、 実施例 1 2の反応物を原料として使用すること以外は実施例 1 2 と 同様に反応した。 反応混合物の p Hは 6. 2であった。 ボリマ一収 率と C aイオン捕捉能を表 1にまとめた。 尚、 ポリマー成分の構造 は、 赤外吸収スぺク トル、 NMRスペク トルより式 ( i ) 〜式 (iv ) の構造単位よりなることが推定された。 In Example 12, the catalyst composition was replaced with 0.6% Bi, 3.0% Pt / C, 100 g, and the air supply rate was changed to 3.0 liter Zh. Example 12 except that the reactant of 12 was used as a raw material. Reacted similarly. The pH of the reaction mixture was 6.2. Table 1 summarizes the volima yield and Ca ion trapping ability. The structure of the polymer component was estimated from the infrared absorption spectrum and the NMR spectrum to be composed of the structural units of the formulas (i) to (iv).
実施例 1 4 Example 14
原料がェチレングリ コールであること以外は実施例 7と同様に反 応を行った。 ボリマー収率と C aイオン捕捉能を表 1にまとめた。 反応塔出口溜出物の p Hは 5. 3であった。 尚、 ポリマー成分の構 造は、 赤外吸収スぺク トル、 NMRスぺク トルより式 (ii) の構造 単位よりなることが推定された。  The reaction was carried out in the same manner as in Example 7, except that the raw material was ethylen glycol. Table 1 summarizes the polymer yield and Ca ion trapping ability. The pH of the distillate at the outlet of the reaction tower was 5.3. The structure of the polymer component was estimated from the infrared absorption spectrum and the NMR spectrum to be composed of the structural unit of the formula (ii).
実施例 1 5 Example 15
原料がグリ コール酸であること以外は実施例 7と同様に反応を行 つた。 ボリマー収率と C aイオン捕捉能を表 1にまとめた。 反応塔 出口溜出物の pHは 5. 3であった。 尚、 ポリマー成分の構造は、 赤外吸収スぺク トル、 NMRスぺク トルより式 (ii) の構造単位よ りなることが推定された。  The reaction was carried out in the same manner as in Example 7, except that the starting material was glycolic acid. Table 1 summarizes the polymer yield and Ca ion trapping ability. The pH of the distillate at the outlet of the reaction tower was 5.3. The structure of the polymer component was estimated from the infrared absorption spectrum and the NMR spectrum to be composed of the structural unit of the formula (ii).
実施例 1 6 Example 16
原料がプロピレングリ コールであること以外は実施例 7と同様に 反応を行った。 ポリマー収率と C aィオン捕捉能を表 1にまとめた 。 反応塔出口溜出物の p Hは 5. 7であった。 尚、 ポリマー成分の 構造は、 赤外吸収スぺク トル、 NMRスぺク トルより式 (vi) の構 造単位よりなることが推定された。  The reaction was carried out in the same manner as in Example 7, except that the raw material was propylene glycol. Table 1 summarizes the polymer yield and the ability to capture C ion. The pH of the distillate at the outlet of the reaction tower was 5.7. The structure of the polymer component was presumed to be composed of the structural unit of the formula (vi) from the infrared absorption spectrum and the NMR spectrum.
実施例 1 7 Example 17
原料がヒ ドロキシァセ トンであること以外は実施例 7と同様に反 応を行った。 ポリマー収率と C aイオン捕捉能を表 1にまとめた。 反応塔出口溜出物の p Hは 6. 2であった。 尚、 ポリマー成分の構 造は、 赤外吸収スぺク トル、 NMRスぺク トルより式 (vi) の構造 単位よりなることが推定された。 The reaction was carried out in the same manner as in Example 7, except that the raw material was hydroxyacetone. Table 1 summarizes the polymer yield and Ca ion trapping ability. The pH of the distillate at the outlet of the reaction tower was 6.2. The structure of the polymer component The structure was estimated to consist of the structural unit of formula (vi) from the infrared absorption spectrum and the NMR spectrum.
実施例 1 8  Example 18
原料が乳酸であること以外は実施例 7と同様に反応を行った。 ボ リマー収率と C aィオン捕捉能を表 1にまとめた。 反応塔出口溜出 物の p Hは 5. 7であった。 尚、 ボリマー成分の構造は、 赤外吸収 スぺク トル、 NMRスぺク トルより式 (vi) の構造単位よりなるこ とが推定された。  The reaction was carried out in the same manner as in Example 7, except that the raw material was lactic acid. Table 1 summarizes the polymer yield and Ca ion capture ability. The pH of the distillate at the outlet of the reaction tower was 5.7. The structure of the polymer component was estimated to be composed of the structural unit of the formula (vi) from the infrared absorption spectrum and the NMR spectrum.
実施例 1 9  Example 19
実施例 1で 4 0 %水酸化ナト リゥム水溶液を使用し、 反応温度を 6 0でにすること以外は同一の条件で反応を行った。  The reaction was carried out under the same conditions as in Example 1 except that a 40% aqueous sodium hydroxide solution was used and the reaction temperature was 60.
2 0時間後、 反応塔出口より褐色の反応液 (pH 1 3) が留出し た。 この液を HP L Cで分析したところグリセリ ン転化率は 1 0 0 %であった。 GP C分析の結果、 ボリスチレンスルホン酸基準の童 量平均分子量が 4 5 0 0のボリマーが 3 7重量 存在することを確 認した。  After 20 hours, a brown reaction solution (pH 13) was distilled from the outlet of the reaction tower. Analysis of this solution by HPLC showed a glycerin conversion of 100%. As a result of GPC analysis, it was confirmed that 37 weight of a polymer having a molecular weight average molecular weight of 450,000 based on polystyrenesulfonic acid was present.
なお、 ポリマー成分の構造は赤外スぺク トルと NMRスぺク トル より式 (V ) の構造よりなることが推定された。 また、 反応混合物 の C aイオン捕捉能は 1 2 Omg— C a C03 Zgであった。 The structure of the polymer component was estimated from the infrared spectrum and the NMR spectrum to be composed of the structure of the formula (V). Further, C a ion trapping ability of the reaction mixture was 1 2 Omg- C a C0 3 Zg .
Figure imgf000035_0001
表 1
Figure imgf000035_0001
table 1
Figure imgf000036_0001
産業上の利用可能性
Figure imgf000036_0001
Industrial applicability
本発明の製造方法によれば、 安価な原料を用いて、 高いイオン交 換能等の特異な機能を持つ、 生分解性の洗剤用ビルダー等として有 用なカルボキシル基を有する重合物を効率よく製造することができ る 0  According to the production method of the present invention, a polymer having a carboxyl group, which is useful as a biodegradable detergent builder or the like, having a unique function such as high ion exchange ability, can be efficiently produced using inexpensive raw materials. Can be manufactured 0

