WO1995029553A1 - Self-powered powerline sensor - Google Patents
Self-powered powerline sensor Download PDFInfo
- Publication number
- WO1995029553A1 WO1995029553A1 PCT/US1995/004977 US9504977W WO9529553A1 WO 1995029553 A1 WO1995029553 A1 WO 1995029553A1 US 9504977 W US9504977 W US 9504977W WO 9529553 A1 WO9529553 A1 WO 9529553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powerline
- sensor
- self
- powered
- sensing
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems specially adapted for combination with other electrical systems
- H04M11/04—Telephonic communication systems specially adapted for combination with other electrical systems with alarm systems, e.g. fire, police or burglar alarm systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/30—Structural combination of electric measuring instruments with basic electronic circuits, e.g. with amplifier
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/58—Testing of lines, cables or conductors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J11/00—Circuit arrangements for providing service supply to auxiliaries of stations in which electric power is generated, distributed or converted
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00007—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
- H02J13/00009—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/30—State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
Definitions
- This invention relates to a self-powered powerline sensor which non-invasively senses conditions in and about an a.c. powerline.
- the invention further relates to a sensor that derives its power from and is capable of transmitting and receiving signals over the a.c. powerline.
- Monitoring a.c. powerlines, in both overhead and underground and primary and secondary applications, is useful to electric utility companies in order to anticipate outages which occur due to faulty equipment and overloads on a.c. powerlines and which result in loss of service for potentially a large number of end customers.
- the potential for an outage and for the loss of the greatest number of customers is increased during peak periods when power usage is at a maximum and delivery of continuous power is most critical.
- Outages caused by faulty and overloaded lines are expensive to repair, costly to the electric utility company in terms of dollars lost for lost service and in terms of damage to the utilities reputation and can be dangerous for utility company employees.
- a.c. powerline sensors which sense electrical conditions, such as power, voltage and current are very useful to electric utility companies in monitoring a.c. powerlines in order to better anticipate the likelihood of an unexpected outage occurring due to faulty and overloaded lines. If the electric utility companies are able to monitor the conditions on the powerlines, they are better able to perform maintenance on and replacement of powerlines which are likely to become deenergized as a result of an overload or fault, thereby lowering the number of unexpected outages. By replacing and maintaining such equipment the utility company can significantly decrease outage time to the end customer. The costs associated with repair or replacement of damaged cables will also be decreased. The cost of replacing or repairing damaged cables may be significantly greater in comparison to normal scheduled maintenance or replacement because of the overtime pay involved.
- the invention results from the realization that a truly effective self-powered powerline sensor can be achieved by providing a core layer of high permeability ferromagnetic material wrapped about an a.c. powerline, disposing a winding layer, composed of a plurality of windings energized through transformer action by the a.c. powerline, about the core layer, sensing a condition in or about the a.c. powerline and using the power from the windings to transmit a signal over the ax. powerline representative of the sensed condition.
- This invention features a self-powered powerline sensor.
- a core layer for wrapping about an ax. powerline and a winding layer, including a plurality of windings to be energized by the ax. powerline, disposed about the core layer.
- the windings may be energized by non-contacting transformer action and the means for transmitting may be electrically coupled to the a.c. powerline by non-contacting transformer action.
- the means for sensing and the means for transmitting may be disposed on the surface of the winding layer.
- a protective covering wrapped about the winding layer covering the means for sensing and the means for transmitting may be an electric insulator and it may be rubber.
- the protective covering may be secured to the winding layer.
- means for retaining the powerline sensor in a wrapped configuration about the ax. powerline and the means for retaining may include at least one retaining tie.
- the core layer may be wrapped about the a.c.
- the core layer may be formed of a highly permeable ferromagnetic material which may be steel.
- the powerline may be a power cable or a wire.
- the plurality of windings may be formed by wrapping a wire about the core layer and the wire may be electrically conductive.
- the plurality of windings may be oriented substantially parallel to the ax. powerline.
- the means for sensing may be powered by the windings.
- the windings may be electrically connected to and energize a power supply.
- the means for sensing may include at least one sensor.
- the means for sensing may include voltage sensor means which may itself include means in communication with the windings for sensing the voltage induced in the windings by the powerline.
- the means for sensing may include a current sensor which may be a hall effect sensor.
- the means for sensing may also include a temperature sensor, a pressure sensor, a gas sensor, a moisture sensor, or a radiation sensor.
- the means for sensing may include a light sensor which may sense visible or infrared light.
- the means for transmitting may transmit a signal to a remote base station.
- the means for transmitting may include a microcontroller and the microcontroller may receive signals from the means for sensing representative of conditions sensed and it may transmit the signals over the a.c. powerline.
- the means for transmitting may average the signals received from the means for sensing representative of a condition sensed over a period of time to establish a nominal condition level and detect variances from the nominal level.
- the variances from the nominal level may be transmitted over the a.c. powerline to a base station.
- the sensed condition may be voltage.
- the system also features a self-powered powerline sensor that includes a core layer for wrapping about an a.c. powerline. There is included a winding layer disposed about the core layer, wherein the winding layer includes a plurality of windings to be energized by the a.c. powerline by non-contacting transformer action. There are means for sensing a condition in or about the a.c. powerline. There are also means electrically coupled to the a.c. powerline by non-contacting transformer action, powered by the windings and in communication with the means for sensing, for transmitting a signal representative of the sensed condition over the ax. powerline.
- the system further features a self-powered powerline sensor that includes a core layer for wrapping about an a.c. powerline. There is also included a winding layer disposed about the core layer that includes a plurality of windings to be energized by the a.c. powerline by non-contacting transformer action. There are means for sensing a condition in or about the ax. powerline and means, electrically coupled to and powered by the a.c. powerline by non-contacting transformer action through the windings, for transmitting a signal representative of the sensed condition over the ax. powerline.
- the system also features a self-powered powerline sensor that includes a low profile core layer for wrapping about an ax. powerline. There is included a winding layer, including a plurality of windings to be energized by the ax. powerline disposed about the core layer. There are means, powered by the winding layer, for sensing a condition in or about the a.c. powerline.
- the system further features a self-powered powerline sensor that includes a core layer of high permeability ferromagnetic material for wrapping about an a.c. powerline.
- a winding layer including a plurality of windings to be energized by the a.c. powerline, disposed about the core layer. The windings are oriented substantially parallel to the direction of the a.c. powerline.
- controller means powered by the windings, in communication with the means for sensing, for transmitting a signal representative of the sensed condition over the a.c. powerline to the remote base station and for receiving signals transmitted from the remote base station.
- the system further features a self-powered powerline sensor that includes means for sensing a condition in or about an a.c. powerline. There are means, in communication with the means for sensing, for receiving signals representative of the sensed condition and averaging the received signals over a period of time to establish a nominal condition level. There are also means for detecting variations of said received signals from said nominal condition level. There are finally means for transmitting the variations on the a.c. powerline.
- Fig. 1 is a three-dimensional view of a single wrap self-powered powerline sensor according to this invention disposed about an a.c. power cable;
- Fig. 2 is a three-dimensional view of an alternative, spiral wrap embodiment of the self-powered powerline sensor according to this invention disposed about an a.c. power cable;
- Fig. 3 is a schematic block diagram of the self-powered powerline sensor according to this invention and its electrical connection to an ax. powerline and a remote base station;
- Fig. 4 is a flow chart of the software that may be used by the microcontroller of Fig. 3 in order to construct a time based nominal level for a sensed condition in or about the ax. powerline to determine variance from the nominal condition in or about the a.c. line.
- Fig. 1 a single wrap self-powered powerline sensor 10 disposed about ax. power line 12.
- Power line 12 includes conductive strands (or a single core) 14 and insulating rubber layer 16.
- the a.c. power line 12 shown is a cable of the type typically used in underground secondary power distribution applications. However, this is not a necessary limitation of this invention, as the powerline sensor of this invention may be utilized in overhead, secondary voltage applications and in overhead and underground primary voltage applications with insulated or uninsulated cable.
- Core layer 18 of sensor 10 is a highly permeable ferromagnetic material, or a steel of the type typically used for electric motor laminations or transformer laminations.
- Core layer 18 is wrapped in a single wrap configuration about the insulating rubber layer 16 of a.c. powerline 12 in a completely non-invasive manner. As the core layer 18 is wrapped about power line 12 it can accommodate various size powerlines.
- the core layer 18 is typically 6 in. in length, 4 in. in width and .025 in. in thickness. However, these dimensions may vary for different size powerlines or for different applications.
- a plurality of windings 20 are wound about core layer 18 so that they are oriented substantially parallel to the direction of the a.c. powerline 12.
- the plurality of windings 20 are formed by wrapping a wire, such as 28 gauge magnet wire, about the core layer 18 in a number of turns.
- A.C. power in powerline 12 induces a current in windings 20 by non-invasive transformer action.
- a suitable ratio of windings may be chosen such that a desired current will be induced in the windings 20 when the a.c. powerline is energized.
- the number of turns in winding 20 will determine the ratio between the current induced in winding 20 and the current in powerline 12 up to the point at which core layer 18 contains an induced flux density which is at or below its level of saturation.
- the windings 20 are oriented substantially parallel to the direction of the a.c. power line 12 to allow for the most efficient inducement of current in the windings.
- Electronic components 22 include the sensors for sensing voltage, current or essentially any physical phenomena, e.g. temperature, pressure, radiation, moisture etc., a power supply powered by die windings energized by non-contacting transformer action with the a.c. power in powerline 12, a microcontroller and various other components which are discussed in more detail below. These electronic components 22 are affixed to a flexible printed circuit board (not shown) which is then placed on the surface of the windings 20 and an electrical connection with the windings 20 is established by discrete wires (not shown) from the windings 20 to the electronic components 22.
- a flexible printed circuit board not shown
- Certain electronic components 22 such as certain types of sensors, are not affixed to the printed circuit board, but rather they are placed directly on the windings 20 or in other locations most advantageous to sensing the desired phenomena. These electronic components 22 generally shown in Fig. 1 and briefly discussed will be described in more detail below.
- the protective covering 24 Disposed on the windings 20 and covering electronic components 22 is protective covering 24.
- the protective covering 24 provides electrical insulation, is typically formed of rubber and is affixed to the windings 20 by means of self vulcanizing tape, adhesive, or by some other suitable means.
- Retaining ties 26 removeably secure the powerline sensor 10 in place about a.c. power line 12.
- the protective covering effectively sandwiches the electronic components 22 between it and windings 20, as the electronic components on and off the flexible printed circuit board are not secured to the windings 20. However, they may be secured to a suitable flexible substrate for ease of manufacturing and handling. Powerline sensor 10 is thus easily installed by simply wrapping it about ax. power line 12 (which may be of varying size) and affixing it thereto by means of retaining ties 26.
- powerline sensor 10 is safe and as installed does not require interruption of power service to the end customer. It operates in a non-invasive manner by non-contacting transformer action and does not require direct electrical connection with the powerline, electrical ground, a neutral line or any other power source.
- Spirally wrapped, self-powered powerline sensor 30, Fig. 2 is an alternative embodiment of the self-powered powerline sensor of Fig. 1.
- the core layer 18a is shown spirally wrapped about insulating rubber layer 16 of a.c. powerline 12.
- Core layer 18a is typically the same thickness as core layer 18 (.025 in.), Fig. 1, however its length is approximately 40 in. and its width is approximately .5 in. These dimensions may vary to accommodate different size powerlines and different applications.
- the core layer 18a is spirally wrapped about the a.c. power line 12 a number of times.
- a plurality of windings 20 are disposed about d e core layer 18a to form a winding layer which windings are energized by the a.c. power line 12 by non-contacting transformer action.
- Electronics components 22 are similarly placed on windings 20 (flexible printed circuit board not shown) and protective covering 24a, covering electronic components 22, is disposed on windings 20 by means of self vulcanizing tape, adhesives, or other suitable means.
- Self-powered powerline sensor 40 is electrically connected to a.c. power line 12, which may be a single or multi-phase power line, by means of transformer windings 20 by non-contacting transformer action.
- the transformer windings 20 are connected to power supply 44 by means of lines 41 and 42.
- Power supply 44 which may be an a.c. to d.c. regulator integrated circuit, provides 5V d.c. to microcontroller 48 over lines 45 and 46.
- Microcontroller 48 may be an 8-bit embedded-controller with analog to digital converter. Any one of the Sensors 50-56 connected to microcontroller 48 may be powered by power supply 44 if necessary. However, sensor 55 is the only sensor shown in Fig. 3 powered by power supply 44.
- the sensors provide an analog or digital signal to microcontroller 48 representative of the particular condition sensed in or about a.c. powerline 12.
- Voltage sensor 50 includes leads 59 and 60 connected to lines 41 and 42 from transformer windings 20 which directly input signals representative of a.c. powerline voltage into microcontroller 48.
- This sensor 50 does not provide an absolute voltage reading since there is no reference voltage, it does however, provide the microcontroller with a signal indicative of an instantaneous non-referenced voltage level.
- a nominal voltage level can be determined by monitoring the instantaneous voltage levels supplied by voltage sensor 50 over a period of time and a variation from the nominal voltage level can be resolved from the instantaneous input from the voltage sensor 50 after the nominal level is established. This procedure will be described in more detail with regard to Fig. 4.
- Sensors 51 and 52 are located outside of the circuit board area 58, but within the protective covering 24. Thus, these sensors are physically located on top of the transformer windings 20. Sensors 53 and 54 are located on circuit board 58 and sensors 55 and 56 are located outside of protective covering 24 and are actually physically located on top of or remote from the protective covering 24. These sensors can sense, for example, current, temperature, pressure, gas, moisture, radiation or light (visible or infrared). In fact, a sensor for sensing virtually any physical phenomena could be utilized. Certain sensors, such as a temperature sensor or a radiation sensor may be installed directly on circuit board 58, as sensors 53 and 54 are shown to be installed. Other sensors, like sensors 51 and 52, operate more effectively away from the printed circuit board, such as a hall effect current sensor. Gas and light sensors, for example, would operate only if outside of the protective covering 24, as depicted by sensors 55 and 56.
- Sensors 50-56 continuously sense various conditions in and about a.c. powerline 12 and provide microcontroller 48 with analog or digital signals representative of these sensed conditions.
- the signals provided by the sensors are converted to digital signals, if necessary, by microcontroller 48 which then generates a communications code that is sent to lines 41 and 42 connected to transformer windings 20 over lines 61 and 62 through high pass filters 63 and 64.
- High pass filters 63 and 64 allow the high frequency communications code which provides information representative of the sensed conditions to pass to transformer windings 20 which are then coupled by non-contacting transformer action to a.c. power line 12 and transmitted thereon.
- the data transmitted from microcontroller 48 contains an identification code which identifies that particular self-powered powerline sensor 40 and an identification code for each particular sensor 50-56, carried by powerline sensor 40, indicating the type of data that is being transmitted. That is, the transmission includes information about where the transmission is originating from (many self-powered powerline sensors according to this invention can be utilized in many various locations throughout an electric utility company's distribution system) and information about the type of data being transmitted; i.e. whether it be data regarding voltage, current, temperature, radiation, etc.
- the transmission of an identification code and the data of interest can occur on a regular basis, on a time basis, when particular threshold values are sensed, or according to any desired special algorithm.
- the communications code may follow a selected formal communication system specification or protocol.
- the protocols may be based on the OSI (Open Systems Interconnect) reference model for communications developed by the ISO (International Organization for Standardization), Geneva, Switzerland. Any other communications code that would be suitable for powerline communications could also be utilized.
- Base station 68 includes transformer windings 69 which couple, by non- contacting transformer action, the transmitted data to high-pass filters 69 and 70 that allow the high frequency data transmitted to be communicated to microcontroller interface 74.
- the transmitted information received at base station 68 need not be coupled by non-contacting transformer action. Any other suitable means of coupling could be utilized.
- the transmitted data is then forwarded to computer 76 where the sensor information may be evaluated.
- Base station 68 is also capable of transmitting data to self-powered powerline sensor 40 which is capable of receiving such data. Then, for example, the base station 68 could poll self-powered powerline sensor 40 and any other powerline sensors on the system for sensor information on demand instead of passively awaiting transmissions from the powerline sensors. Moreover, the powerline sensors could be reprogrammed from base station 68.
- Base station 68 includes high pass filters 71 and 72 which couple transmission signals from base station 68 by non-contacting transformer action through windings 69 to a.c. powerline 12. These transmission signals are then coupled from ax. powerline 12 to powerline sensor 40 by non-contacting transformer action through windings 20. Leads 41 and 42 from windings 20 are connected to high pass filters 65 and 66 which allow the transmitted signals to pass over lines 77 and 78 to microcontroller 48.
- Microcontroller 48 performs the analog-to-digital conversion of the sensed conditions from sensors 50-56, manipulates and updates the memory locations which store previous sensed conditions, performs numerical operations such as determining a moving time average, etc., keeps track of the time for synchronization purposes, and controls the communications between self-powered powerline sensor 40 and base station 66.
- Microcontroller 48 can provide base station 68 with actual instantaneous values of the particular sensed conditions, i.e. an actual temperature or radiation reading. However, it can also provide base station 68 with an indication that a particular condition being sensed has varied from a nominal level and the amount of such variance. As discussed briefly above, this type of data transmission with regard to voltage sensing in the a.c. powerline is required because there is no reference level that the sensed voltage can be compared with in order to determine an actual voltage value. Thus, the voltage sensed must be compared with a nominal level and the variance of the sensed voltage from the nominal level can be determined and transmitted to base station 68.
- the microcontroller 48 of Fig. 3 may operate according to flow chart 80, Fig. 4, in order to detect and transmit variances from a nominal level of a sensed condition.
- the self-powered powerline sensor is installed and a condition or conditions (e.g. voltage, current, temperature, radiation, etc.) are continuously, instantaneously obtained at step 84.
- a time based average of the instantaneous values of the sensed condition over time t is conducted to determine a nominal level for that condition on d e a.c. power line that the self-powered powerline sensor is monitoring.
- the initial calibration is complete, in that the nominal level has been determined.
- the calibration process can take anywhere from several seconds, to weeks or even up to a month to obtain an accurate nominal level reading.
- the instantaneous value obtained at step 84 is compared to the nominal level.
- the time based average is continually recalculated from new instantaneous sensor data.
