WO1995022023A1 - Flow rate control rotary valve - Google Patents

Flow rate control rotary valve Download PDF

Info

Publication number
WO1995022023A1
WO1995022023A1 PCT/JP1995/000157 JP9500157W WO9522023A1 WO 1995022023 A1 WO1995022023 A1 WO 1995022023A1 JP 9500157 W JP9500157 W JP 9500157W WO 9522023 A1 WO9522023 A1 WO 9522023A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
peripheral surface
inner peripheral
housing
collar
Prior art date
Application number
PCT/JP1995/000157
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Sugihara
Akira Furukawa
Original Assignee
Nippondenso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippondenso Co., Ltd. filed Critical Nippondenso Co., Ltd.
Publication of WO1995022023A1 publication Critical patent/WO1995022023A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/06Increasing idling speed
    • F02M3/07Increasing idling speed by positioning the throttle flap stop, or by changing the fuel flow cross-sectional area, by electrical, electromechanical or electropneumatic means, according to engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/12Throttle valves specially adapted therefor; Arrangements of such valves in conduits having slidably-mounted valve members; having valve members movable longitudinally of conduit
    • F02D9/16Throttle valves specially adapted therefor; Arrangements of such valves in conduits having slidably-mounted valve members; having valve members movable longitudinally of conduit the members being rotatable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor

Definitions

  • the present invention relates to a flow control rotary valve, and is preferably used as an intake air flow control valve for an internal combustion engine.
  • a housing having a valve chamber with an inflow hole and an outflow hole opened at the axial center of the inner peripheral surface, and rotatably supported by a pair of bearings fitted to both ends of the inner peripheral surface.
  • the housing is formed of resin (for example, nylon) and the valve body is made of metal (for example, aluminum alloy or stainless steel).
  • an object of the present invention is to provide a flow control rotary valve capable of reducing leakage caused by a difference in linear expansion coefficient between a housing, a bearing, or a valve body. And It is another object of the present invention to provide a flow control rotary valve capable of reducing leakage without requiring improvement in manufacturing accuracy. Disclosure of the invention
  • a frame body having a valve chamber having an inlet hole and an outlet hole opened at an axially central portion of an inner peripheral surface, and fitted to both ends of the inner peripheral surface.
  • a flow control comprising: a rotating shaft rotatably supported by a pair of bearings; and a valve body fixed to the rotating shaft and housed in the valve chamber and adjusting the opening of the hole by rotation.
  • a clearance between the valve element and the inner peripheral surface of the frame due to thermal expansion is provided.
  • the configuration is characterized by minimizing the change in the size.
  • the inner peripheral surface of the housing rotatably supports the rotating shaft via the pair of bearings, and the valve body fixed to the rotating shaft is opened to the inner peripheral surface. At least one of the inflow hole and the outflow hole is controlled in opening.
  • the biasing means biases both bearings toward one of the two holes.
  • valve body is displaced or pressed toward the hole by the urging means through the two bearings, whereby leakage at the time of closing the valve can be reduced. For this reason, even if a combination having a large difference in the linear expansion coefficient between the housing and the valve body is selected, the leakage can be reduced, and the degree of freedom of the material selection combination increases.
  • the bearing even if there is a large difference in the coefficient of linear expansion between the housing and the bearing, the bearing will not loosen, and various materials such as resin are selected as the housing material. can do.
  • a plurality of the outflow holes are provided, and the urging means has a cross-sectional area of the outflow hole which is the most.
  • a configuration is adopted in which the bearing is urged toward the peripheral surface of the inside of the frame in which a large outflow hole is formed.
  • a resin housing having a valve chamber having an inflow hole and an outflow hole opened at an axially central portion of an inner peripheral surface, and the valve chamber having openings at positions corresponding to the both holes.
  • a metal collar having a pair of bearings fitted at both ends thereof, and a turn supported rotatably by the pair of bearings, while being in close contact with the inner peripheral surface of the housing.
  • a flow control rotary valve comprising: a dynamic shaft; and a valve body fixed to the rotary shaft, housed in the valve chamber, and adjusting an opening degree of the hole by rotation.
  • the biasing means is located at a fitting portion of the pair of bearings to bias the pair of bearings, and is provided integrally with the collar.
  • the configuration is characterized by the elastic projections provided.
  • the color has a cylindrical shape in which a pair of ends are opposed to each other with a gap therebetween.
  • a configuration characterized by being elastically deformed and closely contacting the inner peripheral surface of the housing is employed.
  • a resin housing having a valve chamber that houses the valve body and has an inflow hole and an outflow hole opened in the circumferential direction, and a coil chamber that houses the coil, and corresponds to both housing holes.
  • a rotating shaft that is rotatably supported by the pair of bearings and has a valve body that is housed in the valve chamber and that adjusts an opening of the opening of the collar;
  • Urging means for urging the bearing against the inner peripheral surface of the collar to maintain a predetermined clearance between the valve body and the inner peripheral surface of the collar;
  • the configuration is characterized by having.
  • the housing is formed of resin
  • the coil chamber and the valve chamber can be formed in a body, and the weight can be reduced.
  • the urging means urges the bearing, the clearance between the valve body and the inner peripheral surface of the collar can always be kept at a predetermined level, so that leakage can be reduced. You.
  • the urging means is provided on a color and is an elastically deformable projection.
  • the configuration is characterized in that the bearing is biased toward the inner peripheral surface having the collar opening.
  • the biasing means is a projection provided on the collar, it can be formed integrally with the collar, thereby preventing leakage between the valve body and the inner peripheral surface of the collar without increasing the number of parts. , hardly possible.
  • the collar in addition to the configuration of the seventh aspect, has a cylindrical shape in which a pair of ends are opposed to each other with a gap therebetween.
  • the elastic member is elastically deformed so as to be in close contact with the inner peripheral surface of the housing.
  • FIG. 1 is an axial cross-sectional view of the flow control rotary valve according to the first embodiment.
  • FIG. 2 is an assembly diagram of a rotating portion of the flow control rotating valve and a color.
  • Fig. 3 (a) is a developed view of the valve element.
  • Fig. 3 (b) is a front view of the valve element.
  • FIG. 4 is a front view of the stove.
  • FIG. 5 is a front view of the flow control rotary valve.
  • Figure 6 is an expanded view of the color.
  • Figure 7 is a front view of the color.
  • FIG. 8 is a circuit diagram of a drive circuit for driving the coil of the flow control rotary valve.
  • FIG. 9 is a schematic explanatory view for explaining rotation of the flow control rotation valve.
  • FIG. 1 is an axial cross-sectional view of the flow control rotation valve according to the first embodiment.
  • FIG. 2 is an assembly diagram of a rotating portion of the flow control rotating valve and a color.
  • FIG. 10 is a schematic explanatory view for explaining rotation of the flow control rotation valve.
  • FIG. 11 is a schematic explanatory diagram for explaining the rotation of the flow control rotation valve.
  • FIG. 12 is a characteristic diagram showing the relationship between the duty ratio of the input voltage of the flow control rotary valve and the air flow rate.
  • FIG. 13 is a characteristic diagram showing the relationship between the duty ratio of the input voltage of the flow control rotary valve and the air flow rate.
  • FIG. 1 shows an axial sectional sectional view of the air flow control valve of this embodiment.
  • This air flow control valve has a housing 1 made of a resin molded body with glass powder mixed therein, and the housing 1 is a valve housing having a cylindrical valve housing space 10 with both ends open. It comprises a part 11 and a solenoid housing part 12 integrally formed at one axial end of the knob housing part 11.
  • a collar 2 is adhered to the inner peripheral surface of the valve housing portion 11 facing the valve housing space 10, and a pair of ball bearings 3 is fitted into both ends of the color 2.
  • These ball bearings 3 rotatably support a rotating shaft 4, and as described later, a valve element 5 is located between the pair of ball bearings 3 and is fixed to the rotating shaft 4.
  • Reference numeral 13 denotes a plate which is inserted into the right end opening 11a of the knob housing part 11 and closes it.
  • a cylindrical valve chamber 100 is defined by the inner peripheral surface of the collar 2 and the end surface of the two spherical shaft bearings 3.
  • the cross-sectional area of the main outlet 14 is set to be larger than the cross-sectional area of the sub outlet 15.
  • the solenoid housing 12 is located adjacent to the valve accommodation space 10 A cylindrical magnet rotor accommodating space 16 formed at both ends and coaxial with the chamber 100, and a right angle formed without intersecting with the magnet rotor accommodating space 16 adjacent to the upper portion of the magnet rotor accommodating space 16. And a coil housing space 17 having a cylindrical shape with both ends open.
  • the coil portion 61 of the rotary solenoid (rotary actuator) 6 shown in FIG. 5 is fitted into the coil accommodating space 17, and the magnet rotor accommodating space 16 is fitted into the magnet rotor accommodating space 16.
  • the base 62 a of the yoke 62 of the mouthpiece solenoid 6 is accommodated.
  • a permanent magnet 6 3 is fitted and fixed to the left end of the rotating shaft 4.
  • the permanent magnet 63 is inserted into the magnet rotor chamber 16, and has an opening 6 opened at the base 6 2 a of the yoke 6 2. It is rotatably housed in 2b.
  • Numeral 65 denotes a plate which is inserted into the left end opening 16a of the magnet rotor storage space 16 and closes it.
  • FIG. 2 shows an axial sectional sectional view of a subassembly including the collar 2, the ball bearing 3, the rotating shaft 4, and the valve element 5.
  • the collar 2 is formed by bending a stainless steel thin plate into a cylindrical shape, and a valve body 5 is fixed in the collar 2 and a ball bearing 3 and a ring 46 are assembled.
  • the driving shaft 4 is press-fitted, and then the other ball bearing 3 is press-fitted, and the sub-assembly is completed.
  • Figure 3 shows a development view of the valve element 5 before bending.
  • the valve body 5 before bending includes a substantially rectangular central portion 50 and a wheel plate portion 51 in contact with the left and right ends of the central portion 50. After punching a stainless steel plate, the central portion 50 is formed. It bends and bends both wheel plates 51 at right angles at the arrows in FIG. 3 (a) (see FIG. 3 (b)). Then, the holes 51a of both wheel plates 51 are connected to the rotating shaft 4. It is formed by fitting and fixing by welding.
  • the central portion 50 has a rectangular hole 52 in the center, and the upper and lower portions of the hole 52 become a first valve portion 53 and a second valve portion 54.
  • Figure 4 shows a front view of plate 13.
  • Plate 13 has a circular base 13a and the inner end face of base 13a. It consists of an arc-shaped projection 13b, which is inserted into the right end opening 11a of the valve housing 11 of the housing 1 as described above, and closes that opening. .
  • the stopper 13 b is disposed at the same position in the axial direction as the rotation stopping projection 45 of the ring 46, and as a result, the rotation angle range of the rotation stopping protrusion 45 and the rotation shaft 4 is limited to the stop. It is determined by the open angle of both ends of the wrapper 13b.
  • Figure 5 shows a schematic front view of the rotary solenoid 6.
  • the amount of magnetic flux flowing through the magnetic circuit composed of the yoke 62 and the core 64 composed of a soft magnetic material, respectively, changes.
  • the center position and the size of the magnetic pole facing the opening 62b of the base 62a of the yoke 62 change.
  • these magnetic poles attract or repel the magnetic poles formed on the permanent magnet 63 fixed to the rotating shaft 4, and eventually control the magnitude and direction of the current flowing through the coil 61. Therefore, the permanent magnet 63 and the rotating shaft 4 rotate.
  • Figure 6 shows a developed view of the collar 2 before bending.
  • the collar 2 is made of a rectangular thin plate, and has a pair of curved sides 20 which are long sides and are curved sides, and a pair of non-curved sides 21 which are non-curved sides.
  • a notched linear groove 24 is formed at a predetermined distance inward from the four corners of the collar 2 in the direction of the non-curved side 21 and in the direction of extension of the curved side 20.
  • Four elastic protrusions 25 protruding in the direction of the curved side 20 are formed at the corners.
  • the outflow port 15 a, the concave part 26 with a depth of about 0.5 mm 26, the outflow port 14 a, A recess 27 having a depth of about 0.5 mm and an inflow port 23 are formed.
  • the recesses 26 and 27 are provided for receiving foreign matter.
  • the base of the elastic projection 25 (arrow portion in FIG.
  • the collar 2, the ball bearing 3, the rotating shaft 4, the valve body 5, and the ring 46 are assembled in advance to form a subassembly.
  • the elastic projections 25 of the collar 1 are elastically deformed to the outer peripheral side, and as a result, the elastic projections 25 strongly press the outer peripheral surface of the ball bearing 3, and the collar 2 and the ball bearing 3 are strong.
  • the non-curved side of the color 2 is notwithstanding the addition of clarity due to the difference in thermal expansion coefficient between the valve housing 11 made of resin and the collar 2 made of stainless steel.
  • 2 1 extends to the outer periphery to absorb the increase in clearance between the valve housing 11 and the color 2.
  • the arrangement of the elastic projections 25 causes the ball bearing 3 to move in the direction of the main outflow hole 14 having a larger sectional area than the sub outflow hole 15. Biasing, so that the increase in clearance between the valve element 5 and the outflow port 14a can always be reduced, and leakage when the valve is closed can be reduced.
  • the color 2 and the valve element 5 are made of the same stainless steel.
  • the inner peripheral surface of the color 12 is similar to the above. Clearance occurs between the valve body 5 and the outer peripheral surface of the valve body 5, but also in this case, leakage when the valve is closed is reduced due to the eccentricity of the rotating shaft 4 due to the bias of the elastic projections 25. can do.
  • the eccentricity of the rotating shaft 4 due to the biasing of the elastic projection 25 is also considered. As a result, leakage when the valve is closed can be reduced. For this reason, even if the above-mentioned clearance is formed slightly larger, the leakage can be kept within an allowable range.
  • FIG. 8 shows a drive circuit 7 for driving a monolithic solenoid 6 and FIG. 8 shows an AC type, in which a P-channel MOS power transistor T1 and an N-channel MOS power transistor are used.
  • the output terminal of the inverter II which is formed by connecting the transistor T2 in series, the P-channel MOS power transistor T3 and the N-channel MOS power transistor T4. These are connected in series to the output terminal of I2 and the output terminal of I2, and are individually connected to both ends of the connector 61 of the resource solenoid 6.
  • the transistors T3 and A current flows through the transistor 61 through the transistor T2, and the input voltage V1 of the inverter I1 is at a low level and the input voltage V2 of the inverter I2 is at a high level.
  • a reverse current flows through the transistor 61 through the transistor T1 and the transistor T4.
  • the current flowing to the coil 61 is controlled by the duty ratio control of the input voltage VI and the input voltage V 2 having the opposite phase, and as a result, The permanent magnet '63 rotates in response to the current flow.
  • the N pole and the S pole of the permanent magnet 63 stand still in the state of FIG. 5, which is the angular position where the air gap is minimized.
  • the N and S poles of the permanent magnet 63 are formed facing the opening 62b of the yoke 62. N and S poles are attracted and repelled, and are rotated clockwise from the air gap minimum angle position to the rotation angle position according to the current duty ratio. Rotate. If the energizing direction is reversed, the motor naturally rotates counterclockwise from the minimum air gap angle position to the rotation angle position corresponding to the duty ratio of the current according to the same principle.
  • FIGS. 9 to 11 showing a radial cross section of the valve housing 11 and FIG. 12 showing the relationship between the air flow rate and the duty ratio of the input voltage.
  • the parts will be described.
  • the sectional shape of the valve housing portion 11 of the housing 1 is schematically illustrated for simplicity.
  • the valve body 5 is also schematically illustrated for simplicity without having to have the exact shape shown in FIG. 3 (b).
  • the input voltage VI of the drive circuit 7 is set to a high level at a duty ratio of 100% (duration ratio is set to 100%), and the input voltage V2 is set to a duty ratio of 0%.
  • the high level is set at 0% (duty ratio is 0%).
  • the protrusion 45 comes into contact with one end of the flange 45, and the valve element 5 is at the first final opening position.
  • the first valve portion 53 of the valve element 5 has the main outlet hole 14 opened halfway, whereby the flow rate of the air flowing out of the main outlet hole 14 becomes the intermediate value Q1.
  • the second valve portion 54 of the valve element 5 completely closes the sub-outlet 15, whereby the flow rate of the air flowing out from the sub-outlet 15 becomes the minimum value Q′min.
  • the input voltage VI of the drive circuit 7 is gradually reduced from the on-duty ratio of 100% to 0%, and the input voltage V2 is kept at the duty ratio of 0%, that is, at the one-level level.
  • the current flowing to the inverter I1 via the I2 coil 61 gradually decreases from the full load current to zero at last.
  • the valve element 5 rotates counterclockwise in the figure, the first valve portion 53 gradually narrows the main outlet hole 14, and the amount of air flowing out of the main outlet hole 14 decreases, The value is Q min.
  • the main outflow hole 14 starts to open again, and the air flow flowing out of the main outflow hole 14 is It increases to Q2.
  • the second valve portion 54 starts to open the sub-outlet 15 and finally opens completely, The flow rate of the air flowing out of the outlet hole 15 gradually increases and reaches the maximum value Q'max.
  • FIG. 10 shows a state in which the on-duty ratios of the input voltages V I and V 2 of the drive circuit 7 are both 0% (one-level). That is, in this state, the current flowing through the coil 61 is zero.
  • the valve element 5 is in the initial angular position (intermediate opening position), the air flow rate flowing out of the main outlet port 14 is Q 2, and the air flow rate flowing out of the sub outlet port 15 is Q′max. .
  • the on-duty ratio of the input voltage VI of the drive circuit 7 is kept at 0%, and the on-duty ratio of the input voltage V2 is increased from 0% to 100%.
  • the current flowing to the inverter I2 via the input and output terminals 61 gradually increases from 0 and finally reaches the full load current.
  • the valve element 5 rotates counterclockwise from the initial angular position (intermediate opening position) of the current 0 shown in FIG. 10, and the first valve portion 53 gradually opens the main outlet hole 14, The flow rate of air flowing out of the main outlet 14 increases and reaches the maximum value Q max.
  • the second valve section 54 starts to throttle the main outlet port 14, and when the on-duty ratio of the input voltage V 2 becomes 100%, the air flowing out of the main outlet port 14 becomes The flow rate becomes the intermediate value Q 3.
  • the secondary outlet 15 remains open.
  • the protrusion 45 is designed to contact the end face of the stopper 13b at an on-duty ratio of about 90% in either direction of the current flow, and the angular position of the valve body 5 at this time. Are the final angular positions in the present invention.
  • the air flow rate becomes the intermediate flow rate Q 2 when the power is cut off, and the air flow rate becomes the intermediate flow rate Q 1 or Q 3 when the power is turned on in either direction.
  • the air flow rate does not reach the minimum value Q min or the maximum value Q max, and the engine is operated, for example, during running ( The output does not suddenly increase or decrease during the normal air flow.
  • the cylindrical projection 2 5 is formed as a cylindrically curved collar 2.
  • the elastic projection may urge the ball bearing 3 in the direction of the outflow hole.
  • An elastic body may be interposed between the housing 1 and the inner peripheral surface.
  • the collar 2 can be formed in a completely cylindrical shape.
  • the flow control rotary valve according to the present invention can be used as an intake air flow control valve for an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

An inner circumferential surface of a housing (1) rotatably supports a rotary shaft (4) via a pair of bearings (3), and a valve disc (5) fixed to the rotary shaft (4) controls the opening of at least one of inlet hole (19) and outlet hole (14) both made open in the inner circumferential surface. A biassing means (25) biasses the two bearings (3) towards one of the two holes. Therefore, the valve disc (5) is displaced toward or pressed against an inner circumferential surface of a collar (2) by the biassing means (25) via the two bearings (3), whereby it is possible to reduce leakage that would take place when the valve is closed. Due to this, even if a combination of the housing (1) and valve disc (5) which have a large linear expansion coefficient difference is selected, it is still possible to reduce leakage, this increasing the degree of freedom in selection of combination of raw materials. In addition, even if there is a large difference in linear expansion coefficient between the housing (1) and the bearings (3), there is no risk of the bearings (3) being loosened due to the expansion of the collar (2), and therefore it is possible to select various types of materials such as resin as a material for the housing.

Description

明細書 流量制御回動弁 技術分野  Description Flow control rotary valve Technical field
本発明は、 流量制御回動弁に関 し、 好適には内燃機関の吸入空気流 量制御弁と して用いられる。  The present invention relates to a flow control rotary valve, and is preferably used as an intake air flow control valve for an internal combustion engine.
背景技術 Background art
内周面の軸方向中央部に流入孔及び流出孔が開口された弁室を有す るハウ ジ ングと 、 前記内周面の両端に嵌着された一対の軸受けによ り 回転自在に支持される回動軸と、 回動軸に固定されて弁室に収容され 、 回動によ り両孔の一方の開度を調節する弁体とを備える流量制御回 動弁が知られている (例えば、 特開昭 5 9 — 1 5 0 9 3 9号公報) 。  A housing having a valve chamber with an inflow hole and an outflow hole opened at the axial center of the inner peripheral surface, and rotatably supported by a pair of bearings fitted to both ends of the inner peripheral surface. 2. Description of the Related Art There is known a flow control valve having a rotating shaft that is fixed to a rotating shaft and a valve body that is housed in a valve chamber and that adjusts an opening of one of both holes by rotating. (For example, Japanese Patent Application Laid-Open No. 59-15939).
しか しながら、 上記した従来の流量制御回動弁では、 以下の問題が あった。  However, the above-described conventional flow control rotary valve has the following problems.
第一に、 ハウ ジ ングと軸受けとの線膨張率差があるため、 ハウ ジ ン グと軸受けとの相対位置がずれ、 ハ ウ ジ ン グの内周面と弁体との間の ク リ アラ ンスが大き く なり、 漏れが大き く なつて しま う という問題が あった。  First, due to the difference in linear expansion coefficient between the housing and the bearing, the relative position between the housing and the bearing is shifted, and the clearance between the inner peripheral surface of the housing and the valve body is reduced. There was a problem that the arrangement became large and the leakage became large.
一方、 ハウ ジ ング及び弁体の線膨張率差を縮小するには、 素材選択 の幅が狭 く な り、 そのために コ ス ト 、 製造工程、 耐久性などの点で問 題が生じた。 例えば、 両者を金属と した場合には両者を樹脂と した場 合に比べて重量増加の問題が生じ、 両者を樹脂と した場合には両者を 金属と した場合に比べて弁体が樹脂であるので強度が弱いと いう問題 が生じる。 このよ う な趣旨からは、 樹脂 (たとえばナイ ロ ンなど) で ハ ウ ジ ン グを形成し、 弁体を金属 (例えばアル ミ 合金やステ ン レス) とする こ とが好ま しいが、 その結果、 上述 した理由によ り高温時にハ ウ ジ ングの膨張によ りハウ ジ ングと弁体との間のク リ アラ ンスが拡大 し、 ますます漏れが増加 して しま う。 On the other hand, in order to reduce the difference in the linear expansion coefficient between the housing and the valve body, the range of choice of materials was reduced, which caused problems in terms of cost, manufacturing process, durability, and the like. For example, when both are made of metal, there is a problem of weight increase compared to when both are made of resin, and when both are made of resin, the valve body is made of resin compared to when both are made of metal. Therefore, there is a problem that the strength is weak. For this purpose, it is preferable that the housing is formed of resin (for example, nylon) and the valve body is made of metal (for example, aluminum alloy or stainless steel). As a result, for the reasons described above, The inflation of the housing increases the clearance between the housing and the valve body, and further increases leakage.
そ こで本発明は、 ハ ウ ジ ン グ、 軸受け も し く は弁体の線膨張率差に によ り発生する漏れの低減可能な流量制御回動弁を提供する こ とをそ の目的と している。 また、 製造精度の向上を要する こ とな く 、 漏れ低 減が可能な流量制御回動弁を提供する こ とをその目的と している。 発明の開示  Accordingly, an object of the present invention is to provide a flow control rotary valve capable of reducing leakage caused by a difference in linear expansion coefficient between a housing, a bearing, or a valve body. And It is another object of the present invention to provide a flow control rotary valve capable of reducing leakage without requiring improvement in manufacturing accuracy. Disclosure of the invention
上記目的を達成するために、 第 1 の発明では、 内周面の軸方向中央 部に流入孔及び流出孔が開口された弁室を有する枠体と、 前記内周面 の両端に嵌着された一対の軸受けにより回転自在に支持される回動軸 と、 前記回動軸に固定されて前記弁室に収容され回動によ り前記孔の 開度を調整する弁体とを備える流量制御回動弁であって、  In order to achieve the above object, according to the first aspect, a frame body having a valve chamber having an inlet hole and an outlet hole opened at an axially central portion of an inner peripheral surface, and fitted to both ends of the inner peripheral surface. A flow control comprising: a rotating shaft rotatably supported by a pair of bearings; and a valve body fixed to the rotating shaft and housed in the valve chamber and adjusting the opening of the hole by rotation. A rotary valve,
前記枠体内周面の一方向側に前記軸受けを付勢する付勢手段を備え る こ とによ って、 '熱膨張による弁体と枠体内周面との間のク リ ァラ ン スの変化を少な く する こ とを特徴とする構成を採用 した。  By providing an urging means for urging the bearing on one side of the inner peripheral surface of the frame, a clearance between the valve element and the inner peripheral surface of the frame due to thermal expansion is provided. The configuration is characterized by minimizing the change in the size.
こ の構成によれば、 ハウ ジ ングの内周面は、 一対の軸受けを介 して 回動軸を回転自在に支持 し、 回動軸に固定された弁体は内周面に開口 された流入孔及び流出孔の少な く と も一方を開度制御する。 付勢手段 は、 両軸受けを両孔の一方へ向けて付勢する。  According to this configuration, the inner peripheral surface of the housing rotatably supports the rotating shaft via the pair of bearings, and the valve body fixed to the rotating shaft is opened to the inner peripheral surface. At least one of the inflow hole and the outflow hole is controlled in opening. The biasing means biases both bearings toward one of the two holes.
したがって、 弁体は両軸受けを通 じて付勢手段によ り孔の方へ変位 又は押圧され、 これによ り弁閉時の漏れを低減する こ とができ る。 こ のため、 ハウ ジ ング及び弁体の線膨張率差が大きい組合せを選んでも 漏れを低減する こ とができ、 素材選択組合せの自由度が増大する。  Therefore, the valve body is displaced or pressed toward the hole by the urging means through the two bearings, whereby leakage at the time of closing the valve can be reduced. For this reason, even if a combination having a large difference in the linear expansion coefficient between the housing and the valve body is selected, the leakage can be reduced, and the degree of freedom of the material selection combination increases.
また、 ハウ ジ ングと軸受けとの間の線膨張率の差が大き く ても軸受 けが緩んで しま う こ とがな く 、 ハ ウ ジ ン グの素材と して樹脂など多様 な素材を選択する こ とができ る。  In addition, even if there is a large difference in the coefficient of linear expansion between the housing and the bearing, the bearing will not loosen, and various materials such as resin are selected as the housing material. can do.
更に、 ハウ ジ ングの内周面と弁体との間のク リ ァラ ン ス管理が容 易とな り 、 製造精度の向上な しに漏れを低減する こ とができ る。 Furthermore, cleanliness management between the inner peripheral surface of the housing and the valve body is possible. This makes it easier to reduce leakage without improving manufacturing accuracy.
第 2 の発明では、 前記第 1 の発明の構成に加えて、 前記流出孔が複 数個を設け られている と と もに、 前記付勢手段は、 前記流出孔の内、 断面積が最も大き い流出孔が形成されている枠体内周面側に前記軸受 けを付勢する こ とを特徴とする構成を採用 した。  According to a second aspect of the present invention, in addition to the configuration of the first aspect, a plurality of the outflow holes are provided, and the urging means has a cross-sectional area of the outflow hole which is the most. A configuration is adopted in which the bearing is urged toward the peripheral surface of the inside of the frame in which a large outflow hole is formed.
第 3 の発明では、 内周面の軸方向中央部に流入孔及び流出孔が開口 された弁室を有する樹脂性のハウ ジ ングと、 前記両孔に対する位置に 開口を有 して前記弁室を覆い、 前記ハウ ジ ングの内周面に密接する と と もに、 両端部に嵌入された一対の軸受けを有する金属性のカラーと 、 前記一対の軸受けによ り回転自在に支持される回動軸と、 こ の回動 軸に固定されて前記弁室に収容され回動によ り前記孔の開度を調節す る弁体とを備える流量制御回動弁であって、  In the third invention, a resin housing having a valve chamber having an inflow hole and an outflow hole opened at an axially central portion of an inner peripheral surface, and the valve chamber having openings at positions corresponding to the both holes. And a metal collar having a pair of bearings fitted at both ends thereof, and a turn supported rotatably by the pair of bearings, while being in close contact with the inner peripheral surface of the housing. A flow control rotary valve comprising: a dynamic shaft; and a valve body fixed to the rotary shaft, housed in the valve chamber, and adjusting an opening degree of the hole by rotation.
前記カラー内周面の一方向側に前記軸受けを付勢する付勢手段を備 える こ と によって、 熱膨張による弁体と カラー内周面との間のク リ ア ラ ンスの変化を少な く する こ とを特徴とする構成を採用 した。  By providing a biasing means for biasing the bearing on one side of the inner circumferential surface of the collar, a change in the clearance between the valve body and the inner circumferential surface of the collar due to thermal expansion is reduced. A configuration characterized by this is adopted.
この構成によれば、 付勢手段の形成、 配設が容易とな り、 また、 軸 受けに嵌着されたカ ラーとハウ ジ ングの内周面との間にク リ アラ ンス が生じても、 弁体と カ ラーとの隙間からの漏れを格段に低減する こ と ができ る。  According to this configuration, it is easy to form and dispose the urging means, and a clearance is generated between the color fitted to the bearing and the inner peripheral surface of the housing. In addition, leakage from the gap between the valve body and the color can be significantly reduced.
第 4 の発明では、 前記第 3 の発明の構成に加えて、 前記付勢手段は 、 前記一対の軸受けの嵌入部分に位置 して、 前記一対の軸受けを付勢 する、 前記カラーに一体に設け られた弾性突起である こ とを特徴とす る構成を採用 した。  According to a fourth aspect of the present invention, in addition to the configuration of the third aspect, the biasing means is located at a fitting portion of the pair of bearings to bias the pair of bearings, and is provided integrally with the collar. The configuration is characterized by the elastic projections provided.
この構成によれば、 線膨張率の差による ク リ ァラ ンスが主にカラー の外周面とハウ ジ ングの内周面と の間に形成されても、 軸受けへの付 勢によ り、 弁体と カ ラーとの隙間からの漏れ増加を防止し、 かつカ ラ —に弾性突起を一体に設ける こ と で、 部品点数も低減する こ とがで き る。 第 5 の発明では、 前記第 4 の発明の構成に加えて、 前記カ ラ一は 、 一対の端部が隙間を介して対向する筒状であ り 、 それによ り、 この 一対の端部を弾性変形し、 前記ハウ ジ ングの内周面に密接する こ とを 特徴とする構成を採用 した。 With this configuration, even if the clearance due to the difference in linear expansion coefficient is mainly formed between the outer peripheral surface of the collar and the inner peripheral surface of the housing, the bias to the bearing causes By preventing an increase in leakage from the gap between the valve element and the color, and by providing an elastic projection integrally with the color, the number of parts can be reduced. According to a fifth aspect of the present invention, in addition to the configuration of the fourth aspect, the color has a cylindrical shape in which a pair of ends are opposed to each other with a gap therebetween. A configuration characterized by being elastically deformed and closely contacting the inner peripheral surface of the housing is employed.
この構成によれば、 ハウ ジ ングとカ ラ一との間に発生する ク リ アラ ンスが生じて もカ ラーが外周側に拡がり、 カラーとハウ ジ ングとの間 のがたを防止する こ とができ る。  According to this configuration, even if a clearance occurs between the housing and the color, the color spreads to the outer peripheral side, thereby preventing play between the color and the housing. It can be.
第 6 の発明では、 コ イ ルへの通電によ り、 弁体を回動させる流量制 御回動弁において、  According to a sixth aspect of the present invention, in a flow control rotary valve for rotating a valve body by energizing a coil,
前記弁体を収納 し、 周方向に流入孔及び流出孔が開口された弁室及 び前記コイ ルを収納する コイル室とを有する樹脂性のハウ ジングと、 前記ハウ ジ ング両孔に対応する開口部と、 両端部に設け られた一対 の軸受けとを有し、 前記ハウ ジ ングの弁室を覆う よ う に、 前記ハウ ジ ングの内周面に密接される金属性のカラーと、  A resin housing having a valve chamber that houses the valve body and has an inflow hole and an outflow hole opened in the circumferential direction, and a coil chamber that houses the coil, and corresponds to both housing holes. An opening, and a pair of bearings provided at both ends, a metallic collar which is in close contact with an inner peripheral surface of the housing so as to cover a valve chamber of the housing;
前記一対の軸受けによ り回転自在に支持される と と もに、 前記弁室 に収納され前記カラーの開口部の開度を調節する弁体とを有する回動 軸と、  A rotating shaft that is rotatably supported by the pair of bearings and has a valve body that is housed in the valve chamber and that adjusts an opening of the opening of the collar;
前記カラー内周面に前記軸受けを付勢する こ と により、 前記弁体と カラー内周面との間の所定のク リ ァラ ンスを維持するよ う に した付勢 手段と、  Urging means for urging the bearing against the inner peripheral surface of the collar to maintain a predetermined clearance between the valve body and the inner peripheral surface of the collar;
を備えたこ とを特徴とする構成を採用 した。  The configuration is characterized by having.
この構成によれば、 ハウ ジ ングを樹脂で形成したので、 コ イ ル室と 弁室とがー体に作成でき、 かつ軽量化を図る こ とができ る。  According to this configuration, since the housing is formed of resin, the coil chamber and the valve chamber can be formed in a body, and the weight can be reduced.
さ らに、 付勢手段が軸受けを付勢しているため、 弁体と カラ一内周 面との間のク リ アラ ンスが常に所定量にする こ とができ るので、 漏れ を低減でき る。  Furthermore, since the urging means urges the bearing, the clearance between the valve body and the inner peripheral surface of the collar can always be kept at a predetermined level, so that leakage can be reduced. You.
第 7 の発明では、 前記第 6 の発明の構成に加えて、 前記付勢手段は 、 カ ラーに設け られ、 弾性変形可能な突起であ り 、 この突起によ り、 前記軸受けをカラーの開口部を有する内周面側に付勢する こ とを特徴 とする構成を採用 した。 According to a seventh aspect of the present invention, in addition to the configuration of the sixth aspect, the urging means is provided on a color and is an elastically deformable projection. The configuration is characterized in that the bearing is biased toward the inner peripheral surface having the collar opening.
こ の構成によれば、 付勢手段がカラーに設け られた突起であるため 、 カ ラ一と一体成形でき、 弁体と カラ一内周面間での漏れを部品点数 を増やすこ とな く 、 容易に可能となる。  According to this configuration, since the biasing means is a projection provided on the collar, it can be formed integrally with the collar, thereby preventing leakage between the valve body and the inner peripheral surface of the collar without increasing the number of parts. , Easily possible.
第 8 の発明では、 前記第 7 の発明の構成に加えて、 前記カラーは、 一対の端部が隙間を介 して対向する筒状であ り、 それによ り、 こ の一 対の端部を弾性変形し、 前記ハウ ジ ングの内周面に密接する こ とを特 徵とする構成を採用 した。  According to an eighth aspect of the present invention, in addition to the configuration of the seventh aspect, the collar has a cylindrical shape in which a pair of ends are opposed to each other with a gap therebetween. The elastic member is elastically deformed so as to be in close contact with the inner peripheral surface of the housing.
この構成によれば、 ノヽウ ジ ングとカラ一との間に発生する ク リ アラ ンスが生じて もカ ラーが外周側に拡がり、 カラーとハウ ジ ングとの間 のがたを防止する こ とができ る。 図面の簡単な説明  According to this configuration, even if a clearance occurs between the housing and the collar, the collar extends to the outer peripheral side, thereby preventing play between the collar and the housing. It can be. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 実施例 1 の流量制御回動弁の軸方向組立断面図である。 図 2 は、 流量制御回動弁の回動部分及びカ ラ一の組立図である。 図 3 ( a ) は、 弁体の展開図である。 図 3 ( b ) は、 弁体の正面図である。 図 4 は、 ス ト ツバの正面図である。 図 5 は、 流量制御回動弁の正面図 である。 図 6 は、 カラーの展開図である。 図 7 は、 カラ一の正面図で ある。 図 8 は、 流量制御回動弁のコイル駆動用の駆動回路の回路図で ある。 図 9 は、 流量制御回動弁の回動を説明するための模式説明図で ある。 図 1 0 は、 流量制御回動弁の回動を説明するための模式説明図 である。 図 1 1 は、 流量制御回動弁の回動を説明するための模式説明 図である。 図 1 2 は、 流量制御回動弁の入力電圧のデューティ 比と空 気流量との関係を示す特性図である。 図 1 3 は、 流量制御回動弁の入 力電圧のデューテ ィ 比と空気流量との関係を示す特性図である。 発明を実施するための最良の形態 FIG. 1 is an axial cross-sectional view of the flow control rotary valve according to the first embodiment. FIG. 2 is an assembly diagram of a rotating portion of the flow control rotating valve and a color. Fig. 3 (a) is a developed view of the valve element. Fig. 3 (b) is a front view of the valve element. FIG. 4 is a front view of the stove. FIG. 5 is a front view of the flow control rotary valve. Figure 6 is an expanded view of the color. Figure 7 is a front view of the color. FIG. 8 is a circuit diagram of a drive circuit for driving the coil of the flow control rotary valve. FIG. 9 is a schematic explanatory view for explaining rotation of the flow control rotation valve. FIG. 10 is a schematic explanatory view for explaining rotation of the flow control rotation valve. FIG. 11 is a schematic explanatory diagram for explaining the rotation of the flow control rotation valve. FIG. 12 is a characteristic diagram showing the relationship between the duty ratio of the input voltage of the flow control rotary valve and the air flow rate. FIG. 13 is a characteristic diagram showing the relationship between the duty ratio of the input voltage of the flow control rotary valve and the air flow rate. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 )  (Example 1)
以下、 本発明の一実施例の空気流量制御弁を図面を参照して説明す る。  Hereinafter, an air flow control valve according to an embodiment of the present invention will be described with reference to the drawings.
この実施例の空気流量制御弁の軸方向組立断面図を図 1 に示す。 この空気流量制御弁は、 ガラ ス粉混入ナイ 口 ン樹脂成形体からなるハ ウ ジ ング 1 を有し、 ハウ ジ ング 1 は、 両端開口円筒状のバルブ収容空 間 1 0 を有するバルブハウ ジ ング部 1 1 と、 ノく'ルブハウ ジ ング部 1 1 の軸方向一端に一体形成されたソ レノ ィ ドハウ ジ ング部 1 2 とからな る。 バルブ収容空間 1 0 に面するバルブハウ ジ ング部 1 1 の内周面に はカラー 2 が密着され、 カ ラー 2 の両端部に一対の球軸受 3 が嵌入さ れている。 これら球軸受 3 は回動軸 4 を回転自在に支持しており、 後 述の如 く 、 弁体 5 がー対の球軸受 3 の間に位置 して回転軸 4 に固定さ れている。 1 3 はノく'ルブハウ ジ ング部 1 1 の右端開口 1 1 a に嵌入さ れてそれを閉鎖するプレー トである。 カラー 2 の内周面及び両球軸 15 受 3 の端面によ り 円筒形状の弁室 1 0 0 が区画形成されている。  FIG. 1 shows an axial sectional sectional view of the air flow control valve of this embodiment. This air flow control valve has a housing 1 made of a resin molded body with glass powder mixed therein, and the housing 1 is a valve housing having a cylindrical valve housing space 10 with both ends open. It comprises a part 11 and a solenoid housing part 12 integrally formed at one axial end of the knob housing part 11. A collar 2 is adhered to the inner peripheral surface of the valve housing portion 11 facing the valve housing space 10, and a pair of ball bearings 3 is fitted into both ends of the color 2. These ball bearings 3 rotatably support a rotating shaft 4, and as described later, a valve element 5 is located between the pair of ball bearings 3 and is fixed to the rotating shaft 4. Reference numeral 13 denotes a plate which is inserted into the right end opening 11a of the knob housing part 11 and closes it. A cylindrical valve chamber 100 is defined by the inner peripheral surface of the collar 2 and the end surface of the two spherical shaft bearings 3.
弁室 1 0 0 は、 カ ラ一 2 に開口された後述の流入ポー ト 1 9 a及び バルブハウ ジ ング部 1 1 の周壁に開口された後述の流入孔 1 9 を通 じ て外部の空気流入空間に連通 し、 またカ ラー 2 に開口された流出ポー ト 1 4 a及びバルブハウ ジ ング部 1 1 の周壁に開口された主流出孔 1 4 を通 じて外部の空気流出空間に連通 し、 同様にカラ一 2 に開口され た流出ポー 卜 1 5 a及びバルブハウ ジ ング部 1 1 の周壁に開口された 副流出孔 1 5 を通 じて図示 しない流出用パイ プに連通 している。 流出 孔 1 4 、 1 5 は後述するよ う に弁体 5 の回動によ り開度制御され、 こ れによ り流量が制御される。  External air inflows through the valve chamber 100 through an inflow port 19a, which will be described later, which is opened in the collar 12, and an inflow port 19, which will be described later, which is opened in the peripheral wall of the valve housing portion 11. Through the outflow port 14a opened in the color 2 and the main outflow hole 14 opened in the peripheral wall of the valve housing part 11, communicating with the outside air outflow space, Similarly, it communicates with an outflow pipe (not shown) through an outflow port 15a opened in the collar 2 and a sub outflow hole 15 opened in the peripheral wall of the valve housing portion 11. As will be described later, the opening degree of the outflow holes 14 and 15 is controlled by the rotation of the valve element 5, and the flow rate is thereby controlled.
なお、 主流出孔 1 4 の断面積は、 副流出孔 1 5 の断面積に比べて、 大き く 設定されている。  The cross-sectional area of the main outlet 14 is set to be larger than the cross-sectional area of the sub outlet 15.
ソ レ ノ ィ ドハウ ジ ング部 1 2 は、 バルブ収容空間 1 0 に隣接して弁 室 1 0 0 と同軸に形成された両端開口円筒状の磁石ロータ収容空間 1 6 と、 磁石ロータ収容空間 1 6 の上部に隣接して磁石ロータ収容空間 1 6 と交差せずに直角に形成された両端開口円筒状のコイル収容空間 1 7 とを有する。 コ イ ル収容空間 1 7 には、 図 5 に示すロータ リ ーソ レノ イ ド (本発明でいう ロータ リ ーアクチユエ一夕) 6 のコイル部 6 1 が嵌入され、 磁石ロータ収容空間 1 6 には口一タ リ ーソ レ ノ イ ド 6 のヨーク 6 2 の基部 6 2 aが収容されている。 The solenoid housing 12 is located adjacent to the valve accommodation space 10 A cylindrical magnet rotor accommodating space 16 formed at both ends and coaxial with the chamber 100, and a right angle formed without intersecting with the magnet rotor accommodating space 16 adjacent to the upper portion of the magnet rotor accommodating space 16. And a coil housing space 17 having a cylindrical shape with both ends open. The coil portion 61 of the rotary solenoid (rotary actuator) 6 shown in FIG. 5 is fitted into the coil accommodating space 17, and the magnet rotor accommodating space 16 is fitted into the magnet rotor accommodating space 16. The base 62 a of the yoke 62 of the mouthpiece solenoid 6 is accommodated.
回動軸 4 の左端部には永久磁石 6 3 が嵌着、 固定されており、 永久 磁石 6 3 は磁石ロータ室 1 6 に挿入され、 ヨーク 6 2 の基部 6 2 a に 開口された開口 6 2 b に回転自在に収容されている。 6 5 は磁石ロ ー 夕収容空間 1 6 の左端開口 1 6 a に嵌入されてそれを閉鎖するプレー トである。  A permanent magnet 6 3 is fitted and fixed to the left end of the rotating shaft 4. The permanent magnet 63 is inserted into the magnet rotor chamber 16, and has an opening 6 opened at the base 6 2 a of the yoke 6 2. It is rotatably housed in 2b. Numeral 65 denotes a plate which is inserted into the left end opening 16a of the magnet rotor storage space 16 and closes it.
図 2 に、 カラー 2 、 球轴受 3 、 回動軸 4 及び弁体 5 からなるサブァ ッセ ンブリ の軸方向組立断面図を示す。  FIG. 2 shows an axial sectional sectional view of a subassembly including the collar 2, the ball bearing 3, the rotating shaft 4, and the valve element 5.
カ ラー 2 は後述するよ う にステ ン レス薄板を円筒状に湾曲させてな り 、 こ のカ ラー 2 内に弁体 5 が固定され、 球軸受 3 、 リ ング 4 6 が組 まれた回動軸 4 が圧入され、 その後、 も う一方の球軸受 3 が圧入され 、 上記サブア ッ セ ンプ リ が完成される。  As will be described later, the collar 2 is formed by bending a stainless steel thin plate into a cylindrical shape, and a valve body 5 is fixed in the collar 2 and a ball bearing 3 and a ring 46 are assembled. The driving shaft 4 is press-fitted, and then the other ball bearing 3 is press-fitted, and the sub-assembly is completed.
図 3 に弁体 5 の折り曲げ前の展開図を示す。  Figure 3 shows a development view of the valve element 5 before bending.
折り曲げ前の弁体 5 は、 略長方形の中央部 5 0 と、 中央部 5 0 の左 右両端に接する輪板部 5 1 とからなり、 ステ ン レ ス板を打ち抜き後、 中央部 5 0 を湾曲 し、 図 3 ( a ) の矢印部で両輪板部 5 1 を直角に折 り 曲げ (図 3 ( b ) 参照) 、 その後、 両輪板部 5 1 の孔 5 1 a を回動 軸 4 に嵌着し、 溶接などで固定 して形成される。 中央部 5 0 は中央に 長方形の孔 5 2 を有し、 孔 5 2 の上下の部分が第 1 弁部 5 3 、 第 2弁 部 5 4 となる。  The valve body 5 before bending includes a substantially rectangular central portion 50 and a wheel plate portion 51 in contact with the left and right ends of the central portion 50. After punching a stainless steel plate, the central portion 50 is formed. It bends and bends both wheel plates 51 at right angles at the arrows in FIG. 3 (a) (see FIG. 3 (b)). Then, the holes 51a of both wheel plates 51 are connected to the rotating shaft 4. It is formed by fitting and fixing by welding. The central portion 50 has a rectangular hole 52 in the center, and the upper and lower portions of the hole 52 become a first valve portion 53 and a second valve portion 54.
図 4 にプ レー 卜 1 3 の正面図を示す。  Figure 4 shows a front view of plate 13.
プレー ト 1 3 は円扳形状の基部 1 3 a と、 基部 1 3 a の内側端面に 円弧状に突設されたス ト ツバ 1 3 b とからな り、 前述 したよ う にハウ ジ ング 1 のバルブハウ ジ ング部 1 1 の右端開口 1 1 a に嵌入されて、 その開口を閉鎖する。 ス ト ツバ 1 3 b は リ ング 4 6 の回動制止突起 4 5 と軸方向同位置に配設され、 その結果、 回動制止突起 4 5 及び回動 軸 4 の回動角度範囲はス ト ッパ 1 3 b の両端開き角度によ り決定され る。 Plate 13 has a circular base 13a and the inner end face of base 13a. It consists of an arc-shaped projection 13b, which is inserted into the right end opening 11a of the valve housing 11 of the housing 1 as described above, and closes that opening. . The stopper 13 b is disposed at the same position in the axial direction as the rotation stopping projection 45 of the ring 46, and as a result, the rotation angle range of the rotation stopping protrusion 45 and the rotation shaft 4 is limited to the stop. It is determined by the open angle of both ends of the wrapper 13b.
図 5 にロータ リ ーソ レノ ィ ド 6 の模式正面図を示す。  Figure 5 shows a schematic front view of the rotary solenoid 6.
コイル 6 1 に流れる電流の大き さ及び方向を制御する こ と によ り、 それぞれ軟磁性体からなる ヨーク 6 2 及びコア 6 4 からなる磁気回路 を流れる磁束量が変化し、 こ の変化によ り、 ヨーク 6 2 の基部 6 2 a の開ロ 6 2 b に面する磁極の中心位置と大き さが変化する。 その結果 、 これらの磁極は、 回動軸 4 に固定された永久磁石 6 3 に形成された 磁極と吸引又は反発を生じ、 結局、 コ イ ル 6 1 に流れる電流の大き さ 及び方向の制御によ り、 永久磁石 6 3 及び回動軸 4 は回動する。  By controlling the magnitude and direction of the current flowing through the coil 61, the amount of magnetic flux flowing through the magnetic circuit composed of the yoke 62 and the core 64 composed of a soft magnetic material, respectively, changes. As a result, the center position and the size of the magnetic pole facing the opening 62b of the base 62a of the yoke 62 change. As a result, these magnetic poles attract or repel the magnetic poles formed on the permanent magnet 63 fixed to the rotating shaft 4, and eventually control the magnitude and direction of the current flowing through the coil 61. Therefore, the permanent magnet 63 and the rotating shaft 4 rotate.
図 6 にカラー 2 の湾曲前の展開図を示す。  Figure 6 shows a developed view of the collar 2 before bending.
カラー 2 は、 長方形の薄板からなり、 長尺辺であり湾曲される辺で ある一対の湾曲辺 2 0 と、 湾曲されない辺である一対の非湾曲辺 2 1 とを有する。  The collar 2 is made of a rectangular thin plate, and has a pair of curved sides 20 which are long sides and are curved sides, and a pair of non-curved sides 21 which are non-curved sides.
カラー 2 の 4 つの角部から非湾曲辺 2 1 の方向へ所定距離内側に位 置 して湾曲辺 2 0 の延長方向へ切り欠き線状溝 2 4 が形成されており 、 これによ り各角部に湾曲辺 2 0 の方向へ突出する 4 つの弾性突起 2 5 が形成されている。 非湾曲辺 2 1 の方向の中央部には湾曲辺 2 0 の 延長方向へ順番に、 流出ポー ト 1 5 a 、 約 0 . 5 m mの深さの凹部 2 6 、 流出ポー ト 1 4 a 、 約 0 . 5 m mの深さの凹部 2 7 、 流入ポー ト 2 3 が形成されている。 凹部 2 6、 2 7 は異物受入れ用に配設されて いる。 弾性突起 2 5 は弾性突起 2 5 の基端 (図 6 の矢印部分) は球軸 受 3 の圧入可能な範囲で折り曲げられている (図 7参照) 。 カ ラー 2 の他の部分は図 7 に示すよ う に円筒状に湾曲され、 両非湾曲辺 2 1 の 間に隙間 dが形成されている。 こ こで重要な点は、 流出ポー ト 1 4 a が各弾性突起 2 5 から湾曲辺 2 0 の方向において中間に開口されてい る こ とであ 。 A notched linear groove 24 is formed at a predetermined distance inward from the four corners of the collar 2 in the direction of the non-curved side 21 and in the direction of extension of the curved side 20. Four elastic protrusions 25 protruding in the direction of the curved side 20 are formed at the corners. At the center in the direction of the non-curved side 21 1, in the direction of extension of the curved side 20, the outflow port 15 a, the concave part 26 with a depth of about 0.5 mm 26, the outflow port 14 a, A recess 27 having a depth of about 0.5 mm and an inflow port 23 are formed. The recesses 26 and 27 are provided for receiving foreign matter. The base of the elastic projection 25 (arrow portion in FIG. 6) is bent within a range in which the spherical bearing 3 can be press-fitted (see FIG. 7). The other part of the color 2 is cylindrically curved as shown in Fig. 7, and the two non-curved sides 2 1 A gap d is formed between them. The important point here is that the outflow port 14a is opened in the middle of each elastic projection 25 in the direction of the curved side 20.
組立において、 上述のよ う に、 カ ラ一 2 、 球軸受 3 、 回動軸 4 、 弁 体 5 及びリ ング 4 6 は予め組み立てられてサブア ッ セ ンプリ と される 。 こ の時、 カ ラ 一 2 の弾性突起 2 5 は外周側へ弾性変形し、 その結果 、 弾性突起 2 5 は球軸受 3 の外周面を強く 押圧 し、 カラ一 2 と球軸受 3 とが強力に接合する。 そ して、 も しバルブハウ ジ ング部 1 1 の内周 面と カラー 2 の外周面との間に熱膨張率の差などでク リ ァラ ンスが生 じた場合でも、 弾性突起 2 5 はカラー 2 の非湾曲辺 2 1 近傍部分に対 して原位置に復帰しょ う と して球軸受 3 を流出ポー ト 1 4 a の方向へ 付勢しているため、 流出ポー ト 1 4 a側のバルプノ、ウ ジ ング部 1 1 の 内周面と弁体 5 の外周面との相対位置は変化せず、 この間のク リ ァラ ン ス は一定となる。  In assembling, as described above, the collar 2, the ball bearing 3, the rotating shaft 4, the valve body 5, and the ring 46 are assembled in advance to form a subassembly. At this time, the elastic projections 25 of the collar 1 are elastically deformed to the outer peripheral side, and as a result, the elastic projections 25 strongly press the outer peripheral surface of the ball bearing 3, and the collar 2 and the ball bearing 3 are strong. To join. Also, even if a clearance occurs due to a difference in the coefficient of thermal expansion between the inner peripheral surface of the valve housing portion 11 and the outer peripheral surface of the collar 2, the elastic projections 25 remain Since the ball bearing 3 is urged in the direction of the outflow port 14a to return to the original position with respect to the portion near the non-curved side 21 of the collar 2, the outflow port 14a side The relative position between the inner peripheral surface of the valve section 11 and the outer peripheral surface of the valve element 5 does not change, and the clearance during this period is constant.
したがって、 樹脂からなるバルブハウ ジ ング部 1 1 とステ ン レスか らなるカラ一 2 との間の熱膨張率の差による ク リ ァラ ンス增加にもか かわらず、 カ ラー 2 の非湾曲辺 2 1 が外周に拡がり、 バルブハウ ジ ン グ部 1 1 と カ ラー 2 との間のク リ ア ラ ン ス増加を吸収する。 また、 力 ラー 2 の非湾曲辺 2 1 が拡がっても、 弾性突起 2 5 の配設によ り、 玉 軸受け 3 を副流出孔 1 5 よ り断面積の大きい主流出孔 1 4 の方向へ付 勢 し、 よって弁体 5 と流出ポー ト 1 4 a との間のク リ ア ラ ンスの増大 を常に少な く する こ とができ、 弁閉時の漏れを低減する こ とができ る また、 こ の実施例では、 カ ラー 2 と弁体 5 と は同 じステ ン レスを素 材とするが、 例えば両者の熱膨張率が異なる場合、 上記と同様にカ ラ 一 2 の内周面と弁体 5 の外周面部との間にク リ ァラ ンスが生 じるが、 この場合に も弾性突起 2 5 の付勢による回動軸 4 の偏心によ り弁閉時 の漏れを低減する こ とができ る。 また、 元々 、 カ ラー 2 の内周面と弁体 5 の外周面部との間にク リ ア ラ ン スが生じている場合においても、 弾性突起 2 5 の付勢による回動 軸 4 の偏心によ り弁閉時の漏れを低減する こ とができ る。 このため、 上記ク リ ァラ ンスを多少大きめに形成しても漏れを許容範囲内に収め る こ と ができ る。 Therefore, the non-curved side of the color 2 is notwithstanding the addition of clarity due to the difference in thermal expansion coefficient between the valve housing 11 made of resin and the collar 2 made of stainless steel. 2 1 extends to the outer periphery to absorb the increase in clearance between the valve housing 11 and the color 2. Even if the non-curved side 21 of the force roller 2 expands, the arrangement of the elastic projections 25 causes the ball bearing 3 to move in the direction of the main outflow hole 14 having a larger sectional area than the sub outflow hole 15. Biasing, so that the increase in clearance between the valve element 5 and the outflow port 14a can always be reduced, and leakage when the valve is closed can be reduced. In this embodiment, the color 2 and the valve element 5 are made of the same stainless steel. However, for example, when the thermal expansion coefficients of the two are different, the inner peripheral surface of the color 12 is similar to the above. Clearance occurs between the valve body 5 and the outer peripheral surface of the valve body 5, but also in this case, leakage when the valve is closed is reduced due to the eccentricity of the rotating shaft 4 due to the bias of the elastic projections 25. can do. In addition, even when a clearance is originally generated between the inner peripheral surface of the color 2 and the outer peripheral surface of the valve element 5, the eccentricity of the rotating shaft 4 due to the biasing of the elastic projection 25 is also considered. As a result, leakage when the valve is closed can be reduced. For this reason, even if the above-mentioned clearance is formed slightly larger, the leakage can be kept within an allowable range.
次に、 口 一タ リ ーソ レ ノ イ ド 6 を駆動する駆動回路 7 を図 8 に示す 図 8 は交流型であり、 Pチャ ンネル M O Sパワー ト ラ ンジスタ T 1 と Nチヤ ンネル M O Sパワー ト ラ ンジスタ T 2 とを直列接続してなる イ ンバー 夕 I I の出力端と、 P チ ャ ンネル M O S パワ ー ト ラ ン ジス タ T 3 と Nチ ヤ ンネル M O S パワ ー ト ラ ン ジス タ T 4 と を直列接続して な る イ ンノ '一 夕 I 2 の出力端と に 口 一 夕 リ ー ソ レ ノ ィ ド 6 の コ ィ ノレ 6 1 の両端に個別に接続してなる。 よ く 知られているよ う に、 イ ンバー 夕 I 1 の入力電圧 V I がハイ レベル、 イ ンバ一タ I 2 の入力電圧 V 2 力く口 一 レベルの時に、 ト ラ ン ジス タ T 3 及び ト ラ ン ジス タ T 2 を通 じ て コ ィ ノレ 6 1 に電流が流れ、 イ ンバー夕 I 1 の入力電圧 V 1 がロ ー レ ベル、 イ ンバー 夕 I 2 の入力電圧 V 2 がハイ レベルの時に、 卜 ラ ン ジ ス 夕 T 1及び ト ラ ン ジス タ T 4 を通 じてコィノレ 6 1 に逆方向の電流が 流れる。 通常の流量制御範囲 ( Q m i n 〜 Q m a x ) では、 入力電圧 V I 及びその反対位相の入力電圧 V 2 のデューティ 比制御によ り、 コ ィ ル 6 1 への通電電流が制御され、 その結果、 永久磁石 ' 6 3 が通電電 流に応 じて回動する。  Next, FIG. 8 shows a drive circuit 7 for driving a monolithic solenoid 6 and FIG. 8 shows an AC type, in which a P-channel MOS power transistor T1 and an N-channel MOS power transistor are used. The output terminal of the inverter II, which is formed by connecting the transistor T2 in series, the P-channel MOS power transistor T3 and the N-channel MOS power transistor T4. These are connected in series to the output terminal of I2 and the output terminal of I2, and are individually connected to both ends of the connector 61 of the resource solenoid 6. As is well known, when the input voltage VI of the inverter I1 is at a high level and the input voltage V2 of the inverter I2 is at a high level, the transistors T3 and A current flows through the transistor 61 through the transistor T2, and the input voltage V1 of the inverter I1 is at a low level and the input voltage V2 of the inverter I2 is at a high level. At this time, a reverse current flows through the transistor 61 through the transistor T1 and the transistor T4. In the normal flow control range (Q min to Q max), the current flowing to the coil 61 is controlled by the duty ratio control of the input voltage VI and the input voltage V 2 having the opposite phase, and as a result, The permanent magnet '63 rotates in response to the current flow.
更に説明すれば、 通電電流が 0 の場合に永久磁石 6 3 の N極、 S極 はエアギャ ッ プが最小となる角度位置である図 5 の状態で静止する。 そ して、 コ イ ル 6 1 にある方向へ少しづつ電流を増加する と、 それに つれて永久磁石 6 3 の N極、 S極がヨ ーク 6 2 の開口 6 2 b に面して 形成される N極、 S極と吸引、 反発 して上記エアギャ ッ プ最小角度位 置から電流のデューティ 比に応 じた回動角度位置まで時計回転方向へ 回動する。 通電方向を反対とすれば、 当然、 同様の原理で上記エアギ ャ ッ プ最小角度位置から電流のデューテ ィ 比に応じた回動角度位置ま で反時計回転方向へ回動する。 More specifically, when the energizing current is 0, the N pole and the S pole of the permanent magnet 63 stand still in the state of FIG. 5, which is the angular position where the air gap is minimized. When the current is gradually increased in the direction of the coil 61, the N and S poles of the permanent magnet 63 are formed facing the opening 62b of the yoke 62. N and S poles are attracted and repelled, and are rotated clockwise from the air gap minimum angle position to the rotation angle position according to the current duty ratio. Rotate. If the energizing direction is reversed, the motor naturally rotates counterclockwise from the minimum air gap angle position to the rotation angle position corresponding to the duty ratio of the current according to the same principle.
以下、 バルブハウ ジ ング部 1 1 の径方向断面を示す図 9 〜図 1 1 及 び空気流量と入力電圧のデューティ 比との関係を示す図 1 2 を参照し て こ の実施例の装置の特徴部分を説明する。 ただし、 ハウ ジ ング 1 の バルブハウ ジ ング部 1 1 の断面形状は簡単のために模式的に図示して いる。 また、 弁体 5 も図 3 ( b ) に示す正確な形状そのま まではな く 簡単のために模式的に図示している。  Hereinafter, the features of the apparatus of this embodiment will be described with reference to FIGS. 9 to 11 showing a radial cross section of the valve housing 11 and FIG. 12 showing the relationship between the air flow rate and the duty ratio of the input voltage. The parts will be described. However, the sectional shape of the valve housing portion 11 of the housing 1 is schematically illustrated for simplicity. In addition, the valve body 5 is also schematically illustrated for simplicity without having to have the exact shape shown in FIG. 3 (b).
図 9 は、 駆動回路 7 の入力電圧 V I をデューテ ィ 比 1 0 0 %でハイ レベルと し (オ ンデュ ーテ ィ 比 1 0 0 % と し) 、 入力電圧 V 2 をデュ 一テ ィ 比 0 %でハイ レベルと し (オ ンデュ ーテ ィ 比 0 %と し) た もの である。 こ の時、 上述したよ う に、 突起 4 5 がス ト ツバ 4 5 の一端に 当接し、 弁体 5 は第 1 の最終開度位置となる。 弁体 5 の第 1 弁部 5 3 は主流出孔 1 4 を半開 しており、 これによ り 、 主流出孔 1 4 から流出 する空気流量は中間値 Q 1 となる。 一方、 弁体 5 の第 2弁部 5 4 は副 流出孔 1 5 を全閉 しており、 これによ り副流出孔 1 5 から流出する空 気流量は最小値 Q ' m i n となる。  In FIG. 9, the input voltage VI of the drive circuit 7 is set to a high level at a duty ratio of 100% (duration ratio is set to 100%), and the input voltage V2 is set to a duty ratio of 0%. The high level is set at 0% (duty ratio is 0%). At this time, as described above, the protrusion 45 comes into contact with one end of the flange 45, and the valve element 5 is at the first final opening position. The first valve portion 53 of the valve element 5 has the main outlet hole 14 opened halfway, whereby the flow rate of the air flowing out of the main outlet hole 14 becomes the intermediate value Q1. On the other hand, the second valve portion 54 of the valve element 5 completely closes the sub-outlet 15, whereby the flow rate of the air flowing out from the sub-outlet 15 becomes the minimum value Q′min.
その後、 駆動回路 7 の入力電圧 V I をオ ンデューティ 比 1 0 0 %か ら 0 %まで次第に低減し、 入力電圧 V 2 をデューティ 比 0 %のま ます なわち口 一 レベルとする と、 イ ンノく一夕 I 2 カヽらコ イル 6 1 を通 じて イ ンバータ I 1 へ流れる電流は全負荷電流から徐々 に減少して最後に 0 となる。 この結果、 弁体 5 は図中、 反時計方向へ回動し、 第 1 弁部 5 3 は主流出孔 1 4 を次第に絞り 、 主流出孔 1 4 から流出する空気流 量は低下し、 最小値 Q m i n となる。 そ してその後、 第 1 弁部 5 3 の 後端面と主流出孔 1 4 の後端 Aを超えて、 再び主流出孔 1 4 が開き始 め、 主流出孔 1 4 から流出する空気流量は増加 して Q 2 となる。 一方 、 第 2 弁部 5 4 は副流出孔 1 5 を開き始め、 最後には完全に開き、 副 流出孔 1 5 から流出する空気流量は次第に増加 して最大値 Q ' m a x となる。 After that, the input voltage VI of the drive circuit 7 is gradually reduced from the on-duty ratio of 100% to 0%, and the input voltage V2 is kept at the duty ratio of 0%, that is, at the one-level level. The current flowing to the inverter I1 via the I2 coil 61 gradually decreases from the full load current to zero at last. As a result, the valve element 5 rotates counterclockwise in the figure, the first valve portion 53 gradually narrows the main outlet hole 14, and the amount of air flowing out of the main outlet hole 14 decreases, The value is Q min. Then, after the rear end face of the first valve portion 53 and the rear end A of the main outflow hole 14, the main outflow hole 14 starts to open again, and the air flow flowing out of the main outflow hole 14 is It increases to Q2. On the other hand, the second valve portion 54 starts to open the sub-outlet 15 and finally opens completely, The flow rate of the air flowing out of the outlet hole 15 gradually increases and reaches the maximum value Q'max.
図 1 0 は、 駆動回路 7 の入力電圧 V I 、 V 2 のオ ンデューティ 比が 両方と も 0 % (口一 レベル) となった状態を示す。 すなわち、 こ の状 態ではコ イ ル 6 1 への通電電流が 0 の状態である。 弁体 5 は初期角度 位置 (中間開度位置) とな り、 主流出孔 1 4 から流出する空気流量は Q 2 、 副流出孔 1 5 から流出する空気流量は Q ' m a X となっている 。 その後、 駆動回路 7 の入力電圧 V I のオ ンデューティ 比を 0 %のま ま と し、 入力電圧 V 2 のオ ンデューティ 比を 0 %から 1 0 0 %まで增 加させる と、 イ ンバー夕 I 1 力、ら コ ィ ノレ 6 1 を通 じてイ ンバータ I 2 へ流れる電流は 0 から徐々 に増加 して最後に全負荷電流となる。 こ の 結果、 弁体 5 は図 1 0 の通電電流 0 の初期角度位置 (中間開度位置) から反時計方向へ回動し、 第 1 弁部 5 3 は主流出孔 1 4 を次第に開き 、 主流出孔 1 4 から流出する空気流量は増大して最大値 Q m a X とな る。 そ してその後、 第 2弁部 5 4 が主流出孔 1 4 を絞り始め、 入力電 圧 V 2 のオ ンデューティ 比が 1 0 0 %と なる と、 主流出孔 1 4 から流 出する空気流量は中間値 Q 3 となる。 一方、 副流出孔 1 5 は開かれた ま まである。  FIG. 10 shows a state in which the on-duty ratios of the input voltages V I and V 2 of the drive circuit 7 are both 0% (one-level). That is, in this state, the current flowing through the coil 61 is zero. The valve element 5 is in the initial angular position (intermediate opening position), the air flow rate flowing out of the main outlet port 14 is Q 2, and the air flow rate flowing out of the sub outlet port 15 is Q′max. . After that, the on-duty ratio of the input voltage VI of the drive circuit 7 is kept at 0%, and the on-duty ratio of the input voltage V2 is increased from 0% to 100%. The current flowing to the inverter I2 via the input and output terminals 61 gradually increases from 0 and finally reaches the full load current. As a result, the valve element 5 rotates counterclockwise from the initial angular position (intermediate opening position) of the current 0 shown in FIG. 10, and the first valve portion 53 gradually opens the main outlet hole 14, The flow rate of air flowing out of the main outlet 14 increases and reaches the maximum value Q max. After that, the second valve section 54 starts to throttle the main outlet port 14, and when the on-duty ratio of the input voltage V 2 becomes 100%, the air flowing out of the main outlet port 14 becomes The flow rate becomes the intermediate value Q 3. On the other hand, the secondary outlet 15 remains open.
なお、 突起 4 5 はス ト ッパ 1 3 bの端面にどち らの通電方向におい て もオンデューティ 比約 9 0 %で当接するよう に してあり、 この時の 弁体 5 の角度位置がそれぞれ本発明でいう最終角度位置となる。  The protrusion 45 is designed to contact the end face of the stopper 13b at an on-duty ratio of about 90% in either direction of the current flow, and the angular position of the valve body 5 at this time. Are the final angular positions in the present invention.
したがって本実施例の装置によれば、 空気流量は通電遮断時に中間 流量 Q 2 とな り、 全通電時にはどち らの通電方向であっても空気流量 は中間流量 Q 1 又は Q 3 とな り 、 結局、 通電遮断故障が生じても、 通 電遮断不能故障が生じても、 空気流量が最小値 Q m i n又は最大値 Q m a x となる こ とがな く 、 エ ン ジ ンが例えば走行時 (通常中間の空気 流量である) に急に出力ア ッ プ又は出力ダウ ンする こ とがない。  Therefore, according to the device of the present embodiment, the air flow rate becomes the intermediate flow rate Q 2 when the power is cut off, and the air flow rate becomes the intermediate flow rate Q 1 or Q 3 when the power is turned on in either direction. In the end, even if an energization interruption fault or an uninterruptible failure occurs, the air flow rate does not reach the minimum value Q min or the maximum value Q max, and the engine is operated, for example, during running ( The output does not suddenly increase or decrease during the normal air flow.
なお、 本実施例では、 主流出孔 1 4 と副流出孔 1 5 の 2 つの流出孔 と したが、 流出孔を 1 つに して も良い。 (変形態様) In this example, two outflow holes, the main outflow hole 14 and the sub outflow hole 15 are used. However, a single outlet may be used. (Modification)
上記実施例では、 弾性突起 2 5 と して円筒状に湾曲させたカラ一 2 を形成したが、 弾性突起は球軸受 3 を流出孔方向へ付勢すればよいの で、 例えば球軸受 3 とハウ ジ ング 1 の内周面との間に弾性体を介装し てもよい。 また、 カラー 2 を完全円筒形状に形成する こ と もでき る。 産業上の利用可能性  In the above-described embodiment, the cylindrical projection 2 5 is formed as a cylindrically curved collar 2. However, the elastic projection may urge the ball bearing 3 in the direction of the outflow hole. An elastic body may be interposed between the housing 1 and the inner peripheral surface. Further, the collar 2 can be formed in a completely cylindrical shape. Industrial applicability
以上のよ う に、 本発明に係わる流量制御回動弁は、 内燃機関の吸入 空気流量制御弁と して利用でき る。  As described above, the flow control rotary valve according to the present invention can be used as an intake air flow control valve for an internal combustion engine.

Claims

請求の範囲 The scope of the claims
1 . 内周面の蚰方向中央部に流入孔及び流出孔が開口された弁室を有 する枠体と、 前記内周面の両端に嵌着された一対の軸受けによ り回転 自在に支持される回動軸と、 前記回動軸に固定されて前記弁室に収容 され回動によ り前記孔の開度を調整する弁体とを備える流量制御回動 弁であって、  1. A rotatable support by a frame body having a valve chamber with an inflow hole and an outflow hole opened at the center of the inner peripheral surface in the bow direction, and a pair of bearings fitted to both ends of the inner peripheral surface. A flow control rotary valve comprising: a rotating shaft that is fixed to the rotating shaft; and a valve body that is housed in the valve chamber and that adjusts an opening degree of the hole by rotation.
前記枠体内周面の一方向側に前記軸受けを付勢する付勢手段を備え る こ と によ って、 熱膨張による弁体と枠体内周面との間のク リ アラ ン スの変化を少な く する こ とを特徴とする流量制御回動弁。  By providing an urging means for urging the bearing on one side of the inner peripheral surface of the frame, a change in clearance between the valve element and the inner peripheral surface of the frame due to thermal expansion is provided. A flow control rotary valve characterized by reducing the number of rotations.
2 . 前記流出孔が複数個を設け られていると と もに、 前記付勢手段は 、 前記流出孔の内、 断面積が最も大きい流出孔が形成されている枠体 内周面側に前記軸受けを付勢する こ とを特徵とする請求項 1 記載の流 量制御回動弁。  2. A plurality of the outflow holes are provided, and the urging means is provided on the inner peripheral surface side of the frame in which the outflow hole having the largest cross-sectional area is formed. 2. The flow control rotary valve according to claim 1, wherein the bearing is biased.
3 . 内周面の軸方向中央部に流入孔及び流出孔が開口された弁室を有 する樹脂性のハウ ジ ングと、 前記両孔に対する位置に開口を有して前 記弁室を覆い、 前記ハウ ジ ングの内周面に密接する と と もに、 両端部 に嵌入された一対の軸受けを有する金属性のカラーと、 前記一対の軸 受けによ り回転自在に支持される回動軸と、 こ の回動軸に固定されて 前記弁室に収容され回動によ り前記孔の開度を調節する弁体とを備え る流量制御回動弁であって、  3. A resin housing having a valve chamber with an inflow hole and an outflow hole opened at the axially central portion of the inner peripheral surface, and the valve chamber having an opening at a position corresponding to the both holes to cover the valve chamber. A metal collar having a pair of bearings fitted at both ends while being in close contact with the inner peripheral surface of the housing; and a rotatably supported rotatably by the pair of bearings. A flow control rotary valve, comprising: a shaft; and a valve body fixed to the rotary shaft, housed in the valve chamber, and adjusting an opening degree of the hole by rotation.
前記カラー内周面の一方向側に前記軸受けを付勢する 勢手段を備 える こ と によ って、 熱膨張による弁体とカラー内周面との間のク リ ア ラ ンスの変化を少な く する こ とを特徴とする流量制御回動弁。  By providing a biasing means for biasing the bearing on one side of the inner peripheral surface of the collar, a change in the clearance between the valve element and the inner peripheral surface of the collar due to thermal expansion is reduced. A flow control rotary valve characterized by a reduction.
4 . 前記付勢手段は、 前記一対の軸受けの嵌入部分に位置して、 前記 一対の軸受けを付勢する、 前記カ ラーに一体に設け られた弾性突起で ある こ とを特徴とする請求項 3 記載の流量制御回動弁。  4. The urging means is an elastic projection provided integrally with the color, which is located at a fitting portion of the pair of bearings and urges the pair of bearings. 3. The flow control rotary valve according to 3.
5 . 前記カラ一は、 一対の端部が隙間を介 して対向する筒状であ り 、 それによ り 、 こ の一対の端部を弾性変形し、 前記ハ ウ ジ ン グの内周面 に密接する こ とを特徴とする請求項 4 記載の流量制御回動弁。 5. The collar has a cylindrical shape in which a pair of ends are opposed to each other with a gap therebetween, whereby the pair of ends are elastically deformed, and an inner peripheral surface of the housing is formed. The flow control rotary valve according to claim 4, wherein the rotary valve is in close contact with the flow control rotary valve.
6 . コ イ ルへの通電によ り 、 弁体を回動させる流量制御回動弁におい て、  6. In the flow control rotary valve that rotates the valve body by energizing the coil,
前記弁体を収納 し、 周方向に流入孔及び流出孔が開口された弁室及 び前記コ イ ルを収納する コイ ル室とを有する樹脂性のハウ ジ ングと、 前記ハウ ジ ング両孔に対応する開口部と、 両端部に設け られた一対 の軸受けとを有し、 前記ハウ ジ ン グの弁室を覆う よ う に、 前記ハウ ジ ングの内周面に密接される金属性のカ ラーと、  A resin housing having a valve chamber for accommodating the valve body and having an inflow hole and an outflow hole opened in a circumferential direction, and a coil chamber for accommodating the coil; and both housing holes And a pair of bearings provided at both ends, and a metallic material closely contacted with the inner peripheral surface of the housing so as to cover the valve chamber of the housing. Color and
前記一対の軸受けによ り回転自在に支持される と と もに、 前記弁室 に収納され前記カ ラ一の開口部の開度を調節する弁体とを有する回動 軸と、  A rotating shaft that is rotatably supported by the pair of bearings and has a valve body that is housed in the valve chamber and that adjusts an opening of the opening of the collar;
前記カラ一内周面に前記軸受けを付勢する こ と によ り 、 前記弁体と カラー内周面との間の所定のク リ ァラ ンスを維持するよ う に した付勢 手段と、  Urging means for urging the bearing against the inner peripheral surface of the collar to maintain a predetermined clearance between the valve body and the inner peripheral surface of the collar;
を備えた こ とを特徴とする流量制御回動弁。  A flow control rotary valve characterized by comprising:
7 . 前記付勢手段は、 カラーに設け られ、 弾性変形可能な突起であ り 、 こ の突起によ り、 前記軸受けをカラーの開口部を有する内周面側に 付勢する こ とを特徴とする請求項 6 記載の流量制御回動弁。  7. The urging means is a projection provided on the collar and capable of being elastically deformed, and the projection urges the bearing toward the inner peripheral surface having the opening of the collar. The flow control rotary valve according to claim 6, wherein
8 . 前記カ ラーは、 一対の端部が隙間を介して対向する筒状であり、 それによ り 、 こ の一対の端部を弾性変形し、 前記ハ ウ ジ ン グの内周面 に密接する こ とを特徴とする請求項 6 記載の流量制御回動弁。  8. The color has a cylindrical shape in which a pair of ends are opposed to each other with a gap therebetween, whereby the pair of ends is elastically deformed, and is closely contacted with an inner peripheral surface of the housing. 7. The flow control rotary valve according to claim 6, wherein
PCT/JP1995/000157 1994-02-10 1995-02-07 Flow rate control rotary valve WO1995022023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1659494 1994-02-10
JP6/16594 1994-02-10

Publications (1)

Publication Number Publication Date
WO1995022023A1 true WO1995022023A1 (en) 1995-08-17

Family

ID=11920616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000157 WO1995022023A1 (en) 1994-02-10 1995-02-07 Flow rate control rotary valve

Country Status (1)

Country Link
WO (1) WO1995022023A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393733U (en) * 1976-12-28 1978-07-31
JPS5734424Y2 (en) * 1977-12-23 1982-07-29
JPS61181166U (en) * 1985-05-02 1986-11-12
JPH04125668U (en) * 1991-04-30 1992-11-16 日本電子機器株式会社 Internal combustion engine idle control valve
JPH05215051A (en) * 1992-02-03 1993-08-24 Toyota Motor Corp Idling speed control device
JPH0658145U (en) * 1993-01-22 1994-08-12 日本電子機器株式会社 Idle control valve for internal combustion engine
JPH0658146U (en) * 1993-01-22 1994-08-12 日本電子機器株式会社 Idle control valve for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393733U (en) * 1976-12-28 1978-07-31
JPS5734424Y2 (en) * 1977-12-23 1982-07-29
JPS61181166U (en) * 1985-05-02 1986-11-12
JPH04125668U (en) * 1991-04-30 1992-11-16 日本電子機器株式会社 Internal combustion engine idle control valve
JPH05215051A (en) * 1992-02-03 1993-08-24 Toyota Motor Corp Idling speed control device
JPH0658145U (en) * 1993-01-22 1994-08-12 日本電子機器株式会社 Idle control valve for internal combustion engine
JPH0658146U (en) * 1993-01-22 1994-08-12 日本電子機器株式会社 Idle control valve for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3887343B2 (en) Rotary actuator
WO2005083870A1 (en) Motor
WO1999043072A1 (en) Control valve apparatus
WO2001098644A1 (en) Bypass intake amount controller
JP2001004051A (en) Valve driving gear
US7137614B2 (en) Valve devices for controlling flow of intake air
JP2001003770A (en) Motor-driven throttle valve device
WO1995022023A1 (en) Flow rate control rotary valve
US7183676B2 (en) Stepping motor
US5890699A (en) Fluid flow control rotary valve
JP3543346B2 (en) Throttle valve control device
JPH0821556A (en) Motor-driven flow control valve
JP2004270563A (en) Electronic throttle device
JPH0844432A (en) Flow rate control valve
JP2000046228A (en) Flow rate control valve
JP2001173465A (en) Throttle device
JPH1194115A (en) Flow control valve
JP4044804B2 (en) Control valve
JPH0723573Y2 (en) Auxiliary air control valve for internal combustion engine
JPS59140982A (en) Electromagnetic flow control valve device
JPH11132062A (en) Throttle device
JPH0715938A (en) Actuator
JP2001003767A (en) Throttle valve device
JPH10131772A (en) Throttle control device
JPH10184499A (en) Idle speed control valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 530197

Date of ref document: 19950927

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 774597

Date of ref document: 19961230

Kind code of ref document: A

Format of ref document f/p: F