Claims

請 求 の 範 囲 The scope of the claims
1 . 水酸基化合物を下記の触媒組成物および酸化剤の存在下に接 触酸化させてカルボキシル基を有するモノ マーを生成させるととも に、 該モノマーを重合させることを特徵とするカルボキシル基を有 する重合物の製造方法。 1. A hydroxyl compound is contact-oxidized in the presence of the following catalyst composition and oxidizing agent to produce a monomer having a carboxyl group, and has a carboxyl group characterized by polymerizing the monomer. A method for producing a polymer.
触媒組成物 :  Catalyst composition:
パラジウム、 白金、 ロジウム、 およびルテニウムからなる群より 選ばれる一種以上の元素を触媒第一成分とし、 ビスマス、 テルル、 スズ、 鉛、 アンチモン、 およびセ レ ンからなる群より選ばれる一種 以上の元素を触媒第二成分とし、 希土類元素から選ばれる一種以上 の元素を触媒第三成分とし、  One or more elements selected from the group consisting of palladium, platinum, rhodium, and ruthenium are used as the first catalyst component, and one or more elements selected from the group consisting of bismuth, tellurium, tin, lead, antimony, and selenium are included. The second component of the catalyst, at least one element selected from rare earth elements is the third component of the catalyst,
(ィ) 触媒第一成分及び触媒第二成分  (B) Catalyst first component and catalyst second component
(口) 触媒第一成分及び触媒第三成分  (Mouth) Catalyst first component and catalyst third component
(ハ) 触媒第一成分、 触媒第二成分及び触媒第三成分、 又は (C) catalyst first component, catalyst second component and catalyst third component, or
(二) 触媒第一成分のみ (2) Catalyst first component only
のいずれかよりなる担持触媒。 A supported catalyst comprising:
2 . 水酸基化合物がグリ セ リ ン、 グリ セ リ ン酸又はグリ セ リ ン酸 の塩であることを特徴とする請求項 1記載の製造方法。 2. The method according to claim 1, wherein the hydroxyl compound is glycerin, glyceric acid or a salt of glyceric acid.
3 . 水酸基化合物がタルト口ン酸又はその塩であることを特徴と する請求項 1記載の製造方法。 3. The production method according to claim 1, wherein the hydroxyl group compound is tart baltic acid or a salt thereof.
4 . 水酸基化合物がエチレングリコール、 グリコール酸またはグ リコール酸の塩であることを特徴とする請求項 1記載の製造方法。 4. The production method according to claim 1, wherein the hydroxyl compound is a salt of ethylene glycol, glycolic acid or glycolic acid.
5 . 水酸基化合物がプロピレングリ コール、 ヒ ドロキシアセ ト ン 、 乳酸又は乳酸の塩であることを特徵とする請求項 1記載の製造方 iti o 5. The method according to claim 1, wherein the hydroxyl group compound is propylene glycol, hydroxyaceton, lactic acid or a salt of lactic acid.
6 . 水酸基化合物がグリセリ ンとエチレングリ コールの混合物で あることを特徴とする請求項 1記載の製造方法。 6. The method according to claim 1, wherein the hydroxyl compound is a mixture of glycerin and ethylene glycol.
7 . (ハ) の触媒組成物の触媒第一成分がパラジウムと白金、 触 媒第二成分がビスマス及び 又はテルル、 触媒第三成分がセリウム 及び 又はランタンである請求項 1 〜 6いずれか記載の製造方法。 7. The catalyst composition according to any one of claims 1 to 6, wherein the first catalyst component of the catalyst composition (c) is palladium and platinum, the second catalyst component is bismuth and / or tellurium, and the third catalyst component is cerium and / or lanthanum. Production method.
8 . 触媒組成物を充塡した固定床反応装置で反応させることを特 徵とする請求項 1〜 6いずれか記載の製造方法。 8. The process according to any one of claims 1 to 6, wherein the reaction is carried out in a fixed bed reactor filled with the catalyst composition.
9 . 触媒組成物 1重量部に対して 0 . 5〜 1 0重量部の希釈剤で 希釈して充塡することを特徵とする請求項 8記載の製造方法。 9. The production method according to claim 8, wherein the mixture is diluted with 0.5 to 10 parts by weight of a diluent per 1 part by weight of the catalyst composition and filled.
10. カルボキシル基を有する重合物の重量平均分子量が、 ゲル濾 過クロマトグラフィー法で 5 0 0〜 1 , 0 0 0 , 0 0 0である請求 項 1〜 9いずれか記載の製造方法。 10. The production method according to any one of claims 1 to 9, wherein the polymer having a carboxyl group has a weight average molecular weight of 500 to 1, 000, 0000 by gel filtration chromatography.
11. カルボキシル基を有する重合物のカルシウム捕捉能が 1 0 0 〜 6 0 0 m g - C a C 0 8 であることを特徵とする請求項 1〜 1 0いずれか記載の製造方法。 11. The production method according to any one of claims 1 to 10, wherein the calcium capturing ability of the polymer having a carboxyl group is from 100 to 600 mg-CaC08.
PCT/JP1994/001995 1994-05-24 1994-11-28 Process for producing carboxylated polymer WO1995032233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13501494A JPH0741554A (en) 1993-05-28 1994-05-24 Production of carboxylated polymer
JP6/135014 1994-05-24

Publications (1)

Publication Number Publication Date
WO1995032233A1 true WO1995032233A1 (en) 1995-11-30

Family

ID=15141920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001995 WO1995032233A1 (en) 1994-05-24 1994-11-28 Process for producing carboxylated polymer

Country Status (1)

Country Link
WO (1) WO1995032233A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225371A (en) * 1985-03-27 1986-10-07 花王株式会社 Fiber processability enhancer
JPS62198641A (en) * 1986-02-26 1987-09-02 Kao Corp Production of carboxylic acid salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225371A (en) * 1985-03-27 1986-10-07 花王株式会社 Fiber processability enhancer
JPS62198641A (en) * 1986-02-26 1987-09-02 Kao Corp Production of carboxylic acid salt

Similar Documents

Publication Publication Date Title
AU750405C (en) Production of unsaturated acids or esters thereof and catalysts therefor
TW200914414A (en) Improved process for selective reduction of propionic acid from (meth) acrylic acid product streams
CN1321609A (en) Method for preparing hyarogen-riched gas
RU2189969C2 (en) Method of selective synthesis of acetic acid and catalyst for selective oxidation of ethane and/or ethylene to acetic acid
CN115178282A (en) Catalyst for preparing methyl glyoxylate by selective oxidative dehydrogenation of methyl glycolate and preparation and use methods thereof
EP1571125A2 (en) Catalyst for removal of carbon monoxide from hydrogen gas
CN1047103C (en) Catalyst for converting methane into synthetic gas and its process
JP2024504821A (en) Methyl methoxyacetate and method for producing glycolic acid and methyl glycolate by hydrolysis of methoxyacetic acid
CN1269780C (en) Process for preparing tetrahydrofuran
WO1995032233A1 (en) Process for producing carboxylated polymer
JPH09241203A (en) Production of beta-hydroxy and/or alpha,beta-unsaturated carbonyl compound
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
AU774521B2 (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JPS58198442A (en) Improved method for preparation of methyl methacrylate or methyl acrylate
JP3285655B2 (en) Method for producing tartronate
JPH0741554A (en) Production of carboxylated polymer
JPS61221139A (en) Manufacture of 2,2,2-trifluoroethanol
JPH08104892A (en) Detergent composition
WO1992022378A1 (en) Process for preparing catalyst for producing methacrylic acid
JPH0959506A (en) Stabilized carboxyl-group-bearing polymer composition
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
CN1265940A (en) Supported type heteropolya cid catalyst in synthesis of ethylene glycol series monoethers acetate
JP3143744B1 (en) Catalyst for synthesizing methyl acetate and acetic acid, method for producing the same, and method for synthesizing methyl acetate and acetic acid using the catalyst
CN1120050C (en) Supported type heteropolyacid catalyst in synthesis of ethylene lycol series supported monoether and diethylene monoethers
JP3413235B2 (en) Synthesis gas production method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase