WO1995023086A1 - Pressure control device - Google Patents

Pressure control device Download PDF

Info

Publication number
WO1995023086A1
WO1995023086A1 PCT/JP1995/000291 JP9500291W WO9523086A1 WO 1995023086 A1 WO1995023086 A1 WO 1995023086A1 JP 9500291 W JP9500291 W JP 9500291W WO 9523086 A1 WO9523086 A1 WO 9523086A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
oil
valve
spool
liquid chamber
Prior art date
Application number
PCT/JP1995/000291
Other languages
French (fr)
Japanese (ja)
Inventor
Toshinori Aihara
Tatuyoshi Maruyama
Koichi Komatsu
Original Assignee
Unisia Jecs Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2848594A external-priority patent/JPH07232658A/en
Priority claimed from JP3068594A external-priority patent/JPH07237553A/en
Priority claimed from JP3068694A external-priority patent/JPH07237554A/en
Priority claimed from JP3069594A external-priority patent/JPH07237555A/en
Application filed by Unisia Jecs Corporation filed Critical Unisia Jecs Corporation
Priority to KR1019950704605A priority Critical patent/KR960701767A/en
Priority to DE19580329T priority patent/DE19580329T1/en
Publication of WO1995023086A1 publication Critical patent/WO1995023086A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
    • B62D5/087Sliding spool valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2410/00Constructional features of vehicle sub-units
    • B60Y2410/105Valve bodies; Mounting of hydraulic controllers

Definitions

  • the present invention relates to a pressure control device having a non-linear characteristic of a hydraulic fluid generated with respect to an operation force, and is particularly suitable for application to a power steering device.
  • a pressure control device for supplying a hydraulic pressure corresponding to a steering force to a power cylinder is incorporated, and the hydraulic pressure supplied to the power cylinder by the pressure control device is used as an auxiliary steering force. We are using.
  • a pressure control valve disclosed in Japanese Patent Application Laid-Open No. 62-320286 is known.
  • this pressure control valve an increase or decrease in oil pressure with respect to the actuator for steering corresponds only to the opening / closing operation of a valve spool constituting the pressure control valve.
  • the valve spool opens and high-pressure hydraulic oil from the oil pump is guided to the actuator, and at the same time, the feedback provided on the back of the valve spool is provided.
  • This high-pressure oil acts on the chamber and generates a steering reaction force that pushes back the valve spool.
  • the conventional pressure control valve disclosed in Japanese Patent Application Laid-Open No. 62-332026 discloses that when the pressing force of the plunger generated according to the steering torque increases, the valve spool opens and the pressure from the oil pump increases. Since high-pressure hydraulic oil is guided to the actuator and the feedback chamber, an auxiliary steering force is generated by hydraulic pressure proportional to the steering torque. At high load such as turning, the steering torque was relatively large. Therefore, in order to reduce the steering torque at the time of high load such as stationary, If the hydraulic reaction force from the feedback chamber was set to be small, the required steering force during normal running would be too small, which could impair the maneuverability.
  • an object of the present invention is to provide a pressure control device capable of changing the ascending characteristic of the hydraulic fluid with respect to the spool operation force in the middle.
  • Another object of the present invention is to provide a power steering apparatus which has a non-linear characteristic in hydraulic pressure supplied to a power cylinder with respect to a steering force, and in particular, can reduce a steering torque at the time of stationary steering as compared with a conventional one. Aim.
  • Another object of the present invention is to provide a power steering device which does not require the use of a seal member and can improve durability. Disclosure of the invention
  • a pressure control device comprises: a spool slidably fitted in a valve receiving hole formed in a valve body; and a first liquid chamber partitioned by the spool at one end of the valve receiving hole.
  • a second liquid chamber formed between the valve body and the spool and connected to a hydraulic fluid supply source and a third liquid chamber connected to an actuator, and the spool is connected to the first liquid chamber.
  • Valve operating means that can move to the liquid chamber side and operate so that the second liquid chamber communicates with the third liquid chamber; and communicates the first liquid chamber with the third liquid chamber. And a communication state between the first liquid chamber and the third liquid chamber when the third liquid chamber has a predetermined pressure or more and is interposed in the middle of the hydraulic liquid path. And a switching valve for shutting off.
  • a pressure control device includes a spool that is slidably fitted in a valve receiving hole formed in a valve body, and a first partition partitioned to one end of the valve receiving hole by the spool.
  • a second liquid chamber respectively formed between the valve body and the spool and connected to the hydraulic fluid supply source, and a third liquid chamber connected to the actuator and the spool.
  • Valve operating means which can be moved to the first liquid chamber side and operated so that the second liquid chamber and the third liquid chamber communicate with each other; the first liquid chamber and the third liquid A hydraulic fluid passage communicating with the third fluid chamber, the hydraulic fluid passage being interposed in the middle of the hydraulic fluid passage, and (1) A switching valve that cuts off a communication state between the first liquid chamber and the third liquid chamber and connects the first liquid chamber to a drain passage branched from the hydraulic fluid passage. It is assumed that.
  • a pressure control device includes a spool slidably fitted in a valve receiving hole formed in a valve body, and a first partition partitioned on one end side of the valve receiving hole by the spool.
  • a second liquid chamber respectively formed between the valve body and the spool, and connected to a hydraulic fluid supply source; and a second liquid chamber that can communicate with the second liquid chamber and a drain passage.
  • a third chamber connected to the reservoir via a chamber and a third chamber connected to the actuator, the chamber and the third chamber shut off, and the spool is connected to the first chamber.
  • Valve operating means which can be moved to the side to operate the second liquid chamber and the third liquid chamber to communicate with each other; and an operation for communicating the first liquid chamber with the third liquid chamber.
  • a fluid passage, and a third fluid chamber interposed in the middle of the working fluid passage when the pressure of the third fluid chamber becomes a predetermined pressure or more.
  • a switching valve for shutting off a communication state between the first liquid chamber and the third liquid chamber is provided.
  • a pressure control device includes a spool slidably fitted in a valve receiving hole formed in a valve body, and a first partition partitioned on one end side of the valve receiving hole by the spool.
  • a second liquid chamber respectively formed between the valve body and the spool, and connected to a hydraulic fluid supply source; and a second liquid chamber that can communicate with the second liquid chamber and a drain passage.
  • a third chamber connected to the reservoir via a chamber and a third chamber connected to the actuator, and the chamber chamber and the third chamber closed.
  • Valve operating means that can move the second liquid chamber and the third liquid chamber to communicate with each other, and a hydraulic fluid that communicates the first liquid chamber with the third liquid chamber.
  • the third fluid chamber is interposed in the middle of the hydraulic fluid passage and the third fluid chamber has a predetermined pressure or more.
  • a pressure control device includes a spool that is slidably fitted into a valve receiving hole formed in a valve body, and a spool between the spool and the valve body.
  • JP95 / 00291 First liquid chamber formed respectively and connected to the actuator and second liquid chamber connected to the hydraulic liquid supply source, and the first and second liquid chambers are communicated with each other.
  • a spool operating means capable of operating a spool, an auxiliary urging means connected to the first liquid chamber via an auxiliary liquid path, and capable of urging the spool operating means; provided in the middle of the auxiliary wave path
  • the auxiliary urging means is provided with an on-off valve for guiding the hydraulic fluid from the first liquid chamber when the pressure of the first liquid chamber becomes equal to or higher than a predetermined pressure.
  • a pressure control device includes a spool that is slidably fitted in a valve receiving hole formed in a valve body, and a spool formed between the spool and the valve body, respectively. And a second chamber connected to the hydraulic chamber and a chamber chamber which can communicate with the first chamber and which communicates with the oil reservoir via an oil drain.
  • An auxiliary urging means connected to the first liquid chamber and capable of urging the spool operating means; provided in the middle of the auxiliary liquid path, when the first liquid chamber has a predetermined pressure or higher.
  • An on-off valve for guiding the hydraulic fluid from the first fluid chamber to the auxiliary urging means.
  • the power steering device includes a pair of hydraulic control valves for supplying and discharging hydraulic oil to and from a pair of cylinder chambers formed in the power cylinder, respectively, and a valve drive for operating the pair of hydraulic control valves.
  • a hydraulic steering valve having a mechanism, wherein the hydraulic control valve is slidably fitted in a valve receiving hole formed in a valve body, and the spool accommodates the valve by the spool.
  • a first oil chamber partitioned at one end of the hole, a second oil chamber formed between the valve body and the spool and supplied with pressure oil from an oil pump, and one of the power cylinder A third oil chamber that communicates with the cylinder chamber; and a chamber chamber that can communicate with the third oil chamber and communicates with the oil reservoir via a drainage passage.
  • the hydraulic pressure adjusting means includes an oil pump for supplying pressure oil to the first oil chamber, and an oil discharge passage communicating with the first oil chamber and incorporating a throttle.
  • the power steering device is configured such that an input shaft to which a steering force is input and an output shaft for driving a steering member are connected by a torsion bar, and actuated according to a relative rotation amount between the input shaft and the output shaft.
  • a motion direction converting means for converting the relative rotation of the two shafts into an axial motion of the two shafts is provided, and the valve operating mechanism is operated by the motion direction converting means.
  • the spool valve-type valve operating mechanism is disposed in parallel with the input shaft, and the movement direction changing means is slidably fitted on the input shaft, A sleeve member formed with an inclined guide portion inclined with respect to the axis and a guide portion in the axial direction; and a lever for driving the valve operating mechanism, integrally connected to the sleeve member in the axial direction, and A ring member rotatable in the direction, a drive pin protruding from the input shaft and engaging with the inclined guide portion, and a guide bin fixed to the output shaft and engaging with the axial guide portion. It is characterized by having.
  • the spool valve-type valve operating mechanism is disposed in parallel with the input shaft, and the movement direction changing unit is slidable integrally with the input shaft in an axial direction.
  • the spool valve type operating mechanism is disposed in a direction perpendicular to the input shaft, and the movement direction changing means is integrally slidably fitted in the input shaft in the axial direction.
  • a first sleeve member provided with a first inclined guide portion inclined with respect to the axis and an axial guide portion, and a first sleeve member inclined with respect to the axis.
  • the power steering apparatus is characterized in that the fixed member is a housing fixed to a cylinder that slidably supports a steering member.
  • the pressure control device of the present invention when the fluid pressure in the third fluid chamber connected to the actuator becomes higher than a predetermined value, the first fluid with respect to the movement of the spool to the first fluid chamber side Since the reaction force of the hydraulic pressure in the room is eliminated, the operating force of the spool by the valve operating means is reduced when it is equal to or more than a predetermined value.
  • the steering can be more easily performed in a heavy load such as stationary operation than before.
  • the pressure control device of the present invention when the first liquid chamber connected to the actuator becomes a predetermined pressure or more, the hydraulic fluid from the first liquid chamber is supplied to the auxiliary urging means, Since the operating force of the spool is supplemented by the auxiliary biasing means, the operating force of the spool by the spool operating means can be reduced by a predetermined amount or more. Without changing the characteristics, it is possible to steer more easily than before with high loads such as stationary.
  • the hydraulic pressure adjusting means for adjusting the hydraulic pressure in the first oil chamber according to the driving state of the vehicle is provided, and the spool is moved.
  • the hydraulic pressure in the first oil chamber, which generates a hydraulic reaction force to the movement is adjusted according to, for example, the vehicle speed, so that the steering torque during only high loads such as stationary operation is reduced compared to the conventional one. Can be.
  • the spool valve-type valve operating mechanism is disposed on the fixed member, it is possible to eliminate the need for a seal member that causes a problem of durability.
  • FIG. 1 is a schematic sectional view of a pressure control device according to an embodiment of the present invention applied to a power steering device.
  • FIG. 2 is a sectional view taken along line 2-2 in FIG.
  • FIG. 3 is a sectional view taken along line 3-3 in FIG.
  • FIG. 4 is an enlarged sectional view of a main part of the pressure control device of FIG.
  • FIG. 5 is a graph showing the relationship between the steering torque in the pressure control device of FIG. 1 and the pressure of the hydraulic oil in the connecting oil passage.
  • FIG. 6 is a view similar to FIG. 4, showing another embodiment of the present invention.
  • FIG. 7 is a schematic sectional view of a pressure control device according to another embodiment of the present invention applied to a power steering device.
  • FIG. 8 is an enlarged sectional view of a main part of the hydraulic control device of FIG.
  • FIG. 9 is a graph showing the relationship between the steering torque and the hydraulic pressure supplied to the power cylinder in the hydraulic control device of FIG.
  • FIG. 10 is a view similar to FIG. 7 showing a hydraulic control device according to another embodiment of the present invention.
  • FIG. 11 is an enlarged sectional view of a main part of the hydraulic control device of FIG.
  • FIG. 12 is a graph showing the relationship between the steering torque and the hydraulic pressure supplied to the power cylinder in the hydraulic control device of FIG.
  • FIG. 13 is a view similar to FIG. 11 showing a main part of a hydraulic control device according to another embodiment of the present invention.
  • FIG. 14 is a map diagram showing the relationship between the vehicle speed and the oil pressure in the drainage passage and the on / off state of energization to the solenoid in the hydraulic control device of Fig. 13,
  • FIG. 15 is a graph showing the relationship between the steering torque and the hydraulic oil and pressure in the power cylinder in the hydraulic control device shown in FIG.
  • FIG. 16 is a schematic cross-sectional view of a pressure control device according to still another embodiment of the present invention applied to a power steering device.
  • FIG. 17 is a sectional view taken along the line 17-17 in FIG.
  • FIG. 18 is an enlarged sectional view of a main part of the pressure control device of FIG.
  • FIG. 19 is the same stick as FIG. 17 showing still another embodiment of the present invention.
  • FIG. 20 is a schematic sectional view showing a hydraulic control device according to another embodiment of the present invention applied to a power steering device.
  • FIG. 21 is a view similar to FIG. 20 showing a hydraulic control apparatus according to still another embodiment of the present invention.
  • FIG. 22 is a view similar to FIG. 20 showing a hydraulic control apparatus according to still another embodiment of the present invention.
  • FIG. 23 is a sectional view taken along the line 23-3-23 in FIG.
  • FIG. 24 is a sectional view taken along the line 24-24 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a pressure control device according to an embodiment of the present invention applied to a power steering device will be described in detail with reference to FIGS.
  • a cylinder 11 extending in the width direction (left and right direction in the figure) of a vehicle body (not shown) is provided with a rack rod having tie openings (not shown) connected to both ends. 1 is penetrated so as to be slidable in the left-right direction in the figure, and one end of the rack rod 12 held by the cylinder 11 is connected to one end of the cylinder 11 by two oil chambers 1 on the left and right.
  • Biston 14 partitioning into 3 L and 13 R is integrally fitted.
  • the upper and lower ends of a pinion shaft 15 intersecting with the rack bar 12 are rotatably held via bearings 16 and 17, respectively.
  • the rack 19 formed on the rack bar 12 is aligned with the pinion 18 formed on the rack. That is, by driving and rotating the pinion shaft 15, the tie rod changes the direction of the steered wheels (not shown) via the rack bar 12.
  • the piston of the present invention is slidably fitted to the cylinder 11 to partition the cylinder 11 into two oil chambers 13 L and 13 R.
  • the rack bar 12 equipped with 14 is employed, it is also possible to employ an actuator of other structure.
  • a lower end of a torsion bar spring 20 is selectively fitted to the center upper portion of the pinion shaft 15, and a cylindrical input shaft 21 coaxially surrounding the torsion bar spring 20 is a pair of upper and lower bearings.
  • the pinion shaft 15 and the housing 24 are held rotatably relative to the upper end of the pinion shaft 15 and the housing 24 via 22 and 23, respectively.
  • a connecting pin 25 for integrally connecting the torsion bar spring 20 and the input shaft 21 is mounted on an upper end of the input shaft 21.
  • a steering handle (not shown) is provided on the upper end of the input shaft 21.
  • the lower end of the steering shaft 26 having the upper end attached thereto is serration-fitted. That is, the rotational force of the steering shaft 26 due to the operation of the steering wheel with respect to the pinion shaft 15 is transmitted only through the torsion bar spring 20.
  • the housing 24 in which the inside is held in a liquid-tight state has a lower end portion on a pinion shaft 15 and a plurality of connecting pins 2.
  • a cylindrical valve rotor 28 connected to the housing 24 is slidably housed in the housing 24.
  • a fan-shaped lever holding space 29 is formed above the valve rotor 28 surrounding the input shaft 21.
  • the lever holding space 29 is integrated with the center of the input shaft 21.
  • a V-shaped spool operation lever 30 which is fitted in the housing is housed so as to be relatively rotatable.
  • the valve opening 28 in this embodiment is formed by a valve holder 31 and a pair of cover plates 32, 33, and is assembled so as to form a cylindrical shape as a whole.
  • the valve holder 31 has a pair of stepped holes 34 extending in a direction perpendicular to the direction in which the input shaft 21 penetrates.
  • a seal cap 35 is tightly attached to the end, and a cover sleeve 37 into which a seal plug 36 is press-fitted is attached to each of the large-diameter open ends.
  • the configuration of the pair of stepped holes 34 is exactly the same, —One end of a cylindrical spool 38 L, 38 R (sometimes simply described as 38) is slidably fitted to the valve 37 via a 0 ring 39.
  • the first oil chambers 40 L and 40 R surrounded by the inner periphery of the seal plug 36 and the cover sleeve 37 and one end surface of the spool 38 (may be simply referred to as 40).
  • the other end of which is slidably fitted to the small diameter portion of the stepped hole 34 via the O-ring 41 there is a stepped hole 34 that functions as a valve seat.
  • a conical valve body 43 that can abut the step portion 42 is integrally formed.
  • the inner peripheral side of the small diameter portion of the stepped hole 34 located between the other end of the spool 38 and the valve element 43 is the second oil chamber 44 L, 44 R (simply, 4 4
  • the inner peripheral side of the large diameter portion of the stepped hole 34 located between the valve body 43 and the cover sleeve 37 is the third oil chamber 45 L, 4 5 R (may be simply written as 4 5).
  • the second oil chamber 44 and the third oil chamber 45 are partitioned by the step portion 42 and the valve element 43, but these two oil chambers 44, 45
  • valve holder 3 1 in terms of ease of manufacture is Although the cover sleeve 37 and the cover sleeve 37 are formed separately and function as the valve body of the present invention, it is also possible to adopt another divided structure.
  • a valve body 43 is in contact with the stepped portion 42 of the stepped hole 34, and the second oil chamber 44 and the third oil chamber Compression coil springs 46, 47 for urging the spool 38, respectively, so as to block the communication with the spool 45 are housed.
  • one end is connected to a third oil chamber through a communication hole 48.
  • An oil discharge guide passage 49 is formed which communicates with the seal cap 45 and opens at the other end toward the seal cap 35. Further, an inner flange 50 is formed on the seal cap 35 side of the small diameter portion of the stepped hole 34, and a stepped hole 3 located between the inner flange 50 and the seal cap 35 is formed.
  • the small-diameter portion of 4 (hereinafter, referred to as the chamber) 5 1 is connected to the oil drain passage 52 It is connected to the sump 5 3.
  • disc-shaped plungers 54 L and 54 R (when simply described as 54)
  • the plunger 54 is slidably accommodated, and the plunger 54 has a conical poppet 5 on its spool 38 side that can abut the open end of the oil discharge guide passage 49 to close it. 5 are protruding.
  • a plurality of communication holes 56 are formed for communicating the chamber chamber 51 described above and the oil discharge guide passage 49 side.
  • drive pins 58L, 58R (simply, 58 and 85R) which are slidably engaged with an elongated hole 57 formed at the end of the spool operation lever 30 '. are sometimes linked together.
  • the spool 38 and the plunger 54 are urged so as to be separated from each other, and the opening ends of the port 55 and the oil discharge guide passage 49 are urged.
  • a compression coil spring 59 is interposed between the torsion bar spring 20 and the input shaft 21 so that there is no relative rotation difference between the torsion bar spring 20 and the input shaft 21.
  • the oil discharge guide passage .49 is in communication with the oil discharge guide passage 49 through the communication hole 56.
  • the drive pin 58, the plunger 54, and the port 55 via the spool 26 and the spool operation lever 30 constitute a valve operating means of the present invention.
  • An oil pump 61 for pumping hydraulic oil from an oil reservoir 53 to the second oil chamber 44 is provided in a pressure oil supply path 60 facing the second oil chamber 44.
  • oil A pressure oil supply path 60 between the pump 61 and the second oil chamber 44 includes an accumulator 62 for accumulating pressure in order from the second oil chamber 44 side, and a pressure oil supply path 60 inside the pressure oil supply path 60.
  • a pressure switch 63 that detects the pressure of the hydraulic oil of the oil pump and a check valve 64 that prevents the hydraulic fluid from flowing back from the second oil chamber 44 to the oil pump 61 are incorporated.
  • the electric motor 65 that drives the oil pump 61 switches between an operating state and a stopped state based on a detection signal from the pressure switch 63 so that the pressure oil supply passage 60 falls within a predetermined pressure range. It has become.
  • connection oil passages 66 L, 66 R (simply, 66 R) connecting the third oil chambers 45 L, 45 R and the oil chambers 13 L, 13 R formed in the cylinder, respectively.
  • a branch oil passage 67 L, 67 R (sometimes simply described as 67) communicating with the first oil chamber 40 L, 4 OR. It is formed as the hydraulic fluid passage of the present invention, and in the middle of the branch oil passages 67 L, 67 R, when the hydraulic oil in the connection oil passages 66 L, 66 R becomes higher than the set pressure.
  • the first oil chambers 40 L, 40 R and the oil drain passages 68 L, 68 R (sometimes simply described as 68) connected to the oil sump 53 are connected and connected.
  • a 3-port 2-position switching valve 69 L, 69 R (sometimes simply described as 69) that shuts off the oil passages 66 L, 66 R and the branch oil passages 67 L, 67 R It has been incorporated. That is, the pressure of the hydraulic oil in the pilot oil passages 71 L and 71 R of the 3-port 2-position switching valve 69 is lower than the spring force of the spring 70 of the 3-port 2-position switching valve 69. In this state, the branch oil passage 67 and the drain oil passage 68 are shut off and the connection oil passage 66 and the branch oil passage 67 are in communication with each other, but they are connected to the connection oil passage 66.
  • connection oil passage 66 and the branch oil passage 67 are cut off.
  • the branch oil passage 67 and the oil drain passage 68 communicate with each other ⁇ z. o
  • the sliding contact between the cylinder 11 and the housing 24 and the valve rotor 28 is made up of a drain oil passage 52, a pressure oil supply passage 60, a connection oil passage 66, and a branch oil
  • a plurality of annular grooves for communicating the passages 67 are respectively formed in a sealed state, but as for the structure of this part, for example, U.S. Pat. No. 4,953,416 No.Japan Patent Showa 60-1 9 9 7 6 5 Since it is well-known in Japanese Patent Application Publication Nos. H07-26103, further description will be omitted.
  • the steering wheel when the steering wheel is operated clockwise in FIG. 2, for example, the steering force is transmitted to the pinion shaft 15 and the valve opening 28 through the torsion rod spring 20 via the steering shaft 26.
  • the spool operation lever 30 integral with the input shaft 21 is also transmitted.
  • the rack bar 12 is hard to move rightward in FIG. 1 due to frictional resistance between the road surface and the wheels (not shown), the torsion will occur with respect to the rotation angle of the input shaft 21.
  • the rotation angle of the bar spring 20 becomes smaller.
  • the spool operation lever 30 rotates clockwise relative to the valve port 28 in FIG. 2 in the lever holding space 29 of the valve rotor 28, and through the drive pin 58L.
  • the plunger 54L moves forward to the spool 38L side, and the port 55 blocks the oil discharge guide passage 49, and is further piled on the spring force of the compression coil springs 46, 47 to make the spool 38 Push L to the first oil chamber 40 L side.
  • the second and third oil chambers 44 L and 45 L are in communication with each other, and the hydraulic oil from the pressure oil supply passage 60 is connected to the oil chamber 13 L via the connection oil passage 66 L.
  • the plunger 54R moves away from the spool 38R via the drive pin 58R, but the oil discharge guide passage 49 communicates with the chamber 51 via the communication hole 56. In this state, the piston 14 is urged to the right side in FIG.
  • the hydraulic oil from the oil pump 61 starts to be supplied to the connection oil passage 66 side, and the oil pressure in the connection oil passage 66 increases. Then, a steering reaction force acts on the input shaft 21 side from the drive pin 58 through the spool operation lever 30 in proportion to the increase in the oil pressure, and unless the steering torque increases, the spool 3 8 Is pushed back to the right in FIG. 4, and the second oil chamber 44 and the third oil chamber 45 are shut off.
  • the hydraulic pressure in the connection oil passage 66 becomes equal to or higher than a predetermined pressure, and the 3-port 2-position switching valve 6 9 is switched so that the branch oil passage 67 communicates with the oil discharge passage 68, and the pressure in the second oil chamber 40 is reduced.
  • the steering reaction force from the first oil chamber 40 is obtained. Therefore, the hydraulic oil from the pressure oil supply passage 60 is supplied to the connection oil passage 66 side without increasing the steering torque at that rate, and the hydraulic pressure rises.
  • the steering oil and the hydraulic oil pressure in the connection oil passage 66 exceed the predetermined steering torque more than the conventional steering torque that is in a proportional relationship throughout.
  • the pressure of the vehicle can be increased more rapidly, and steering in a stopped state, that is, so-called stationary steering can be easily performed.
  • the first oil chamber 40 is connected to the oil discharge passage 68 when the hydraulic oil in the connection oil passage 66 exceeds a predetermined pressure by using the 3-port 2-position switching valve 69.
  • the connection oil passage 66 and the branch oil passage 67 are shut off using a two-port two-position switching valve 72,
  • the hydraulic oil in the oil chamber 40 may be drained little by little as the steering torque increases.
  • the drain oil passage 75 connected to the oil reservoir 53 is connected to the middle of the branch oil passage 67, and a relief valve 76 is incorporated in the middle of the drain oil passage 75, and the spring of the relief valve 76 is mounted.
  • the spring force of 7 is set to be greater than the spring force of the blooming 2-port 2-position switching valve 7 2 spring 7 4 and the oil in the pilot oil passage 7 8 through which the hydraulic oil in the oil drain passage 75 is guided
  • the oil pressure becomes larger than the spring force of the spring 77, a part of the hydraulic oil in the first oil chamber 40 is discharged from the oil discharge passage 75 through the relief valve 76 to the oil reservoir 53. I am trying to.
  • the pressure of the hydraulic oil in the pilot oil passage 73 of the 2-port 2-position switching valve 72 communicating with the connection oil passage 66 is larger than the spring force of the spring 74 of the 2-port 2-position switching valve 72.
  • the connection oil passage 66 and the branch oil passage 67 are shut off, and the pressure of the hydraulic oil in the first oil chambers 40 L and 40 R is maintained, so that the The steering reaction force does not decrease sharply, and the relationship between the steering torque and the pressure of the hydraulic oil in the connection oil passage 66 can be changed more smoothly than in the previous embodiment.
  • the opening operation of the relief valve 77 is repeated each time the hydraulic oil pressure in the first oil chamber 40 further increases and reaches a predetermined pressure with an increase in the steering torque, and the steering reaction force is moderate. As the pressure rises, the pressure in the connecting oil passage 66 rises.
  • hydraulic oil is used as the hydraulic fluid, but other incompressible liquids can naturally be used.
  • the present invention is applied to a power steering device.
  • a pressure-regulating oil pump 1 for pumping hydraulic oil from an oil reservoir 53 to the first oil chamber 40 is provided in a pressure-regulating oil passage 167 facing the first oil chamber 40.
  • the electric motor 169 that drives the JE pump 168 is based on a detection signal from a vehicle speed sensor 100 that detects the vehicle speed.
  • the chamber 40 is driven via the controller 17 1 so that the inside of the chamber 40 has a high pressure.
  • the oil drain 17 2 connected to the oil reservoir 5 3 branches, and a throttle 1 7 3 is interposed in the oil drain 17 2.
  • the sliding contact between the cylinder 11 and the housing 24 and the valve port 128 is made up of a supply / discharge oil passage 166, an oil discharge passage 15 As shown in FIG. 7, a plurality of annular grooves for communicating the supply passage 60, the pressure regulating oil passage 167, and the drainage passage 172 are formed in a sealed state.
  • the hydraulic pressure in the first oil chamber 40 increases, and the steering reaction accompanying this is increased.
  • the force acts on the input shaft 21 side from the drive pin 58 side via the spool operation lever 30 and unless the steering torque is increased, the spool 38 is pushed back to the right in FIG.
  • the oil chamber 44 and the third oil chamber 45 are shut off. That is, the rising tendency of the hydraulic pressure supplied from the second oil chamber 44 to the power cylinder via the third oil chamber 45 is set so as to correspond to the hydraulic pressure of the first oil chamber 40. Has become.
  • the controller 17 1 controls the discharge flow rate of the pressure-regulating oil pump 16 8 via the electric motor 16 9 based on the detection signal from the vehicle speed sensor 17
  • the starting point of the hydraulic pressure supplied to the power cylinder via the motor shifts to the point where the steering torque is smaller, and steering in a stopped state, so-called stationary operation, etc., can be performed more easily than before.
  • the pressure in the first oil chamber 40 is adjusted using the pressure adjusting oil pump 168.
  • the oil pressure in the first oil chamber 40 is adjusted without using the oil pump. It is also possible to adjust the pressure.
  • 10 and 11 show still another embodiment of the present invention.
  • the controller 27 1 is controlled based on information from the vehicle speed sensor 2 70.
  • the variable apertures 2779L and 2779R (sometimes simply described as 2779) that can be changed are incorporated.
  • FIGS. 10 and 11 are same members as those in the previous embodiment shown in FIGS. The same reference numerals are used.
  • the controller 27 1 in the present embodiment is variable so that the passage cross-sectional area of the branch oil passage 278 becomes smaller as the vehicle speed becomes lower, that is, the passage cross-sectional area of the branch oil passage 278 becomes larger as the vehicle speed becomes higher.
  • the opening of the throttle 79 is controlled. That is, as shown in FIG.
  • the oil discharge guide passage 4 When the spool 9 is closed and the spool 38 is pushed into the first oil chamber 40, the second and third oil chambers 4 4 and 4 5 communicate with each other, and the hydraulic oil from the oil pump 6 1 Starts to be supplied to the oil supply / discharge passage 266 side, and the hydraulic pressure in the oil supply / discharge passage 266 increases. Then, in response to the increase in the oil pressure, the oil pressure in the first oil chamber 40 also increases through the branch oil passage 2778, and the steering reaction force toward the input shaft 21 increases. The closer the closing of 79, the lower the oil pressure on the first oil chamber 40 side than the oil supply / discharge passage 26 6 side, so the lower the vehicle speed, the close the variable throttle 27 9 and the first oil chamber 40 To reduce the steering force during stationary operation.
  • the present invention can be implemented even if the throttle 273 formed in the middle of the oil drain passage 272 is made variable and the variable throttle 279 provided in the middle of the branch oil passage 278 is changed to a fixed throttle.
  • a variable throttle formed in the middle of the oil drainage passage 27 2 may be opened so that the passage cross-sectional area increases as the vehicle speed decreases.
  • FIG. 13 shows still another embodiment of the present invention.
  • pressure sensors 380L, 380R (only 3 The sensor signal from these pressure sensors 380 is a two-port two-position switching valve 381 L, 381 R (simply, described as 381) ) Solenoids 38 2 L, 38 2 R (Sometimes described simply as 38 2 ) Is turned on and off.
  • Fig. 13 shows still another embodiment of the present invention.
  • pressure sensors 380L, 380R only 3
  • the sensor signal from these pressure sensors 380 is a two-port two-position switching valve 381 L, 381 R (simply, described as 381) )
  • Solenoids 38 2 L, 38 2 R (Sometimes described simply as 38 2 ) Is turned on and off.
  • FIGS. 16 to 18 show a pressure control device according to still another embodiment of the present invention.
  • the valve rotor 428 in this embodiment is formed by a valve holder 431 and a pair of cover plates 432, 433, and is assembled so as to form a cylindrical shape as a whole.
  • the valve holder 431 which functions as the valve body of the present invention, a pair of stepped holes 434 and a through hole 435 extending in a direction perpendicular to the through They are bored in parallel with each other, and seal caps 436 and 437 are tightly attached to their open ends.
  • a pair of flanges 438 are formed in the center of the stepped hole 434, and a drainage hole is formed in the center of the stepped hole 434 located between the inner flanges 438.
  • a chamber chamber 441 communicating with the oil reservoir 440 via the oil passage 439 is formed.
  • the stepped hole 4 3 4 has a structure symmetrical in the longitudinal direction of the chamber chamber 4 4 1, and a small diameter portion of the stepped hole 4 3 4 in which the inner flange 4 3
  • the proximal ends of the spools 44 2 L and 44 2 R (which may be simply described as 44 2) are slidably fitted via O-rings 4 4 3.
  • a conical valve body 45 that can abut the step portion 44 of the stepped hole 43 functioning as a valve seat is integrally formed at the tip of the spool 44.
  • the inner peripheral side of the large-diameter portion of the stepped hole 4 3 4 constitutes the first oil chambers 4 4 6 L and 4 4 6 R (sometimes simply described as 4 4 6).
  • the inner peripheral side of the small diameter portion of the stepped hole 4 3 4 located between the base end of the spool 4 4 2 and the valve body 4 4 5 is the second oil chamber 4 4 7 L, 4 4 7 R (simply , 447).
  • first oil chamber 446 and the second oil chamber 447 are partitioned by the step portion 4444 and the valve element 445.
  • the present invention is not limited to this embodiment, and any other well-known structure may be employed as long as it is a structure that can shut off 46 and 447 with the spool 442.
  • a valve body 4 4 5 is in contact with the step 4 4 4 of the stepped hole 4 3 4, and the first oil chamber 4 4 6 and the second oil chamber 4
  • a compression coil spring 448 for urging the spool 442 so that the communication with the port 47 is shut off is housed.
  • An oil discharge guide passage 449 having a leading end communicating with the first oil chamber 446 is formed in the center of the spool 442 in a penetrating state along the longitudinal direction thereof.
  • a small diameter portion of the stepped hole 4 3 4 between the inner flange 4 3 8 and the base end of the spool 4 4 2 has a disc-shaped plunger 4 5 0 L, 4 5 OR (simply 4 5 0
  • the plunger 450 is provided with a cone which is slidably accommodated, and which can be closed by contacting the open end of the oil discharge guide passage 449 on the spool 442 side of the plunger 450.
  • the shape of the pot 4 51 is protruding.
  • a plurality of communication holes 452 are formed so as to allow communication between the above-described chamber chamber 441 and the oil discharge guide passage 449 side. I have.
  • the plunger 450 on the opposite side of the chamber chamber port 451 has a spool operation.
  • Push lever 4 5 integrated with drive pin 4 5 3 L protruding from one end of lever 4 3 0
  • the drive pin 4553 L, the press 45 5 L, the plunger 450 and the port 45 1 are operated from the steering handle via the steering shaft 26 and the spool operation lever 30 to operate the spool of the present invention. Means.
  • An oil pump 457 for pumping hydraulic oil from the oil reservoir 440 to the second oil chamber 447 is provided in the pressure oil supply path 456 facing the second oil chamber 447.
  • a pressurized oil supply passageway 456 between the oil pump 457 and the second oil chamber 447 is provided with a pressure accumulator 458 in order from the second oil chamber 447 side.
  • a check valve 460 to prevent it is incorporated.
  • the electric motor 461 driving the oil pump 457 is operated and stopped so that the pressure oil supply passage 456 falls within a predetermined pressure range based on a detection signal from the pressure switch 549. And switch It is supposed to be.
  • a pressing plate 45 5 R having the same shape as the above-described pressing plate 45 5 L is housed.
  • the driving pin 4553R protruding from the other end of the operating lever 30 is integrally connected.
  • a pair of auxiliary pistons 4 62 L and 4 62 R (sometimes simply described as 4 62) opposed to each other across the pressing plate 4 5 4 R are slidable with respect to the through hole 4 35
  • a compression coil spring 4 6 that presses the auxiliary piston 4 62 into the through hole 4 35 between these auxiliary pistons 4 6 2 and the seal cap 4 3 7 3 are interposed.
  • These through-holes 435 for accommodating the compression coil springs 463 constitute auxiliary pressure chambers 464L and 464R (sometimes simply referred to as 464). are doing.
  • the first oil chambers 4 4 6 L, 4 4 6 R and the oil chambers 13 L, 13 R formed in the cylinder are respectively supplied and discharged oil passages 4 65 L, 4 6 5 R (simply, 4 6 5).
  • the auxiliary oil passages 466 L and 466 R (which may be simply referred to as 466) communicating with the auxiliary pressure chambers 464 L and 464 R, respectively, are connected to the oil discharge passages 4 6 Connected to oil sump 4 4 0 via 7.
  • a branch oil passage that branches from the supply / discharge oil passage 465 when the pressure inside the supply / discharge oil passage 465 is equal to or higher than a predetermined pressure.
  • the hydraulic oil in the pilot oil passages 47 1 L and 47 1 R of the 3 port 2 position switching valve 469 is larger than the spring force of the spring 470 of the 3 port 2 position switching valve 469.
  • the branch oil passage 468 is shut off and the auxiliary oil passage 466 and the drain oil passage 467 are in communication with each other.
  • the pressure of the hydraulic oil in the communicating pipe oil passage 4 7 1 becomes larger than the spring force of the spring 4 70 of the 3 port 2 position switching valve 4 69, the auxiliary oil passage 4 6 6 And the drain oil passage 467 is shut off, and the branch oil passage 467 communicates with the auxiliary oil passage 466 instead.
  • the hydraulic oil from the first oil chamber 4 446 is guided to the auxiliary pressure chamber 464, and to the driving pin 4 5 3 R integrated with the pressing plate 4 5 4 R via the auxiliary piston 4 62.
  • the steering assist force is energized.
  • the sliding contact between the cylinder 11 and the housing 24 and the valve rotor 4 28 includes a drain oil passage 439, a pressure oil supply passage 456, and a supply / drain oil passage A plurality of annular grooves for communicating the auxiliary oil passages 466 and 465 are formed in a sealed state as shown in FIG.
  • the steering handle when the steering handle is operated clockwise in FIG. 17, for example, the steering force is transmitted from the steering shaft 26 to the pinion shaft 15 and the valve rotor 28 via the torsion rod spring 20, The power is also transmitted to the spool operation lever 30 integrated with the input shaft 21. If the rack bar 12 is difficult to move rightward in Fig. 16 due to frictional resistance between the road surface and the wheels (not shown), the torsion bar is The rotation angle of the spring 20 becomes smaller. For this reason, the spool operation lever 30 rotates clockwise relative to the inside of the lever holding space 29 of the valve rotor 4 28 in FIG. 17 to move the pressing plate 45 5 L integral with the drive pin 45 3 L.
  • the plunger 450 L moves forward to the spool 44 2 L side via the plunger, and the poppet 45 1 closes the oil discharge guide passage 44 9, and is further piled by the spring force of the compression coil spring 4 48. Push the spool 4 4 2 L to the first oil chamber 4 4 6 L side. As a result, the first and second oil chambers 4 4 6 L and 4 4 7 L are in communication with each other, and the hydraulic oil from the pressurized oil supply path 4 56 6 is supplied to the oil chamber 1 via the supply and discharge path 4 65 5 L.
  • the chambers 4 4 6 and 4 4 7 are in communication with each other, and the hydraulic oil from the oil pump 4 5 7 starts to be supplied to the supply / drain oil path 4 65, but the first oil chamber 4 4 6 and the second oil chamber 4 Due to the pressure receiving area difference between the spools 4 4 2 in the oil chamber 4 4 7, a steering reaction force acts on the input shaft 2 1 side from the drive pin 4 5 3 side via the spool operation lever 30 to reduce the steering torque. Unless it increases, the spool 442 is pushed back to the drive pin 453 side, and the first oil chamber 446 and the second oil chamber 444 are shut off.
  • the pressure of the hydraulic oil can be further increased at a predetermined steering torque or more, compared to the conventional one which is in a proportional relationship throughout, and steering in a stopped state, so-called, It can be easily deferred.
  • the relative rotation difference between the torsion bar spring 20 and the input shaft 21 disappears as shown in FIG. 17, that is, when the steering torque becomes 0, the plunger 450 returns to the neutral state shown in FIG.
  • the hydraulic oil in the first oil chamber 4 4 6 flows from the oil discharge guide passage 4 4 9 through the communication hole 4 5 2 through the chamber chamber 4 4 1, and the oil reservoir through the oil discharge path 4 3 9
  • the 3-port 2-position switching valve 469 is switched by the spring force of the spring 470, and the auxiliary oil passage 466 and the branch oil passage 466 are shut off. Become.
  • the drive pins 45 3 are arranged at an equal distance 180 degrees apart from the center axis of the input shaft 21 in the radial direction. It is also possible to set a longer interval to the drive pin 4553R on the side.
  • FIG. 19 shows still another embodiment.
  • the rotation center of the input shaft 21 is larger than the length L i_ of the spool operation lever 30 from the rotation center of the input shaft 21 to the drive pin 4553 L of the plunger 450.
  • the length L R of the spool control lever 30 is set longer from the drive pin 4 5 3 R to the auxiliary pin 4 on the side of the auxiliary piston 4 6 2, the drive pin 4 is set when hydraulic oil is supplied into the auxiliary pressure chamber 4 64. It is possible to increase the steering assist torque acting on the input shaft 21 via 53R.
  • the steering assist torque equivalent to that of the previous embodiment is obtained by setting the inner diameter of the through hole 435 small.
  • FIGS. 20 to 24 show a pressure control device according to still another embodiment of the present invention.
  • reference numeral 530 denotes a housing as a fixed member fixed to a cylinder (gear housing) 11.
  • there are three portions namely, a bottom portion 530A, an intermediate portion 530B, and an upper portion 530C.
  • a bearing 22 is provided on the upper part 5300 of the housing, and rotatably supports the input shaft 21.
  • a spool valve type valve operating mechanism 540 is disposed in the housing middle portion 530B.
  • the valve operating mechanisms 540 are arranged in a symmetrical relationship to control the hydraulic pressure of the left and right working hydraulic chambers 13L and 13R.
  • the valve actuation mechanism 540 is an input shaft formed in the housing middle section 530B. 21 Spool valve 54, drain port 54, and spool valve 54, which are slidably disposed in holes parallel to the axis of 1 and output shaft 15, are attached in the closing direction. It mainly includes an energizing inlet spring 546, a spool valve 542, and a drain spring 548 provided between the drain port 544. The spring constant of the inlet spring 546 is set to be larger than that of the drain spring 548.
  • the spool valve 542 is formed with a drain hole 542 in the center and a tapered surface with the first land 542C with a seal 542B attached on the outer periphery.
  • the formed second land 5 4 2 D is formed.
  • the drain poppet 544 has a conical head 544A at the end thereof to close the through hole 542A of the spool valve 542, and a flange 544 serving also as a seat of the drain spring 548 at an intermediate portion. 4B, and a drain hole 544C is formed in the flange 544B.
  • the above-mentioned hole of the housing intermediate portion 5300B is enlarged in diameter at both ends thereof to form a working chamber 5500.
  • the dimensions are set so that the edge portion generated by the diameter enlargement comes into contact with the above-described tapered surface of the spool valve 542.
  • the housing middle section 530 B is located between the cylinder ports 55 1 L and 55 1 R communicating with the working chamber 55 0 and the first land 54 2 D of the spool valve 54 2.
  • Pump ports 52 L and 55 2 R communicating with the space to be defined are formed.
  • the discharge side of the pump 562 driven by the motor 560 is connected to the pump ports 552 L and 552 R via the check valve 564.
  • an accumulator 566 is provided in this communication path, and the pressure operation switch 568 operates when the accumulated pressure falls below a predetermined pressure to rotate the motor 560. ing.
  • a sleeve member 570 is provided.
  • the sleeve member 570 is fitted on the input shaft 21 so as to be slidable in the axial direction, and has a predetermined width as a slant guide portion inclined with respect to the axis at a middle portion thereof. Long holes 57 OA are not formed. In addition, a long groove may be formed not only in the long hole but also in the inner peripheral surface thereof.
  • the sleeve member 570 has a guide groove or a guide slot 570B formed as an axial guide portion at a lower portion thereof, and a disc-shaped flange 5 for driving a valve actuating mechanism at an upper portion thereof. 70 C is formed.
  • a drive pin 572 formed on the input shaft 21 is engaged with the long hole 570A of the sleeve member 570, and a pinion shaft 18 as an output shaft is engaged with the guide groove 570B.
  • the guide bin 574 fixed to the connector is engaged.
  • the above-mentioned disc-shaped flange 570C is provided at the rear end portions 544DL and 544D of the left and right drain poppets 544 of the valve operating mechanism 540 arranged symmetrically with the aforementioned line. It is arranged in a form sandwiched by DR.
  • the steering force is not applied, that is, the vehicle is in a state shown in FIG. 20 when the vehicle is traveling straight in a neutral direction, and the pressure accumulated in the accumulator 566 is equal to the check valve 564 and It is held by the spool valve 542 in the closed position. At this time, the pump 562 is stopped. In the spool valve 542, the spring constant of the inlet spring 546 is larger than that of the drain spring 548, and the pressure receiving area of the pressure action surface of the lands 542C and 542 is set equal. Do not move because there is.
  • the torsion bar 20 is twisted corresponding to the load of the rack 19, and a relative rotational displacement occurs between the input shaft 21 and the pinion shaft 15 according to the amount of twist. Therefore, the sleeve member 570 whose relative rotation with the pinion shaft 18 is prevented by the engagement between the guide bin 574 and the guide groove 570B is formed by the drive pin 57 of the input shaft 10. The input shaft 21 is moved in one of the axial directions with the relative rotation of the input shaft 21 by the engagement between the inclined shaft 2 and the elongated oblong hole 570A.
  • the flange 570C causes the left drain port 544L to resist the set load of the drain spring 548.
  • the conical head 544A closes the drain through hole 542A of the spool valve.
  • FIG. 21 shows still another embodiment of the present invention. This embodiment differs from the previous embodiment in the movement direction changing means as described above, and the structure of the portion corresponding to the flange 570C formed integrally with the sleeve member 570 Are different.
  • the sleeve member 670 of this embodiment has the same configuration as the sleeve member 570 except that the flange 670C has a smaller diameter than the flange 570C of the previous embodiment shown in FIG. 6 7 0
  • a ring member 674 is provided so as to be relatively rotatable via a thrust bearing 672 on a flange 670C of the sleeve member 670, and the ring member 674 is a collar 6776. Thus, it is held so as to move integrally with the sleeve member 670 in the axial direction.
  • a lever 674 A for driving a valve operating mechanism 540 is projected from the ring member 674, and the lever 674 A is neutral as in the previous embodiment shown in FIG. It is located in contact between the left and right drain ports 544 in the position.
  • Drive pin 5 7 2 Force guide groove 6
  • Guide bins 574 engage with 70B, respectively, as in the previous embodiment shown in FIG.
  • the provision of the ring member 674 that is rotatable with respect to the input shaft 21 allows the lever 674A for driving the valve operating mechanism to be kept at a fixed position.
  • the housing 530 can be made smaller.
  • FIGS. 22 to 24 show still another embodiment. This embodiment is significantly different from the previous embodiment shown in FIG. 20 in that the symmetrically arranged valve actuation mechanisms 6400 are arranged at right angles to the axis of the input shaft 10. The movement direction conversion means has been changed with the change in the arrangement.
  • valve operating mechanism 640 is the same as that of the previous embodiment shown in FIG. 20, but the configuration is slightly changed.
  • the valve operating mechanism 6400 of this example includes left and right valve bodies 641, and the valve bodies 641 are attached to the housing 630 at right angles to the axis of the input shaft 10. It is fixed facing the direction.
  • a spool valve 642 and a drain port 644 are slidably disposed in a hole formed in the valve body 641.
  • the spool valve 642 is urged by an inlet spring 6464 held by a plug 6447 screwed to the valve body 641, and is held at a closed position where its tapered surface contacts the edge portion. This is the same as the previous embodiment.
  • a drain port 649 is formed in the valve body 641, instead of the drain hole 5444 of the drain port 544 in the previous embodiment shown in FIG. Others are the same as the previous embodiment shown in FIG.
  • the movement direction changing means in this embodiment is composed of first and second sleeve members 770 and 8 fitted integrally and slidably on the input shaft 21 in the axial direction.
  • the first sleeve member 770 has a first oblong slot 77A similar to the sleeve members 570, 670 of the previous embodiment shown in FIGS. 20 and 21 and an axial guide groove 77. 0 B and a small diameter flange 770 C.
  • the second sleeve member 870 has a second inclined long hole 87OA and a flange 870C inclined in the same direction as the first inclined long hole 870A.
  • the first and second sleeve members 770 and 870 have flanges opposed to each other, and are interposed between thrust bearings 772 by a connecting ring 774. Are linked.
  • the connecting ring 774 is formed in an L-shaped section, and after a thrust bearing 776 is interposed between the short piece and the flange 870C of the second sleeve member 870, the long piece is formed.
  • a thrust bearing 776 is interposed between the short piece and the flange 870C of the second sleeve member 870, the long piece is formed.
  • a ring member 872 is fitted around the outer periphery of the second sleeve member 870, and the ring member 872 is provided with a lever 872A protruding outward and an inward projection.
  • Pin 872B engages with the second oblong hole 87OA formed in the second sleeve member 870, and the lever 8772A is inside the through hole 63OA of the housing 63O.
  • the through hole 630 A allows only the rotational movement of the lever 872 A, and the movement in the axial direction is restricted.
  • Both 70 and the varnish slide member 870 move in the axial direction.
  • the pin 872B is moved into the second oblong hole.
  • the member 872 engaged with 870A rotates by cam action, and the lever 872A moves the drain port 644 through the adapter 874. become.
  • the drain port 644 and, consequently, the spool valve 642 are moved to supply pressure oil to a predetermined working hydraulic chamber to generate an assist force.
  • the direction of the valve operating mechanism (the axial direction of the symmetrically disposed spool valve) is arranged in parallel with the input shaft or in the direction perpendicular to the input shaft. Is different. This difference is effective because the layout can be selected in the vehicle in an advantageous manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A pressure control device comprising a spool (38) slidably fitted over a valve body (31) so as to partition off a first liquid chamber (40), second and third liquid chambers (44, 45) formed between the spool (38) and the valve body (31), the second liquid chamber being connected to an oil pump (61) and the third liquid chamber being connected to an actuator, valve means (42, 43) for shutting off communication between the second and third liquid chambers (44, 45), valve operating means (54) for moving the spool (38) toward the first liquid chamber (40) side against biassing means (46, 47) for biassing the valve means (42, 43) into a valve closing state so as to establish communication between the second and third liquid chambers (44, 45), an operation liquid passageway (67) for establishing communication between the first liquid chamber (40) and third liquid chamber (45), and a directional control valve (69) disposed along the length of the operating liquid passageway (67) so as to shut off communication between the first liquid chamber (40) and third liquid chamber (45) when the pressure inside the third liquid chamber (45) exceeds a certain level.

Description

明 細 書 発明 < 名称 圧力制御装置 技術分野  Description Invention <Name Pressure control device Technical field
本発明は、 操作力に対して発生する作動液圧が非線形な特性を有する圧 力制御装置に関し、 特にパワーステアリング装置に応用して好適なもので める。 背景技術  The present invention relates to a pressure control device having a non-linear characteristic of a hydraulic fluid generated with respect to an operation force, and is particularly suitable for application to a power steering device. Background art
油圧を利用したパワーステアリング装置においては、 操舵力に対応した 油圧をパワーシリンダに供給するための圧力制御装置が組み込まれ、 この 圧力制御装置によってパワーシリンダに供給される油圧を補助的な操舵力 として利用している。  In a power steering device using hydraulic pressure, a pressure control device for supplying a hydraulic pressure corresponding to a steering force to a power cylinder is incorporated, and the hydraulic pressure supplied to the power cylinder by the pressure control device is used as an auxiliary steering force. We are using.
このような圧力制御装置の一例として、 例えば日本特開昭 6 2 - 3 2 0 2 8 6号公報に開示された圧力制御弁が知られている。 この圧力制御弁は、 操舵のためのァクチユエ一夕に対する油圧の上昇や下降が、 当該圧力制御 弁を構成するバルブスプールの開閉動作にのみ対応するようになっている。 つまり、 操舵トルクに応じて発生するプランジャの押圧力が増大すると、 バルブスプールが開いて油ポンプからの高圧の圧油がァクチユエ一夕に導 かれると同時に、 バルブスプールの背部に設けたフィ一ドバック室にもこ の高圧の圧油が作用し、 バルブスプールを押し戻すような操舵反力が発生 するのである。  As an example of such a pressure control device, for example, a pressure control valve disclosed in Japanese Patent Application Laid-Open No. 62-320286 is known. In this pressure control valve, an increase or decrease in oil pressure with respect to the actuator for steering corresponds only to the opening / closing operation of a valve spool constituting the pressure control valve. In other words, when the pressing force of the plunger generated according to the steering torque increases, the valve spool opens and high-pressure hydraulic oil from the oil pump is guided to the actuator, and at the same time, the feedback provided on the back of the valve spool is provided. This high-pressure oil acts on the chamber and generates a steering reaction force that pushes back the valve spool.
日本特開昭 6 2 - 3 2 0 2 8 6号公報に開示された従来の圧力制御弁は、 操舵トルクに応じて発生するプランジャの押圧力が増加すると、 バルブス プールが開いて油ポンプからの高圧の圧油がァクチユエ一夕とフィ一ドバ ック室とに導かれる構造となっているため、 操舵トルクに比例した油圧に よる補助操舵力が発生し、 停車中での操舵操作、 いわゆる据え切り等の高 負荷時には、 操舵トルクが比較的大きくなってしまう不具合があった。 そこで、 据え切り等の高負荷時における操舵トルクを小さくする目的で、 フィ一ドバック室からの油圧反力が小さくなるように設定すると、 今度は 通常走行時における必要な操舵力が余りに小さくなり過ぎてしまい、 操縦 性を損なう虞れがあった。 The conventional pressure control valve disclosed in Japanese Patent Application Laid-Open No. 62-332026 discloses that when the pressing force of the plunger generated according to the steering torque increases, the valve spool opens and the pressure from the oil pump increases. Since high-pressure hydraulic oil is guided to the actuator and the feedback chamber, an auxiliary steering force is generated by hydraulic pressure proportional to the steering torque. At high load such as turning, the steering torque was relatively large. Therefore, in order to reduce the steering torque at the time of high load such as stationary, If the hydraulic reaction force from the feedback chamber was set to be small, the required steering force during normal running would be too small, which could impair the maneuverability.
従って、 本発明は、 スプール操作力に対する作動液の上昇特性を途中か ら変更し得る圧力制御装置を提供することを目的とする。  Accordingly, an object of the present invention is to provide a pressure control device capable of changing the ascending characteristic of the hydraulic fluid with respect to the spool operation force in the middle.
また、 本発明は、 操舵力に対してパワーシリンダに供給される油圧が非 線形な特性を有し、 特に据え切り時における操舵トルクを従来のものより 軽減し得るパワーステアリング装置を提供することを目的とする。  Another object of the present invention is to provide a power steering apparatus which has a non-linear characteristic in hydraulic pressure supplied to a power cylinder with respect to a steering force, and in particular, can reduce a steering torque at the time of stationary steering as compared with a conventional one. Aim.
また、 本発明は、 シール部材の使用を不要とし耐久性の向上を図ること のできるパワーステアリング装置を提供することを目的とする。 発明の開示  Another object of the present invention is to provide a power steering device which does not require the use of a seal member and can improve durability. Disclosure of the invention
本発明に係る圧力制御装置は、 弁胴に形成された弁収容孔に対して摺動 自在に嵌合するスプールと、 このスプールにより前記弁収容孔の一端側に 仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞれ形成 されて作動液供給源に接続する第二の液室およびァクチユエ一夕に接続す る第三の液室と、 前記スプールを前記第一の液室側に移動して前記第二の 液室と前記第三の液室とが連通するように操作し得る弁操作手段と、 前記 第一の液室と前記第三の液室とを連通する作動液通路と、 この作動液通路 の途中に介装されて前記第三の液室が所定圧以上となった場合に前記第一 の液室と前記第三の液室との連通状態を遮断する切換弁とを具えたことを 特徴とするものである。  A pressure control device according to the present invention comprises: a spool slidably fitted in a valve receiving hole formed in a valve body; and a first liquid chamber partitioned by the spool at one end of the valve receiving hole. A second liquid chamber formed between the valve body and the spool and connected to a hydraulic fluid supply source and a third liquid chamber connected to an actuator, and the spool is connected to the first liquid chamber. Valve operating means that can move to the liquid chamber side and operate so that the second liquid chamber communicates with the third liquid chamber; and communicates the first liquid chamber with the third liquid chamber. And a communication state between the first liquid chamber and the third liquid chamber when the third liquid chamber has a predetermined pressure or more and is interposed in the middle of the hydraulic liquid path. And a switching valve for shutting off.
また、 本発明に係る圧力制御装置は、 弁胴に形成された弁収容孔に対し て搢動自在に嵌合するスプールと、 このスプールにより前記弁収容孔の一 端側に仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞ れ形成されて作動液供給源に接続する第二の液室およびァクチユエ一夕に 接続する第三の液室と、 前記スプールを前記第一の液室側に移動して前記 第二の液室と前記第三の液室とが連通するように操作し得る弁操作手段と、 前記第一の液室と前記第三の液室とを連通する作動液通路と、 この作動液 通路の途中に介装されて前記第三の液室が所定圧以上となった場合に前記 1 第一の液室と前記第三の液室との連通状態を遮断すると共に前記第一の液 室を前記作動液通路から分岐する排液通路に接続する切換弁とを具えたこ とを特徵とするものである。 In addition, a pressure control device according to the present invention includes a spool that is slidably fitted in a valve receiving hole formed in a valve body, and a first partition partitioned to one end of the valve receiving hole by the spool. A second liquid chamber respectively formed between the valve body and the spool and connected to the hydraulic fluid supply source, and a third liquid chamber connected to the actuator and the spool. Valve operating means which can be moved to the first liquid chamber side and operated so that the second liquid chamber and the third liquid chamber communicate with each other; the first liquid chamber and the third liquid A hydraulic fluid passage communicating with the third fluid chamber, the hydraulic fluid passage being interposed in the middle of the hydraulic fluid passage, and (1) A switching valve that cuts off a communication state between the first liquid chamber and the third liquid chamber and connects the first liquid chamber to a drain passage branched from the hydraulic fluid passage. It is assumed that.
また、 本発明に係る圧力制御装置は、 弁胴に形成された弁収容孔に対し て摺動自在に嵌合するスプールと、 このスプールにより前記弁収容孔のー 端側に仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞ れ形成され、 かつ作動液供給源に接続する第二の液室およびこの第二の液 室に連通し得ると共に排液路を介して液溜めに接続するチヤ ンバ室および ァクチユエ一夕に接続する第三の液室と、 前記チヤ ンバ室と前記第三の液 室とを遮断し、 さらに前記スプールを前記第一の液室側に移動して前記第 二の液室と前記第三の液室とが連通するように操作し得る弁操作手段と、 前記第一の液室と前記第三の液室とを連通する作動液通路と、 この作動液 通路の途中に介装されて前記第三の液室が所定圧以上となった場合に前記 第一の液室と前記第三の液室との連通状態を遮断する切換弁とを具えたこ とを特徴とするものである。  In addition, a pressure control device according to the present invention includes a spool slidably fitted in a valve receiving hole formed in a valve body, and a first partition partitioned on one end side of the valve receiving hole by the spool. A second liquid chamber respectively formed between the valve body and the spool, and connected to a hydraulic fluid supply source; and a second liquid chamber that can communicate with the second liquid chamber and a drain passage. A third chamber connected to the reservoir via a chamber and a third chamber connected to the actuator, the chamber and the third chamber shut off, and the spool is connected to the first chamber. Valve operating means which can be moved to the side to operate the second liquid chamber and the third liquid chamber to communicate with each other; and an operation for communicating the first liquid chamber with the third liquid chamber. A fluid passage, and a third fluid chamber interposed in the middle of the working fluid passage when the pressure of the third fluid chamber becomes a predetermined pressure or more. A switching valve for shutting off a communication state between the first liquid chamber and the third liquid chamber is provided.
また、 本発明に係る圧力制御装置は、 弁胴に形成された弁収容孔に対し て摺動自在に嵌合するスプールと、 このスプールにより前記弁収容孔のー 端側に仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞ れ形成され、 かつ作動液供給源に接続する第二の液室およびこの第二の液 室に連通し得ると共に排液路を介して液溜めに接続するチヤンバ室および ァクチユエ一夕に接続する第三の液室と、 前記チヤ ンバ室と前記第三の液 室とを遮断し、 さらに前記スプールを前記第一の液室側に移動して前記第 二の液室と前記第三の液室とが連通するように操作し得る弁操作手段と、 前記第一の液室と前記第三の液室とを連通する作動液通路と、 この作動液 通路の途中に介装されて前記第三の液室が所定圧以上となった場合に前記 第一の液室と前記第三の液室との連通状態を遮断すると共に前記第一の液 室を前記作動液通路から分岐する排液通路に接続する切換弁とを具えたこ とを特徴とするものである。  In addition, a pressure control device according to the present invention includes a spool slidably fitted in a valve receiving hole formed in a valve body, and a first partition partitioned on one end side of the valve receiving hole by the spool. A second liquid chamber respectively formed between the valve body and the spool, and connected to a hydraulic fluid supply source; and a second liquid chamber that can communicate with the second liquid chamber and a drain passage. A third chamber connected to the reservoir via a chamber and a third chamber connected to the actuator, and the chamber chamber and the third chamber closed. Valve operating means that can move the second liquid chamber and the third liquid chamber to communicate with each other, and a hydraulic fluid that communicates the first liquid chamber with the third liquid chamber. The third fluid chamber is interposed in the middle of the hydraulic fluid passage and the third fluid chamber has a predetermined pressure or more. A switching valve for cutting off a communication state between the first liquid chamber and the third liquid chamber and connecting the first liquid chamber to a drain passage branched from the hydraulic fluid passage. It is assumed that.
また、 本発明に係る圧力制御装置は、 弁胴に形成された弁収容孔に対し て摺動自在に嵌合されるスプールと、 このスプールと前記弁胴との間にそ JP95/00291 れぞれ形成されてァクチユエ一タに接続する第一の液室および作動液供給 源に接続する第二の液室と、 前記第一および第二の液室が連通するように 前記スプールを操作し得るスプール操作手段と、 補助液路を介して前記第 一の液室に接続し、 かつ前記スプール操作手段を付勢し得る補助付勢手段 と、 前記補助波路の途中に設けられて前記第一の液室が所定圧以上となつ た場合に前記補助付勢手段に前記第一の液室からの作動液を導く開閉弁と を具えたことを特徴とするものである。 Further, a pressure control device according to the present invention includes a spool that is slidably fitted into a valve receiving hole formed in a valve body, and a spool between the spool and the valve body. JP95 / 00291 First liquid chamber formed respectively and connected to the actuator and second liquid chamber connected to the hydraulic liquid supply source, and the first and second liquid chambers are communicated with each other. A spool operating means capable of operating a spool, an auxiliary urging means connected to the first liquid chamber via an auxiliary liquid path, and capable of urging the spool operating means; provided in the middle of the auxiliary wave path The auxiliary urging means is provided with an on-off valve for guiding the hydraulic fluid from the first liquid chamber when the pressure of the first liquid chamber becomes equal to or higher than a predetermined pressure.
また、 本発明に係る圧力制御装置は、 弁胴に形成された弁収容孔に対し て摺動自在に嵌合されるスプールと、 このスプールと前記弁胴との間にそ れぞれ形成されてァクチユエ一夕に接続する第一の液室およびこの第一の 液室に連通し得ると共に排油路を介して油溜めに連通するチヤンバ室およ び作動液供給源に接続する第二の液室と、 第一の液室とチヤ ンバ室とを遮 断し、 さらに前記第一および第二の液室が連通するように前記スプールを 操作し得るスプール操作手段と、 補助波路を介して前記第一の液室に接続 し、 かつ前記スプール操作手段を付勢し得る補助付勢手段と、 前記補助液 路の途中に設けられて前記第一の液室が所定圧以上となった場合に前記補 助付勢手段に前記第一の液室からの作動液を導く開閉弁とを具えたことを 特徴とするものである。  In addition, a pressure control device according to the present invention includes a spool that is slidably fitted in a valve receiving hole formed in a valve body, and a spool formed between the spool and the valve body, respectively. And a second chamber connected to the hydraulic chamber and a chamber chamber which can communicate with the first chamber and which communicates with the oil reservoir via an oil drain. A liquid chamber, a first liquid chamber and a chamber chamber, and a spool operating means capable of operating the spool so that the first and second liquid chambers communicate with each other; and an auxiliary wave path. An auxiliary urging means connected to the first liquid chamber and capable of urging the spool operating means; provided in the middle of the auxiliary liquid path, when the first liquid chamber has a predetermined pressure or higher. An on-off valve for guiding the hydraulic fluid from the first fluid chamber to the auxiliary urging means. The one in which the features.
また、 本発明に係るパワーステアリング装置は、 パワーシリンダに形成 された一対のシリンダ室に対してそれぞれ圧油の給排を行なう一対の油圧 制御弁と、 これら一対の油圧制御弁を作動する弁駆動機構とを有するパヮ —ステアリ ング装置であって、 前記油圧制御弁は、 弁胴に形成された弁収 容孔に対して摺動自在に嵌合されるスプールと、 このスプールによって前 記弁収容孔の一端側に仕切られる第一の油室と、 前記弁胴と前記スプール との間にそれぞれ形成されて油ポンプからの圧油が供給される第二の油室 および前記パワーシリンダの一方の前記シリンダ室に連通する第三の油室 と、 この第三の油室に連通し得ると共に排油路を介して油溜めに連通する チャンバ室とを具え、 前記弁駆動機構は、 操舵に伴って前記第三の油室と 前記チヤンバ室とを遮断し、 さらに前記スプールを前記第一の油室側に移 動して前記第二の油室と第三の油室とを連通するものであり、 前記第一の 油室には、 車両の運転状態に応じてこの第一の油室内の油圧を調整する油 圧調整手段が付設されていることを特徴とするものである。 ここで、 前記 油圧調整手段が、 第一の油室に圧油を供給する油ポンプと、 前記第一の油 室に連通すると共に絞りが組み込まれた排油路とを具えるか、 あるいは第 一の油室と第三の油室とを連通する分岐通路と、 この分岐通路を絞るかあ るいは開閉する弁手段と、 前記第一の油室に連通すると共に絞りが組み込 まれた排油路とを具えたものであることが望ましい。 また、 前記車両の運 転状態が車両の走行速度であることが特に有効である。 Further, the power steering device according to the present invention includes a pair of hydraulic control valves for supplying and discharging hydraulic oil to and from a pair of cylinder chambers formed in the power cylinder, respectively, and a valve drive for operating the pair of hydraulic control valves. A hydraulic steering valve having a mechanism, wherein the hydraulic control valve is slidably fitted in a valve receiving hole formed in a valve body, and the spool accommodates the valve by the spool. A first oil chamber partitioned at one end of the hole, a second oil chamber formed between the valve body and the spool and supplied with pressure oil from an oil pump, and one of the power cylinder A third oil chamber that communicates with the cylinder chamber; and a chamber chamber that can communicate with the third oil chamber and communicates with the oil reservoir via a drainage passage. The said third Isolation from the chamber and the Chiyanba chamber, which further communicates with said spool to move to the first oil chamber side second oil chamber and the third oil chamber, the first The oil chamber is provided with hydraulic pressure adjusting means for adjusting the oil pressure in the first oil chamber in accordance with the operation state of the vehicle. Here, the hydraulic pressure adjusting means includes an oil pump for supplying pressure oil to the first oil chamber, and an oil discharge passage communicating with the first oil chamber and incorporating a throttle. A branch passage communicating between the first oil chamber and the third oil chamber, valve means for restricting or opening or closing the branch passage, and a discharge passage communicating with the first oil chamber and having a restriction incorporated therein. It is desirable to have an oil passage. It is particularly effective that the driving state of the vehicle is the traveling speed of the vehicle.
また、 本発明に係るパワーステアリング装置は、 操舵力が入力される入 力軸と操舵部材を駆動する出力軸とをトーシヨンバーで連結し、 該入力軸 と出力軸との相対回転量に応じて作動されるスプール弁式の弁作動機構を 有するパワーステアリング装置において、 前記スプール弁式の弁作動機構 を前記入力軸および出力軸を回転自在に支持する固定部材に配置し、 前記 入力軸と出力軸との相対回転を該両軸の軸線方向の運動に変換する運動方 向変換手段を設け、 該運動方向変換手段により前記弁作動機構を作動する ようにしたことを特徴とする。  Further, the power steering device according to the present invention is configured such that an input shaft to which a steering force is input and an output shaft for driving a steering member are connected by a torsion bar, and actuated according to a relative rotation amount between the input shaft and the output shaft. A power steering device having a spool valve type valve operating mechanism, wherein the spool valve type valve operating mechanism is disposed on a fixed member that rotatably supports the input shaft and the output shaft, and the input shaft and the output shaft A motion direction converting means for converting the relative rotation of the two shafts into an axial motion of the two shafts is provided, and the valve operating mechanism is operated by the motion direction converting means.
また、 本発明に係るパワーステアリ ング装置は、 前記スプール弁式の弁 作動機構は前記入力軸と平行に配置され、 前記運動方向変換手段は、 前記 入力軸に摺回動自在に嵌装され、 軸線に対し傾いた傾斜案内部と軸線方向 の案内部とが形成されたスリーブ部材と、 前記弁作動機構駆動用レバーを 具え前記スリ一ブ部材に対し軸線方向には一体的に連結され、 周方向には 回動自在なリング部材と、 前記入力軸に突設され前記傾斜案内部に係合す る駆動ピンと、 前記出力軸に固設され前記軸線方向案内部に係合するガイ ドビンとを具えていることを特徴とする。  Further, in the power steering apparatus according to the present invention, the spool valve-type valve operating mechanism is disposed in parallel with the input shaft, and the movement direction changing means is slidably fitted on the input shaft, A sleeve member formed with an inclined guide portion inclined with respect to the axis and a guide portion in the axial direction; and a lever for driving the valve operating mechanism, integrally connected to the sleeve member in the axial direction, and A ring member rotatable in the direction, a drive pin protruding from the input shaft and engaging with the inclined guide portion, and a guide bin fixed to the output shaft and engaging with the axial guide portion. It is characterized by having.
また、 本発明に係るパワーステアリング装置は、 前記スプール弁式の弁 作動機構は前記入力軸と平行に配置され、 前記運動方向変換手段は、 前記 入力軸に軸線方向に一体的に摺動自在に嵌装されたスリ一ブ部材およびリ ング部材であって、 軸線に対し傾いた傾斜案内部と軸線方向の案内部とが 形成されたスリーブ部材と、 前記弁作動機構駆動用レバーを具え前記スリ 一ブ部材に対し回動自在なリング部材と、 前記入力軸に突設され前記傾斜 案内部に係合する駆動ピンと、 前記出力軸に固設され前記軸線方向案内部 に係合するガイ ドビンとを具えていることを特徴とする。 Further, in the power steering apparatus according to the present invention, the spool valve-type valve operating mechanism is disposed in parallel with the input shaft, and the movement direction changing unit is slidable integrally with the input shaft in an axial direction. A sleeve member fitted with a sleeve member and a ring member, the sleeve member having an inclined guide portion inclined with respect to an axis and an axial guide portion, and a lever for driving the valve operating mechanism; A ring member rotatable with respect to one member, and the inclination protruding from the input shaft. It is characterized by comprising a drive pin engaged with the guide portion, and a guide bin fixed to the output shaft and engaged with the axial guide portion.
また、 本発明に係るパワーステアリング装置は、 前記スプール弁式作動 機構は前記入力軸と直角方向に配置され、 前記運動方向変換手段は、 前記 入力軸に軸線方向に一体的に摺動自在に嵌装された第一および第二のスリ 一ブ部材であって、 軸線に対し傾いた第一傾斜案内部と軸線方向の案内部 とが形成された第一スリーブ部材と、 軸線に対し傾いた第二傾斜案内部が 形成され、 前記弁作動機構駆動用レバーと前記第二傾斜案内部に係合する ピンとを具えたリング部材が嵌装された第二スリーブ部材と、 前記入力軸 に突設され前記第一傾斜案内部に係合する駆動ピンと、 前記出力軸に固設 され前記軸線方向案内部に係合するガイ ドビンとを具えていることを特徴 とする。  Further, in the power steering apparatus according to the present invention, the spool valve type operating mechanism is disposed in a direction perpendicular to the input shaft, and the movement direction changing means is integrally slidably fitted in the input shaft in the axial direction. A first sleeve member provided with a first inclined guide portion inclined with respect to the axis and an axial guide portion, and a first sleeve member inclined with respect to the axis. A second sleeve member on which a ring member having a valve operating mechanism driving lever and a pin engaged with the second inclined guide portion is fitted, and a second sleeve member is fitted to the input shaft; A drive pin engaged with the first inclined guide portion; and a guide bin fixed to the output shaft and engaged with the axial guide portion.
また、 本発明に係るパワーステアリ ング装置は、 前記固設部材は操舵部 材を摺動自在に支持するシリンダに固設されたハウジングであることを特 徴とする。  The power steering apparatus according to the present invention is characterized in that the fixed member is a housing fixed to a cylinder that slidably supports a steering member.
本発明の圧力制御装置によると、 ァクチユエ一夕に接続する第三の液室 内の液圧が所定以上になった場合、 第一の液室側へのスプールの移動に対 する第一の液室内の液圧反力がなくなるようにしたので、 弁操作手段によ るスプールの操作力が所定以上では軽減される結果、 例えばパワーステア リング装置等においては通常走行時における操舵特性を変えることなく、 据え切り等の高負荷時に従来よりも楽に操舵することができる。  According to the pressure control device of the present invention, when the fluid pressure in the third fluid chamber connected to the actuator becomes higher than a predetermined value, the first fluid with respect to the movement of the spool to the first fluid chamber side Since the reaction force of the hydraulic pressure in the room is eliminated, the operating force of the spool by the valve operating means is reduced when it is equal to or more than a predetermined value. The steering can be more easily performed in a heavy load such as stationary operation than before.
また、 本発明の圧力制御装置によると、 ァクチユエ一夕に接続する第一 の液室内が所定圧以上になつた場合、 補助付勢手段に第一の液室からの作 動液を供給し、 この補助付勢手段によってスプールの操作力を補うように したので、 スプール操作手段によるスプールの操作力を所定以上で軽減す ることが可能となり、 例えばパワーステアリング装置等においては通常走 行畤における操舵特性を変えることなく、 据え切り等の高負荷時に従来よ りも楽に操舵することができる。  Further, according to the pressure control device of the present invention, when the first liquid chamber connected to the actuator becomes a predetermined pressure or more, the hydraulic fluid from the first liquid chamber is supplied to the auxiliary urging means, Since the operating force of the spool is supplemented by the auxiliary biasing means, the operating force of the spool by the spool operating means can be reduced by a predetermined amount or more. Without changing the characteristics, it is possible to steer more easily than before with high loads such as stationary.
