WO1995021066A1 - Combination torque converter hydraulic drive train - Google Patents

Combination torque converter hydraulic drive train Download PDF

Info

Publication number
WO1995021066A1
WO1995021066A1 PCT/US1995/001407 US9501407W WO9521066A1 WO 1995021066 A1 WO1995021066 A1 WO 1995021066A1 US 9501407 W US9501407 W US 9501407W WO 9521066 A1 WO9521066 A1 WO 9521066A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
output shaft
motor
torque converter
engine
Prior art date
Application number
PCT/US1995/001407
Other languages
French (fr)
Inventor
William L. Figura
Original Assignee
Applied Design Technology, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Design Technology, Ltd. filed Critical Applied Design Technology, Ltd.
Priority to AU16992/95A priority Critical patent/AU1699295A/en
Publication of WO1995021066A1 publication Critical patent/WO1995021066A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/10Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of fluid gearing
    • B60K17/105Units comprising at least a part of the gearing and a torque-transmitting axle, e.g. transaxles

Definitions

  • the present invention relates to motor vehicle drive trains generally and to self-propelled outdoor power equipment drive trains particularly. Outdoor power equipment such as golf course bunker rakes and amphibious vehicles may be required to operate at widely varying ground speeds and over a wide range of loads.
  • the invention discloses a drive train adapted to operate over an unusually broad range of conditions.
  • the invention combines a variable-speed engine driving a hydrodynamic torque converter which, in turn, drives a hydraulic pump of any type, preferably a hydrostatic pump/motor set.
  • Gear, piston, orbital, variable-displacement, single- stage, multiple-stage, and other types of pumps may be used to drive any type of hydraulic motor or servo.
  • This arrangement permits automatic down-shifting when the load increases and automatic up-shifting when the load decreases if a multiple-stage pump is incorporated. It also allows the operator to avoid lugging the engine, an important consideration, particularly with air-cooled engines.
  • engine power is delivered to the pump by means of a torque converter, preferably a commercially available two-part torque converter assembly equipped with variable effective diameter split sheaves interconnected by a belt.
  • a rotational speed-responsive element is driven by the output shaft of a conventional internal combustion engine; a torque-responsive element is connected to a rotary load.
  • the effective sheave diameter of the portion of the torque converter driven by the engine increases with increasing engine speed.
  • the portion of the torque converter driven by the belt and which drives the hydraulic pump is equipped with a split sheave having an effective diameter that decreases with increasing rotational speed.
  • the torque converter output is delivered to a hydraulic pump (single or multiple stage) or to a variable displacement hydraulic pump through a shaft.
  • the pump output is delivered to one or more hydraulic motors which may directly power the load (e.g. the drive wheels of a vehicle) or which may be connected directly or indirectly to the driven load by means including an intermediate shaft, transaxel, other gearing, sprockets or belts.
  • this system offers numerous advantages.
  • the system operates much more smoothly than conventional hydraulic, hydrostatic or gear transmission/friction clutch drives.
  • This system yields smoother operation and uses components simpler than those required to produce a stepped-range, automatic-shifting, geared transmission having a similar range of input/output ratios.
  • the benefits of smoother operation include, among other things, greater operator comfort and productivity, improved safety, lessened likelihood of damaging the turf or other surface on which the motor vehicle is being driven, and greater control over machine-mounted tools and implements.
  • Another advantage of the invention disclosed herein is that it allows the motor vehicle engine to be operated at its optimum speed and efficiency at all times. This feature is particularly useful when it is necessary to accelerate under heavy load or when it is necessary to operate under varying conditions of load or terrain. By allowing the vehicle engine to operate at its optimum speed, it is possible to apply full power continually to the designated task, eliminate engine lugging, and reduce the likelihood of engine overheating.
  • This advantage is important when the motor vehicle is powered by gasoline engines because such engines characteristically have low torque and low power when operated below the optimum speed. It is important when motor vehicles are required to change speeds frequently, particularly in diesel-powered vehicles which typically have poor acceleration characteristics.