- step 84 the system then returns to step 84 where another instantaneous value is obtained and the process continuous until the self-powered powerline sensor is removed from the ax. power line or a determination of the variance in the particular condition being sensed is no longer required.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Insulated Conductors (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002188305A CA2188305C (en) | 1994-04-25 | 1995-04-21 | Self-powered powerline sensor |
JP7527806A JP3071220B2 (en) | 1994-04-25 | 1995-04-21 | Self-powered power line sensor |
AU23617/95A AU684945B2 (en) | 1994-04-25 | 1995-04-21 | Self-powered powerline sensor |
KR1019960705997A KR100250515B1 (en) | 1994-04-25 | 1995-04-21 | Self-powered powerline sensor |
EP95917632A EP0757870A4 (en) | 1994-04-25 | 1995-04-21 | Self-powered powerline sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23270294A | 1994-04-25 | 1994-04-25 | |
US08/232,702 | 1994-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995029553A1 true WO1995029553A1 (en) | 1995-11-02 |
Family
ID=22874200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/004977 WO1995029553A1 (en) | 1994-04-25 | 1995-04-21 | Self-powered powerline sensor |
Country Status (7)
Country | Link |
---|---|
US (1) | US5892430A (en) |
EP (1) | EP0757870A4 (en) |
JP (2) | JP3071220B2 (en) |
KR (1) | KR100250515B1 (en) |
AU (1) | AU684945B2 (en) |
CA (1) | CA2188305C (en) |
WO (1) | WO1995029553A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19711990A1 (en) * | 1997-03-14 | 1998-09-24 | Siemens Ag | High-voltage system with a device for transmitting signals |
DE19817575A1 (en) * | 1998-04-20 | 1999-10-21 | Abb Research Ltd | Capacitive coupling cable for signal transmission on high and medium voltage power lines |
WO2002059629A2 (en) * | 2001-01-26 | 2002-08-01 | Robert Bosch Gmbh | Device, current measurer and motor vehicle |
WO2004068151A1 (en) * | 2003-01-31 | 2004-08-12 | Fmc Tech Limited | A monitoring device for a medium voltage overhead line |
US8744790B2 (en) | 2008-11-06 | 2014-06-03 | Southwire Company | Real-time power line rating |
US10205307B2 (en) | 2010-03-23 | 2019-02-12 | Southwire Company, Llc | Power line maintenance monitoring |
US10454267B1 (en) | 2018-06-01 | 2019-10-22 | Franklin Electric Co., Inc. | Motor protection device and method for protecting a motor |
US11811273B2 (en) | 2018-06-01 | 2023-11-07 | Franklin Electric Co., Inc. | Motor protection device and method for protecting a motor |
Families Citing this family (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7158012B2 (en) * | 1996-11-01 | 2007-01-02 | Foster-Miller, Inc. | Non-invasive powerline communications system |
US6480510B1 (en) | 1998-07-28 | 2002-11-12 | Serconet Ltd. | Local area network of serial intelligent cells |
US6677743B1 (en) | 1999-03-05 | 2004-01-13 | Foster-Miller, Inc. | High voltage powerline sensor with a plurality of voltage sensing devices |
DK1230556T3 (en) * | 1999-11-03 | 2003-09-15 | Vestas Wind Sys As | Lightning |
KR100493278B1 (en) * | 2000-03-06 | 2005-06-02 | 엘지전자 주식회사 | Base station system in mobile communication system |
US6549616B1 (en) | 2000-03-20 | 2003-04-15 | Serconet Ltd. | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US7248158B2 (en) * | 2000-04-14 | 2007-07-24 | Current Technologies, Llc | Automated meter reading power line communication system and method |
US6958680B2 (en) * | 2000-04-14 | 2005-10-25 | Current Technologies, Llc | Power line communication system and method of using the same |
US6965302B2 (en) * | 2000-04-14 | 2005-11-15 | Current Technologies, Llc | Power line communication system and method of using the same |
US6998962B2 (en) | 2000-04-14 | 2006-02-14 | Current Technologies, Llc | Power line communication apparatus and method of using the same |
US7103240B2 (en) * | 2001-02-14 | 2006-09-05 | Current Technologies, Llc | Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line |
AU2001253674A1 (en) * | 2000-04-19 | 2001-11-07 | Current Technologies, Llc | Method and apparatus for interfacing rf signals to medium voltage power lines |
US6842459B1 (en) | 2000-04-19 | 2005-01-11 | Serconet Ltd. | Network combining wired and non-wired segments |
AU2001276014A1 (en) * | 2000-07-20 | 2002-02-05 | Foster-Miller Inc. | Modular, integrated powerline monitor for non-high voltage applications |
US7248148B2 (en) * | 2000-08-09 | 2007-07-24 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7245201B1 (en) | 2000-08-09 | 2007-07-17 | Current Technologies, Llc | Power line coupling device and method of using the same |
US20020070635A1 (en) | 2000-10-13 | 2002-06-13 | Morrison Gerald O. | Self-powered wireless switch |
US6700310B2 (en) | 2000-10-13 | 2004-03-02 | Lear Corporation | Self-powered wireless switch |
US6791454B2 (en) * | 2000-11-17 | 2004-09-14 | Siemens Aktiengesellschaft | Cable |
AU2002230794A1 (en) * | 2000-12-15 | 2002-06-24 | Current Technologies, Llc | Interfacing fiber optic data with electrical power systems |
US7170405B2 (en) * | 2000-12-26 | 2007-01-30 | General Electric Company | Method and apparatus for interfacing a power line carrier and an appliance |
EP1371219A4 (en) * | 2001-02-14 | 2006-06-21 | Current Tech Llc | Data communication over a power line |
US6906630B2 (en) * | 2001-02-28 | 2005-06-14 | General Electric Company | Transformer management system and method |
US7245472B2 (en) * | 2001-05-18 | 2007-07-17 | Curretn Grid, Llc | Medium voltage signal coupling structure for last leg power grid high-speed data network |
US7053756B2 (en) * | 2001-12-21 | 2006-05-30 | Current Technologies, Llc | Facilitating communication of data signals on electric power systems |
US7102478B2 (en) * | 2002-06-21 | 2006-09-05 | Current Technologies, Llc | Power line coupling device and method of using the same |
AU2002952426A0 (en) * | 2002-11-01 | 2002-11-21 | Fault Detectors Pty Ltd. | A sensor system and method |
IL152824A (en) | 2002-11-13 | 2012-05-31 | Mosaid Technologies Inc | Addressable outlet and a network using same |
US6980090B2 (en) * | 2002-12-10 | 2005-12-27 | Current Technologies, Llc | Device and method for coupling with electrical distribution network infrastructure to provide communications |
US6980091B2 (en) * | 2002-12-10 | 2005-12-27 | Current Technologies, Llc | Power line communication system and method of operating the same |
US6965303B2 (en) * | 2002-12-10 | 2005-11-15 | Current Technologies, Llc | Power line communication system and method |
US7075414B2 (en) * | 2003-05-13 | 2006-07-11 | Current Technologies, Llc | Device and method for communicating data signals through multiple power line conductors |
US7064654B2 (en) * | 2002-12-10 | 2006-06-20 | Current Technologies, Llc | Power line communication system and method of operating the same |
US7046124B2 (en) * | 2003-01-21 | 2006-05-16 | Current Technologies, Llc | Power line coupling device and method of using the same |
US7019658B1 (en) * | 2003-03-04 | 2006-03-28 | Mobi Technologies, Inc. | Cable traffic indicator |
IL154921A (en) | 2003-03-13 | 2011-02-28 | Mosaid Technologies Inc | Telephone system having multiple distinct sources and accessories therefor |
US7105954B2 (en) * | 2003-07-08 | 2006-09-12 | Hyde Park Electronics Llc | Sensor interface cable |
US20050113060A1 (en) * | 2003-10-17 | 2005-05-26 | Lowery Kenneth E. | Wireless network system |
IL160417A (en) * | 2004-02-16 | 2011-04-28 | Mosaid Technologies Inc | Outlet add-on module |
US7265533B2 (en) * | 2004-06-15 | 2007-09-04 | Power Measurement Ltd. | Non-intrusive power monitor |
US20060103548A1 (en) * | 2004-11-01 | 2006-05-18 | Centerpoint Energy, Inc. | Current sensing bar |
US7873058B2 (en) | 2004-11-08 | 2011-01-18 | Mosaid Technologies Incorporated | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7307512B2 (en) * | 2005-04-29 | 2007-12-11 | Current Technologies, Llc | Power line coupling device and method of use |
US7319717B2 (en) * | 2005-06-28 | 2008-01-15 | International Broadband Electric Communications, Inc. | Device and method for enabling communications signals using a medium voltage power line |
US7414526B2 (en) * | 2005-06-28 | 2008-08-19 | International Broadband Communications, Inc. | Coupling of communications signals to a power line |
US7667344B2 (en) * | 2005-07-15 | 2010-02-23 | International Broadband Electric Communications, Inc. | Coupling communications signals to underground power lines |
US7522812B2 (en) * | 2005-07-15 | 2009-04-21 | International Broadband Electric Communications, Inc. | Coupling of communications signals to a power line |
JP4545081B2 (en) * | 2005-10-31 | 2010-09-15 | 日置電機株式会社 | measuring device |
WO2007109555A2 (en) * | 2006-03-16 | 2007-09-27 | Power Monitors, Inc. | Underground monitoring system and method |
US7786894B2 (en) * | 2006-06-20 | 2010-08-31 | Battelle Energy Alliance, Llc | Methods, apparatus, and systems for monitoring transmission systems |
US8093745B2 (en) * | 2006-07-07 | 2012-01-10 | Ambient Corporation | Sensing current flowing through a power line |
US20090066581A1 (en) | 2006-12-29 | 2009-03-12 | Broadcom Corporation | Ic having in-trace antenna elements |
US20080167754A1 (en) * | 2007-01-05 | 2008-07-10 | Mcallister Sarah C | Ozone and other molecules sensors for electric fault detection |
US9595825B2 (en) | 2007-01-09 | 2017-03-14 | Power Monitors, Inc. | Method and apparatus for smart circuit breaker |
DE102007017964A1 (en) * | 2007-04-10 | 2008-10-23 | Lapp Engineering & Co. | electric wire |
DE102007017967A1 (en) * | 2007-04-10 | 2008-10-16 | Lapp Engineering & Co. | electric wire |
DE102007017965A1 (en) | 2007-04-10 | 2008-11-06 | Lapp Engineering & Co. | electric wire |
DE102007024212A1 (en) * | 2007-05-15 | 2008-11-20 | Lapp Engineering & Co. | electric wire |
US20090001811A1 (en) * | 2007-06-26 | 2009-01-01 | George Dewberry | Electrical line conditioner |
US7876174B2 (en) * | 2007-06-26 | 2011-01-25 | Current Technologies, Llc | Power line coupling device and method |
US7795994B2 (en) * | 2007-06-26 | 2010-09-14 | Current Technologies, Llc | Power line coupling device and method |
US20090001820A1 (en) * | 2007-06-26 | 2009-01-01 | George Dewberry | Electrical line conditioner |
DE102007036948A1 (en) * | 2007-07-19 | 2009-01-22 | Lapp Engineering & Co. | Cable receiving unit |
US8773255B2 (en) | 2007-09-24 | 2014-07-08 | Ppc Broadband, Inc. | Status sensing and reporting interface |
US8570178B2 (en) * | 2007-09-24 | 2013-10-29 | Ppc Broadband, Inc. | Coaxial cable connector with internal floating ground circuitry and method of use thereof |
US20090085726A1 (en) * | 2007-09-27 | 2009-04-02 | Radtke William O | Power Line Communications Coupling Device and Method |
WO2009088155A1 (en) * | 2008-01-04 | 2009-07-16 | Rae-Woong Park | Crimes and disasters preventing system |
US9202383B2 (en) | 2008-03-04 | 2015-12-01 | Power Monitors, Inc. | Method and apparatus for a voice-prompted electrical hookup |
US8665102B2 (en) * | 2008-07-18 | 2014-03-04 | Schweitzer Engineering Laboratories Inc | Transceiver interface for power system monitoring |
US8419464B2 (en) * | 2008-11-17 | 2013-04-16 | Ppc Broadband, Inc. | Coaxial connector with integrated molded substrate and method of use thereof |
US8414326B2 (en) * | 2008-11-17 | 2013-04-09 | Rochester Institute Of Technology | Internal coaxial cable connector integrated circuit and method of use thereof |
US8376774B2 (en) * | 2008-11-17 | 2013-02-19 | Rochester Institute Of Technology | Power extracting device and method of use thereof |
WO2010126688A1 (en) * | 2009-04-29 | 2010-11-04 | Ssi Power, Llc | High voltage power line communication system using an energy harvesting power supply |
KR101077099B1 (en) | 2009-06-22 | 2011-10-27 | 김재평 | Apparatus for detecting temperature of power cables and methods of controlling the same |
US8773108B2 (en) | 2009-11-10 | 2014-07-08 | Power Monitors, Inc. | System, method, and apparatus for a safe powerline communications instrumentation front-end |
US8618944B2 (en) * | 2009-12-03 | 2013-12-31 | Ppc Broadband, Inc. | Coaxial cable connector parameter monitoring system |
EP2413105B1 (en) | 2010-07-29 | 2017-07-05 | Power Monitors, Inc. | Method and apparatus for a demand management monitoring system |
US10060957B2 (en) | 2010-07-29 | 2018-08-28 | Power Monitors, Inc. | Method and apparatus for a cloud-based power quality monitor |
US8738318B2 (en) | 2010-08-02 | 2014-05-27 | Lindsey Manufacturing Company | Dynamic electric power line monitoring system |
US8604936B2 (en) | 2010-12-13 | 2013-12-10 | Ppc Broadband, Inc. | Coaxial cable connector, system and method of use thereof |
DE102011003308B4 (en) * | 2011-01-28 | 2014-06-05 | Micropelt Gmbh | Monitoring arrangement and method for monitoring an electrical line |
WO2013042155A2 (en) * | 2011-09-20 | 2013-03-28 | Alberto Bauer | Capacitive sensor |
US9229036B2 (en) | 2012-01-03 | 2016-01-05 | Sentient Energy, Inc. | Energy harvest split core design elements for ease of installation, high performance, and long term reliability |
US9182429B2 (en) * | 2012-01-04 | 2015-11-10 | Sentient Energy, Inc. | Distribution line clamp force using DC bias on coil |
US9519014B2 (en) | 2012-12-06 | 2016-12-13 | Dynamic Engineers, Inc. | Systems and methods for calculating power transmission line capacity |
EP2763259B1 (en) * | 2013-02-01 | 2022-04-20 | 3M Innovative Properties Company | Sleeve for high voltage measurements for a power cable |
US9784766B2 (en) | 2013-03-12 | 2017-10-10 | Lindsey Manufacturing Company | Dynamic real time transmission line monitor and method of monitoring a transmission line using the same |
EP2806277B1 (en) * | 2013-05-24 | 2016-03-30 | 3M Innovative Properties Company | Closure |
JP2015001519A (en) * | 2013-06-17 | 2015-01-05 | 株式会社アセット・ウィッツ | Current measuring apparatus |
DK178037B1 (en) * | 2013-09-19 | 2015-04-07 | Remoni Aps | Energy Harvesting Device |
MX352856B (en) | 2013-09-26 | 2017-12-13 | Schneider Electric Usa Inc | Load center monitor with optical waveguide sheet. |
CN105659098A (en) * | 2013-10-09 | 2016-06-08 | 施耐德电气美国股份有限公司 | Self-contained branch circuit monitor |
US10079619B2 (en) | 2013-11-26 | 2018-09-18 | Schneider Electric USA, Inc. | Wireless batteryless data processing unit |
WO2015084387A1 (en) | 2013-12-06 | 2015-06-11 | Schneider Electric USA, Inc. | Temperature sensor for bolted connections |
WO2015152874A1 (en) | 2014-03-31 | 2015-10-08 | Schneider Electric USA, Inc. | Live load indicator with door interlock |
FR3021410B1 (en) * | 2014-05-20 | 2016-05-13 | Nexans | HIGH VOLTAGE DRY EQUIPMENT EQUIPPED WITH A CONTINUOUS CONTROL DEVICE |
US10120055B2 (en) * | 2014-08-28 | 2018-11-06 | Siemens Industry, Inc. | Isolated capacitance line voltage sensor |
WO2016112104A1 (en) | 2015-01-06 | 2016-07-14 | Sentient Energy, Inc. | Methods and apparatus for mitigation of damage of power line assets from traveling electrical arcs |
US9977051B2 (en) * | 2015-01-13 | 2018-05-22 | Fluke Corporation | Electrical conductor testing device |
US9984818B2 (en) | 2015-12-04 | 2018-05-29 | Sentient Energy, Inc. | Current harvesting transformer with protection from high currents |
US10634733B2 (en) | 2016-11-18 | 2020-04-28 | Sentient Energy, Inc. | Overhead power line sensor |
US10615641B2 (en) | 2017-06-26 | 2020-04-07 | Vutiliti, Inc. | Induction powered electricity current monitoring |
WO2019022808A1 (en) | 2017-07-26 | 2019-01-31 | Panoramic Power Ltd. | Transmission of time stamps of samples of self-powered power |
EP3658924A4 (en) * | 2017-07-26 | 2021-05-05 | Panoramic Power Ltd. | Timing synchronization of self-powered power sensors and a central controller collecting samples therefrom |
EP3658923A4 (en) | 2017-07-26 | 2021-04-21 | Panoramic Power Ltd. | System and method of timing synchronization of a self-powered power sensor |
GB2588717B (en) * | 2018-04-04 | 2021-10-27 | Panoramic Power Ltd | System and method for measuring powerline temperature based on self-powered power sensors |
US11328584B2 (en) | 2018-05-29 | 2022-05-10 | Halliburton Energy Services, Inc. | Inductively coupled sensor and system for use thereof |
US11670930B2 (en) | 2018-09-10 | 2023-06-06 | 3M Innovative Properties Company | Support structure for cable and cable accessory condition monitoring devices |
EP3850381A2 (en) | 2018-09-10 | 2021-07-21 | 3M Innovative Properties Company | Electrical power cable monitoring device including partial discharge sensor |
EP3850380A1 (en) | 2018-09-10 | 2021-07-21 | 3M Innovative Properties Company | Electrical power cable monitoring device using low side electrode and earth ground separation |
US11476674B2 (en) | 2018-09-18 | 2022-10-18 | Sentient Technology Holdings, LLC | Systems and methods to maximize power from multiple power line energy harvesting devices |
US11041915B2 (en) | 2018-09-18 | 2021-06-22 | Sentient Technology Holdings, LLC | Disturbance detecting current sensor |
US12050241B2 (en) | 2018-10-15 | 2024-07-30 | Sentient Technology Holdings, Llc. | Power line sensors with automatic phase identification |
US11125832B2 (en) | 2018-12-13 | 2021-09-21 | Sentient Technology Holdings, LLC | Multi-phase simulation environment |
BR112021012074A2 (en) | 2018-12-21 | 2021-10-19 | 3M Innovative Properties Company | ELECTRIC POWER CABLE PREPARATION DEVICE |
US11947374B2 (en) | 2019-02-04 | 2024-04-02 | Sentient Technology Holdings, LLC | Power supply for electric utility underground equipment |
US20200342744A1 (en) * | 2019-04-24 | 2020-10-29 | Lindsey Firesense, Llc | Electrical power line mounted fire warning system |
US11397198B2 (en) | 2019-08-23 | 2022-07-26 | Schweitzer Engineering Laboratories, Inc. | Wireless current sensor |
US11988703B2 (en) | 2019-12-31 | 2024-05-21 | 3M Innovative Properties Company | Monitoring system for evaluating a condition of an electrical grid |
JP2021179701A (en) * | 2020-05-12 | 2021-11-18 | 古河電気工業株式会社 | Connection structure, measurement system, and connection unit |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4786862A (en) * | 1986-06-09 | 1988-11-22 | Niagara Mohawk Power Corporation | Watchdog circuit for transmission line sensor module |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3142015A (en) * | 1962-04-02 | 1964-07-21 | Ca Nat Research Council | High voltage alternating current capacitive measuring apparatus using magnetic cores |
US3312895A (en) * | 1962-10-23 | 1967-04-04 | Westinghouse Electric Corp | Transmission line monitor apparatus utilizing electromagnetic radiation between the line and a remote point |
US3428896A (en) * | 1963-08-14 | 1969-02-18 | Schweitzer Edmund O Jun | System for transmitting to a remote point a signal that varies as a function of the current flow in a high voltage conductor |
US3504283A (en) * | 1967-12-13 | 1970-03-31 | Massachusetts Inst Technology | Flux quantization measuring device |
DD100809A1 (en) * | 1972-12-12 | 1973-10-05 | ||
US4210901A (en) * | 1977-04-25 | 1980-07-01 | Westinghouse Electric Corp. | Signal repeater for a distribution network communication system |
US4204194A (en) * | 1977-05-23 | 1980-05-20 | General Electric Company | Meter terminal unit for use in automatic remote meter reading and control system |
US4420752A (en) * | 1978-03-20 | 1983-12-13 | Murray W. Davis | Real-time parameter sensor-transmitter |
US4268818A (en) * | 1978-03-20 | 1981-05-19 | Murray W. Davis | Real-time parameter sensor-transmitter |
US4348638A (en) * | 1978-07-17 | 1982-09-07 | Conversational Systems, Inc. | Power measuring apparatus |
US4384289A (en) * | 1981-01-23 | 1983-05-17 | General Electric Company | Transponder unit for measuring temperature and current on live transmission lines |
DE3129041A1 (en) * | 1981-07-23 | 1983-02-03 | BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau | FIBER OPTICAL SENSOR FOR DETECTING ELECTRIC ARCH DISCHARGE |
JPS58179034A (en) * | 1982-04-14 | 1983-10-20 | Sharp Corp | Data transmitting system |
JPS5912359A (en) * | 1982-07-13 | 1984-01-23 | San Eisha Seisakusho:Kk | Voltage/current sensor |
DE3370387D1 (en) * | 1982-08-27 | 1987-04-23 | Monicell Ltd | Alarm system |
US4535447A (en) * | 1983-01-31 | 1985-08-13 | Hazeltine Corporation | Remote monitoring system transmitter |
US4777381A (en) * | 1983-04-13 | 1988-10-11 | Fernandes Roosevelt A | Electrical power line and substation monitoring apparatus and systems |
US4855671A (en) * | 1983-04-13 | 1989-08-08 | Fernandes Roosevelt A | Electrical power line and substation monitoring apparatus |
US4794327A (en) * | 1983-04-13 | 1988-12-27 | Fernandes Roosevelt A | Electrical parameter sensing module for mounting on and removal from an energized high voltage power conductor |
US4799005A (en) * | 1983-04-13 | 1989-01-17 | Fernandes Roosevelt A | Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules |
US4794328A (en) * | 1983-04-13 | 1988-12-27 | Niagara Mohawk Power Corporation | Tool for mounting a sensor module on a live power transmission line |
US4709339A (en) * | 1983-04-13 | 1987-11-24 | Fernandes Roosevelt A | Electrical power line parameter measurement apparatus and systems, including compact, line-mounted modules |
US4689752A (en) * | 1983-04-13 | 1987-08-25 | Niagara Mohawk Power Corporation | System and apparatus for monitoring and control of a bulk electric power delivery system |
US4808917A (en) * | 1983-04-13 | 1989-02-28 | Niagara Mohawk Power Corporation | Transmission line sensor apparatus operable with near zero current line conditions |
US4714893A (en) * | 1983-04-13 | 1987-12-22 | Niagara Mohawk Power Corporation | Apparatus for measuring the potential of a transmission line conductor |
US4629979A (en) * | 1983-08-31 | 1986-12-16 | Hydro-Quebec | Apparatus for sensing and measuring a current on power transmission line |
US4611207A (en) * | 1983-10-31 | 1986-09-09 | Niagara Mohawk Power Corporation | Apparatus for monitoring voltage on a high voltage overhead transmission line |
US4578639A (en) * | 1984-03-02 | 1986-03-25 | Westinghouse Electric Corp. | Metering system for measuring parameters of high AC electric energy flowing in an electric conductor |
US4827272A (en) * | 1984-06-04 | 1989-05-02 | Davis Murray W | Overhead power line clamp and antenna |
US5140257A (en) * | 1984-06-22 | 1992-08-18 | Davis Murray W | System for rating electric power transmission lines and equipment |
US4668934A (en) * | 1984-10-22 | 1987-05-26 | Westinghouse Electric Corp. | Receiver apparatus for three-phase power line carrier communications |
US4795973A (en) * | 1984-11-08 | 1989-01-03 | Niagara Mohawk Power Corporation | Line mounted apparatus for measuring line potential |
DE3544508A1 (en) * | 1985-12-17 | 1987-06-19 | Ulrich Dipl Ing Adolph | Combined transducer for measuring current and voltage simultaneously on pipe-sheathed conductors |
US4724381A (en) * | 1986-02-03 | 1988-02-09 | Niagara Mohawk Power Corporation | RF antenna for transmission line sensor |
US4794329A (en) * | 1986-03-28 | 1988-12-27 | Schweitzer Edmund O Jun | Cable mounted capacitively-coupled circuit condition indicating device |
US4801937A (en) * | 1986-06-16 | 1989-01-31 | Fernandes Roosevelt A | Line mounted apparatus for remote measurement of power system or environmental parameters beyond line-of-site distanc |
US4808916A (en) * | 1986-11-14 | 1989-02-28 | Niagara Mohawk Power Corporation | Power supply magnetic shunt for transmission line sensor module |
US5015944A (en) * | 1986-12-10 | 1991-05-14 | Bubash James E | Current indicating device |
US4831327A (en) * | 1987-05-01 | 1989-05-16 | Hydro-Quebec | Self-powered electrical measuring system isolated from electrical perturbances |
US4823022A (en) * | 1987-05-15 | 1989-04-18 | Lindsey Manufacturing Company | Apparatus and method for sensing power line conditions |
US4847780A (en) * | 1987-08-21 | 1989-07-11 | Tennessee Valley Public Power Association | Current measuring apparatus |
US4935693A (en) * | 1987-10-14 | 1990-06-19 | Square D Company | Line secured current and voltage sensing apparatus |
US5006846A (en) * | 1987-11-12 | 1991-04-09 | Granville J Michael | Power transmission line monitoring system |
FR2624617B1 (en) * | 1987-12-11 | 1990-05-11 | Europ Agence Spatiale | MAGNETICALLY COUPLED ELECTRIC CURRENT MEASURING APPARATUS |
US4904996A (en) * | 1988-01-19 | 1990-02-27 | Fernandes Roosevelt A | Line-mounted, movable, power line monitoring system |
EP0338542B1 (en) * | 1988-04-22 | 1993-08-04 | Matsushita Electric Industrial Co., Ltd. | A current and/or voltage detector for a distribution system |
JPH0738011B2 (en) * | 1988-05-16 | 1995-04-26 | 株式会社日立製作所 | Abnormality diagnosis system for high-voltage power equipment |
US5559377A (en) * | 1989-04-28 | 1996-09-24 | Abraham; Charles | Transformer coupler for communication over various lines |
US5017859A (en) * | 1989-08-03 | 1991-05-21 | Westinghouse Electric Corp. | Integral capacitive divider bus bar voltage measuring apparatus and combined current sensor |
US5124642A (en) * | 1989-12-21 | 1992-06-23 | Sigma Instruments, Inc. | Power line post insulator with dual inductor current sensor |
US5065142A (en) * | 1990-05-23 | 1991-11-12 | Service Machine Company | Voltage pickup circuit and flashing display for high voltage indicator device, and input electrode therefor |
US5051733A (en) * | 1990-05-23 | 1991-09-24 | Service Machine Company | High voltage indicator device |
GB9014003D0 (en) * | 1990-06-22 | 1990-08-15 | British Aerospace | Data transmission apparatus |
DE4125856C1 (en) * | 1991-08-03 | 1992-09-03 | Karl Pfisterer Elektrotechnische Spezialartikel Gmbh & Co Kg, 7000 Stuttgart, De | |
US5473244A (en) * | 1992-09-17 | 1995-12-05 | Libove; Joel M. | Apparatus for measuring voltages and currents using non-contacting sensors |
US5426360A (en) * | 1994-02-17 | 1995-06-20 | Niagara Mohawk Power Corporation | Secondary electrical power line parameter monitoring apparatus and system |
US5565783A (en) * | 1994-09-29 | 1996-10-15 | Pacific Gas And Electric Company | Fault sensor device with radio transceiver |
-
1995
- 1995-04-21 KR KR1019960705997A patent/KR100250515B1/en not_active IP Right Cessation
- 1995-04-21 EP EP95917632A patent/EP0757870A4/en not_active Withdrawn
- 1995-04-21 CA CA002188305A patent/CA2188305C/en not_active Expired - Fee Related
- 1995-04-21 WO PCT/US1995/004977 patent/WO1995029553A1/en not_active Application Discontinuation
- 1995-04-21 JP JP7527806A patent/JP3071220B2/en not_active Expired - Fee Related
- 1995-04-21 AU AU23617/95A patent/AU684945B2/en not_active Ceased
-
1996
- 1996-02-21 US US08/604,357 patent/US5892430A/en not_active Expired - Fee Related
-
2000
- 2000-01-26 JP JP2000017652A patent/JP2000171492A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4786862A (en) * | 1986-06-09 | 1988-11-22 | Niagara Mohawk Power Corporation | Watchdog circuit for transmission line sensor module |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19711990A1 (en) * | 1997-03-14 | 1998-09-24 | Siemens Ag | High-voltage system with a device for transmitting signals |
DE19711990C2 (en) * | 1997-03-14 | 1999-02-11 | Siemens Ag | High-voltage system with a device for transmitting signals |
US6307381B1 (en) | 1997-03-14 | 2001-10-23 | Siemens Aktiengesellschaft | High voltage installation with a device for transmitting signals |
DE19817575A1 (en) * | 1998-04-20 | 1999-10-21 | Abb Research Ltd | Capacitive coupling cable for signal transmission on high and medium voltage power lines |
WO2002059629A2 (en) * | 2001-01-26 | 2002-08-01 | Robert Bosch Gmbh | Device, current measurer and motor vehicle |
WO2002059629A3 (en) * | 2001-01-26 | 2003-03-13 | Bosch Gmbh Robert | Device, current measurer and motor vehicle |
WO2004068151A1 (en) * | 2003-01-31 | 2004-08-12 | Fmc Tech Limited | A monitoring device for a medium voltage overhead line |
US7518529B2 (en) | 2003-01-31 | 2009-04-14 | Fmc Tech Limited | Monitoring device for a medium voltage overhead line |
US8744790B2 (en) | 2008-11-06 | 2014-06-03 | Southwire Company | Real-time power line rating |
US10205307B2 (en) | 2010-03-23 | 2019-02-12 | Southwire Company, Llc | Power line maintenance monitoring |
US10454267B1 (en) | 2018-06-01 | 2019-10-22 | Franklin Electric Co., Inc. | Motor protection device and method for protecting a motor |
US11811273B2 (en) | 2018-06-01 | 2023-11-07 | Franklin Electric Co., Inc. | Motor protection device and method for protecting a motor |
Also Published As
Publication number | Publication date |
---|---|
JP2000171492A (en) | 2000-06-23 |
AU2361795A (en) | 1995-11-16 |
CA2188305A1 (en) | 1995-11-02 |
KR100250515B1 (en) | 2000-04-01 |
JP3071220B2 (en) | 2000-07-31 |
KR970702652A (en) | 1997-05-13 |
AU684945B2 (en) | 1998-01-08 |
US5892430A (en) | 1999-04-06 |
EP0757870A4 (en) | 1997-07-02 |
EP0757870A1 (en) | 1997-02-12 |
JPH09508702A (en) | 1997-09-02 |
CA2188305C (en) | 1999-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5892430A (en) | Self-powered powerline sensor | |
CA2241829C (en) | Non-invasive powerline communications system | |
JP5235908B2 (en) | Power measurement system, equipment control system | |
US5656931A (en) | Fault current sensor device with radio transceiver | |
AU725071B2 (en) | Modular core, self-powered powerline sensor | |
US20090309754A1 (en) | Wireless current transformer | |
EP1319188A1 (en) | Modular, integrated powerline monitor for non-high voltage applications | |
KR101468887B1 (en) | Probe for measuring electric power load | |
KR100689226B1 (en) | Apparatus for observation load of voltage transformer | |
CA2402600A1 (en) | Sensing device for a powerline | |
EP2328246B1 (en) | Electricity distribution system and method for adapting a TT electricity distribution network | |
AU5194600A (en) | Non-invasive powerline communications system | |
CA2832237A1 (en) | Isolation interface for an electricity meter and electricity metering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP KR MX |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2188305 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995917632 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1996/005142 Country of ref document: MX |
|
WWP | Wipo information: published in national office |
Ref document number: 1995917632 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995917632 Country of ref document: EP |