また、 本発明のパワーステアリング装置によると、 車両の運転状態に応 じて第一の油室内の油圧を調整する油圧調整手段を付設し、 スプールの移 動に対して油圧反力を発生する第一の油室内の油圧を例えば車速に応じて 調整するようにしたので、 据え切り等の高負荷時のみにおける操舵トルク を従来のものよりも軽減することができる。 Further, according to the power steering device of the present invention, the hydraulic pressure adjusting means for adjusting the hydraulic pressure in the first oil chamber according to the driving state of the vehicle is provided, and the spool is moved. The hydraulic pressure in the first oil chamber, which generates a hydraulic reaction force to the movement, is adjusted according to, for example, the vehicle speed, so that the steering torque during only high loads such as stationary operation is reduced compared to the conventional one. Can be.
また、 本発明のパワーステアリ ング装置によると、 スプール弁式の弁作 動機構を固定部材に配置したので、 耐久性の問題を生ずるようなシール部 材を不要とすることができる。 図面の簡単な説明  Further, according to the power steering device of the present invention, since the spool valve-type valve operating mechanism is disposed on the fixed member, it is possible to eliminate the need for a seal member that causes a problem of durability. BRIEF DESCRIPTION OF THE FIGURES
図 1はパワーステアリング装置に適用した、 本発明の一実施例による圧 力制御装置の概略断面図である。  FIG. 1 is a schematic sectional view of a pressure control device according to an embodiment of the present invention applied to a power steering device.
図 2は図 1中の 2— 2線に沿った断面図である。  FIG. 2 is a sectional view taken along line 2-2 in FIG.
図 3は図 1中の 3— 3線に沿った断面図である。  FIG. 3 is a sectional view taken along line 3-3 in FIG.
図 4は図 1の圧力制御装置の主要部分を拡大した断面図である。  FIG. 4 is an enlarged sectional view of a main part of the pressure control device of FIG.
図 5は図 1の圧力制御装置における操舵トルクを接続油路内の作動油の 圧力との関係を示すグラフである。  FIG. 5 is a graph showing the relationship between the steering torque in the pressure control device of FIG. 1 and the pressure of the hydraulic oil in the connecting oil passage.
図 6は本発明の他の実施例を示す図 4と同様の図である。  FIG. 6 is a view similar to FIG. 4, showing another embodiment of the present invention.
図 7はパワーステアリング装置に適用した、 本発明の他の実施例による 圧力制御装置の概略断面図である。  FIG. 7 is a schematic sectional view of a pressure control device according to another embodiment of the present invention applied to a power steering device.
図 8は図 7の油圧制御装置の主要部分の拡大断面図である。  FIG. 8 is an enlarged sectional view of a main part of the hydraulic control device of FIG.
図 9は図 7の油圧制御装置における操舵トルクとパワーシリ ンダに供給 される油圧との関係を表わすグラフである。  FIG. 9 is a graph showing the relationship between the steering torque and the hydraulic pressure supplied to the power cylinder in the hydraulic control device of FIG.
図 1 0は本発明の他の実施例による油圧制御装置を示す図 7と同様の図 のる。  FIG. 10 is a view similar to FIG. 7 showing a hydraulic control device according to another embodiment of the present invention.
図 1 1は図 1 0の油圧制御装置の主要部分の拡大断面図である。  FIG. 11 is an enlarged sectional view of a main part of the hydraulic control device of FIG.
図 1 2は図 1 0の油圧制御装置における操舵トルクとパワーシリンダに 供給される油圧との関係を示すグラフである。  FIG. 12 is a graph showing the relationship between the steering torque and the hydraulic pressure supplied to the power cylinder in the hydraulic control device of FIG.
図 1 3は本発明の他の実施例による油圧制御装置の主要部分を示す図 1 1と同様の図である。  FIG. 13 is a view similar to FIG. 11 showing a main part of a hydraulic control device according to another embodiment of the present invention.
図 1 4は図 1 3の油圧制御装置における車速および铪排油路内の油圧と ソレノィ ドに対する通電のオン,オフ状態との関係を示すマップ図である, 図 1 5は図 1 3に示した油圧制御装置における操舵トルクとパワーシリ ンダ内の作動油と圧力との関係を表すグラフである。 Fig. 14 is a map diagram showing the relationship between the vehicle speed and the oil pressure in the drainage passage and the on / off state of energization to the solenoid in the hydraulic control device of Fig. 13, FIG. 15 is a graph showing the relationship between the steering torque and the hydraulic oil and pressure in the power cylinder in the hydraulic control device shown in FIG.
図 1 6はパワーステアリ ング装置に応用した、 本発明の更に他の実施例 による圧力制御装置の概略断面図である。  FIG. 16 is a schematic cross-sectional view of a pressure control device according to still another embodiment of the present invention applied to a power steering device.
図 1 7は図 1 6中の 1 7— 1 7線に沿った断面図である。  FIG. 17 is a sectional view taken along the line 17-17 in FIG.
図 1 8は図 1 6の圧力制御装置の主要部分の拡大断面図である。  FIG. 18 is an enlarged sectional view of a main part of the pressure control device of FIG.
図 1 9は本発明の更に他の実施例を示す図 1 7と同棒の図である。  FIG. 19 is the same stick as FIG. 17 showing still another embodiment of the present invention.
図 2 0はパワーステアリ ング装置に適用した、 本発明の他の実施例によ る油圧制御装置を示す概略断面図である。  FIG. 20 is a schematic sectional view showing a hydraulic control device according to another embodiment of the present invention applied to a power steering device.
図 2 1は本発明の更に他の実施例による油圧制御装置を示す図 2 0と同 様の図である。  FIG. 21 is a view similar to FIG. 20 showing a hydraulic control apparatus according to still another embodiment of the present invention.
図 2 2は本発明の更に他の実施例による油圧制御装置を示す図 2 0と同 様の図である。  FIG. 22 is a view similar to FIG. 20 showing a hydraulic control apparatus according to still another embodiment of the present invention.
図 2 3は図 2 2中の 2 3— 2 3線に沿った断面図である。  FIG. 23 is a sectional view taken along the line 23-3-23 in FIG.
図 2 4は図 2 3中の 2 4— 2 4線に沿った断面図である。 発明を実施するための最良の形態  FIG. 24 is a sectional view taken along the line 24-24 in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
パワーステアリング装置に応用した、 本発明の一実施例による圧力制御 装置を図 1〜図 5を参照しながら詳細に説明する。  A pressure control device according to an embodiment of the present invention applied to a power steering device will be described in detail with reference to FIGS.
本実施例の概略構造を表す図 1に示すように、 図示しない車体の幅方向 (図中、 左右方向) に延びるシリンダ 1 1には、 両端に図示しないタイ口 ッ ドをそれぞれ連結したラック棒 1 2が図中、 左右方向に摺動自在の貫通 しており、 シリンダ 1 1に保持された当該ラック棒 1 2の一端部には、 シ リンダ 1 1の一端側を左右二つの油室 1 3 L , 1 3 Rに仕切るビストン 1 4が一体的に嵌着されている。 また、 シリンダ 1 1の中央部には、 ラック 棒 1 2と交差するピニォン軸 1 5の上下両端部がそれぞれ軸受 1 6 , 1 7 を介して回転自在に保持されており、 このピニオン軸 1 5に形成されたピ 二オン 1 8には、 ラック棒 1 2に形成されたラック 1 9が嚙合っている。 つまり、 ピニオン軸 1 5を駆動回転することにより、 ラック棒 1 2を介し てタイロッ ドが図示しない操舵輪の向きを変えるようになっている。 このように、 本発明のァクチユエ一夕として本実施例では、 シリンダ 1 1に対し摺動自在に嵌合されて当該シリ ンダ 1 1内を二つの油室 1 3 L , 1 3 Rに仕切るピストン 1 4を具えたラック棒 1 2を採用しているが、 こ れ以外の構造のァクチユエ一夕を採用することも可能である。 As shown in FIG. 1 showing a schematic structure of the present embodiment, a cylinder 11 extending in the width direction (left and right direction in the figure) of a vehicle body (not shown) is provided with a rack rod having tie openings (not shown) connected to both ends. 1 is penetrated so as to be slidable in the left-right direction in the figure, and one end of the rack rod 12 held by the cylinder 11 is connected to one end of the cylinder 11 by two oil chambers 1 on the left and right. Biston 14 partitioning into 3 L and 13 R is integrally fitted. In the center of the cylinder 11, the upper and lower ends of a pinion shaft 15 intersecting with the rack bar 12 are rotatably held via bearings 16 and 17, respectively. The rack 19 formed on the rack bar 12 is aligned with the pinion 18 formed on the rack. That is, by driving and rotating the pinion shaft 15, the tie rod changes the direction of the steered wheels (not shown) via the rack bar 12. As described above, in the present embodiment, the piston of the present invention is slidably fitted to the cylinder 11 to partition the cylinder 11 into two oil chambers 13 L and 13 R. Although the rack bar 12 equipped with 14 is employed, it is also possible to employ an actuator of other structure.
前記ピニオン軸 1 5の中央上部には、 ねじり棒ばね 2 0の下端部がセレ ーション嵌合されており、 このねじり棒ばね 2 0を同軸に囲む筒状の入力 軸 2 1が上下一対の軸受 2 2 , 2 3を介してピニオン軸 1 5の上端部およ びハウジング 2 4に対してそれぞれ相対回転可能に保持されている。 これ らねじり棒ばね 2 0および入力軸 2 1の上端部には、 これらを一体的に連 結する連結ピン 2 5が装着されており、 この入力軸 2 1の上端部には図示 しない操舵ハンドルを上端部に取り付けた操舵軸 2 6の下端部がセレーシ ヨン嵌合されている。 つまり、 ピニオン軸 1 5に対する操舵ハンドルの操 作による操舵軸 2 6の回転力は、 ねじり棒ばね 2 0を介してのみ伝達され るようになっている。  A lower end of a torsion bar spring 20 is selectively fitted to the center upper portion of the pinion shaft 15, and a cylindrical input shaft 21 coaxially surrounding the torsion bar spring 20 is a pair of upper and lower bearings. The pinion shaft 15 and the housing 24 are held rotatably relative to the upper end of the pinion shaft 15 and the housing 24 via 22 and 23, respectively. A connecting pin 25 for integrally connecting the torsion bar spring 20 and the input shaft 21 is mounted on an upper end of the input shaft 21. A steering handle (not shown) is provided on the upper end of the input shaft 21. The lower end of the steering shaft 26 having the upper end attached thereto is serration-fitted. That is, the rotational force of the steering shaft 26 due to the operation of the steering wheel with respect to the pinion shaft 15 is transmitted only through the torsion bar spring 20.
図 1およびその 2 - 2線断面構造を表す図 2に示すように、 内部が液密 状態に保持された前記ハウジング 2 4内には、 下端部がピニオン軸 1 5に 複数本の連結ピン 2 7を介して連結された円筒状をなす弁ロータ 2 8が当 該ハウジング 2 4に対して摺動回転可能に収納されている。 また、 入力軸 2 1を囲むこの弁ロータ 2 8の上部には、 扇状のレバ一保持空間 2 9が形 成されており、 このレバー保持空間 2 9には入力軸 2 1の中央部に一体的 に嵌着された V字形のスプール操作レバー 3 0が相対回転可能に収納され ている。  As shown in FIG. 1 and FIG. 2 showing the cross-sectional structure taken along the line 2-2, the housing 24 in which the inside is held in a liquid-tight state has a lower end portion on a pinion shaft 15 and a plurality of connecting pins 2. A cylindrical valve rotor 28 connected to the housing 24 is slidably housed in the housing 24. A fan-shaped lever holding space 29 is formed above the valve rotor 28 surrounding the input shaft 21. The lever holding space 29 is integrated with the center of the input shaft 21. A V-shaped spool operation lever 30 which is fitted in the housing is housed so as to be relatively rotatable.
図 1〜4に示すように、 本実施例における弁口一夕 2 8は、 弁ホルダ 3 1と一対の覆板 3 2 , 3 3とで形成され、 全体として円筒状をなすように 組み立てられる。 弁ホルダ 3 1には、 入力軸 2 1の貫通方向と直角な方向 に延びる一対の段付き孔 3 4が入力軸 2 1を挟んで相互に平行に穿設され ており、 それぞれ小径側の開口端部にはシールキャップ 3 5が緊密に装着 され、 大径側の開口端部にはそれぞれシールプラグ 3 6を圧入したカバー スリーブ 3 7が装着されている。  As shown in FIGS. 1 to 4, the valve opening 28 in this embodiment is formed by a valve holder 31 and a pair of cover plates 32, 33, and is assembled so as to form a cylindrical shape as a whole. . The valve holder 31 has a pair of stepped holes 34 extending in a direction perpendicular to the direction in which the input shaft 21 penetrates. A seal cap 35 is tightly attached to the end, and a cover sleeve 37 into which a seal plug 36 is press-fitted is attached to each of the large-diameter open ends.
これら一対の段付き孔 3 4の部分の構成は全く同じであり、 カバースリ —ブ 3 7には、 筒状をなすスプール 3 8 L , 3 8 R (単に、 3 8と記述す る場合がある) の一端部が 0リング 3 9を介して摺動自在に嵌合され、 こ れによってシールプラグ 3 6とカバースリーブ 3 7の内周とスプール 3 8 の一端面とで囲まれた第一の油室 4 0 L , 4 0 R (単に、 4 0と記述する 場合がある) を構成している。 他端部が 0リング 4 1を介して段付き孔 3 4の小径部分に摺動自在に嵌合されるスプール 3 8の中央部には、 弁座と して機能する段付き孔 3 4の段部 4 2に当接し得る円錐状の弁体 4 3が一 体的に形成されている。 そして、 このスプール 3 8の他端部と弁体 4 3と の間に位置する段付き孔 3 4の小径部分の内周側が第二の油室 4 4 L , 4 4 R (単に、 4 4と記述する場合がある) を構成すると共に、 弁体 4 3と カバースリーブ 3 7との間に位置する段付き孔 3 4の大径部分の内周側が 第三の油室 4 5 L, 4 5 R (単に、 4 5と記述する場合がある) を構成し ている。 The configuration of the pair of stepped holes 34 is exactly the same, —One end of a cylindrical spool 38 L, 38 R (sometimes simply described as 38) is slidably fitted to the valve 37 via a 0 ring 39. As a result, the first oil chambers 40 L and 40 R surrounded by the inner periphery of the seal plug 36 and the cover sleeve 37 and one end surface of the spool 38 (may be simply referred to as 40). There is). At the center of the spool 38, the other end of which is slidably fitted to the small diameter portion of the stepped hole 34 via the O-ring 41, there is a stepped hole 34 that functions as a valve seat. A conical valve body 43 that can abut the step portion 42 is integrally formed. The inner peripheral side of the small diameter portion of the stepped hole 34 located between the other end of the spool 38 and the valve element 43 is the second oil chamber 44 L, 44 R (simply, 4 4 And the inner peripheral side of the large diameter portion of the stepped hole 34 located between the valve body 43 and the cover sleeve 37 is the third oil chamber 45 L, 4 5 R (may be simply written as 4 5).
なお、 本実施例では段部 4 2と弁体 4 3とで第二の油室 4 4と第三の油 室 4 5とを仕切るようにしたが、 これら二つの油室 4 4 , 4 5をスプール In this embodiment, the second oil chamber 44 and the third oil chamber 45 are partitioned by the step portion 42 and the valve element 43, but these two oil chambers 44, 45 The spool
3 8によって遮断し得る構造であれば、 本実施例に限らず他の周知な構造 を採用するようにしても良い c また、 本実施例では製造上の容易性の点で 弁ホルダ 3 1とカバースリーブ 3 7とを別体にて形成し、 これらを本発明 の弁胴として機能させているが、 これ以外の分割構造を採用することも当 然可能である。 If a structure capable of blocking the 3 8, so as to employ other well-known structures is not limited to this embodiment may c Also, in this embodiment the valve holder 3 1 in terms of ease of manufacture is Although the cover sleeve 37 and the cover sleeve 37 are formed separately and function as the valve body of the present invention, it is also possible to adopt another divided structure.
前記第一および第二の油室 4 0 , 4 4内には、 弁体 4 3が段付き孔 3 4 の段部 4 2に当接して第二の油室 4 4と第三の油室 4 5との連通状態が遮 断されるようにスプール 3 8をそれぞれ付勢する圧縮コイルばね 4 6 , 4 7が収納されている。  In the first and second oil chambers 40, 44, a valve body 43 is in contact with the stepped portion 42 of the stepped hole 34, and the second oil chamber 44 and the third oil chamber Compression coil springs 46, 47 for urging the spool 38, respectively, so as to block the communication with the spool 45 are housed.
スプール 3 8の中央部分には、 一端側が連通孔 4 8を介して第三の油室 At the center of the spool 38, one end is connected to a third oil chamber through a communication hole 48.
4 5に連通すると共に他端側が前記シールキャップ 3 5に向けて開口する 排油案内通路 4 9が形成されている。 また、 前記段付き穴 3 4の小径部分 のシールキャップ 3 5側には、 内フランジ 5 0が形成されており、 この内 フランジ 5 0とシールキヤップ 3 5との間に位置する段付き孔 3 4の小径 部分 (以下、 ここをチャンバ室と呼称する) 5 1は、 排油路 5 2を介して 油溜め 5 3に連通している。 An oil discharge guide passage 49 is formed which communicates with the seal cap 45 and opens at the other end toward the seal cap 35. Further, an inner flange 50 is formed on the seal cap 35 side of the small diameter portion of the stepped hole 34, and a stepped hole 3 located between the inner flange 50 and the seal cap 35 is formed. The small-diameter portion of 4 (hereinafter, referred to as the chamber) 5 1 is connected to the oil drain passage 52 It is connected to the sump 5 3.
前記内フランジ 5 0とスプール 3 8の他端との間の段付き穴 3 4の小径 部分には、 円板状をなすプランジャ 5 4 L , 5 4 R (単に、 5 4と記述す る場合がある) が摺動自在に収納され、 このプランジャ 5 4はそのスプー ル 3 8側において、 排油案内通路 4 9の開口端部に当接してこれを閉塞し 得る円錐状をなすポペッ ト 5 5が突設されている。 また、 このポペッ ト 5 5の周囲には、 上述したチヤンバ室 5 1と、 排油案内通路 4 9側とを連通 し得る複数の連通孔 5 6が形成されており、 ポぺッ 卜 5 5と反対側のブラ ンジャ 5 4には、 スプール操作レバー 3 0の'先端部に形成した長孔 5 7に 摺動自在に係合する駆動ピン 5 8 L , 5 8 R (単に、 5 8と記述する場合 がある) が一体的に連結されている。  In the small-diameter portion of the stepped hole 34 between the inner flange 50 and the other end of the spool 38, disc-shaped plungers 54 L and 54 R (when simply described as 54) The plunger 54 is slidably accommodated, and the plunger 54 has a conical poppet 5 on its spool 38 side that can abut the open end of the oil discharge guide passage 49 to close it. 5 are protruding. Around the poppet 55, a plurality of communication holes 56 are formed for communicating the chamber chamber 51 described above and the oil discharge guide passage 49 side. On the other side of the plunger 54, there are provided drive pins 58L, 58R (simply, 58 and 85R) which are slidably engaged with an elongated hole 57 formed at the end of the spool operation lever 30 '. Are sometimes linked together.
つまり、 操舵ハンドルの操作によってねじり棒ばね 2 0と入力軸 2 1と に相対回転差が発生する、 すなわち弁口一タ 2 8とスプール操作レバー 3 0とに相対回転差が発生すると、 駆動ピン 5 8を介してプランジャ 5 4が 段付き孔 3 4内を摺動し、 プランジャ 5 4の一方が圧縮コイルばね 4 6 , 4 7のばね力に杭してスプール 3 8を押圧すると共にそのポぺッ ト 5 5力 排油案内通路 4 9を塞ぐ。 逆に、 プランジャ 5 4の他方が内フランジ 5 0 側に移動し、 その連通孔 5 6を介してチヤンバ室 5 1と、 排油案内通路 4 9との連通状態を確保するようになっている。 このため、 スプール 3 8と プランジャ 5 4との間には、 これらスプール 3 8とプランジャ 5 4とが離 れるように付勢してポぺッ ト 5 5と排油案内通路 4 9の開口端部との間に 隙間を確保する圧縮コイルばね 5 9が介装されており、 ねじり棒ばね 2 0 と入力軸 2 1 との間に相対回転差が発生しない状態、 すなわち弁ロータ 2 8とスプール操作レバー 3 0とに相対回転差が発生しない状態では、 チヤ ンバ室 5 1と、 排油案内通路.4 9とが連通孔 5 6を介して連通状態となる c なお、 操舵ハンドルから操舵軸 2 6およびスプール操作レバー 3 0を経 て、 駆動ピン 5 8、 プランジャ 5 4およびポぺッ ト 5 5が本発明の弁操作 手段を構成している。  That is, when a relative rotation difference is generated between the torsion bar spring 20 and the input shaft 21 by the operation of the steering handle, that is, when a relative rotation difference is generated between the valve port 28 and the spool operation lever 30, the drive pin is driven. Plunger 54 slides in stepped hole 34 through 58, and one of plungers 54 piles on the spring force of compression coil springs 46, 47 to press spool 38 and to push Pet 5 5 Force Close the oil drain guide passage 49. Conversely, the other side of the plunger 54 moves to the inner flange 50 side, and the communication state between the chamber chamber 51 and the oil discharge guide passage 49 via the communication hole 56 is ensured. . Therefore, between the spool 38 and the plunger 54, the spool 38 and the plunger 54 are urged so as to be separated from each other, and the opening ends of the port 55 and the oil discharge guide passage 49 are urged. A compression coil spring 59 is interposed between the torsion bar spring 20 and the input shaft 21 so that there is no relative rotation difference between the torsion bar spring 20 and the input shaft 21. When there is no relative rotation difference between the operation lever 30 and the chamber chamber 51, the oil discharge guide passage .49 is in communication with the oil discharge guide passage 49 through the communication hole 56. The drive pin 58, the plunger 54, and the port 55 via the spool 26 and the spool operation lever 30 constitute a valve operating means of the present invention.
前記第二の油室 4 4に臨む圧油供給路 6 0には、 油溜め 5 3からの作動 油を第二の油室 4 4側へ圧送する油ポンプ 6 1が設けられており、 この油 ポンプ 6 1と第二の油室 4 4との間の圧油供給路 6 0には、 第二の油室 4 4側から順に蓄圧用のアキュムレータ 6 2と、 この圧油供給路 6 0内の作 動油の圧力を検知する圧力スィツチ 6 3と、 第二の油室 4 4側から作動液 が油ポンプ 6 1側へ逆流するのを防止する逆止め弁 6 4とが組み込まれて いる。 前記油ポンプ 6 1を駆動する電動モータ 6 5は、 圧力スィッチ 6 3 からの検出信号に基づき、 圧油供給路 6 0内が所定圧力範囲に収まるよう に運転状態と停止状態とが切り換えられるようになつている。 An oil pump 61 for pumping hydraulic oil from an oil reservoir 53 to the second oil chamber 44 is provided in a pressure oil supply path 60 facing the second oil chamber 44. oil A pressure oil supply path 60 between the pump 61 and the second oil chamber 44 includes an accumulator 62 for accumulating pressure in order from the second oil chamber 44 side, and a pressure oil supply path 60 inside the pressure oil supply path 60. A pressure switch 63 that detects the pressure of the hydraulic oil of the oil pump and a check valve 64 that prevents the hydraulic fluid from flowing back from the second oil chamber 44 to the oil pump 61 are incorporated. . The electric motor 65 that drives the oil pump 61 switches between an operating state and a stopped state based on a detection signal from the pressure switch 63 so that the pressure oil supply passage 60 falls within a predetermined pressure range. It has become.
さらに、 前記第三の油室 4 5 L , 4 5 Rとシリンダに形成された油室 1 3 L , 1 3 Rとをそれぞれ連通する接続油路 6 6 L , 6 6 R (単に、 6 6 と記述する場合がある) の途中には、 第一の油室 4 0 L , 4 O Rに連通す る分岐油路 6 7 L , 6 7 R (単に、 6 7と記述する場合がある) が本発明 の作動液通路として形成されており、 この分岐油路 6 7 L, 6 7 Rの途中 には、 接続油路 6 6 L , 6 6 R内の作動油が設定圧以上となった場合に、 第一の油室 4 0 L , 4 0 Rと油溜め 5 3に接続する排油通路 6 8 L, 6 8 R (単に、 6 8と記述する場合がある) とを接続すると共に接続油路 6 6 L , 6 6 Rと分岐油路 6 7 L, 6 7 Rとを遮断する 3ポート 2位置切換弁 6 9 L , 6 9 R (単に、 6 9と記述する場合がある) が組み込まれている。 つまり、 この 3ポート 2位置切換弁 6 9のばね 7 0のばね力よりも当該 3 ポート 2位置切換弁 6 9のパイロッ ト油路 7 1 L , 7 1 R内の作動油の圧 力が低い状態では、 分岐油路 6 7と排油通路 6 8とが遮断されると共に接 続油路 6 6と分岐油路 6 7とが連通状態となっているが、 接続油路 6 6に 連通するパイ口ッ ト油路 7 1内の作動油の圧力が 3ポート 2位置切換弁 6 9のばね 7 0のばね力よりも大きくなると、 接続油路 6 6と分岐油路 6 7 とが遮断され、 代わりに分岐油路 6 7と排油通路 6 8とが連通するように^ zよってい。 o  Further, connection oil passages 66 L, 66 R (simply, 66 R) connecting the third oil chambers 45 L, 45 R and the oil chambers 13 L, 13 R formed in the cylinder, respectively. In some cases, there is a branch oil passage 67 L, 67 R (sometimes simply described as 67) communicating with the first oil chamber 40 L, 4 OR. It is formed as the hydraulic fluid passage of the present invention, and in the middle of the branch oil passages 67 L, 67 R, when the hydraulic oil in the connection oil passages 66 L, 66 R becomes higher than the set pressure. And the first oil chambers 40 L, 40 R and the oil drain passages 68 L, 68 R (sometimes simply described as 68) connected to the oil sump 53 are connected and connected. A 3-port 2-position switching valve 69 L, 69 R (sometimes simply described as 69) that shuts off the oil passages 66 L, 66 R and the branch oil passages 67 L, 67 R It has been incorporated. That is, the pressure of the hydraulic oil in the pilot oil passages 71 L and 71 R of the 3-port 2-position switching valve 69 is lower than the spring force of the spring 70 of the 3-port 2-position switching valve 69. In this state, the branch oil passage 67 and the drain oil passage 68 are shut off and the connection oil passage 66 and the branch oil passage 67 are in communication with each other, but they are connected to the connection oil passage 66. When the pressure of the hydraulic oil in the pilot oil passage 7 1 becomes larger than the spring force of the spring 70 of the 3-port 2-position switching valve 69, the connection oil passage 66 and the branch oil passage 67 are cut off. However, instead of the branch oil passage 67 and the oil drain passage 68 communicate with each other ^ z. o
なお、 シリンダ 1 1およびハウジング 2 4と弁ロータ 2 8との摺接部分 には、 これらにまたがって形成される排油路 5 2、 圧油供給路 6 0、 接続 油路 6 6、 分岐油路 6 7を連通するための複数の環状溝が図 1に示すよう にそれぞれシール状態で形成されているが、 この部分の構造に関しては、0 例えば米国特許第 4 , 9 5 3 , 4 1 6号 · 日本特開昭 6 0 - 1 9 9 7 6 5 号公報等で周知であるので、 これ以上の説明を省略するものとする。 The sliding contact between the cylinder 11 and the housing 24 and the valve rotor 28 is made up of a drain oil passage 52, a pressure oil supply passage 60, a connection oil passage 66, and a branch oil As shown in FIG. 1, a plurality of annular grooves for communicating the passages 67 are respectively formed in a sealed state, but as for the structure of this part, for example, U.S. Pat. No. 4,953,416 No.Japan Patent Showa 60-1 9 9 7 6 5 Since it is well-known in Japanese Patent Application Publication Nos. H07-26103, further description will be omitted.
従って、 操舵ハンドルを例えば図 2中、 右回りに操作すると、 その操舵 力が操舵軸 2 6を介してねじり棒ばね 2 0を介してピニオン軸 1 5および 弁口一夕 2 8に伝達される一方、 入力軸 2 1 と一体のスプール操作レバー 3 0のも伝達される。 ここで、 図示しない路面と車輪との摩擦抵抗等によ り、 ラック棒 1 2が図 1中、 右方向に移動し難い状態となっている場合、 入力軸 2 1の回転角に対してねじり棒ばね 2 0の回転角が小さくなる。 こ のため、 弁ロータ 2 8のレバー保持空間 2 9内をスプール操作レバー 3 0 が図 2中、 弁口一タ 2 8に対して右回りに相対回転し、 駆動ピン 5 8 Lを 介してプランジャ 5 4 Lがスプール 3 8 L側へ前進し、 そのポぺッ 卜 5 5 が排油案内通路 4 9を塞ぎ、 さらに圧縮コイルばね 4 6, 4 7のばね力に 杭してスプール 3 8 Lを第一の油室 4 0 L側へ押し出す。 これにより、 第 二および第三の油室 4 4 L , 4 5 Lが連通状態となり、 圧油供給路 6 0か らの作動油が接続油路 6 6 Lを介して油室 1 3 Lに供給される一方、 駆動 ピン 5 8 Rを介してプランジャ 5 4 Rがスプール 3 8 Rから離れるように 移動するものの、 排油案内通路 4 9が連通孔 5 6を介してチャンバ室 5 1 と連通状態に保持されるため、 油室 1 3 L内の作動油の圧力によってピス トン 1 4がラック棒 1 2と共に図 1中、 右側に付勢される。 これによつて、 ピニオン軸 1 5も弁口一夕 2 8と共に図 2中、 右回り回転し、 入力軸 2 1 に対するねじり棒ばね 2 0の相対回転が解消される。  Therefore, when the steering wheel is operated clockwise in FIG. 2, for example, the steering force is transmitted to the pinion shaft 15 and the valve opening 28 through the torsion rod spring 20 via the steering shaft 26. On the other hand, the spool operation lever 30 integral with the input shaft 21 is also transmitted. Here, if the rack bar 12 is hard to move rightward in FIG. 1 due to frictional resistance between the road surface and the wheels (not shown), the torsion will occur with respect to the rotation angle of the input shaft 21. The rotation angle of the bar spring 20 becomes smaller. As a result, the spool operation lever 30 rotates clockwise relative to the valve port 28 in FIG. 2 in the lever holding space 29 of the valve rotor 28, and through the drive pin 58L. The plunger 54L moves forward to the spool 38L side, and the port 55 blocks the oil discharge guide passage 49, and is further piled on the spring force of the compression coil springs 46, 47 to make the spool 38 Push L to the first oil chamber 40 L side. As a result, the second and third oil chambers 44 L and 45 L are in communication with each other, and the hydraulic oil from the pressure oil supply passage 60 is connected to the oil chamber 13 L via the connection oil passage 66 L. While supplied, the plunger 54R moves away from the spool 38R via the drive pin 58R, but the oil discharge guide passage 49 communicates with the chamber 51 via the communication hole 56. In this state, the piston 14 is urged to the right side in FIG. 1 together with the rack rod 12 by the pressure of the hydraulic oil in the oil chamber 13 L. As a result, the pinion shaft 15 also rotates clockwise in FIG. 2 together with the valve port 28, and the relative rotation of the torsion bar spring 20 with respect to the input shaft 21 is cancelled.
また、 操舵ハンドルを図 2中、 右回りに操作した場合、 入力軸 2 1の回 転角に対してねじり棒ばね 2 0の回転角が小さくなると、 反対が輪の第二 および第三の油室 4 4 R , 4 5 Rが連通状態となり、 油室 1 3 R内の作動 油の圧力によってビストン 1 4がラック棒 1 2と共に図 1中、 左側に付勢 され、 ピニオン軸 1 5も弁口一夕 2 8と共に図 2中、 左回りに回転して入 力軸 2 1に対するねじり棒ばね 2 0の相対回転が解消される。  When the steering wheel is operated clockwise in Fig. 2, when the rotation angle of the torsion bar spring 20 is smaller than the rotation angle of the input shaft 21, the opposite is true for the second and third oil wheels. The chambers 44R and 45R are in communication with each other, and the pressure of hydraulic oil in the oil chamber 13R urges the piston 14 along with the rack rod 12 to the left in Fig. 1, and the pinion shaft 15 is also a valve. With counterclockwise rotation 28, it rotates counterclockwise in FIG. 2 and the relative rotation of the torsion bar spring 20 with respect to the input shaft 21 is cancelled.
つまり、 ねじり棒ばね 2 0と入力軸 2 1 とに相対回転差が発生すると、 それを解消するように油室 1 3 L , 1 3 Rの何れか一方に作動油が供給さ れ、 この作動油の圧力によってラック棒 1 2が強制的に操舵方向に押し出 されるため、 わずかな操舵力で操舵操作行うことができる。 この場合、 操 舵軸 2 6に加わる操舵トルクと第三の油室 4 5内の作動油の圧力との関係 を表す図 5に示すように、 プランジャ 5 4の移動に伴って排油案内通路 4 9が塞がれ、 スプール 3 8が第一の油室 4 0側に押し込まれると、 第一の 油室 4 0が圧縮されると共に第二および第三の油室 4 4, 4 5が連通状態 となって油ポンプ 6 1からの作動油が接続油路 6 6側に供給され始め、 接 続油路 6 6内の油圧が上昇して行く。 そしてこの油圧の上昇に比例して駆 動ピン 5 8側からスプール操作レバ一 3 0を介して入力軸 2 1側に操舵反 力が作用し、 操舵トルクを増加して行かない限りスプール 3 8が図 4中、 右側に押し戻され、 第二の油室 4 4と第三の'油室 4 5とが遮断される。 し かし、 第一の油室 4 0側からの操舵反力に打ち勝って操舵トルクを増大さ せて行くと、 接続油路 6 6内の油圧が所定圧以上となり、 3ポート 2位置 切換弁 6 9が切り換えられて分岐油路 6 7と排油通路 6 8とが連通し、 第 —の油室 4 0内の圧力が低下する結果、 第一の油室 4 0側からの操舵反力 が緩和され、 操舵トルクをそれまでの割合で増大させなくても圧油供給路 6 0からの作動油が接続油路 6 6側に供給されて油圧が上昇するようにな つている。 In other words, when a relative rotation difference occurs between the torsion bar spring 20 and the input shaft 21, hydraulic oil is supplied to one of the oil chambers 13 L and 13 R so as to eliminate the difference, Since the rack bar 12 is forcibly pushed out in the steering direction by the oil pressure, the steering operation can be performed with a small steering force. In this case, As shown in FIG. 5, which shows the relationship between the steering torque applied to the rudder shaft 26 and the pressure of the hydraulic oil in the third oil chamber 45, the oil discharge guide passage 49 is closed with the movement of the plunger 54. When the spool 38 is pushed into the first oil chamber 40, the first oil chamber 40 is compressed and the second and third oil chambers 44, 45 are in communication. The hydraulic oil from the oil pump 61 starts to be supplied to the connection oil passage 66 side, and the oil pressure in the connection oil passage 66 increases. Then, a steering reaction force acts on the input shaft 21 side from the drive pin 58 through the spool operation lever 30 in proportion to the increase in the oil pressure, and unless the steering torque increases, the spool 3 8 Is pushed back to the right in FIG. 4, and the second oil chamber 44 and the third oil chamber 45 are shut off. However, when the steering torque is increased by overcoming the steering reaction force from the first oil chamber 40, the hydraulic pressure in the connection oil passage 66 becomes equal to or higher than a predetermined pressure, and the 3-port 2-position switching valve 6 9 is switched so that the branch oil passage 67 communicates with the oil discharge passage 68, and the pressure in the second oil chamber 40 is reduced. As a result, the steering reaction force from the first oil chamber 40 is obtained. Therefore, the hydraulic oil from the pressure oil supply passage 60 is supplied to the connection oil passage 66 side without increasing the steering torque at that rate, and the hydraulic pressure rises.
このため、 操舵トルクと接続油路 6 6内の作動油の圧力とが、 図 5中の 二点鎖線で示す如く、 終始比例関係にある従来のものよりも、 所定の操舵 トルク以上では作動油の圧力をより急激に高めることができ、 停車状態に おける操舵、 いわゆる据え切り等を容易に行なうことができる。  For this reason, as shown by the two-dot chain line in FIG. 5, the steering oil and the hydraulic oil pressure in the connection oil passage 66 exceed the predetermined steering torque more than the conventional steering torque that is in a proportional relationship throughout. The pressure of the vehicle can be increased more rapidly, and steering in a stopped state, that is, so-called stationary steering can be easily performed.
なお、 図 2に示すようにねじり棒ばね 2 0と入力軸 2 1とに相対回転差 がなくなる、 すなわち操舵トルクが 0になると、 プランジャ 5 4が図 4に 示す中立状態に復帰し、 第三の油室 4 5内の作動油が連通孔 4 8から排油 案内通路 4 9および連通孔 5 6を介してチヤンバ室 5 1を通り、 排油路 5 2を介して油溜め 5 3に排出され、 同時にばね 7 0のばね力によって 3ポ 一ト 2位置切換弁 6 9が切り換えられ、 接続油路 6 6と分岐油路 6 7とが 連通する。  As shown in FIG. 2, when the relative rotation difference between the torsion bar spring 20 and the input shaft 21 disappears, that is, when the steering torque becomes 0, the plunger 54 returns to the neutral state shown in FIG. Hydraulic oil in the oil chamber 4 5 passes from the communication hole 48 to the oil discharge guide passage 49 and the communication chamber 56, passes through the chamber chamber 51, and is discharged to the oil reservoir 53 via the oil discharge passage 52. At the same time, the three-port two-position switching valve 69 is switched by the spring force of the spring 70, and the connection oil passage 66 and the branch oil passage 67 are communicated.
上述した実施例では、 3ポート 2位置切換弁 6 9を使用して接続油路 6 6内の作動油が所定圧以上となった場合に、 第一の油室 4 0を排油通路 6 8に接続して操舵反力を急激に低下させるようにしたが、 本発明の他の一 実施例における圧力制御装置の概略構造を表す図 6に示すように、 2ポー ト 2位置切換弁 7 2を使用して接続油路 6 6と分岐油路 6 7とを遮断し、 第一の油室 4 0内の作動油を操舵トルクの増大に応じて少しずつ排油する ようにしても良い。 つまり、 油溜め 5 3に接続する排油路 7 5を分岐油路 6 7の途中に連通させ、 この排油路 7 5の途中に逃がし弁 7 6を組み込み、 この逃がし弁 7 6のばね 7 7のばね力を咲きの 2ポート 2位置切換弁 7 2 のばね 7 4のばね力よりも大きく設定し、 排油路 7 5内の作動油が導かれ るパイロッ ト油路 7 8内の作動油の圧力がばね 7 7のばね力よりも大きく なると、 第一の油室 4 0内の作動油の一部が逃がし弁 7 6を介して排油路 7 5から油溜め 5 3に排出されるようにしている。 In the above-described embodiment, the first oil chamber 40 is connected to the oil discharge passage 68 when the hydraulic oil in the connection oil passage 66 exceeds a predetermined pressure by using the 3-port 2-position switching valve 69. To reduce the steering reaction force abruptly. As shown in FIG. 6 showing the schematic structure of the pressure control device in the embodiment, the connection oil passage 66 and the branch oil passage 67 are shut off using a two-port two-position switching valve 72, The hydraulic oil in the oil chamber 40 may be drained little by little as the steering torque increases. In other words, the drain oil passage 75 connected to the oil reservoir 53 is connected to the middle of the branch oil passage 67, and a relief valve 76 is incorporated in the middle of the drain oil passage 75, and the spring of the relief valve 76 is mounted. The spring force of 7 is set to be greater than the spring force of the blooming 2-port 2-position switching valve 7 2 spring 7 4 and the oil in the pilot oil passage 7 8 through which the hydraulic oil in the oil drain passage 75 is guided When the oil pressure becomes larger than the spring force of the spring 77, a part of the hydraulic oil in the first oil chamber 40 is discharged from the oil discharge passage 75 through the relief valve 76 to the oil reservoir 53. I am trying to.
従って、 接続油路 6 6に連通する 2ポート 2位置切換弁 7 2のパイロッ ト油路 7 3内の作動油の圧力がこの 2ポート 2位置切換弁 7 2のばね 7 4 のばね力よりも大きくなると、 接続油路 6 6と分岐油路 6 7とが遮断され、 第一の油室 4 0 L , 4 0 R内の作動油の圧力が保持されるため、 先の実施 例のように操舵反力が急激に低下せず、 操舵トルクと接続油路 6 6内の作 動油の圧力との関係を先の実施例よりも滑らかに変化させることができる。 そして、 操舵トルクの上昇に伴って第一の油室 4 0の作動油の圧力がさら に上昇して所定圧に達する度に逃がし弁 7 7の開動作が繰り返され、 操舵 反力の緩やかな上昇に対して接続油路 6 6内の圧力が上昇する。  Therefore, the pressure of the hydraulic oil in the pilot oil passage 73 of the 2-port 2-position switching valve 72 communicating with the connection oil passage 66 is larger than the spring force of the spring 74 of the 2-port 2-position switching valve 72. When it becomes larger, the connection oil passage 66 and the branch oil passage 67 are shut off, and the pressure of the hydraulic oil in the first oil chambers 40 L and 40 R is maintained, so that the The steering reaction force does not decrease sharply, and the relationship between the steering torque and the pressure of the hydraulic oil in the connection oil passage 66 can be changed more smoothly than in the previous embodiment. The opening operation of the relief valve 77 is repeated each time the hydraulic oil pressure in the first oil chamber 40 further increases and reaches a predetermined pressure with an increase in the steering torque, and the steering reaction force is moderate. As the pressure rises, the pressure in the connecting oil passage 66 rises.
なお、 上述した二つの実施例では作動液として圧油を使用したが、 他の 非圧縮性の液体を用いることも当然可能である。 また、 本実施例ではパヮ ーステアリング装置に応用したが、 たのパワーアシスト装置に利用するこ とも当然可能である。  In the above two embodiments, hydraulic oil is used as the hydraulic fluid, but other incompressible liquids can naturally be used. In this embodiment, the present invention is applied to a power steering device. However, it is naturally possible to use the present invention for a power assist device.
図 7〜図 9は本発明の他の実施例による圧力制御装置を示す。  7 to 9 show a pressure control device according to another embodiment of the present invention.
本実施例において、 前記第一の油室 4 0に臨む調圧油路 1 6 7には、 油 溜め 5 3からの作動油を第一の油室 4 0側へ圧送する調圧用油ポンプ 1 6 8が設けられており、 この調 J E用ポンプ 1 6 8を駆動する電動モータ 1 6 9は、 車速を検出する車速センサ 1 Ί 0からの検出信号に基づき、 車速が 大きいほど第一の油室 4 0内が高圧となるように、 コントローラ 1 7 1を 介して駆動されるようになっている。 なお、 調圧油路 1 6 7の途中には、 油溜め 5 3に接続する排油路 1 7 2が分岐し、 この排油路 1 7 2には絞り 1 7 3が介装されている。 In the present embodiment, a pressure-regulating oil pump 1 for pumping hydraulic oil from an oil reservoir 53 to the first oil chamber 40 is provided in a pressure-regulating oil passage 167 facing the first oil chamber 40. The electric motor 169 that drives the JE pump 168 is based on a detection signal from a vehicle speed sensor 100 that detects the vehicle speed. The chamber 40 is driven via the controller 17 1 so that the inside of the chamber 40 has a high pressure. In the middle of the pressure control oil passage 16 7 The oil drain 17 2 connected to the oil reservoir 5 3 branches, and a throttle 1 7 3 is interposed in the oil drain 17 2.
なお、 シリンダ 1 1およびハウジング 2 4と弁口一夕 1 2 8との摺接部 分には、 これらにまたがって形成される給排油路 1 6 6、 排油路 1 5 2、 圧油供給路 6 0、 調圧油路 1 6 7、 排油路 1 7 2を連通するための複数の 環状溝が図 7に示すようにそれぞれシ一ル状態で形成されている。  The sliding contact between the cylinder 11 and the housing 24 and the valve port 128 is made up of a supply / discharge oil passage 166, an oil discharge passage 15 As shown in FIG. 7, a plurality of annular grooves for communicating the supply passage 60, the pressure regulating oil passage 167, and the drainage passage 172 are formed in a sealed state.
本実施例では、 プランジャ 5 4の移動に伴ってスプール 3 8が第一の油 室 4 0側に押し込まれると、 この第一の油室 4 0内の油圧が増大し、 これ に伴う操舵反力が駆動ピン 5 8側からスプール操作レバー 3 0を介して入 力軸 2 1側に作用し、 操舵トルクを増加して行かない限りスプール 3 8が 図 2中、 右側に押し戻され、 第二の油室 4 4と第三の油室 4 5とが遮断さ れる。 つまり、 第二の油室 4 4側から第三の油室 4 5を介してパワーシリ ンダへ供給される油圧の立ち上がり傾向が第一の油室 4 0の油圧に対応し て設定されるようになっている。  In the present embodiment, when the spool 38 is pushed into the first oil chamber 40 along with the movement of the plunger 54, the hydraulic pressure in the first oil chamber 40 increases, and the steering reaction accompanying this is increased. The force acts on the input shaft 21 side from the drive pin 58 side via the spool operation lever 30 and unless the steering torque is increased, the spool 38 is pushed back to the right in FIG. The oil chamber 44 and the third oil chamber 45 are shut off. That is, the rising tendency of the hydraulic pressure supplied from the second oil chamber 44 to the power cylinder via the third oil chamber 45 is set so as to correspond to the hydraulic pressure of the first oil chamber 40. Has become.
また、 本実施例では、 車速センサ 1 7 0からの検出信号に基づき、 コン トロ一ラ 1 7 1が電動モータ 1 6 9を介して調圧用油ポンプ 1 6 8の吐出 流量を制御し、 車速が大きいほど第一の油室 4 0内の油圧が高圧となるよ うにしている。 このため、 操舵軸 2 6に負荷する操舵トルクと第三の油室 4 5内の作動油の圧力との関係を表す図 9に示すように、 車速が小さいほ ど第三の油室 4 5を介してパワーシリンダに供給される油圧の立ち上がり 点が操舵トルクの小さい方にずれ、 停車状態における操舵、 いわゆる据え 切り等を従来よりも容易に行なうことができる。  Further, in the present embodiment, the controller 17 1 controls the discharge flow rate of the pressure-regulating oil pump 16 8 via the electric motor 16 9 based on the detection signal from the vehicle speed sensor 17 The larger the pressure is, the higher the oil pressure in the first oil chamber 40 becomes. Therefore, as shown in FIG. 9, which shows the relationship between the steering torque applied to the steering shaft 26 and the pressure of the hydraulic oil in the third oil chamber 45, the third oil chamber 45 The starting point of the hydraulic pressure supplied to the power cylinder via the motor shifts to the point where the steering torque is smaller, and steering in a stopped state, so-called stationary operation, etc., can be performed more easily than before.
上述した実施例では調圧用油ポンプ 1 6 8を使用して第一の油室 4 0内 の圧力を調整するようにしたが、 油ポンプを使用せずに第一の油室 4 0内 の圧力を調整することも可能である。  In the above-described embodiment, the pressure in the first oil chamber 40 is adjusted using the pressure adjusting oil pump 168. However, the oil pressure in the first oil chamber 40 is adjusted without using the oil pump. It is also possible to adjust the pressure.
図 1 0および図 1 1は本発明のさらに他の実施例を示す。 この実施例に おいて、 給排油路 2 6 6の途中には、 第一の油室 4 0 L , 4 O Rに連通す る分岐油路 2 7 8 L , 2 7 8 R (単に、 2 7 8と記述する場合がある) が 形成されており、 この分岐油路 2 7 8 L , 2 7 8 Rの途中には、 車速セン サ 2 7 0からの情報に基づき、 コントローラ 2 7 1を介して通路断面積を 変更し得る可変絞り 2 7 9 L , 2 7 9 R (単に、 2 7 9と記述する場合が ある) が組み込まれている。 10 and 11 show still another embodiment of the present invention. In this embodiment, in the middle of the oil supply / drain passage 266, there are branch oil passages 278L and 278R communicating with the first oil chambers 40L and 4OR. 7 and 8) are formed. In the middle of the branch oil passages 2 780 L and 278 R, the controller 27 1 is controlled based on information from the vehicle speed sensor 2 70. Through the passage cross section The variable apertures 2779L and 2779R (sometimes simply described as 2779) that can be changed are incorporated.
なお、 他の構成は図 1 ~ 5に示す先の実施例と同じであり、 図 1 0及び 図 1 1中で図 1〜図 5に示した先の実施例と同様の部材には、 これと同様 の符号を記してある。  Other configurations are the same as those in the previous embodiment shown in FIGS. 1 to 5. In FIGS. 10 and 11, the same members as those in the previous embodiment shown in FIGS. The same reference numerals are used.
本実施例におけるコントローラ 2 7 1は、 車速が小さいほど分岐油路 2 7 8の通路断面積が小さくなる、 つまり車速が大きいほど分岐油路 2 7 8 の通路断面積が大きくなるように、 可変絞り 7 9の開度を制御するよう になっている。 つまり、 本実施例における操舵軸 2 6に負荷する操舵トル クとパワーシリンダに供給される油圧との関係を表す図 1 2に示すように、 プランジャ 5 4の移動に伴って排油案内通路 4 9が塞がれ、 スプール 3 8 が第一の油室 4 0側に押し込まれると、 第二および第三の油室 4 4 , 4 5 が連通状態となって油ポンプ 6 1からの作動油が給排油路 2 6 6側に供給 され始め、 給排油路 2 6 6内の油圧が上昇して行く。 そして、 この油圧の 上昇に対応して分岐油路 2 7 8を介して第一の油室 4 0の油圧も上昇し、 入力軸 2 1側への操舵反力が増大するが、 可変絞り 2 7 9を閉じるほど給 排油路 2 6 6側よりも第一の油室 4 0側の油圧が低くなるため、 車速が小 さいほど可変絞り 2 7 9を閉じて第一の油室 4 0の油圧反力を抑制し、 据 え切り等の際の操舵力を軽減するようにしている。  The controller 27 1 in the present embodiment is variable so that the passage cross-sectional area of the branch oil passage 278 becomes smaller as the vehicle speed becomes lower, that is, the passage cross-sectional area of the branch oil passage 278 becomes larger as the vehicle speed becomes higher. The opening of the throttle 79 is controlled. That is, as shown in FIG. 12 showing the relationship between the steering torque applied to the steering shaft 26 and the hydraulic pressure supplied to the power cylinder in this embodiment, the oil discharge guide passage 4 When the spool 9 is closed and the spool 38 is pushed into the first oil chamber 40, the second and third oil chambers 4 4 and 4 5 communicate with each other, and the hydraulic oil from the oil pump 6 1 Starts to be supplied to the oil supply / discharge passage 266 side, and the hydraulic pressure in the oil supply / discharge passage 266 increases. Then, in response to the increase in the oil pressure, the oil pressure in the first oil chamber 40 also increases through the branch oil passage 2778, and the steering reaction force toward the input shaft 21 increases. The closer the closing of 79, the lower the oil pressure on the first oil chamber 40 side than the oil supply / discharge passage 26 6 side, so the lower the vehicle speed, the close the variable throttle 27 9 and the first oil chamber 40 To reduce the steering force during stationary operation.
なお、 排油路 2 7 2の途中に形成される絞り 2 7 3を可変にすると共に 分岐油路 2 7 8の途中に介装される可変絞り 2 7 9を固定の絞り代えても 本実施例と同様な効果を得ることができる。 この場合、 車速が小さいほど 通路断面積が大きくなるように排油路 2 7 2の途中に形成される可変の絞 りを開けるようにすれば良い。  It should be noted that the present invention can be implemented even if the throttle 273 formed in the middle of the oil drain passage 272 is made variable and the variable throttle 279 provided in the middle of the branch oil passage 278 is changed to a fixed throttle. The same effect as the example can be obtained. In this case, a variable throttle formed in the middle of the oil drainage passage 27 2 may be opened so that the passage cross-sectional area increases as the vehicle speed decreases.
図 1 3は本発明のさらに他の実施例を示す。 この実施例において、 給排 油路 2 6 6の途中には、 この袷排油路 2 6 6内の作動油の圧力を検知する 圧力センサ 3 8 0 L , 3 8 0 R (単に、 3 8 0と記述する場合がある) が 組み付けられており、 これら圧力センサ 3 8 0からの検出信号は、 2ポー ト 2位置切換弁 3 8 1 L , 3 8 1 R (単に、 3 8 1と記述する場合がある ) のソレノイ ド 3 8 2 L , 3 8 2 R (単に、 3 8 2と記述する場合がある ) に対する通電のォン♦オフを切り換えるコントローラ 3 7 1に出力され る。 車速および給排油路 2 6 6内の油圧とソレノィ ド 3 8 2に対する通電 のオン ·オフ状態との関係を表す図 1 4に示すように、 コントローラ 3 7 1は車速センサ 3 7 0および圧力センサ 3 8 0からの検出信号に基づき、 車速が大きくかつ油圧が低いほどソレノィ ド 3 8 2を通電状態に保持し、 逆に車速が小さくかつ油圧が高いほどソレノィ ド 3 8 2を非通電状態に保 持することにより、 据え切り時における操舵反力を小さく設定すると共に 車両の走行時における操舵反力を適切に設定しており、 このような本実施 例における操舵軸 2 6に負荷する操舵トルクとパワーシリンダ内の作動油 の圧力との関係を図 1 5に示しておく。 FIG. 13 shows still another embodiment of the present invention. In this embodiment, in the middle of the supply / discharge oil passage 266, pressure sensors 380L, 380R (only 3 The sensor signal from these pressure sensors 380 is a two-port two-position switching valve 381 L, 381 R (simply, described as 381) ) Solenoids 38 2 L, 38 2 R (Sometimes described simply as 38 2 ) Is turned on and off. As shown in Fig. 14, which shows the relationship between the vehicle speed and the oil pressure in the oil supply / drain passageway 26, and the on / off state of energization to the solenoid 382, the controller 371, the vehicle speed sensor 37 0 Based on the detection signal from the sensor 380, the solenoid 382 is kept energized as the vehicle speed is higher and the oil pressure is lower, and the solenoid 382 is not energized as the vehicle speed is lower and the oil pressure is higher. The steering reaction force at the time of stationary steering is set to be small, and the steering reaction force at the time of running of the vehicle is appropriately set. Figure 15 shows the relationship between torque and hydraulic oil pressure in the power cylinder.
つまり、 車速が大きくかつ油圧が低い場合にはソレノィ ド 3 8 2が通電 状態となり、 2ポート 2位置切換弁 3 8 1のばね 3 8 3のばね力に杭して 第一の油室 4 0と給排油路 2 6 6とが連通し、 第一の油室 4 0には铪排油 路 2 6 6の作動油の圧力と対応した油圧反力が発生する。 逆に、 車速が小 さくかつ油圧が高い場合にはソレノイ ド 3 8 2が非通電状態となり、 2ポ 一ト 2位置切換弁 3 8 1のばね 3 8 3のばね力によって分岐油路 3 7 8が 遮断され、 第一の油室 4 0内の圧力がそれまでの油圧に保持される結果、 第一の油室 4 0側へのスプール 3 8の移動に伴う操舵反力が大幅に緩和さ れる。  In other words, when the vehicle speed is high and the hydraulic pressure is low, the solenoid 382 is energized, and the two-port two-position switching valve 381 is piled on the spring force of the spring 383 and the first oil chamber 40 And the oil supply / discharge passage 266 are communicated with each other, and a hydraulic reaction force corresponding to the pressure of the hydraulic oil in the oil discharge passage 266 is generated in the first oil chamber 40. Conversely, when the vehicle speed is low and the oil pressure is high, the solenoid 382 is de-energized, and the two-port two-position switching valve 381 The spring of the 381 The branch oil path 3 8 is shut off, and the pressure in the first oil chamber 40 is maintained at the previous oil pressure. As a result, the steering reaction force accompanying the movement of the spool 38 to the first oil chamber 40 is greatly reduced. Is done.
なお、 他の構成は図?〜 8に示す先の実施例と同じであり、 同様の部材 には、 これと同様の符号を記してある。  Is the other configuration shown in the diagram? 8 are the same as those in the previous embodiment, and the same members are denoted by the same reference numerals.
図 1 6〜図 1 8は本発明のさらに他の実施例による圧力制御装置を示す。 この実施例における弁ロータ 4 2 8は、 弁ホルダ 4 3 1と一対の覆板 4 3 2 , 4 3 3とで形成され、 全体として円筒状をなすように組み立てられ る。 本発明の弁胴として機能する弁ホルダ 4 3 1には、 入力軸 2 1の貫通 方向と直角な方向に延びる一対の段付き孔 4 3 4と貫通孔 4 3 5とが入力 軸 2 1を挟んで相互に平行に穿設されており、 それぞれ開口端部にはシー ルキャップ 4 3 6 , 4 3 7が緊密に装着されている。  FIGS. 16 to 18 show a pressure control device according to still another embodiment of the present invention. The valve rotor 428 in this embodiment is formed by a valve holder 431 and a pair of cover plates 432, 433, and is assembled so as to form a cylindrical shape as a whole. In the valve holder 431, which functions as the valve body of the present invention, a pair of stepped holes 434 and a through hole 435 extending in a direction perpendicular to the through They are bored in parallel with each other, and seal caps 436 and 437 are tightly attached to their open ends.
段付き孔 4 3 4の中央部には、 一対のフランジ 4 3 8が形成されており、 これら内フランジ 4 3 8の間に位置する段付き孔 4 3 4の中央部には、 排 油路 4 3 9を介して油溜め 4 4 0に連通するチャンバ室 4 4 1が形成され ている。 段付き孔 4 3 4は、 このチヤンバ室 4 4 1の長手方向に対称な構 造となっており、 内フランジ 4 3 8が形成された段付き孔 4 3 4の小径部 分には、 筒状をなすスプール 4 4 2 L , 4 4 2 R (単に、 4 4 2と記述す る場合がある) の基端部が 0リング 4 4 3を介して摺動自在に嵌合されて いる。 これらスプール 4 4 2の先端部には、 弁座として機能する段付き孔 4 3 4の段部 4 4 4に当接し得る円錐状の弁体 4 4 5が一体的に形成され ている。 そして、 段付き孔 4 3 4の大径部分の内周側が第一の油室 4 4 6 L , 4 4 6 R (単に、 4 4 6と記述している場合がある) を構成すると共 に、 スプール 4 4 2の基端部と弁体 4 4 5との間に位置する段付き孔 4 3 4の小径部分の内周側が第二の油室 4 4 7 L , 4 4 7 R (単に、 4 4 7と 記述する場合がある) を構成している。 A pair of flanges 438 are formed in the center of the stepped hole 434, and a drainage hole is formed in the center of the stepped hole 434 located between the inner flanges 438. A chamber chamber 441 communicating with the oil reservoir 440 via the oil passage 439 is formed. The stepped hole 4 3 4 has a structure symmetrical in the longitudinal direction of the chamber chamber 4 4 1, and a small diameter portion of the stepped hole 4 3 4 in which the inner flange 4 3 The proximal ends of the spools 44 2 L and 44 2 R (which may be simply described as 44 2) are slidably fitted via O-rings 4 4 3. A conical valve body 45 that can abut the step portion 44 of the stepped hole 43 functioning as a valve seat is integrally formed at the tip of the spool 44. The inner peripheral side of the large-diameter portion of the stepped hole 4 3 4 constitutes the first oil chambers 4 4 6 L and 4 4 6 R (sometimes simply described as 4 4 6). The inner peripheral side of the small diameter portion of the stepped hole 4 3 4 located between the base end of the spool 4 4 2 and the valve body 4 4 5 is the second oil chamber 4 4 7 L, 4 4 7 R (simply , 447).
なお、 本実施例では段部 4 4 4と弁体 4 4 5とで第一の油室 4 4 6と第 二の油室 4 4 7とを仕切るようにしたが、 これら二つの油室 4 4 6 , 4 4 7をスプール 4 4 2によって遮断し得る構造であれば、 本実施例に限らず 他の周知な構造を採用するようにしても良い。  In this embodiment, the first oil chamber 446 and the second oil chamber 447 are partitioned by the step portion 4444 and the valve element 445. The present invention is not limited to this embodiment, and any other well-known structure may be employed as long as it is a structure that can shut off 46 and 447 with the spool 442.
前記第二の油室 4 4 7内には、 弁体 4 4 5が段付き孔 4 3 4の段部 4 4 4に当接して第一の油室 4 4 6と第二の油室 4 4 7との連通状態が遮断さ れるようにスプール 4 4 2を付勢する圧縮コイルばね 4 4 8が収納されて いる。 また、 スプール 4 4 2の中央部分には、 先端側が第一の油室 4 4 6 に連通する排油案内通路 4 4 9がその長手方向に沿って貫通状態で形成さ れている。  In the second oil chamber 4 4 7, a valve body 4 4 5 is in contact with the step 4 4 4 of the stepped hole 4 3 4, and the first oil chamber 4 4 6 and the second oil chamber 4 A compression coil spring 448 for urging the spool 442 so that the communication with the port 47 is shut off is housed. An oil discharge guide passage 449 having a leading end communicating with the first oil chamber 446 is formed in the center of the spool 442 in a penetrating state along the longitudinal direction thereof.
前記内フランジ 4 3 8とスプール 4 4 2の基端との間の段付き穴 4 3 4 の小径部分には、 円板状をなすプランジャ 4 5 0 L , 4 5 O R (単に、 4 5 0と記述する場合がある) が摺動自在に収納され、 このプランジャ 4 5 0のスプール 4 4 2側には、 排油案内通路 4 4 9の開口端部に当接してこ れを閉塞し得る円錐状をなすポぺッ 卜 4 5 1が突設されている。 また、 こ のポぺッ ト 4 5 1の周囲には、 上述したチヤンバ室 4 4 1と、 排油案内通 路 4 4 9側とを連通し得る複数の連通孔 4 5 2が形成されている。 さらに, チヤンバ室ポぺッ ト 4 5 1と反対側のプランジャ 4 5 0には、 スプール操 作レバー 4 3 0の一端部に突設した駆動ピン 4 5 3 Lと一体の押圧板 4 5A small diameter portion of the stepped hole 4 3 4 between the inner flange 4 3 8 and the base end of the spool 4 4 2 has a disc-shaped plunger 4 5 0 L, 4 5 OR (simply 4 5 0 The plunger 450 is provided with a cone which is slidably accommodated, and which can be closed by contacting the open end of the oil discharge guide passage 449 on the spool 442 side of the plunger 450. The shape of the pot 4 51 is protruding. Around this port 451, a plurality of communication holes 452 are formed so as to allow communication between the above-described chamber chamber 441 and the oil discharge guide passage 449 side. I have. In addition, the plunger 450 on the opposite side of the chamber chamber port 451, has a spool operation. Push lever 4 5 integrated with drive pin 4 5 3 L protruding from one end of lever 4 3 0
4 Lが収納されており、 スプール 4 4 2の基端とプランジャ 4 5 0との間 には、 これらスプール 4 4 2とプランジャ 4 5 0とが離れるように付勢し てポぺッ ト 4 5 1と排油案内通路 4 4 9の開口端部との間に隙間を確保す ると共にプランジャ 4 5 0を押圧板 4 5 4 Lに付勢する圧縮コイルばね 44 L is accommodated, and between the base end of the spool 4 42 and the plunger 450, the spool 4 42 and the plunger 450 are urged so as to be separated from each other. 5 A compression coil spring 4 that secures a gap between 1 and the opening end of the oil drainage guide passage 4 4 9 and urges the plunger 4 50 against the pressing plate 4 5 4 L 4
5 5が介装されている。 5 5 are interposed.
つまり、 操舵ハンドルの操作によってねじり棒ばね 2 0と入力軸 2 1と に相対回転差が発生すると、 すなわち弁口一夕 4 2 8とスプール操作レバ 一 3 0とに相対回転差が発生すると、 駆動ピン 4 5 3 Lと一体の押圧板 4 5 4 Lを介してプランジャ 4 5 0が段付き孔 4 3 4内を摺動し、 プランジ ャ 4 5 0の一方が圧縮コイルばね 4 4 8のばね力に杭してスプール 4 4 2 を押圧すると共にそのポぺッ 卜 4 5 1が排油案内通路 4 4 9を塞ぐ。 逆に、 プランジャ 4 5 0の他方が内フランジ 4 3 8側に移動し、 その連通孔 4 5 2を介してチヤンバ室 4 4 1と、 排油案内通路 4 4 9との連通状態を確保 し、 ねじり棒ばね 2 0と入力軸 2 1.との間に相対回転差が発生しない状態、 すなわち弁ロータ 4 2 8とスプール操作レバー 3 0とに相対回転が発生し ない状態では、 チャンバ室 4 4 1と排油案内通路 4 4 9とが連通孔 4 5 2 を介して連通状態となる。  In other words, when a relative rotation difference is generated between the torsion bar spring 20 and the input shaft 21 by the operation of the steering wheel, that is, when a relative rotation difference is generated between the valve port 428 and the spool operation lever 130, The plunger 450 slides in the stepped hole 434 via the pressing plate 45.4L integral with the drive pin 45.3L, and one of the plungers 450 is connected to the compression coil spring 4488. The spool is pressed by the spring force to press the spool 442, and the port 451 blocks the oil discharge guide passage 449. Conversely, the other side of the plunger 450 moves to the inner flange 438 side, and the communication state between the chamber chamber 441 and the oil discharge guide passage 449 is ensured through the communication hole 452. In a state where there is no relative rotation difference between the torsion bar spring 20 and the input shaft 21, that is, when no relative rotation occurs between the valve rotor 4 28 and the spool operation lever 30, the chamber chamber 4 4 1 and the oil discharge guide passage 4 49 are in communication with each other through the communication hole 4 52.
なお、 操舵ハンドルから操舵軸 2 6およびスプール操作レバー 3 0を経 て、 駆動ピン 4 5 3 L、 押圧 4 5 4 L、 プランジャ 4 5 0およびポぺッ ト 4 5 1が本発明のスプール操作手段を構成している。  In addition, the drive pin 4553 L, the press 45 5 L, the plunger 450 and the port 45 1 are operated from the steering handle via the steering shaft 26 and the spool operation lever 30 to operate the spool of the present invention. Means.
前記第二の油室 4 4 7に臨む圧油供給路 4 5 6には、 油溜め 4 4 0から 作動油を第二の油室 4 4 7側へ圧送する油ポンプ 4 5 7が設けられており、 この油ポンプ 4 5 7と第二の油室 4 4 7との間の圧油供給路 4 5 6には、 第二の油室 4 4 7側から順に蓄圧用のアキュムレータ 4 5 8と、 この圧油 供給路 4 5 6内の作動油の圧力を検知する圧力スィツチ 4 5 9と、 第二の 油室 4 4 7側から作動液が油ポンプ 4 5 7側へ逆流するのを防止する逆止 め弁 4 6 0とが組み込まれている。 前記油ポンプ 4 5 7を駆動する電動モ —夕 4 6 1は、 圧力スィツチ 4 5 9から検出信号に基づき、 圧油供給路 4 5 6内が所定圧力範囲に収まるように運転状態と停止状態とが切り換えら れるようになっている。 An oil pump 457 for pumping hydraulic oil from the oil reservoir 440 to the second oil chamber 447 is provided in the pressure oil supply path 456 facing the second oil chamber 447. A pressurized oil supply passageway 456 between the oil pump 457 and the second oil chamber 447 is provided with a pressure accumulator 458 in order from the second oil chamber 447 side. And a pressure switch 459 for detecting the pressure of the hydraulic oil in the pressure oil supply passage 456, and a backflow of the hydraulic fluid from the second oil chamber 447 to the oil pump 457. A check valve 460 to prevent it is incorporated. The electric motor 461 driving the oil pump 457 is operated and stopped so that the pressure oil supply passage 456 falls within a predetermined pressure range based on a detection signal from the pressure switch 549. And switch It is supposed to be.
—方、 貫通孔 4 3 5の中央部には、 上述した押圧板 4 5 4 Lと同形状の 押圧板 4 5 4 Rが収納されており、 この押圧板 4 5 4 Rには、 スプール操 作レバー 3 0の他端部に突設した駆動ピン 4 5 3 Rが一体的に連結されて いる。 押圧板 4 5 4 Rを挟んで対向する一対の補助ピストン 4 6 2 L , 4 6 2 R (単に、 4 6 2と記述する場合がある) は、 貫通孔 4 3 5に対して 摺動自在に収納され、 これら補助ビストン 4 6 2とシールキヤップ 4 3 7 との間の貫通孔 4 3 5には、 補助ピストン 4 6 2を押圧扳 4 5 4 R側に付 勢する圧縮コイルばね 4 6 3が介装されている。 そして、 これら、 圧縮コ ィルばね 4 6 3を収納する貫通孔 4 3 5の部分が補助圧力室 4 6 4 L , 4 6 4 R (単に、 4 6 4と記述する場合がある) を構成している。  On the other hand, in the center of the through hole 4 35, a pressing plate 45 5 R having the same shape as the above-described pressing plate 45 5 L is housed. The driving pin 4553R protruding from the other end of the operating lever 30 is integrally connected. A pair of auxiliary pistons 4 62 L and 4 62 R (sometimes simply described as 4 62) opposed to each other across the pressing plate 4 5 4 R are slidable with respect to the through hole 4 35 A compression coil spring 4 6 that presses the auxiliary piston 4 62 into the through hole 4 35 between these auxiliary pistons 4 6 2 and the seal cap 4 3 7 3 are interposed. These through-holes 435 for accommodating the compression coil springs 463 constitute auxiliary pressure chambers 464L and 464R (sometimes simply referred to as 464). are doing.
前記第一の油室 4 4 6 L , 4 4 6 Rとシリンダに形成された油室 1 3 L , 1 3 Rとは、 それぞれ給排油路 4 6 5 L , 4 6 5 R (単に、 4 6 5と記述 する場合がある) を介して連通している。 また、 補助圧力室 4 6 4 L , 4 6 4 Rにそれぞれ連通する補助油路 4 6 6 L , 4 6 6 R (単に、 4 6 6と 記述する場合がある) は、 排油路 4 6 7を介して油溜め 4 4 0に接続して いる。 これら給排油路 4 6 5と補助油路 4 6 6との間には、 給排油路 4 6 5内が所定圧力以上の場合に、 給排油路 4 6 5から分岐する分岐油路 4 6 8 L , 4 6 8 R (単に、 4 6 8と記述する場合がある) と補助油路 4 6 6 とを連通すると共に補助油路 4 6 6と排油路 4 6 7とを遮断する一方、 給 排油路 4 6 5内が所定圧力よりも小さい場合に、 図示する様に補助油路 4 6 6と排油路 4 6 7とを連通すると共に分岐油路 4 6 8を遮断する 3ポー ト 2位置切換弁 4 6 9 L , 4 6 9 R (単に、 4 6 9と記述する場合がある ) が組み込まれている。  The first oil chambers 4 4 6 L, 4 4 6 R and the oil chambers 13 L, 13 R formed in the cylinder are respectively supplied and discharged oil passages 4 65 L, 4 6 5 R (simply, 4 6 5). In addition, the auxiliary oil passages 466 L and 466 R (which may be simply referred to as 466) communicating with the auxiliary pressure chambers 464 L and 464 R, respectively, are connected to the oil discharge passages 4 6 Connected to oil sump 4 4 0 via 7. A branch oil passage that branches from the supply / discharge oil passage 465 when the pressure inside the supply / discharge oil passage 465 is equal to or higher than a predetermined pressure. 4 6 8 L, 4 6 6 R (may be simply described as 4 6 8) and the auxiliary oil path 4 6 6 are connected, and the auxiliary oil path 4 6 6 and the drain oil path 4 6 7 are shut off. On the other hand, when the pressure in the oil supply / discharge passageway 465 is lower than the predetermined pressure, the auxiliary oil passageway 466 and the drainage passageway 467 are communicated and the branch oil passageway 468 is shut off as shown in the figure. It incorporates a 3-port 2-position switching valve 469 L and 469 R (sometimes simply described as 469).
つまり、 この 3ポート 2位置切換弁 4 6 9のばね 4 7 0のばね力よりも 当該 3ポート 2位置切換弁 4 6 9のパイロッ ト油路 4 7 1 L , 4 7 1 R内 の作動油の圧力がある低い状態では、 分岐油路 4 6 8が遮断されると共に 補助油路 4 6 6と排油路 4 6 7とが連通状態となっているが、 袷排油路 4 6 5に連通するパイ口ッ ト油路 4 7 1内の作動油の圧力が 3ポート 2位置 切換弁 4 6 9のばね 4 7 0のばね力よりも大きくなると、 補助油路 4 6 6 と排油路 4 6 7とが遮断され、 代わりに分岐油路 4 6 7と補助油路 4 6 6 とが連通する。 そして、 第一の油室 4 4 6からの作動油が補助圧力室 4 6 4に導かれ、 補助ピストン 4 6 2を介して押圧板 4 5 4 Rと一体の駆動ピ ン 4 5 3 Rに操舵補助力が付勢されるようになっている。 That is, the hydraulic oil in the pilot oil passages 47 1 L and 47 1 R of the 3 port 2 position switching valve 469 is larger than the spring force of the spring 470 of the 3 port 2 position switching valve 469. When the pressure is low, the branch oil passage 468 is shut off and the auxiliary oil passage 466 and the drain oil passage 467 are in communication with each other. When the pressure of the hydraulic oil in the communicating pipe oil passage 4 7 1 becomes larger than the spring force of the spring 4 70 of the 3 port 2 position switching valve 4 69, the auxiliary oil passage 4 6 6 And the drain oil passage 467 is shut off, and the branch oil passage 467 communicates with the auxiliary oil passage 466 instead. Then, the hydraulic oil from the first oil chamber 4 446 is guided to the auxiliary pressure chamber 464, and to the driving pin 4 5 3 R integrated with the pressing plate 4 5 4 R via the auxiliary piston 4 62. The steering assist force is energized.
なお、 シリンダ 1 1およびハウジング 2 4と弁ロータ 4 2 8との摺接部 分には、 これらにまたがって形成される排油路 4 3 9、 圧油供給路 4 5 6、 給排油路 4 6 5、 補助油路 4 6 6を連通するための複数の環状溝が図 1 6 に示すようにそれぞれシール状態で形成されている。  The sliding contact between the cylinder 11 and the housing 24 and the valve rotor 4 28 includes a drain oil passage 439, a pressure oil supply passage 456, and a supply / drain oil passage A plurality of annular grooves for communicating the auxiliary oil passages 466 and 465 are formed in a sealed state as shown in FIG.
従って、 操舵ハンドルを例えば図 1 7中、 右回りに操作すると、 その操 舵力が操舵軸 2 6からねじり棒ばね 2 0を介してピニオン軸 1 5および弁 ロータ 2 8に伝達される一方、 入力軸 2 1 と一体のスプール操作レバー 3 0にも伝達される。 ここで図示しない路面と車輪との摩擦抵抗等により、 ラック棒 1 2が図 1 6中、 右方向に移動し難い状態となっている場合、 入 力軸 2 1の回転角に対してねじり棒ばね 2 0の回転角が小さくなる。 この ため、 弁ロータ 4 2 8のレバー保持空間 2 9内をスプール操作レバー 3 0 が図 1 7中、 右回りに相対回転し、 駆動ピン 4 5 3 Lと一体の押圧板 4 5 4 Lを介してプランジャ 4 5 0 Lがスプール 4 4 2 L側へ前進し、 そのポ ペッ ト 4 5 1が排油案内通路 4 4 9を塞ぎ、 さらに圧縮コイルばね 4 4 8 のばね力に杭してスプール 4 4 2 Lを第一の油室 4 4 6 L側へ押し出す。 これにより、 第一および第二の油室 4 4 6 L , 4 4 7 Lが連通状態となり、 圧油供給路 4 5 6からの作動油が給排路 4 6 5 Lを介して油室 1 3 Lに供 給される一方、 圧縮コイルばね 4 5 5のばね力によってプランジャ 4 5 0 Rがスプール 4 4 2 Rから離れるように移動するものの、 排油案内通路 4 4 9が連通孔 4 5 2を介してチヤンバ室 4 4 1と連通状態に保持されるた め、 油室 1 3 L内の作動油の圧力によってビストン 1 4がラック棒 1 2と 共に図 1 6中、 右側に付勢される。 これによつて、 ピニオン軸 1 5も弁口 一夕 4 2 8と共に図 1 7中、 右回りに回転し、 入力軸 2 1に対するねじり 棒ばね 2 0の相対回転が解消される。  Therefore, when the steering handle is operated clockwise in FIG. 17, for example, the steering force is transmitted from the steering shaft 26 to the pinion shaft 15 and the valve rotor 28 via the torsion rod spring 20, The power is also transmitted to the spool operation lever 30 integrated with the input shaft 21. If the rack bar 12 is difficult to move rightward in Fig. 16 due to frictional resistance between the road surface and the wheels (not shown), the torsion bar is The rotation angle of the spring 20 becomes smaller. For this reason, the spool operation lever 30 rotates clockwise relative to the inside of the lever holding space 29 of the valve rotor 4 28 in FIG. 17 to move the pressing plate 45 5 L integral with the drive pin 45 3 L. The plunger 450 L moves forward to the spool 44 2 L side via the plunger, and the poppet 45 1 closes the oil discharge guide passage 44 9, and is further piled by the spring force of the compression coil spring 4 48. Push the spool 4 4 2 L to the first oil chamber 4 4 6 L side. As a result, the first and second oil chambers 4 4 6 L and 4 4 7 L are in communication with each other, and the hydraulic oil from the pressurized oil supply path 4 56 6 is supplied to the oil chamber 1 via the supply and discharge path 4 65 5 L. 3 L, while the plunger 450 R moves away from the spool 44 42 R by the spring force of the compression coil spring 45 55, but the oil discharge guide passage 44 9 Since it is kept in communication with the chamber chamber 4 4 1 via 2, the pressure of hydraulic oil in the oil chamber 13 L urges the piston 14 along with the rack bar 12 to the right in Fig. 16 Is done. As a result, the pinion shaft 15 also rotates clockwise in FIG. 17 together with the valve port 428, and the relative rotation of the torsion bar spring 20 with respect to the input shaft 21 is cancelled.
また、 操舵ハンドルを図 1 7中、 左回りに操作した場合、 入力軸 2 1の 回転角に対してねじり棒ばね 2 0の回転角が小さくなると、 反対側の第一 および第二の油室 4 4 6 R , 4 4 7 Rが連通状態となり、 油室 1 3 R内の 作動油の圧力によってピストン 1 4がラック棒 1 2と共に図 1 6中、 左側 に付勢され、 ピニオン軸 1 5も弁口一夕 1 2 8と共に図 1 7中、 左回りに 回転して入力軸 2 1に対するねじり棒ばね 2 0の相対回転が解消される。 つまり、 ねじり棒ばね 2 0と入力軸 2 1とに相対回転差が発生すると、 それを解消するように油室 1 3 L , 1 3 Rの何れか一方に作動油が供給さ れ、 この作動油の圧力によってラック棒 1 2が強制的に操舵方向に押し出 されるため、 わずかな操舵力で操舵操作を行うことができる。 この場合、 プランジャ 4 5 0の移動に伴って排油案内通路 4 4 9が塞がれ、 スプール 4 4 2が第一の油室 4 4 6側に押し込まれると、 第一および第二の油室 4 4 6 , 4 4 7が連通状態となって油ポンプ 4 5 7からの作動油が給排油路 4 6 5側に供給され始めるが、 第一の油室 4 4 6および第二の油室 4 4 7 におけるスプール 4 4 2の受圧面積差により、 駆動ピン 4 5 3側からスプ ール操作レバー 3 0を介して入力軸 2 1側に操舵反力が作用し、 操舵トル クを増加して行かない限りスプール 4 4 2が駆動ピン 4 5 3側に押し戻さ れ、 第一の油室 4 4 6と第二の油室 4 4 7とが遮断される。 When the steering wheel is operated counterclockwise in Fig. 17, when the rotation angle of the torsion bar spring 20 becomes smaller than the rotation angle of the input shaft 21, the first on the opposite side And the second oil chambers 4 4 6R and 4 4 7R are in communication with each other, and the piston 14 is urged to the left in Fig. 16 together with the rack rod 12 by the pressure of the hydraulic oil in the oil chamber 13 R. As a result, the pinion shaft 15 also rotates counterclockwise in FIG. 17 along with the valve port 1 28 to cancel the relative rotation of the torsion bar spring 20 with respect to the input shaft 21. In other words, when a relative rotation difference occurs between the torsion bar spring 20 and the input shaft 21, hydraulic fluid is supplied to one of the oil chambers 13L and 13R so as to eliminate the difference, Since the rack bar 12 is forcibly pushed in the steering direction by the oil pressure, the steering operation can be performed with a slight steering force. In this case, when the plunger 450 moves, the oil discharge guide passage 449 is closed, and the spool 442 is pushed into the first oil chamber 446. The chambers 4 4 6 and 4 4 7 are in communication with each other, and the hydraulic oil from the oil pump 4 5 7 starts to be supplied to the supply / drain oil path 4 65, but the first oil chamber 4 4 6 and the second oil chamber 4 Due to the pressure receiving area difference between the spools 4 4 2 in the oil chamber 4 4 7, a steering reaction force acts on the input shaft 2 1 side from the drive pin 4 5 3 side via the spool operation lever 30 to reduce the steering torque. Unless it increases, the spool 442 is pushed back to the drive pin 453 side, and the first oil chamber 446 and the second oil chamber 444 are shut off.
しかし、 第一の油室 4 4 6側から操舵反力に打ち勝って操舵トルクを増 大させて行くと、 給排油路 4 6 5内の油圧が所定圧以上となり、 この時点 で 3ポート 2位置切換弁 4 6 9が切り換えられて分岐油路 4 6 7と排油通 路 4 6 8とが連通し、 第一の油室 4 4 6からの作動油が補助圧力室 4 6 4 にも導かれ、 捕助ピストン 4 6 2を介して押圧板 4 5 4 Rと一体の駆動ピ ン 4 5 3 Rに操舵補助力が付勢される結果、 圧縮コイルばね 4 4 8 , 4 6 3のばね力とスプール 4 4 2の受圧面積差による操舵反力の負荷に係わら ず、 操舵トルクをそれまでの割合で増大させなくても圧油供給路 4 5 6か らの作動油が袷排油路 4 6 5側に供給されて迅速に油圧が上昇するように なっている。  However, when the steering torque is increased by overcoming the steering reaction force from the first oil chamber 446 side, the hydraulic pressure in the supply / drain oil passage 465 becomes equal to or higher than a predetermined pressure, and at this time, the 3 port 2 The position switching valve 4 6 9 is switched so that the branch oil passage 4 6 7 communicates with the drain oil passage 4 6 8, and the hydraulic oil from the first oil chamber 4 4 6 also flows into the auxiliary pressure chamber 4 6 4 As a result, the steering assist force is urged to the driving pin 45 3 R integrated with the pressing plate 45 4 R via the catching piston 46 2, and as a result, the compression coil springs 4 4 8 and 4 63 Regardless of the load of the steering reaction force due to the difference between the spring force and the pressure receiving area of the spool 4 4 2, the hydraulic oil from the pressure oil supply passage 4 5 6 will be flushed without increasing the steering torque at that rate. The oil is supplied to the road 465 side and the hydraulic pressure rises quickly.
このため、 図 5中の二点鎖線で示す如く、 終始比例関係にある従来のも のよりも、 所定の操舵トルク以上では作動油の圧力をより高めることがで き、 停車状態における操舵、 いわゆる据え切り等を容易に行うことができ る。 なお、 図 1 7に示すようにねじり棒ばね 2 0と入力軸 2 1とに相対回転 差がなくなると、 すなわち操舵トルクが 0になると、 プランジャ 4 5 0が 図 1 8に示す中立状態に復帰し、 第一の油室 4 4 6内の作動油が排油案内 通路 4 4 9から連通孔 4 5 2を介してチヤンバ室 4 4 1を通り、 排油路 4 3 9を介して油溜め 4 4 0に排出され、 同時にばね 4 7 0のばね力によつ て 3ポート 2位置切換弁 4 6 9が切り換えられ、 補助油路 4 6 6と分岐油 路 4 6 7とが遮断状態となる。 Therefore, as shown by the two-dot chain line in FIG. 5, the pressure of the hydraulic oil can be further increased at a predetermined steering torque or more, compared to the conventional one which is in a proportional relationship throughout, and steering in a stopped state, so-called, It can be easily deferred. When the relative rotation difference between the torsion bar spring 20 and the input shaft 21 disappears as shown in FIG. 17, that is, when the steering torque becomes 0, the plunger 450 returns to the neutral state shown in FIG. Then, the hydraulic oil in the first oil chamber 4 4 6 flows from the oil discharge guide passage 4 4 9 through the communication hole 4 5 2 through the chamber chamber 4 4 1, and the oil reservoir through the oil discharge path 4 3 9 At the same time, the 3-port 2-position switching valve 469 is switched by the spring force of the spring 470, and the auxiliary oil passage 466 and the branch oil passage 466 are shut off. Become.
上述した実施例では、 駆動ピン 4 5 3を入力軸 2 1の中心軸線から径方 向に 1 8 0度隔てて等距離に配置したが、 入力軸 2 1の回転中心から補助 ピストン 4 6 2側の駆動ピン 4 5 3 Rまでの間隔をより長く設定すること も可能である。  In the above-described embodiment, the drive pins 45 3 are arranged at an equal distance 180 degrees apart from the center axis of the input shaft 21 in the radial direction. It is also possible to set a longer interval to the drive pin 4553R on the side.
図 1 9は更に他の実施例を示す。 この実施例において、 入力軸 2 1の回 転中心からプランジャ 4 5 0側の駆動ピン 4 5 3 Lまでのスプール操作レ バー 3 0の長さ L i_よりも、 入力軸 2 1の回転中心から補助ビストン 4 6 2側の駆動ピン 4 5 3 Rまでのスプール操作レバー 3 0の長さ L Rを長く 設定し、 補助圧力室 4 6 4内に作動油が供給された場合、 駆動ピン 4 5 3 Rを介して入力軸 2 1側に作用する操舵補助トルクを増大させることがで きる。 ただし、 本実施例では貫通孔 4 3 5の内径を小さく設定することに より、 先の実施例と同等の操舵補助トルクを得るようにしている。 FIG. 19 shows still another embodiment. In this embodiment, the rotation center of the input shaft 21 is larger than the length L i_ of the spool operation lever 30 from the rotation center of the input shaft 21 to the drive pin 4553 L of the plunger 450. If the length L R of the spool control lever 30 is set longer from the drive pin 4 5 3 R to the auxiliary pin 4 on the side of the auxiliary piston 4 6 2, the drive pin 4 is set when hydraulic oil is supplied into the auxiliary pressure chamber 4 64. It is possible to increase the steering assist torque acting on the input shaft 21 via 53R. However, in this embodiment, the steering assist torque equivalent to that of the previous embodiment is obtained by setting the inner diameter of the through hole 435 small.
なお、 他の構成は、 図 1 6〜 1 8に示す先の実施例と同じである。  The other configurations are the same as those of the previous embodiment shown in FIGS.
図 2 0〜図 2 4は本発明のさらに他の実施例による圧力制御装置を示す c この実施例において、 5 3 0はシリンダ (ギアハウジング) 1 1に固設さ れた固定部材としてのハウジングであり、 本実施例では 3つの部分、 すな わち、 底部 5 3 0 A , 中間部 5 3 0 B、 上部 5 3 0 Cにより構成されてい る。 ハウジング上部 5 3 0 Cにはべァリング 2 2が配設され、 入力軸 2 1 を回転自在に支承している。 またハウジング中間部 5 3 0 Bにはスプール 弁式の弁作動機構 5 4 0が配置されている。  FIGS. 20 to 24 show a pressure control device according to still another embodiment of the present invention. In this embodiment, reference numeral 530 denotes a housing as a fixed member fixed to a cylinder (gear housing) 11. In the present embodiment, there are three portions, namely, a bottom portion 530A, an intermediate portion 530B, and an upper portion 530C. A bearing 22 is provided on the upper part 5300 of the housing, and rotatably supports the input shaft 21. A spool valve type valve operating mechanism 540 is disposed in the housing middle portion 530B.
この弁作動機構 5 4 0は前述の左右の作動油圧室 1 3 L, 1 3 Rの油圧 を制御すベく左右対象の関係で配列されている。  The valve operating mechanisms 540 are arranged in a symmetrical relationship to control the hydraulic pressure of the left and right working hydraulic chambers 13L and 13R.
弁作動機構 5 4 0は、 ハウジング中間部 5 3 0 Bに形成された、 入力軸 2 1および出力軸 1 5の軸線と平行な空孔内に摺動自在に配設されたスプ ール弁 5 4 2とドレンポぺッ ト 5 4 4とスプール弁 5 4 2を閉鎖方向に付 勢するィンレツ トスプリング 5 4 6とスプール弁 5 4 2およびドレンポぺ ッ ト 5 4 4の間に設けられたドレンスプリング 5 4 8とを主に備えている。 インレッ トスプリング 5 4 6のばね定数がドレンスプリング 5 4 8のそれ よりも大きく設定されている。 The valve actuation mechanism 540 is an input shaft formed in the housing middle section 530B. 21 Spool valve 54, drain port 54, and spool valve 54, which are slidably disposed in holes parallel to the axis of 1 and output shaft 15, are attached in the closing direction. It mainly includes an energizing inlet spring 546, a spool valve 542, and a drain spring 548 provided between the drain port 544. The spring constant of the inlet spring 546 is set to be larger than that of the drain spring 548.
スプール弁 5 4 2はその中心にドレン用の貫通孔 5 4 2が穿設され、 そ の外周にシール 5 4 2 Bが装着された第一ランド 5 4 2 Cとテ一パ面が形 成された第二ランド 5 4 2 Dが形成されている。  The spool valve 542 is formed with a drain hole 542 in the center and a tapered surface with the first land 542C with a seal 542B attached on the outer periphery. The formed second land 5 4 2 D is formed.
また、 ドレンポペッ ト 5 4 4はその先端にスプール弁 5 4 2の貫通孔 5 4 2 Aを閉鎖すべく円錐頭 5 4 4 Aを、 中間部にドレンスプリング 5 4 8 のシートを兼ねるフランジ 5 4 4 Bを備え、 該フランジ 5 4 4 Bにはドレ ン孔 5 4 4 Cが穿設されている。  The drain poppet 544 has a conical head 544A at the end thereof to close the through hole 542A of the spool valve 542, and a flange 544 serving also as a seat of the drain spring 548 at an intermediate portion. 4B, and a drain hole 544C is formed in the flange 544B.
さらに、 上述したハウジング中間部 5 3 0 Bの空孔は、 その両端におい て拡径され作用室 5 5 0が形成されている。 また、 その拡径により生じた エッジ部が上述のスプール弁 5 4 2のテーパ面と当接するように寸法設定 が行われている。  Further, the above-mentioned hole of the housing intermediate portion 5300B is enlarged in diameter at both ends thereof to form a working chamber 5500. The dimensions are set so that the edge portion generated by the diameter enlargement comes into contact with the above-described tapered surface of the spool valve 542.
ハウジング中間部 5 3 0 Bには上記作用室 5 5 0に連通するシリンダポ ート 5 5 1 L , 5 5 1 R、 および上記スプール弁 5 4 2の第一ランド 5 4 2 Dとの間に画成される空間に連通するポンプポ一卜 5 2 L , 5 5 2 R が形成されている。  The housing middle section 530 B is located between the cylinder ports 55 1 L and 55 1 R communicating with the working chamber 55 0 and the first land 54 2 D of the spool valve 54 2. Pump ports 52 L and 55 2 R communicating with the space to be defined are formed.
しカヽして、 ポンプポート 5 5 2 L , 5 5 2 Rにはモータ 5 6 0によって 駆動されるポンプ 5 6 2の吐出側がチェックバルブ 5 6 4を介して連通さ れる。 なお、 本実施例ではこの連通路にアキュムレータ 5 6 6が配設され、 圧力作動スィッチ 5 6 8は蓄圧力が所定圧力以下に低下したとき作動しモ —タ 5 6 0を回転させるようにされている。  In short, the discharge side of the pump 562 driven by the motor 560 is connected to the pump ports 552 L and 552 R via the check valve 564. In this embodiment, an accumulator 566 is provided in this communication path, and the pressure operation switch 568 operates when the accumulated pressure falls below a predetermined pressure to rotate the motor 560. ing.
次に、 運動方向変換手段の構成につき説明するに、 この実施例では、 ス リーブ部材 5 7 0を備えている。  Next, the configuration of the movement direction changing means will be described. In this embodiment, a sleeve member 570 is provided.
スリーブ部材 5 7 0は入力軸 2 1に軸線方向に摺動自在に嵌装されてお り、 その中腹部に軸線に対して傾いた傾斜案内部としての所定幅を有する 長孔 5 7 O Aが形成ざれている。 なお、 長孔に限らずその内周面に長溝を 形成するようにしてもよい。 また、 スリーブ部材 5 7 0はその下側部に軸 線方向の案内部として案内溝ないしは案内スロッ ト 5 7 0 Bが形成される と共にその上部に弁作動機構駆動用の円板状のフランジ 5 7 0 Cが形成さ れている。 The sleeve member 570 is fitted on the input shaft 21 so as to be slidable in the axial direction, and has a predetermined width as a slant guide portion inclined with respect to the axis at a middle portion thereof. Long holes 57 OA are not formed. In addition, a long groove may be formed not only in the long hole but also in the inner peripheral surface thereof. The sleeve member 570 has a guide groove or a guide slot 570B formed as an axial guide portion at a lower portion thereof, and a disc-shaped flange 5 for driving a valve actuating mechanism at an upper portion thereof. 70 C is formed.
そして、 スリーブ部材 5 7 0の長孔 5 7 O Aには入力軸 2 1に穿設した 駆動ピン 5 7 2が係合され、 案内溝 5 7 0 Bには出力軸としてのピニオン シャフ ト 1 8に固設されたガイ ドビン 5 7 4が係合されている。  A drive pin 572 formed on the input shaft 21 is engaged with the long hole 570A of the sleeve member 570, and a pinion shaft 18 as an output shaft is engaged with the guide groove 570B. The guide bin 574 fixed to the connector is engaged.
しかして、 上述の円板状のフランジ 5 7 0 Cは前述の線対称に配置され た弁作動機構 5 4 0の左右のドレンポペッ ト 5 4 4の後端部 5 4 4 D Lお よび 5 4 4 D Rに挟持される形態で配置されている。  Thus, the above-mentioned disc-shaped flange 570C is provided at the rear end portions 544DL and 544D of the left and right drain poppets 544 of the valve operating mechanism 540 arranged symmetrically with the aforementioned line. It is arranged in a form sandwiched by DR.
かかる構成の実施例にあっては、 操舵力が付与されていない、 すなわち、 中立の直進走行時には図 2 0に示す状態にあり、 アキュムレータ 5 6 6に 蓄圧された圧力がチェックバルブ 5 6 4および閉鎖位置にあるスプール弁 5 4 2により保持されている。 このときポンプ 5 6 2は停止している。 ス プール弁 5 4 2はインレッ トスプリング 5 4 6の方がドレンスプリング 5 4 8よりもばね定数が大きく、 またランド 5 4 2 C , 5 4 2の圧力作用面 の受圧面積が等しく設定されているので移動しない。  In the embodiment having such a configuration, the steering force is not applied, that is, the vehicle is in a state shown in FIG. 20 when the vehicle is traveling straight in a neutral direction, and the pressure accumulated in the accumulator 566 is equal to the check valve 564 and It is held by the spool valve 542 in the closed position. At this time, the pump 562 is stopped. In the spool valve 542, the spring constant of the inlet spring 546 is larger than that of the drain spring 548, and the pressure receiving area of the pressure action surface of the lands 542C and 542 is set equal. Do not move because there is.
ステアリングホイールが操舵され操舵力が入力軸 2 1に入力されると、 トーションバー 2 0を介してピニォンシャフ ト 1 5が回転しラック 1 9が 形成されたピストンロッ ド 1 2が左右のいずれかの方向に動き車輪の転舵 が行なわれる。  When the steering wheel is steered and the steering force is input to the input shaft 21, the pinion shaft 15 rotates through the torsion bar 20, and the piston rod 12 with the rack 19 formed is moved in either the left or right direction. Then, the wheels are steered.
このとき、 ラック 1 9の負荷に対応してトーションバー 2 0が捩られ、 この捩り量に応じて入力軸 2 1 とピニオンシャフ ト 1 5との間に相対回転 変位が生ずる。 従って、 ガイ ドビン 5 7 4と案内溝 5 7 0 Bとの係合によ りピニオンシャフト 1 8との相対回転が阻止されているスリーブ部材 5 7 0は、 入力軸 1 0の駆動ピン 5 7 2と傾斜長孔 5 7 0 Aとの係合により、 入力軸 2 1の相対回転に伴って軸線方向のいずれかに移動する。 例えば、 スリーブ部材 5 7 0が軸線方向上方に移動されると、 フランジ 5 7 0 Cが 左ドレンポぺッ ト 5 4 4 Lをドレンスプリング 5 4 8のセッ ト荷重に抗つ て押圧し、 その円錐頭 5 4 4 Aでもってスプール弁のドレン用貫通孔 5 4 2 Aが閉鎖される。 At this time, the torsion bar 20 is twisted corresponding to the load of the rack 19, and a relative rotational displacement occurs between the input shaft 21 and the pinion shaft 15 according to the amount of twist. Therefore, the sleeve member 570 whose relative rotation with the pinion shaft 18 is prevented by the engagement between the guide bin 574 and the guide groove 570B is formed by the drive pin 57 of the input shaft 10. The input shaft 21 is moved in one of the axial directions with the relative rotation of the input shaft 21 by the engagement between the inclined shaft 2 and the elongated oblong hole 570A. For example, when the sleeve member 570 is moved upward in the axial direction, the flange 570C causes the left drain port 544L to resist the set load of the drain spring 548. And the conical head 544A closes the drain through hole 542A of the spool valve.
そして、 さらに相対回転が増大していくと、 インレッ トスプリング 5 4 6のセッ ト荷重に抗つてスプール弁 5 4 2を移動させる。 この移動に伴い ランド 5 4 2 Dのテーパ面がエツジ部から離れるので、 アキュムレータに 蓄圧されていた圧力が作用室 5 5 0を通ってシリンダ 5 2 2の左側作動油 圧室 5 2 2 Lに導入されアシストカを付与する。  Then, when the relative rotation further increases, the spool valve 542 is moved against the set load of the inlet spring 546. With this movement, the tapered surface of the land 542D moves away from the edge, and the pressure accumulated in the accumulator passes through the working chamber 550 to the left hydraulic pressure chamber 522L of the cylinder 522. Introduced and assisted.
このとき右側作動油圧室 5 2 2 R内の作動油は作用室 5 5 0 R、 スプー ル弁の貫通孔 5 4 2 A R、 ドレンポぺッ トの貫通孔 5 4 4 Cからハウジン グ 5 3 0内に抜け、 ドレン孔 5 3 0 Dを介してドレンタンク Dにドレンさ れる。  At this time, the hydraulic oil in the right-hand working hydraulic chamber 5 2 2R flows from the working chamber 5 50 R, the through hole 5 4 2 AR of the spool valve, and the through hole 5 4 4 C of the drain port to the housing 5 3 0 And drains to drain tank D via drain hole 530D.
図 2 1は本発明のさらに他の実施例を示す。 この実施例が前実施例と異 なるのは、 前述のようにその運動方向変換手段の部分であり、 スリーブ部 材 5 7 0に一体に形成されたフランジ 5 7 0 Cに対応する部位の構成が異 なっている。  FIG. 21 shows still another embodiment of the present invention. This embodiment differs from the previous embodiment in the movement direction changing means as described above, and the structure of the portion corresponding to the flange 570C formed integrally with the sleeve member 570 Are different.
すなわち、 この実施例におけるスリーブ部材 6 7 0は、 フランジ 6 7 0 Cが図 2 0に示す先の実施例のフランジ 5 7 0 Cに比べ小径である以外ス リーブ部材 5 7 0と同様の構成であり傾斜長孔 6 7 0 A 軸方向の案内溝 That is, the sleeve member 670 of this embodiment has the same configuration as the sleeve member 570 except that the flange 670C has a smaller diameter than the flange 570C of the previous embodiment shown in FIG. 6 7 0 A Axial guide groove
6 7 0 Bを備えている。 670 B is provided.
そして、 スリ一ブ部材 6 7 0のフランジ 6 7 0 C上のスラストベアリ ン グ 6 7 2を介してリング部材 6 7 4が相対回転自在に設けられ、 リング部 材 6 7 4はカラー 6 7 6によりスリーブ部材 6 7 0と軸方向に一体に動く ように保持されている。  A ring member 674 is provided so as to be relatively rotatable via a thrust bearing 672 on a flange 670C of the sleeve member 670, and the ring member 674 is a collar 6776. Thus, it is held so as to move integrally with the sleeve member 670 in the axial direction.
さらに、 リング部材 6 7 4には弁作動機構 5 4 0駆動用のレバー 6 7 4 Aが突設されており、 該レバー 6 7 4 Aは図 2 0に示す先の実施例と同様 に中立位置での左右のドレンポぺッ ト 5 4 4の間に当接して位置されてい る。 傾斜長孔 6 7 0 Aには入力軸に突設した駆動ピン 5 7 2力 案内溝 6 Further, a lever 674 A for driving a valve operating mechanism 540 is projected from the ring member 674, and the lever 674 A is neutral as in the previous embodiment shown in FIG. It is located in contact between the left and right drain ports 544 in the position. Drive pin 5 7 2 Force guide groove 6
7 0 Bにはガイ ドビン 5 7 4がそれぞれ係合するのは図 2 0に示す先の実 施例と同じである。 Guide bins 574 engage with 70B, respectively, as in the previous embodiment shown in FIG.
しかして、 入力軸 2 1と出力軸であるピニオンシャフト 1 5との間に相 対変位があると、 前実施例と同様にスリーブ部材 6 7 0はリング部材 6 7 4と共に軸線方向に移動し、 弁作動機構 5 4 0の駆動を行なう。 しかしな がら、 リング部材 6 7 4はスリーブ部材 6 7 0がピニオンシャフト 1 5と 共に回転するのに対しスラストベアリ ング 6 7 2の作用でそのままの回転 位置に止まっている。 Therefore, there is a phase difference between the input shaft 21 and the output shaft pinion shaft 15. When there is a displacement, the sleeve member 670 moves in the axial direction together with the ring member 670 as in the previous embodiment, and drives the valve operating mechanism 540. However, while the ring member 674 rotates with the pinion shaft 15 together with the sleeve member 674, the ring member 674 remains at the same rotational position due to the action of the thrust bearing 672.
従って、 本実施例においては入力軸 2 1に対し回転自在なリング部材 6 7 4を設けたことにより、 弁作動機構駆動用のレバ一 6 7 4 Aを一定位置 に止めておくことができるので、 ハウジング 5 3 0を小さくすることがで きる。  Accordingly, in the present embodiment, the provision of the ring member 674 that is rotatable with respect to the input shaft 21 allows the lever 674A for driving the valve operating mechanism to be kept at a fixed position. The housing 530 can be made smaller.
図 2 2〜図 2 4にさらに他の実施例を示す。 この実施例が図 2 0に示す 先の実施例と大きく異なる点は、 対称に配列された弁作動機構 6 4 0を入 力軸 1 0の軸線に対し直角方向に配置したことであり、 この配置の変更に 伴い運動方向変換手段に変更が加えられている。  FIGS. 22 to 24 show still another embodiment. This embodiment is significantly different from the previous embodiment shown in FIG. 20 in that the symmetrically arranged valve actuation mechanisms 6400 are arranged at right angles to the axis of the input shaft 10. The movement direction conversion means has been changed with the change in the arrangement.
すなわち、 本実施例にかかる弁作動機構 6 4 0は基本的作用は図 2 0に 示す先の実施例のものと同様であるが、 構成上若干の変更が加えられてい る  That is, the basic operation of the valve operating mechanism 640 according to the present embodiment is the same as that of the previous embodiment shown in FIG. 20, but the configuration is slightly changed.
まず、 図 2 3において、 本例の弁作動機構 6 4 0は左右のバルブボディ 6 4 1を備えており、 該バルブボディ 6 4 1がハウジング 6 3 0に入力軸 1 0の軸線に対し直角方向に向けて固設されている。 そして、 バルブボデ ィ 6 4 1に形成された空孔内に摺動自在にスプール弁 6 4 2およびドレン ポぺッ ト 6 4 4が配設されている。 スプール弁 6 4 2はバルブボディ 6 4 1に螺着されたプラグ 6 4 7に保持されたィンレツ トスプリング 6 4 6に より付勢され、 そのテーパ面がエツジ部に当接する閉鎖位置に保持される こと前実施例と同じである。  First, in FIG. 23, the valve operating mechanism 6400 of this example includes left and right valve bodies 641, and the valve bodies 641 are attached to the housing 630 at right angles to the axis of the input shaft 10. It is fixed facing the direction. A spool valve 642 and a drain port 644 are slidably disposed in a hole formed in the valve body 641. The spool valve 642 is urged by an inlet spring 6464 held by a plug 6447 screwed to the valve body 641, and is held at a closed position where its tapered surface contacts the edge portion. This is the same as the previous embodiment.
なお、 この実施例では図 2 0に示す先の実施例におけるドレンポぺッ ト 5 4 4のドレン孔 5 4 4 Cに換え、 バルブボディ 6 4 1にドレンポート 6 4 9が形成されている。 その他については図 2 0に示す先の実施例と同じ め o  In this embodiment, a drain port 649 is formed in the valve body 641, instead of the drain hole 5444 of the drain port 544 in the previous embodiment shown in FIG. Others are the same as the previous embodiment shown in FIG.
次に、 ハウジング 6 3 0はほぼ円筒状に形成されたシリンダ (ギアハウ ジング) 1 1に固設されている。 この実施例における運動方向変換手段は、 入力軸 2 1に軸線方向に一体 的に摺動自在に嵌装された第一および第二のスリーブ部材 7 7 0および 8Next, the housing 630 is fixed to a cylinder (gear housing) 11 formed in a substantially cylindrical shape. The movement direction changing means in this embodiment is composed of first and second sleeve members 770 and 8 fitted integrally and slidably on the input shaft 21 in the axial direction.
7 0を含んでいる。 第一スリーブ部材 7 7 0は図 2 0および図 2 1に示す 先の実施例のスリーブ部材 5 7 0 , 6 7 0と同様な第一傾斜長孔 7 7 O A と軸線方向の案内溝 7 7 0 Bと小径のフランジ 7 7 0 Cとを有している。 第二スリーブ部材 8 7 0は第一傾斜長孔 8 7 0 Aと同一方向に傾斜した第 二傾斜長孔 8 7 O Aおよびフランジ 8 7 0 Cを有している。 そして、 第一 および第二のスリーブ部材 7 7 0および 8 7 0は、 図 2 4に示すようにフ ランジ同士が対向され、 その間にスラストベアリング 7 7 2に介在されて 連結リング 7 7 4によって連結されている。 連結リング 7 7 4は断面 L字 状に形成され、 その短片部と第二のスリーブ部材 8 7 0のフランジ 8 7 0 Cとの間にスラストベアリング 7 7 6を介在させた後、 その長片部を第一 スリーブ部材 7 7 0のフランジ 7 7 0 Cにねじ止めすることにより、 両ス リ一ブ部材の相対回転を許しつつ両者を軸線方向に連結している。 Contains 70. The first sleeve member 770 has a first oblong slot 77A similar to the sleeve members 570, 670 of the previous embodiment shown in FIGS. 20 and 21 and an axial guide groove 77. 0 B and a small diameter flange 770 C. The second sleeve member 870 has a second inclined long hole 87OA and a flange 870C inclined in the same direction as the first inclined long hole 870A. As shown in FIG. 24, the first and second sleeve members 770 and 870 have flanges opposed to each other, and are interposed between thrust bearings 772 by a connecting ring 774. Are linked. The connecting ring 774 is formed in an L-shaped section, and after a thrust bearing 776 is interposed between the short piece and the flange 870C of the second sleeve member 870, the long piece is formed. By screwing the portion to the flange 770C of the first sleeve member 770, the two sleeve members are connected in the axial direction while allowing relative rotation of the two sleeve members.
さらに、 第二スリーブ部材 8 7 0の外周にはリング部材 8 7 2が嵌装さ れ、 該リング部材 8 7 2はその外方に突設されたレバー 8 7 2 Aおよび内 方に突設されたピン 8 7 2 Bを有している。 ピン 8 7 2 Bは第ニスリーブ 部材 8 7 0に形成された第二の傾斜長孔 8 7 O Aに係合し、 レバー 8 7 2 Aはハウジング 6 3 0の通孔 6 3 0 A内を内在し前述の弁作動機構 6 4 0 の対向配置されたドレンポぺッ ト 6 4 4 Lおよび 6 4 4 Rの間にアダプタ Further, a ring member 872 is fitted around the outer periphery of the second sleeve member 870, and the ring member 872 is provided with a lever 872A protruding outward and an inward projection. Pin 872B. The pin 872B engages with the second oblong hole 87OA formed in the second sleeve member 870, and the lever 8772A is inside the through hole 63OA of the housing 63O. The adapter between the drain port 644 L and 644 R, which are arranged opposite to the valve operating mechanism 640 described above
8 7 4 Lおよび 8 7 4 Rが介在されて当接状態で配置されている。 なお通 孔 6 3 0 Aはレバー 8 7 2 Aの回転運動のみ許容し、 軸線方向の運動は規 制する。 874 L and 874 R are arranged in contact with the interposition. The through hole 630 A allows only the rotational movement of the lever 872 A, and the movement in the axial direction is restricted.
上記の実施例において、 入力軸 2 1と出力軸としてのピニオンシャフ ト 1 5との間に回転方向に相対変位があると、 入力軸 2 1に突設された駆動 ピン 5 7 2と第一傾斜長孔 7 7 0 Aとの係合により、 第一スライ ド部材 7 In the above embodiment, if there is a relative displacement in the rotational direction between the input shaft 21 and the pinion shaft 15 as the output shaft, the drive pin 57 2 projecting from the input shaft 21 and the first The first slide member 7
7 0および第ニスライ ド部材 8 7 0が共に軸線方向に移動する。 第二スラ ィ ド部材 8 7 0が軸線方向に移動すると、 ピン 8 7 2 Bが第二の傾斜長孔Both 70 and the varnish slide member 870 move in the axial direction. When the second slide member 870 moves in the axial direction, the pin 872B is moved into the second oblong hole.
8 7 0 Aに係合されている部材 8 7 2がカム作用に回転し、 そのレバー 8 7 2 Aはアダプタ 8 7 4を介してドレンポぺッ ト 6 4 4を移動させること になる。 The member 872 engaged with 870A rotates by cam action, and the lever 872A moves the drain port 644 through the adapter 874. become.
しかして、 前実施例で説明したのと同様に、 ドレンポぺッ ト 6 4 4ひい てはスプール弁 6 4 2が移動されて圧油が所定の作動油圧室に供給され、 アシスト力が生ずる。  Thus, as described in the previous embodiment, the drain port 644 and, consequently, the spool valve 642 are moved to supply pressure oil to a predetermined working hydraulic chamber to generate an assist force.
上述した図 2 0〜図 2 4に示す実施例では弁作動機構の方向 (対称的に 配置されているスプール弁の軸線方向) を入力軸に対し平行に配置するか、 直角方向に配置するかで相違する。 この相違は、 車両においてレイアウト 上有利な方を選択できるのでそれぞれ効果的である。  In the embodiment shown in FIGS. 20 to 24 described above, the direction of the valve operating mechanism (the axial direction of the symmetrically disposed spool valve) is arranged in parallel with the input shaft or in the direction perpendicular to the input shaft. Is different. This difference is effective because the layout can be selected in the vehicle in an advantageous manner.
さらに、 上述した図 2 0〜図 2 4に示す実施例では、 車両のバウンド時 等にラック (本例ではピストンロッ ド 1 2と同じ) の偏心が生じたとして も、 出力軸と入力軸との相対角変位が生じない限り弁作動機構が作動する ことがないので、 いたずらにアシスト力が生ずることなくステアリング剛 性を高め車両の直進走行性が向上するという効果もある。 また、 スプール 弁式の弁作動機構を固定部材に配置したので、 耐久性の問題を生ずるよう なシール部材を不要とすることができる。  Further, in the embodiment shown in FIGS. 20 to 24 described above, even if the rack (in this example, the same as the piston rod 12) is eccentric when the vehicle bounces, the output shaft and the input shaft are not connected. As long as the relative angular displacement does not occur, the valve actuating mechanism does not operate, so that there is also an effect that the steering rigidity is increased and the straight running performance of the vehicle is improved without any unnecessary assist force. In addition, since the spool valve type valve operating mechanism is disposed on the fixed member, it is possible to eliminate the need for a sealing member that may cause a problem of durability.

Claims

請求の範囲 The scope of the claims
1 . 弁胴に形成された弁収容孔に対して摺動自在に嵌合するスプールと、 このスプールにより前記弁収容孔の一端側に仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞれ形成されて作動液供給源に接 続する第二の液室およびァクチユエ一夕に接続する第三の液室と、 1. A spool slidably fitted in a valve receiving hole formed in the valve body, a first liquid chamber partitioned on one end side of the valve receiving hole by the spool, A second fluid chamber respectively formed between the spool and the hydraulic fluid supply source, and a third fluid chamber connected to the actuator.
前記スプールを前記第一の液室側に移動して前記第二の液室と前記第三 の液室とが連通するように操作し得る弁操作手段と、  Valve operating means for moving the spool to the first liquid chamber side and operating the second liquid chamber and the third liquid chamber so as to communicate with each other;
前記第一の液室と前記第三の液室とを連通する作動液通路と、  A working fluid passage communicating the first fluid chamber and the third fluid chamber,
この作動液通路の途中に介装されて前記第三の液室が所定圧以上となつ た場合に前記第一の液室と前記第三の液室との連通状態を遮断する切換弁 と  A switching valve interposed in the middle of the hydraulic fluid passage to shut off a communication state between the first fluid chamber and the third fluid chamber when the pressure of the third fluid chamber becomes equal to or higher than a predetermined pressure;
を具えたことを特徴とする圧力制御装置。  A pressure control device characterized by comprising:
2 . 弁胴に形成された弁収容孔に対して摺動自在に嵌合するスプールと、 このスプールにより前記弁収容孔の一端に仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞれ形成されて作動液供給源に接 続する第二の液室およびァクチユエ一夕に接続する第三の液室と、 2. A spool slidably fitted in a valve receiving hole formed in the valve body, a first liquid chamber partitioned at one end of the valve receiving hole by the spool, the valve body and the spool. And a third liquid chamber connected to the working fluid supply source and a third liquid chamber connected to the actuator, respectively.
前記スプールを前記第一の液室側に移動して前記第二の液室と前記第三 の液室とが連通するように操作し得る弁操作手段と、  Valve operating means for moving the spool to the first liquid chamber side and operating the second liquid chamber and the third liquid chamber so as to communicate with each other;
前記第一の液室と前記第三の液室とを連通する作動液通路と、  A working fluid passage communicating the first fluid chamber and the third fluid chamber,
この作動液通路の途中に介装されて前記第三の液室が所定圧以上となつ た場合に前記第一の液室と前記第三の液室との連通状態を遮断すると共に 前記第一の液室を前記作動液通路から分岐する排液通路に接続する切換弁 と  When the third liquid chamber becomes higher than a predetermined pressure by being interposed in the middle of the hydraulic liquid passage, the communication between the first liquid chamber and the third liquid chamber is cut off and the first liquid chamber is cut off. A switching valve connecting the liquid chamber of the above to a drainage passage branched from the hydraulic fluid passage; and
を具えたことを特徴とする圧力制御装置。  A pressure control device characterized by comprising:
3 . 弁胴に形成された弁収容孔に対して摺動自在に嵌合するスプールと、 このスプールにより前記弁収容孔の一端側に仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞれ形成され、 かつ作動液供給源 に接続する第二の液室およびこの第二の液室に連通し得ると共に排液路を 介して液溜めに接続するチヤ ンバ室およびァクチユエ一夕に接続する第三 の液室と、 3. A spool slidably fitted in a valve receiving hole formed in the valve body, a first liquid chamber partitioned on one end side of the valve receiving hole by the spool, And a hydraulic fluid supply source A second chamber connected to the second chamber, a chamber connected to the reservoir via a drainage passage, and a third chamber connected to the actuator.
前記チヤ ンバ室と前記第三の液室とを遮断し、 さらに前記スプールを前 記第一の液室側に移動して前記第二の液室と前記第三の液室とが連通する ように操作し得る弁操作手段と、  The chamber is shut off from the third liquid chamber, and the spool is further moved toward the first liquid chamber so that the second liquid chamber communicates with the third liquid chamber. Valve operating means operable to
前記第一の液室と前記第三の液室とを連通する作動液通路と、  A working fluid passage communicating the first fluid chamber and the third fluid chamber,
この作動液通路の途中に介装されて前記第三の液室が所定圧以上となつ た場合に前記第一の液室と前記第三の液室とめ連通状態を遮断する切換弁 と、  A switching valve interposed in the middle of the working fluid passage to shut off the communication between the first fluid chamber and the third fluid chamber when the third fluid chamber has a predetermined pressure or more;
を具えたことを特徴とする圧力制御装置。  A pressure control device characterized by comprising:
4 . 弁胴に形成された弁収容孔に対して摺動自在に嵌合するスプールと、 このスプールにより前記弁収容孔の一端側に仕切られた第一の液室と、 前記弁胴と前記スプールとの間にそれぞれ形成され、 かつ作動液供給源 に接続する第二の液室およびこの第二の液室に連通し得ると共に排液路を 介して液溜めに接続するチヤ ンバ室およびァクチユエ一夕に接続する第三 の液室と、 4. A spool that is slidably fitted in a valve receiving hole formed in the valve body, a first liquid chamber partitioned on one end side of the valve receiving hole by the spool, A second liquid chamber respectively formed between the first and second spools and connected to the hydraulic fluid supply source; a chamber chamber and an actuator which can communicate with the second liquid chamber and which are connected to the liquid reservoir via a drain passage; A third fluid chamber that connects overnight,
前記チヤ ンバ室と前記第三の液室とを遮断し、 さらに前記スプールを前 記第一の液室側に移動して前記第二の液室と前記第三の液室とが連通する ように操作し得る弁操作手段と、  The chamber is shut off from the third liquid chamber, and the spool is further moved toward the first liquid chamber so that the second liquid chamber communicates with the third liquid chamber. Valve operating means operable to
前記第一の液室と前記第三の液室とを連通する作動液通路と、  A working fluid passage communicating the first fluid chamber and the third fluid chamber,
この作動液通路の途中に介装されて前記第三の液室が所定圧以上となつ た場合に前記第一の液室と前記第三の液室との連通状態を遮断すると共に 前記第一の液室を前記作動液通路から分岐する排液通路に接続する切換弁 と  When the third liquid chamber becomes higher than a predetermined pressure by being interposed in the middle of the hydraulic liquid passage, the communication between the first liquid chamber and the third liquid chamber is cut off and the first liquid chamber is cut off. A switching valve connecting the liquid chamber of the above to a drainage passage branched from the hydraulic fluid passage; and
を具えたことを特徴とする圧力制御装置。  A pressure control device characterized by comprising:
5 . 弁胴に形成された弁収容孔に対して摺動自在に嵌合されるスプール と、 このスプールと前記弁胴との間にそれぞれ形成されてァクチユエ一夕に 接続する第一の液室および作動液供給源に接続する第二の液室と、 5. A spool slidably fitted in a valve receiving hole formed in the valve body; A first liquid chamber formed between the spool and the valve body and connected to the actuator and a second liquid chamber connected to the hydraulic fluid supply source;
これら第一の液室と第二の液室とが連通するように前記スプールを操作 し得るスプール操作手段と、  Spool operation means capable of operating the spool so that the first liquid chamber and the second liquid chamber communicate with each other;
補助波路を介して前記第一の液室に接続し、 かつ前記スプール操作手段 を付勢し得る補助付勢手段と、  Auxiliary urging means connected to the first liquid chamber via an auxiliary wave path, and capable of urging the spool operating means;
前記補助液路の途中に設けられて前記第一の液室が所定圧以上となった 場合に前記補助付勢手段に前記第一の液室からの作動液を導く開閉弁と を具えたことを特徴とする圧力制御装置。  An opening / closing valve that is provided in the middle of the auxiliary liquid passage and guides the hydraulic fluid from the first liquid chamber to the auxiliary urging means when the first liquid chamber has a predetermined pressure or higher. A pressure control device characterized by the above-mentioned.
6 . 弁胴に形成された弁収容孔に対して摺動自在に嵌合されるスプール と、 6. A spool slidably fitted in a valve receiving hole formed in the valve body,
このスプールと前記弁胴との間にそれぞれ形成され、 かつァクチユエ一 夕に接続する第一の液室およびこの第一の液室に連通し得ると共に排液路 を介して液溜めに連通するチヤンバ室および作動液供給源に接続する第二 の液室と、  A first liquid chamber formed between the spool and the valve body and connected to the actuator, and a chamber which can communicate with the first liquid chamber and which communicates with the liquid reservoir via a drain passage. A second fluid chamber connected to the chamber and a hydraulic fluid supply;
第一の液室とチヤンバ室とを遮断し、 さらに前記第一の液室と前記第二 の液室とが連通するように前記スプールを操作し得るスプ一ル操作手段と、 補助液路を介して前記第一の液室に接続し、 かつ前記スプール操作手段 を付勢し得る補助付勢手段と、  A spool operating means for shutting off the first liquid chamber and the chamber chamber, and further operating the spool so that the first liquid chamber and the second liquid chamber communicate with each other; An auxiliary urging means connected to the first liquid chamber through the first liquid chamber, and capable of urging the spool operating means;
前記補助波路の途中に設けられて前記第一の液室が所定圧以上となった 場合に前記補助付勢手段に前記第一の液室からの作動液を導く開閉弁と を具えたことを特徴とする圧力制御装置。  An opening / closing valve that is provided in the middle of the auxiliary wave path and guides the hydraulic fluid from the first liquid chamber to the auxiliary urging means when the first liquid chamber has a predetermined pressure or more. Characteristic pressure control device.
7 . パワーシリンダに形成された一対のシリンダ室に対してそれぞれ圧 油の給排を行う一対の油圧制御弁と、 これら一対の油圧制御弁を作動する 弁駆動機構とを有するパワーステアリング装置であって、 7. A power steering device having a pair of hydraulic control valves for supplying and discharging hydraulic oil to and from a pair of cylinder chambers formed in a power cylinder, respectively, and a valve drive mechanism for operating the pair of hydraulic control valves. hand,
前記油圧制御弁は、 弁胴に形成された弁収容孔に対して摺動自在に嵌合 されるスプールと、 このスプールによつて前記弁収容孔の一端側に仕切ら れる第一の油室と、 前記弁胴と前記スプールとの間にそれぞれ形成されて 油ポンプからの圧油が供給される第二の油室および前記パワーシリンダの 一方の前記シリンダ室に連通する第三の油室と、 この第三の油室に連通し 得ると共に排油路を介して油溜めに連通するチヤンバ室とを具え、 The hydraulic control valve includes a spool slidably fitted in a valve receiving hole formed in a valve body, and a first oil chamber partitioned by the spool at one end of the valve receiving hole. , Formed between the valve body and the spool, respectively A third oil chamber that communicates with a second oil chamber to which pressure oil from an oil pump is supplied and one of the cylinder chambers of the power cylinder; and a third oil chamber that can communicate with the third oil chamber and a drain passage. With a chamber chamber that communicates with the oil sump via
前記弁駆動機構は、 操舵に伴って前記第三の油室と前記チヤ ンバ室とを 遮断し、 さらに前記スプールを前記第一の油室側に移動して前記第二の油 室と第三の油室とを連通するものであり、  The valve drive mechanism shuts off the third oil chamber and the chamber chamber with steering, and further moves the spool to the first oil chamber side to move the second oil chamber and the third oil chamber. With the oil chamber of
前記第一の油室には、 車両の運転状態に応じてこの第一の油室内の油圧 を調整する油圧調整手段が付設されていることを特徴とするパワーステア リング装置。  A power steering device, wherein the first oil chamber is provided with hydraulic pressure adjusting means for adjusting a hydraulic pressure in the first oil chamber according to a driving state of a vehicle.
8 . 油圧調整手段が、 第一の油室に圧油を供給する油ポンプと、 前記第 —の油室に連通すると共に絞りが組み込まれた排油路とを具えたことを特 徴とする請求項 7に記載したパワーステアリング装置。 8. The hydraulic adjustment means is characterized by comprising an oil pump for supplying pressurized oil to the first oil chamber, and an oil discharge passage communicating with the first oil chamber and incorporating a throttle. The power steering device according to claim 7.
9 . 油圧調整手段が、 第一の油室と第三の油室とを連通する分岐通路と、 この分岐通路を絞るかあるいは開閉する弁手段と、 前記第一の油室に連通 すると共に絞りが組み込まれた排油路とを具えたことを特徴とする請求項 7に記載したパワーステアリング装置。 9. Hydraulic pressure adjusting means includes: a branch passage communicating the first oil chamber and the third oil chamber; valve means for narrowing or opening / closing this branch passage; and a throttle communicating and communicating with the first oil chamber. 8. The power steering apparatus according to claim 7, further comprising an oil drain in which the oil is incorporated.
1 0 . 車両の運転状態が車両の走行速度であることを特徴とする請求項 7に記載したパワーステアリング装置。 10. The power steering device according to claim 7, wherein the driving state of the vehicle is a traveling speed of the vehicle.
1 1 . 操舵力が入力される入力軸と操舵部材を駆動する出力軸とをトー シヨンバーで連結し、 該入力軸と出力軸との相対回転量に応じて作動され るスプール弁式の弁作動機構を有するパワーステアリング装置において、 前記スプール弁式の弁作動機構を前記入力軸および出力軸を回転自在に 支持する固定部材に配置し、 1 1. An input shaft to which the steering force is input and an output shaft for driving the steering member are connected by a torsion bar, and a spool valve type valve is operated according to the relative rotation amount between the input shaft and the output shaft. In a power steering device having a mechanism, the spool valve type valve operating mechanism is disposed on a fixed member that rotatably supports the input shaft and the output shaft,
前記入力軸と出力軸との相対回転を該両軸の軸線方向の運動に変換する 運動方向変換手段を設け、  A movement direction converting means for converting relative rotation between the input shaft and the output shaft into movement in the axial direction of the two shafts;
該運動方向変換手段により前記弁作動機構を作動するようにしたことを 特徴とするパワーステアリング装置。 Operating the valve operating mechanism by the motion direction converting means. Characteristic power steering device.
1 2 . 前記スプール弁式の弁作動機構は前記入力軸と平行に配置され、 前記運動方向変換手段は、 1 2. The spool valve type valve operating mechanism is arranged in parallel with the input shaft,
前記入力軸に軸線方向に摺動自在に嵌装され、 軸線に対し傾いた傾斜案 内部と、 軸線方向の案内部と、 前記弁作動機構駆動用のフランジとが形成 されたスリーブ部材と、  A sleeve member fitted with the input shaft so as to be slidable in the axial direction and inclined with respect to the axis, a guide portion in the axial direction, and a flange formed with the flange for driving the valve operating mechanism;
前記入力軸に突設され前記傾斜案内部に係合する駆動ピンと、  A drive pin protruding from the input shaft and engaging with the inclined guide portion;
前記出力軸に固設され前記軸線方向案内部に係合するガイ ドピンと を具えていることを特徴とする請求項 1 1に記載のパワーステアリング  The power steering according to claim 11, further comprising: a guide pin fixed to the output shaft and engaged with the axial guide portion.
1 3 . 前記スプール弁式の弁作動機構は前記入力軸と平行に配置され、 前記運動方向変換手段は、 13. The spool valve type valve actuating mechanism is arranged in parallel with the input shaft, and the movement direction changing means is:
前記入力軸に摺回動自在に嵌装され、 軸線に対し傾いた傾斜案内部と軸 線方向の案内部とが形成されたスリ一ブ部材と、  A sleeve member fitted to the input shaft so as to be freely slidable and formed with an inclined guide portion inclined with respect to an axis and an axial guide portion;
前記弁作動機構駆動用レバーを具え前記スリ一ブ部材に対し軸線方向に は一体的に連結され、 周方向には回動自在なリング部材と、  A ring member including the valve operating mechanism driving lever, integrally connected to the sleeve member in the axial direction, and rotatable in the circumferential direction;
前記入力軸に突設され前記傾斜案内部に係合する駆動ピンと、  A drive pin protruding from the input shaft and engaging with the inclined guide portion;
前記出力軸に固設され前記軸線方向案内部に係合するガイ ドビンと を具えていることを特徴とする請求項 1 1に記載のパワーステアリング  The power steering according to claim 11, further comprising a guide bin fixed to the output shaft and engaged with the axial guide portion.
1 4 . 前記スプール弁式の弁作動機構は前記入力軸と直角方向に配置さ れ、 14. The spool valve type valve operating mechanism is disposed at right angles to the input shaft,
前記運動方向変換手段は、  The movement direction conversion means,
前記入力軸に摺回動自在に嵌装され、 軸線に対し傾いた第一傾斜案内部 と軸線方向の案内部とが形成された第一スリ一ブ部材と、  A first sleeve member fitted to the input shaft so as to be freely slidable and formed with a first inclined guide portion inclined with respect to an axis and a guide portion in an axial direction;
該第ースリーブ部材に対して回転自在にかつ軸方向に一体的に連結され、 軸線に対し傾いた第二傾斜案内部が形成されると共に、 該第二傾斜案内部 に係合するピンと前記弁作動機構を駆動する弁作動機構駆動用レバーとを 具えたリ ング部材が外周に嵌装された第ニスリーブ部材と、 A second inclined guide portion which is rotatably and axially integrally connected to the first sleeve member and is inclined with respect to the axis; A second sleeve member in which a ring member having a pin engaged with the ring and a valve operating mechanism driving lever for driving the valve operating mechanism is fitted around the outer periphery;
前記入力軸に突設され前記第一傾斜案内部に係合する駆動ピンと、 前記出力軸に固設され前記軸線方向案内部に係合するガイ ドビンと、 を具えていることを特徵とする請求項 1 1に記載のパワーステアリ ング  A driving pin protruding from the input shaft and engaging with the first inclined guide portion; and a guide bin fixed to the output shaft and engaging with the axial guide portion. Power steering described in item 11
1 5 . 前記固定部材は操舵部材を摺動自在に支持するシリンダに固設さ れたハウジングであることを特徴とする請求項 1 1に記載のパワーステア リング装置。 15. The power steering apparatus according to claim 11, wherein the fixed member is a housing fixed to a cylinder that slidably supports the steering member.
PCT/JP1995/000291 1994-02-25 1995-02-27 Pressure control device WO1995023086A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019950704605A KR960701767A (en) 1994-02-25 1995-02-27 Pressure Control Device
DE19580329T DE19580329T1 (en) 1994-02-25 1995-02-27 Pressure control device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2848594A JPH07232658A (en) 1994-02-25 1994-02-25 Power steering device
JP6/28485 1994-02-25
JP6/30685 1994-02-28
JP6/30686 1994-02-28
JP3068594A JPH07237553A (en) 1994-02-28 1994-02-28 Pressure control device
JP6/30695 1994-02-28
JP3068694A JPH07237554A (en) 1994-02-28 1994-02-28 Pressure control device
JP3069594A JPH07237555A (en) 1994-02-28 1994-02-28 Power steering device

Publications (1)

Publication Number Publication Date
WO1995023086A1 true WO1995023086A1 (en) 1995-08-31

Family

ID=27458891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000291 WO1995023086A1 (en) 1994-02-25 1995-02-27 Pressure control device

Country Status (3)

Country Link
KR (1) KR960701767A (en)
DE (1) DE19580329T1 (en)
WO (1) WO1995023086A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692147A (en) * 2019-03-14 2020-09-22 纳博特斯克有限公司 Driving device, electromagnetic proportional valve, reversing valve and construction machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10227236A1 (en) * 2002-06-19 2004-01-22 Zf Lenksysteme Gmbh Hydraulic steering for motor vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542694U (en) * 1978-09-14 1980-03-19
JPS5744504B2 (en) * 1974-10-12 1982-09-21
JPS59102567U (en) * 1982-12-28 1984-07-10 カヤバ工業株式会社 Power steering device
JPH03227775A (en) * 1990-02-01 1991-10-08 Toyota Motor Corp Power steering device for vehicle
JPH05238412A (en) * 1992-02-27 1993-09-17 Aisin Seiki Co Ltd Steering wheel operating force control device of power steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744504B2 (en) * 1974-10-12 1982-09-21
JPS5542694U (en) * 1978-09-14 1980-03-19
JPS59102567U (en) * 1982-12-28 1984-07-10 カヤバ工業株式会社 Power steering device
JPH03227775A (en) * 1990-02-01 1991-10-08 Toyota Motor Corp Power steering device for vehicle
JPH05238412A (en) * 1992-02-27 1993-09-17 Aisin Seiki Co Ltd Steering wheel operating force control device of power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111692147A (en) * 2019-03-14 2020-09-22 纳博特斯克有限公司 Driving device, electromagnetic proportional valve, reversing valve and construction machine

Also Published As

Publication number Publication date
KR960701767A (en) 1996-03-28
DE19580329T1 (en) 1996-06-27

Similar Documents

Publication Publication Date Title
US7086494B2 (en) Power steering system
JP4704855B2 (en) Pump device
US4570735A (en) Dual rotary valve for variable assist power steering gear for automotive vehicles
JPS61139563A (en) Hydraulic operating power steering gear
JP2001055968A (en) Volume control valve for variable displacement hydraulic rotatary machine
JP4015960B2 (en) Power steering device
WO1995023086A1 (en) Pressure control device
US6173728B1 (en) Switching valve for a hydraulic power steering system
JPH08301133A (en) Power steering system
JPH0215742Y2 (en)
US4384631A (en) Power steering mechanism
US6105711A (en) Power steering system
JPH023983Y2 (en)
JPH05201347A (en) Steering force control device for power steering device
JP2712351B2 (en) Rear wheel steering device
JP4683796B2 (en) Hydraulic control device for vehicle
JPH0121031B2 (en)
JPH036546Y2 (en)
JPH11301505A (en) Power steering device
JPH0113665Y2 (en)
JPH11321673A (en) Power steering device
JPH07237554A (en) Pressure control device
JPH037549B2 (en)
JPH08233152A (en) Pressure control device
JPS61160360A (en) Rack and pinion type power steering device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

ENP Entry into the national phase

Ref document number: 1995 532820

Country of ref document: US

Date of ref document: 19951024

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 19580329

Country of ref document: DE

Date of ref document: 19960627

WWE Wipo information: entry into national phase

Ref document number: 19580329

Country of ref document: DE