  • this drive system is particularly well- suited for applications where the working speed may vary widely and where it is desirable to move from one work site to another as quickly as practical.
  • a third advantage of the invention is that it reduces heat build-up within the hydraulic drive system compared to conventional systems. Because the torque converter permits the hydraulic pump to be stopped while the engine continues to run, the engine can be idled without forcing hydraulic fluid through the pump and controls. This characteristic also allows the engine to use less fuel at idle.
  • a fourth advantage of the present invention is that it operates more quietly than other systems.
  • Conventional hydraulic or hydrostatic drive systems often become noisy when controls are set to halt machine movement. The problem is often most noticeable at high idle and may be avoided only by removing power from the pump which is impractical when other types of drive systems are used.
  • the drive incorporates an interlock which prevents an operator from reversing the direction of rotation of the final drive motor(s) when the engine is supplying power to the hydraulic pump.
  • the faces spread apart allowing the belt to turn over a smaller radius.
  • a limiter rod preferably having a curved or wear-reducing end portion, extends from a pivotable cross-shaft toward the belt.
  • the cross-shaft is pivoted which thereby moves a stop away from the reversing control to permit the operator to reverse the direction of hydraulic motor rotation.
  • the belt moves inward, out of contact with the end of the limiter rod.
  • This drive system would find its first application in golf course maintenance equipment including bunker rake machinery.
  • This drive system is also suitable for use in a variety of landscape, agricultural, forestry, and industrial applications. It is suitable for use in all types of motor vehicles, including golf carts, baggage carts, utility tractors, lawn and garden tractors, all- terrain vehicles, etc. It is also possible that this drive system could be used in material handling and lifting applications.
  • Fig. 1 shows a side elevation of a vehicle incorporating the invention.
  • Fig. 2 is a perspective detail view of the drive train embodiment depicted in Fig. 1 showing the sheaves and interlock limiter rod when the engine is at low idle speed.
  • Fig. 3 shows a plan view of the drive train detail shown in Fig. 2.
  • Fig. 4 shows an elevation view of the drive train detail shown in Fig. 2 depicting the belt, sheaves and interlock limiter rod when the engine is at full speed.
  • Fig. 1 shows a vehicle 10 having a variable speed engine 1 2 having a conventional rotating output shaft 14.
  • a conventional two-part torque converter 16 having a rotational speed responsive element 18, a belt 20 and a torque- responsive element 22 is interposed between the engine 1 2 and a hydraulic or hydrostatic, preferably a variable-displacement pump 24 as may be seen from the view depicted in Fig. 2.
  • the speed responsive element 1 8 is adapted to increase the effective diameter of a split drive sheave as the speed of the engine 1 2 is increased.
  • a belt 20 connects the speed responsive element 18 with the torque- responsive element 22 which is connected to the pump 24, preferably using a shaft 26 having bearings 28 to reduce mechanical stress on the pump 24 as is more clearly depicted in Fig. 3. It is to be understood that other types of torque converters may be incorporated without departing from the invention disclosed herein.
  • Hydraulic connections 29 of any suitable type convey power from the pump 24 to at least one hydraulic motor 30 which drives the wheels 32 of a vehicle 10.
  • a hydraulic control 34 may be used to regulate the speed and direction of rotation of the hydraulic motor 30 which may directly power a load such as the drive wheels of a vehicle 32 or be connected to the driven load by means of an intermediate shaft, transaxel or other gearing.
  • An interlock assembly 36 is provided which allows reversing the direction of motor 30 only when the vehicle 10 is stopped or moving very slowly.
  • the interlock 36 is comprised of a belt position actuated limiter rod 38 which descends between the sheave faces of the torque-responsive element 22 when the torque converter is at a working operating speed as is shown in Fig. 4.
  • limiter rod 38 descends, it causes cross-shaft 40 to pivot moving stop 42 into position where movement of a slotted plate 44 is restricted.
  • the operator can move control link 46 to actuate valve link 48 for reversing direction of travel only when the belt position actuated limiter rod 38 is raised, as shown in Fig. 2. Raising the belt position actuated limiter rod can be accomplished when the drive train is in operation only when the speed of the engine 1 2 is at idle below a pre-determined idle speed and the hydraulic pump is either stopped as the result of the vehicle 10 being stopped or moving only very slowly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

The invention discloses a combination of a variable-speed engine-driven torque converter (18, 20, 22) which, in turn, powers a hydrostatic drive or any other type of hydraulic pump (24). Gear, piston, orbital, variable-displacement, single-stage, multiple-stage, and other types of pumps may be used to drive any type of hydraulic motor or servo. Including a multiple-stage pump permits automatic down-shifting when the load increases and automatic up-shifting when the load decreases. It also allows the operator to avoid lugging the engine, an important consideration, particularly with air-cooled engines. Engine (12) power is delivered to the pump via a torque converter, preferably a commercially available two-part torque converter assembly equipped with variable effective diameter split sheaves interconnected by a belt. The torque converter output drives a hydraulic pump via a shaft. The pump output is delivered to one or more hydraulic motors (30) that turn the wheels (32) of a vehicle.

Description

Title of Invention: COMBINATION TORQUE CONVERTER HYDRAULIC DRIVE TRAIN
TECHNICAL FIELD The present invention relates to motor vehicle drive trains generally and to self-propelled outdoor power equipment drive trains particularly. Outdoor power equipment such as golf course bunker rakes and amphibious vehicles may be required to operate at widely varying ground speeds and over a wide range of loads. The invention discloses a drive train adapted to operate over an unusually broad range of conditions.
BACKGROUND ART
The invention combines a variable-speed engine driving a hydrodynamic torque converter which, in turn, drives a hydraulic pump of any type, preferably a hydrostatic pump/motor set. Gear, piston, orbital, variable-displacement, single- stage, multiple-stage, and other types of pumps may be used to drive any type of hydraulic motor or servo. This arrangement permits automatic down-shifting when the load increases and automatic up-shifting when the load decreases if a multiple-stage pump is incorporated. It also allows the operator to avoid lugging the engine, an important consideration, particularly with air-cooled engines.
In the present embodiment, engine power is delivered to the pump by means of a torque converter, preferably a commercially available two-part torque converter assembly equipped with variable effective diameter split sheaves interconnected by a belt. In such torque converters, a rotational speed-responsive element is driven by the output shaft of a conventional internal combustion engine; a torque-responsive element is connected to a rotary load. The effective sheave diameter of the portion of the torque converter driven by the engine increases with increasing engine speed. The portion of the torque converter driven by the belt and which drives the hydraulic pump is equipped with a split sheave having an effective diameter that decreases with increasing rotational speed. The torque converter output is delivered to a hydraulic pump (single or multiple stage) or to a variable displacement hydraulic pump through a shaft. The pump output is delivered to one or more hydraulic motors which may directly power the load (e.g. the drive wheels of a vehicle) or which may be connected directly or indirectly to the driven load by means including an intermediate shaft, transaxel, other gearing, sprockets or belts.
Compared to other drive train systems, this system offers numerous advantages. In particular, the system operates much more smoothly than conventional hydraulic, hydrostatic or gear transmission/friction clutch drives. This system yields smoother operation and uses components simpler than those required to produce a stepped-range, automatic-shifting, geared transmission having a similar range of input/output ratios. The benefits of smoother operation include, among other things, greater operator comfort and productivity, improved safety, lessened likelihood of damaging the turf or other surface on which the motor vehicle is being driven, and greater control over machine-mounted tools and implements. It is typical for hydraulic drive systems to have extremely fast response to operator control adjustments. The nearly instantaneous response can result in undesirable wheel slippage, and excessive mechanical stresses.
Another advantage of the invention disclosed herein is that it allows the motor vehicle engine to be operated at its optimum speed and efficiency at all times. This feature is particularly useful when it is necessary to accelerate under heavy load or when it is necessary to operate under varying conditions of load or terrain. By allowing the vehicle engine to operate at its optimum speed, it is possible to apply full power continually to the designated task, eliminate engine lugging, and reduce the likelihood of engine overheating. This advantage is important when the motor vehicle is powered by gasoline engines because such engines characteristically have low torque and low power when operated below the optimum speed. It is important when motor vehicles are required to change speeds frequently, particularly in diesel-powered vehicles which typically have poor acceleration characteristics. In addition, this drive system is particularly well- suited for applications where the working speed may vary widely and where it is desirable to move from one work site to another as quickly as practical. A third advantage of the invention is that it reduces heat build-up within the hydraulic drive system compared to conventional systems. Because the torque converter permits the hydraulic pump to be stopped while the engine continues to run, the engine can be idled without forcing hydraulic fluid through the pump and controls. This characteristic also allows the engine to use less fuel at idle.
A fourth advantage of the present invention is that it operates more quietly than other systems. Conventional hydraulic or hydrostatic drive systems often become noisy when controls are set to halt machine movement. The problem is often most noticeable at high idle and may be avoided only by removing power from the pump which is impractical when other types of drive systems are used.
DISCLOSURE OF THE INVENTION The drive incorporates an interlock which prevents an operator from reversing the direction of rotation of the final drive motor(s) when the engine is supplying power to the hydraulic pump. When the pump sheave is turning, the faces spread apart allowing the belt to turn over a smaller radius. As the pump shaft slows, the faces of the sheave on the pump shaft move closer together and force the drive belt radially outward away from the pump shaft axis. A limiter rod, preferably having a curved or wear-reducing end portion, extends from a pivotable cross-shaft toward the belt. When the pump sheave forces the belt sufficiently far outward, the outer belt surface contacts the end of the limiter rod and raises it. As the end of the limiter rod is raised by the slowed belt, the cross-shaft is pivoted which thereby moves a stop away from the reversing control to permit the operator to reverse the direction of hydraulic motor rotation. As the engine speed is increased, the belt moves inward, out of contact with the end of the limiter rod.
The rod descends between the sheave faces and pivots the cross-shaft, moveing a stop to a position that prevents actuation of the pump-reversing control. By preventing reversal of pump output when the vehicle is moving, it is expected that damage to turf will be minimized. It is anticipated that this drive system would find its first application in golf course maintenance equipment including bunker rake machinery. This drive system is also suitable for use in a variety of landscape, agricultural, forestry, and industrial applications. It is suitable for use in all types of motor vehicles, including golf carts, baggage carts, utility tractors, lawn and garden tractors, all- terrain vehicles, etc. It is also possible that this drive system could be used in material handling and lifting applications.
BRIEF DESCRIPTION OF THE DRAWING
Fig. 1 shows a side elevation of a vehicle incorporating the invention. Fig. 2 is a perspective detail view of the drive train embodiment depicted in Fig. 1 showing the sheaves and interlock limiter rod when the engine is at low idle speed. Fig. 3 shows a plan view of the drive train detail shown in Fig. 2.
Fig. 4 shows an elevation view of the drive train detail shown in Fig. 2 depicting the belt, sheaves and interlock limiter rod when the engine is at full speed.
BEST MODE FOR CARRYING OUT THE INVENTION
Fig. 1 shows a vehicle 10 having a variable speed engine 1 2 having a conventional rotating output shaft 14. A conventional two-part torque converter 16 having a rotational speed responsive element 18, a belt 20 and a torque- responsive element 22 is interposed between the engine 1 2 and a hydraulic or hydrostatic, preferably a variable-displacement pump 24 as may be seen from the view depicted in Fig. 2. The speed responsive element 1 8 is adapted to increase the effective diameter of a split drive sheave as the speed of the engine 1 2 is increased. A belt 20 connects the speed responsive element 18 with the torque- responsive element 22 which is connected to the pump 24, preferably using a shaft 26 having bearings 28 to reduce mechanical stress on the pump 24 as is more clearly depicted in Fig. 3. It is to be understood that other types of torque converters may be incorporated without departing from the invention disclosed herein.
Hydraulic connections 29 of any suitable type convey power from the pump 24 to at least one hydraulic motor 30 which drives the wheels 32 of a vehicle 10.
A hydraulic control 34 may be used to regulate the speed and direction of rotation of the hydraulic motor 30 which may directly power a load such as the drive wheels of a vehicle 32 or be connected to the driven load by means of an intermediate shaft, transaxel or other gearing.
An interlock assembly 36 is provided which allows reversing the direction of motor 30 only when the vehicle 10 is stopped or moving very slowly. The interlock 36 is comprised of a belt position actuated limiter rod 38 which descends between the sheave faces of the torque-responsive element 22 when the torque converter is at a working operating speed as is shown in Fig. 4. When limiter rod 38 descends, it causes cross-shaft 40 to pivot moving stop 42 into position where movement of a slotted plate 44 is restricted. The operator can move control link 46 to actuate valve link 48 for reversing direction of travel only when the belt position actuated limiter rod 38 is raised, as shown in Fig. 2. Raising the belt position actuated limiter rod can be accomplished when the drive train is in operation only when the speed of the engine 1 2 is at idle below a pre-determined idle speed and the hydraulic pump is either stopped as the result of the vehicle 10 being stopped or moving only very slowly.
Changes and modifications in the specifically described embodiments can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.
INDUSTRIAL APPLICABILITY
The applicability of the invention to vehicles in industry is clear from the foregoing.

Claims

What is claimed is: 1 . A drive train for driving a motor vehicle comprising: a variable speed engine having a rotary output shaft; a torque converter having an input portion rotatably connected to said engine shaft and an output portion; a pump, having an input shaft, for pumping pressurized hydraulic fluid; means for connecting said pump input shaft to said torque converter output portion; a hydraulic motor having an output shaft; means for hydraulically connecting said hydraulic motor to said pump; and means for connecting said motor output shaft to the drive wheels of a motor vehicle.
2. A drive train as recited in claim 1 wherein said pump is a variable displacement pump.
3. A drive train as recited in claim 1 wherein said pump is a multiple-stage pump.
4. A drive train as recited in claim 1 further comprising: means for preventing reversal of direction of rotation of said motor output shaft when said drive wheels are rotating.
5. A drive train for driving a motor vehicle comprising: a variable speed engine having a rotary output shaft; a torque converter having: an input portion connected to said variable speed engine output shaft, said input portion being adapted for transferring engine power through an engageable variable effective diameter drive sheave when said engine output shaft rotational speed exceeds a pre-determined minimum, an output portion having a variable effective diameter driven sheave connected thereto; a belt adapted for engageably connecting said torque converter sheaves; a pump, having an input shaft, for pumping hydraulic fluid; means for rotatably connecting said torque converter output portion to said pump input shaft; a hydraulic motor having an output shaft; means for hydraulically connecting said hydraulic motor to said pump; and means for connecting said motor output shaft to the drive wheels of a motor vehicle.
6. A drive train as recited in claim 5 wherein said pump is a variable displacement pump.
7. A drive train as recited in claim 5 wherein said pump is a multiple-stage pump.
8. A drive train as recited in claim 6 further comprising: means for preventing reversal of direction of rotation of said motor output shaft when said drive wheels are rotating.
9. A drive train as recited in claim 7 further comprising: means for preventing reversal of direction of rotation of said motor output shaft when said drive wheels are rotating.
10. A drive train as recited in claim 8 wherein said means for preventing reversal of direction of rotation of said motor output shaft is comprised of: an operator control rod pivotally connected to a cross link; a pump control rod pivotally connected to said cross link; a slotted plate connected to said cross link; means for connecting said cross link to said motor vehicle; an angled stop rod having a stop portion and a pivot portion pivotally mounted to said motor vehicle; a belt position actuated limiter rod affixed to and extending generally perpendicularly from said angled stop rod so that said limiter rod will contact said belt when said belt is engaged and thereby prevent said angled stop rod from being pivoted when said belt is engaged; means for engaging said stop portion of said angled stop rod with said slot in said slotted plate when said belt is disengaged thereby allowing said cross link to pivot when the operator control rod is actuated, which, in turn pivots said pump control rod to effect reversal of rotation of said hydraulic motor; and means for controllably moving said stop portion to a position whereby said slotted plate is prevented from engaging with said stop portion when said belt is engaged and thereby preventing said cross link from actuating said pump control rod.
1 1 . Apparatus for reducing drive train noise in motor vehicles comprising: a variable speed engine having a rotary output shaft; a torque converter having an input portion rotatably connected to said engine shaft and an output portion; a pump, having an input shaft, for pumping pressurized hydraulic fluid; means for connecting said pump input shaft to said torque converter output portion; a hydraulic motor having an output shaft; means for hydraulically connecting said hydraulic motor to said pump; and means for connecting said motor output shaft to the drive wheels of a motor vehicle.
12. Apparatus for reducing drive train heat build-up in hydraulically driven motor vehicles comprising: a variable speed engine having a rotary output shaft; a torque converter having an input portion rotatably connected to said engine shaft and an output portion; a pump, having an input shaft, for pumping pressurized hydraulic fluid; means for connecting said pump input shaft to said torque converter output portion; a hydraulic motor having an output shaft; means for hydraulically connecting said hydraulic motor to said pump; and means for connecting said motor output shaft to the drive wheels of a motor vehicle.
13. A method for improving the efficiency of a hydraulically driven motor vehicle comprising the steps of: installing in said vehicle a variable speed engine having a rotary output shaft; rotatably connecting to said engine output shaft, a torque converter having an input portion and an output portion; driving a hydraulic pump with said torque converter output portion; installing, within said vehicle, a hydraulic motor having an output shaft; hydraulically connecting said hydraulic motor to said pump; driving, by means of said motor output shaft, a motor vehicle drive wheel; and operating said engine at the optimum speed when said vehicle is in use.
14. A method for reducing noise generated by operation of a hydraulically driven motor vehicle comprising the steps of: installing in said vehicle a variable speed engine having a rotary output shaft; rotatably connecting to said engine output shaft, a torque converter having an input portion and an output portion; disengageably driving a hydraulic pump with said torque converter output portion so that said pump input shaft is not rotated when said variable speed engine is operating at idle speed; installing, within said vehicle, a hydraulic motor having an output shaft; hydraulically connecting said hydraulic motor to said pump; driving, by means of said motor output shaft, a motor vehicle drive wheel; and operating said engine at the optimum speed when said vehicle is in use.
PCT/US1995/001407 1994-02-03 1995-02-03 Combination torque converter hydraulic drive train WO1995021066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16992/95A AU1699295A (en) 1994-02-03 1995-02-03 Combination torque converter hydraulic drive train

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19126894A 1994-02-03 1994-02-03
US08/191,268 1994-02-03

Publications (1)

Publication Number Publication Date
WO1995021066A1 true WO1995021066A1 (en) 1995-08-10

Family

ID=22704800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/001407 WO1995021066A1 (en) 1994-02-03 1995-02-03 Combination torque converter hydraulic drive train

Country Status (2)

Country Link
AU (1) AU1699295A (en)
WO (1) WO1995021066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238749A (en) * 2019-07-16 2021-01-19 株式会社艾科赛迪 Drive unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518578A (en) * 1946-08-15 1950-08-15 Hydro Aire Inc Hydraulic pump and motor transmission with motor displacement responsive to motor speed and fluid pressure
US3153908A (en) * 1960-06-22 1964-10-27 Lucas Industries Ltd Vehicle hydraulic transmission mechanisms
US3411601A (en) * 1966-06-23 1968-11-19 Gen Motors Corp Plural drive axle vehicles with a separate torque apportioning drive train to each axle
US3612202A (en) * 1969-06-02 1971-10-12 Sundstrand Corp Hydrostatic wheel assist
US3994353A (en) * 1975-06-23 1976-11-30 Clarence Kirk Greene Vehicle having a mechanical drive, a pump, a variable-displacement motor and a method of driving the vehicle
US4064958A (en) * 1973-10-23 1977-12-27 Nissan Motor Co., Ltd. Transmission for single-shaft gas turbine engine
US4344499A (en) * 1978-12-08 1982-08-17 C. Van Der Lely N.V. Tractor with anti-slipping and overloading controls

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518578A (en) * 1946-08-15 1950-08-15 Hydro Aire Inc Hydraulic pump and motor transmission with motor displacement responsive to motor speed and fluid pressure
US3153908A (en) * 1960-06-22 1964-10-27 Lucas Industries Ltd Vehicle hydraulic transmission mechanisms
US3411601A (en) * 1966-06-23 1968-11-19 Gen Motors Corp Plural drive axle vehicles with a separate torque apportioning drive train to each axle
US3612202A (en) * 1969-06-02 1971-10-12 Sundstrand Corp Hydrostatic wheel assist
US4064958A (en) * 1973-10-23 1977-12-27 Nissan Motor Co., Ltd. Transmission for single-shaft gas turbine engine
US3994353A (en) * 1975-06-23 1976-11-30 Clarence Kirk Greene Vehicle having a mechanical drive, a pump, a variable-displacement motor and a method of driving the vehicle
US4344499A (en) * 1978-12-08 1982-08-17 C. Van Der Lely N.V. Tractor with anti-slipping and overloading controls

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238749A (en) * 2019-07-16 2021-01-19 株式会社艾科赛迪 Drive unit
CN112238749B (en) * 2019-07-16 2024-05-28 株式会社艾科赛迪 Driving unit

Also Published As

Publication number Publication date
AU1699295A (en) 1995-08-21

Similar Documents

Publication Publication Date Title
US4663713A (en) Automatic power control for variable power train
US4294137A (en) Transmission with variator
US5667452A (en) Split torque transmission
US4108265A (en) Hydrostatic-transmission control system, especially for lift and other industrial vehicles
US6413185B1 (en) Driving system for an industrial truck
US5073157A (en) Mechanically variable transmission
JP5536327B2 (en) Repulsive running and braking control of work machines with infinitely variable transmission
MX2007014923A (en) Power take off arrangement for a motor vehicle.
EP0213564B1 (en) Hydrostatic transaxle and locking differentiation and brake therefor
US4280579A (en) Control for tracked vehicle steering mechanism
US8052556B2 (en) Apparatuses and methods for controlling a variable speed transmission
US20040192496A1 (en) Drive train for powering a mobile vehicle
AU2008243697B2 (en) A continuous variable transmission assembly
US6595885B1 (en) Transmission control system and method
WO1995021066A1 (en) Combination torque converter hydraulic drive train
US20060162329A1 (en) Hydrostatic multi-motor drive
JP4368117B2 (en) Gearbox for work vehicle
JPH06193548A (en) Hydromechanical type driving unit
CN203537892U (en) Traveling stepless speed change device of corn combined harvester
US4056989A (en) Vehicle drive
US6050228A (en) Hydro-mechanical fan drive
US4637270A (en) Arrangement for governing vehicle engine speed responsive to actual running speed of the vehicle
CA2288423A1 (en) Remote drop box lubrication circuit for tractors
CN2341970Y (en) Hydraulic lifting system for hydraulic suspending device of small four-wheel tractor
CA1253698A (en) Drive train for self-propelled mowers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KP KR KZ LK LU LV MG MN MW MX NL NO NZ PL PT RO RU SD SE SK TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase