WO1995017248A1 - Alkoxylation catalyst, process for the preparation of the catalyst and process for preparing alkoxylate with the use of the catalyst - Google Patents
Alkoxylation catalyst, process for the preparation of the catalyst and process for preparing alkoxylate with the use of the catalyst Download PDFInfo
- Publication number
- WO1995017248A1 WO1995017248A1 PCT/JP1994/002098 JP9402098W WO9517248A1 WO 1995017248 A1 WO1995017248 A1 WO 1995017248A1 JP 9402098 W JP9402098 W JP 9402098W WO 9517248 A1 WO9517248 A1 WO 9517248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- catalyst
- elements
- water
- oxide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/02—Preparation of ethers from oxiranes
- C07C41/03—Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Definitions
- the present invention relates to an alkoxylation catalyst, a process for the preparation of the catalyst and a process for preparing an alkoxylate with the use of the catalyst. More particularly, it relates to an alkoxylation catalyst which comprises metal oxides having specific physical properties or chemical composition and a process for the preparation of the catalyst, and a process for preparing an alkoxylate with the use of the catalyst whereby an alkoxylate having a distribution of the number of moles of alkylene oxide added within an extremely narrow range can be prepared with a reduced amount of by-products formed.
- Alkylene oxide adducts of compounds containing an active hydrogen atom(s) such as higher alcohols, alkylphenols, primary and secondary alkylamines and fatty acids are useful as surfactants to be incorporated into shampoos, cleansers for tableware, house cleansers, etc. Alternatively, they are also useful as intermediates for the production of the corresponding anionic surfactants through sulfation or carboxymethylation or as intermediates for the production of other industrial products.
- the reaction for the addition of an alkylene oxide to a compound containing an active hydrogen atom(s) is usually effected in the presence of an acid catalyst or a base catalyst.
- the acid catalysts which have been generally used for this purpose include halides of boric acid, tin, antimony, iron, aluminum, etc., salts of mineral acids such as phosphoric acid and sulfuric acid and metal salts of carboxylic acids such as acetic acid, oxalic acid and carbonic acid.
- the base catalyst therefor include hydroxides and alkoxides of alkali metals and lower amines such as diethylamine and triethylamine.
- reaction products which are obtained by using these catalysts and have a distribution of the number of moles of alkylene oxide added within a narrow range are advantageous in physical properties and qualities, for example, flow point, solubility in water and odor, from the viewpoint of the application as a surfactant.
- Reaction products obtained by using such catalysts are comparable, with respect to the range of distribution of moles of alkylene oxide added, to the products prepared by using acid catalysts and are less contaminated with unreacted starting material.
- a large amount of by-products including a polyalkylene glycol are formed in this case, since the above-mentioned catalysts have catalytic properties similar to those of the acid catalysts.
- the use of such catalysts is also disadvantageous in that they can hardly be eliminated from the reaction product via filtration, which is an important factor from an industrial viewpoint.
- the present inventors have conducted extensive studies on an alkoxylation catalyst which can be appropriately used in the preparation of an alkoxylate with excellent qualities by the addition reaction of ⁇ an alkylene oxide with a compound containing an active hydrogen atom(s). As a result of these studies, they have found that when a catalyst having both a specific basicity point and a specific acidity point, more particularly specific metal oxides comprising magnesium as the main component, is used, an alkoxylate having a distribution of the number of moles of alkylene oxide added within a narrow range and being extremely little contaminated with unreacted starting material and by-products, which cannot be obtained by using the previously known catalysts, can be prepared at a high reaction rate. Also, the catalyst can very easily be eliminated from the reaction product.
- the present invention has been completed on the basis of these findings.
- the present invention provides an alkoxylation catalyst comprising metal oxides, having a basicity point expressed in pKa value from 9 to 25 and an acidity point expressed in the amount of ammonia gas adsorbed from 50 to 500 ⁇ mol/g, particularly, an alkoxylation catalyst comprising magnesium oxide and a second oxide of at least one element selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system.
- the present invention provides a use of metal oxides, of which the basicity point expressed in pKa value is from 9 to 25 and of which the acidity point expressed in the amount of ammonia gas adsorbed is 50 to 500 ⁇ mol/g , as an alkoxylation catalyst.
- the present invention provides a process for the preparation of the above-mentioned alkoxylation catalyst, which comprises coprecipitating a water-soluble or water-dispersible magnesium compound with a water-soluble or water-dispersible compound containing at least one element selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system and firing the precipitate thus obtained.
- the present invention provides a process for preparing an alkoxylate which comprises conducting a reaction for adding an alkylene oxide to a compound containing an active hydrogen atom(s) in the presence of the above-mentioned alkoxylation catalyst.
- Fig. 1 is a graph which shows the distribution of the number of moles of ethylene oxide added in each of the reaction products obtained in the Reaction Examples 1 to 6 and Comparative Reaction Examples 2 and 6.
- Fig. 2 is a graph which shows the distribution of the number of moles of ethylene oxide added in each of the reaction products obtained in the Reaction Examples 10 to 14. Detailed Description of the Invention
- the first feature of the alkoxylation catalyst according to the present invention resides in that it has basic properties for activating a compound containing an active hydrogen atom(s) simultaneously with acidic properties for activating an alkylene oxide. Because of having these properties in a well-balanced state, the alkoxylation catalyst of the present invention has a high reactivity and can give a reaction product which has a distribution of the number of moles of alkylene oxide added within a narrow range and is reduced in the amount of by ⁇ products.
- the optimum base strength is pKa 9 to 25, preferably pKa 9 to 18 and particularly preferably pKa 9.3 to 15.0.
- those having a base strength of pKa 10 to 25 are desirable, those having a base strength of pKa 14 to 18 are still more desirable, and those having a base strength of pKa 15.0 to 17.5 are particularly desirable.
- the acid strength which is expressed in the amount of ammonia gas adsorbed to 1 g of the catalyst (i.e., metal oxides) determined by the ammonia gas adsorption method, ranges from 50 to 500 ⁇ mol, preferably from 50 to 250 ⁇ mol and still more preferably from 60 to 200 ⁇ mol. Further, as a catalyst of the present invention, those having an acid strength of 100 to 400 ⁇ mol are desirable, and those having an acid strength of 100 to 250 ⁇ mol are still more desirable.
- the pKa value representing the basicity point of the metal oxide indicates the ability of the basic sites present on the surface of the catalyst to accept protons from an acid or the ability thereof to donate electron pairs.
- the base strength of the metal oxide can be measured by using various indicators with known pKa values. When a metal oxide turns the color of an indicator with a higher pKa into the basic color, then the metal oxide has a larger base strength.
- the basicity point of the metal oxide can be readily determined by the method described in the following examples .
- the amount of ammonia gas adsorbed representing the acidity point of the metal oxide is a value determined by causing the metal oxide to adsorb ammonia on the surface thereof in a gas phase and calculating the amount of the ammonia gas thus adsorbed thereon per unit weight (g) of the metal oxide.
- the acidity point of the metal oxide can be readily determined by the method described in the following examples.
- metal oxides to be used in the present invention which have both a basicity point and an acidity point as specified above are metal oxides comprising magnesium as the main component and, added thereto, at least one metal selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system, in other words, metal oxides comprising magnesium oxide and an oxide of at least one element selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system.
- Particular examples of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system to be added to magnesium include zinc, titanium, zirconium, tin, antimony, bismuth, molybdenum and tungsten.
- At least one element selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system is contained in a proportion of preferably from 0.005 to 0.4 atom, particularly preferably from 0.01 to 0.3 atom, per atom of magnesium which is the main component .
- the catalyst according to the present invention may further contain a trace amount of a third component, so long as the effects of the present invention are not deteriorated thereby.
- the catalyst according to the present invention can be prepared by the publicly known methods which are not particularly restricted.
- a precipitant is added to an aqueous solution or a slurry of compounds containing the desired metals which are soluble or dispersible in water.
- a precipitant is added to an aqueous solution or an aqueous dispersion of compounds containing metals capable of serving as catalytic components other than a support in the presence of a support in the form of a fine powder.
- the precipitate thus obtained by the above coprecipitation method is then washed with water, dried and fired.
- a support in the form of a fine powder is impregnated with an aqueous solution or an aqueous dispersion of a compound containing metals capable of serving as catalytic components other than the support. Then the catalyst thus supported on the support is dried and fired. Thus the catalyst of the present invention is prepared.
- the support usable therefor include diatomaceous earth, zeolite, mordenite, montmorillonite , tin oxide, titanium oxide and activated carbon.
- the amount of the active metal oxide to be supported on the support desirably ranges from 10 to 80% by weight based on the weight of the support.
- Examples of the water-soluble or water- dispersible magnesium compound to be used in the preparation of the catalyst include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium carbonate, magnesium hydroxide and magnesium oxide.
- magnesium nitrate, magnesium sulfate and magnesium chloride may be cited as preferable ones.
- Examples of the water-soluble or water- dispersible compound containing at least one element (i.e. , a metal) selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system include nitrates, sulfates, chlorides, carbonates, hydroxides and oxides of these metals.
- carbonates, hydroxides and oxides of these metals may be cited as preferable ones, and oxides of these metals may be cited as particularly preferable ones.
- examples of oxides of these metals include antimony oxides such as diantimony trioxide, diantimony tetroxide and diantimony pentoxide, among which diantimony trioxide is most preferable.
- the water-soluble or water-dispersible magnesium compound and the water-soluble or water- dispersible compound containing at least one element selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system are dissolved in water to thereby give an aqueous solution or dispersed in water to thereby give a slurry.
- the pH value of the resulting mixture is regulated to 6 to 11, preferably 7 to 10.
- the pH value of the resulting mixture may be regulated to 6 to 8 in some cases.
- the obtained mixture is allowed to stand to thereby coprecipitate the hydroxide, carbonate or oxide of magnesium or a mixture thereof, and the hydroxide, carbonate or oxide of, for example, a group 2B metal or a mixture thereof, followed by the recovery of the precipitate. It is also possible to coprecipitate these compounds on a support coexisting therewith.
- the precipitate thus obtained is washed with water to thereby eliminate the water-soluble compounds. Then, this precipitate is dried and fired at a temperature of 500 to 900° C, preferably 600 to 800° C, desirably under a nitrogen atmosphere.
- a preferred embodiment of the impregnation method is as follows.
- a water-soluble or water-dispersible magnesium compound and a water-soluble or water-dispersible compound containing at least one element selected from the group consisting of the group 2B elements, the group 4A elements, the group 4B elements, the group 5B elements and the group 6A elements in the periodic table of the subgroup system are dissolved in water to thereby give an aqueous solution or are dispersed in water to thereby give a slurry.
- a support is introduced into the aqueous solution or slurry obtained above to give a mixture.
- the mixture thus obtained is stirred to thereby impregnate the support with the aqueous solution or slurry.
- After recovering the support by filtration it is dried and fired at a temperature of 500 to 900° C, preferably 600 to 800° C, desirably under a nitrogen atmosphere.
- magnesium oxide and an oxide of, for example, a group 2B metal are separately prepared and then mixed with each other at a desired ratio to give a mixture and the mixture is used as the catalyst of the present invention.
- the compound containing an active hydrogen atom(s) to be used in the process for the preparation of an alkoxylate according to the present invention is not particularly restricted but may be an arbitrary one, so long as it can be alkoxylated. Examples thereof include alcohols, phenols, polyols, thiols , carboxylic acids, amines, alkanolamides and mixtures thereof.
- the alcohols include higher aliphatic primary alcohols having a saturated or unsaturated linear alkyl group carrying 8 to 22 carbon atoms such as n-octanol , n-decanol, n-dodecanol, n-tetradecanol , n-hexadecanol , n-octadecanol , oleyl alcohol, eicosanol, behenol , nonanol , undecanol and tridecanol, primary alcohols having a branched alkyl group such as 2-ethylhexanol and Guerbet alcohols with 16 to 36 carbon atoms, secondary alcohols such as 2-octanol, 2-decanol and 2-dodecanol, and arylalkyl alcohols such as benzyl alcohol.
- the Guerbet alcohols are branched- chain alcohols which are synthesized from two molecules of a starting alcohol by condensation
- phenols examples include phenol, p-octylphenol and p-nonylphenol .
- polyols examples include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, glycerol, sorbitol, trimethylolpropane and pentaerythritol .
- thiols examples include primary and secondary thiols such as 1-butanethiol, 1-hexanethiol, 1-octanethiol , 1-decanethiol , 1-dodecanethiol , 2-propanethiol and 2-butanethiol .
- carboxylic acids examples include carboxylic acids having a linear or branched, saturated or unsaturated alkyl group such as acetic acid, propionic acid, butyric acid, octanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, 2-ethylhexanoic acid and isostearic acid and N-acylamino acids.
- amines examples include primary and secondary amines having a saturated or unsaturated alkyl group carrying 8 to 36 carbon atoms such as octylamine, dioctylamine , laurylamine , dilaurylamine , stearylamine and distearylamine and polyamines such as ethylenediamine and diethylenetriamine.
- alkanolamides examples include lauryl- monoethanolamide and lauryldiethanolamide .
- alcohols having a low acidity are preferable, since the effects of the present invention can be clearly exhibited by using these compounds.
- linear or branched, saturated or unsaturated alcohols carrying 8 to 22 carbon atoms are preferable, and linear or branched, saturated alcohols carrying 10 to 18 carbon atoms are particularly preferable .
- the alkylene oxide to be used in the present invention may be an arbitrary one, so long as it can react with a compound containing an active hydrogen atom(s) to thereby form an alkoxylate. It is preferable in the present invention to use ethylene oxide or propylene oxide, which has an oxirane ring, or a mixture thereof.
- a preferable embodiment of the process for the preparation of an alkoxylate according to the present invention is as follows.
- a reactor such as an autoclave
- an alkylene oxide is reacted with a compound containing an active hydrogen atom(s) in the presence of the catalyst of the present invention at a temperature of 80 to 230° C, preferably 120 to 180° C, for 1 to 10 hours.
- the reaction temperature is lower than 80° C, the reaction rate cannot attain a sufficient level.
- a reaction temperature exceeding 230° C causes decomposition of the product.
- the catalyst is used in an amount of preferably from 0.01 to 20% by weight and still more preferably from 0.1 to 10% by weight based on the weight of the compound containing an active hydrogen atom(s) .
- the reaction product thus obtained, in which the catalyst is suspended, may be used as such in some cases.
- the catalyst is usually separated from the reaction product by, for example, filtration or centrifugal separation.
- an additional advantage thereof, i.e. , its remarkably excellent filtering characteristics, can also be observed.
- the main factors affecting the filtering characteristics of a catalyst include clogging of filter paper or filter cloth with high-molecular- weight polyalkylene glycols formed as by-products.
- the formation of these polyalkylene glycols can be considerably suppressed by using such a catalyst as the one of the present invention which has a specific basicity point simultaneously with a specific acidity point.
- the catalyst has excellent filtering characteristics when it is to be eliminated from the reaction product.
- the catalyst can be completely eliminated from the reaction product by a simple filtering procedure without requiring any troublesome operation such as adsorption and aggregation.
- the recovered catalyst has a seriously lowered activity.
- the process according to the present invention with the use of the catalyst of the present invention, wherein polyalkylene glycols are formed in only an extremely small amount is free from this disadvantage.
- the catalyst of the present invention can be recovered by a simple filtration procedure and reused.
- the catalyst of the present invention has excellent characteristics from an industrial viewpoint.
- an alkoxylate which has a distribution of the number of moles of alkylene oxide added within a narrow range and is little contaminated with unreacted starting materials and by-products can be prepared.
- the catalyst of the present invention can be easily eliminated from the reaction product.
- the present invention is highly valuable in the industry. Fxampl es
- Example 5 The same procedure as that of Example 5 was effected except for using 76.92 g (0.3 mol) of magnesium nitrate hexahydrate, 4.46 g (0.015 mol) of zinc nitrate hexahydrate, 53.24 g of diatomaceous earth, 155.26 g of deionized water and 166.93 g (0.315 mol) of a 20% aqueous solution of sodium carbonate.
- MgO-ZnO-diatomaceous earth catalyst [Mg : Zn (atomic ratio) being 1 : 0.05)] wherein 20% by weight, based on the weight of the diatomaceous earth, of the metal oxides were supported on the diatomaceous earth was obtained.
- Comparative Example 1 Comparative Example 1
- Comparative Example 3 The same procedure as that of Comparative Example 1 was effected except for using barium nitrate in place of the magnesium nitrate. Thus a BaO catalyst was obtained. Comparative Example 3
- a composite metal salt KYOWARD 2000 (mfd. by Kyowa Kagaku Kogyo K.K.) was fired at 500° C for 2 hours. Thus an MgO (59.2%)-A1 2 0 3 (33%) catalyst was obtained.
- a 0.1% solution of an indicator in toluene was added to a mixture of 0.1 g of a catalyst (when a supported catalyst was used, it was the weight of the supported catalyst) with 5 ml of toluene, which had been dried with Molecular Sieves, to observe color changes.
- the indicators employed were those for the judgement of pKa values ranging from 3 to 25, for example, phenolphthalein (pKa: 9.3), 2,4,6-trinitro- aniline (pKa: 12.2), 2 ,4-dinitroaniline (pKa: 15.0), 4-chloro-2-nitroaniline (pKa: 17.2) and 4-nitroaniline (pKa: 18.4).
- a 2-C autoclave was charged with 188 g (1 mol) of lauryl alcohol and each of the catalysts obtained in the above Examples 1 to 6 and Comparative Examples 1 to 5 in such a manner as to regulate the amount of the metal oxides to 2% by weight based on the weight of lauryl alcohol.
- 132 g (3 mol) of ethylene oxide was introduced thereinto at the same temperature while maintaining the pressure at 3 to 5 kg/cm 2 (gage pressure) to thereby effect a reaction.
- Ethylene oxide was introduced into an autoclave which had been charged with lauryl alcohol and a catalyst in such an amount as to give an inner pressure of 3 kg/cm 2 (gage pressure) . Then, ethylene oxide was further introduced thereinto in such an amount as to give an inner pressure of 5 kg/cm 2 (gage pressure) . The amount of the ethylene oxide which was used for increasing the pressure from 3 kg/cm 2 (gage pressure) to 5 kg/cm 2 (gage pressure) was measured. Then, the addition reaction was effected until the inner pressure would be reduced to 3 kg/cm 2 (gage pressure). The time required for this addition reaction was measured. The above-mentioned procedure was repeated.
- the ethylene oxide addition rate was 0.3 mol/hr or above.
- Fig. 1 shows the results.
- the catalysts of the present invention i.e. , the products of Examples 1 to 6 are each excellent in filtering characteristics and that when a catalyst of the present invention is used, a high reaction rate can be achieved while forming little by-products.
- Example 2 The same procedure as that of Example 1 was effected except for changing the composition ratio of the magnesium nitrate hexahydrate to the zinc nitrate hexahydrate so as to give atomic ratios of magnesium to zinc (i.e. , Mg : Zn) of 1 : 0.01, 1 : 0.30 and 1 : 0.50 to thereby give catalysts. Then the pKa value of each catalyst and the amount of ammonia gas adsorbed to each catalyst were measured by the same methods as those described above. Table 2 shows the results . Reaction Example 7 and 8 and Comparative Example 7
- Example 11 The same procedure as that of Example 4 was effected except for using 148.63 g (2.40 mol) of a 27.5% aqueous ammonia or 320.00 (1.6 mol) of a 20% aqueous solution of NaOH each in place of 423.96 g (0.8 mol) of a 20% aqueous solution of Na 2 C0 3 to thereby prepare a catalyst. Then the pKa value and the amount of ammonia gas adsorbed were measured by the same methods as those described above. Table 4 shows the results.
- Example 12 The same procedure as that of Example 4 was effected except for using 320.00 g (1.6 mol) of a 20% aqueous solution of NaOH in place of 423.96 g (0.8 mol) of a 20% aqueous solution of Na 2 C0 3 and 162.64 g (0.8 mol) of magnesium chloride hexahydrate in place of 205.13 g (0.8 mol) of magnesium nitrate hexahydrate to thereby prepare a catalyst. Then the pKa value and the amount of ammonia gas adsorbed were measured by the same methods as those described above. Table 4 shows the results.
- Example 12 The same procedure as that of Example 4 was effected except for using 320.00 g (1.6 mol) of a 20% aqueous solution of NaOH in place of 423.96 g (0.8 mol) of a 20% aqueous solution of Na 2 C0 3 and 162.64 g (0.8 mol) of magnesium chloride hexahydrate in place of 205.13 g
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/505,286 US5686379A (en) | 1993-12-22 | 1994-12-14 | Alkoxylation catalyst, process for the preparation of the catalyst and process for preparing alkoxylate with the use of the catalyst |
EP95902953A EP0684872B1 (en) | 1993-12-22 | 1994-12-14 | Alkoxylation catalyst, process for the preparation of the catalyst and process for preparing alkoxylate with the use of the catalyst |
DE69432858T DE69432858T2 (en) | 1993-12-22 | 1994-12-14 | ALKOXYLATION CATALYST, METHOD FOR PREPARING THE CATALYST, AND ALKOXYLATE PRODUCTION USING THE CATALYST |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32388393 | 1993-12-22 | ||
JP5/323883 | 1993-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995017248A1 true WO1995017248A1 (en) | 1995-06-29 |
Family
ID=18159670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1994/002098 WO1995017248A1 (en) | 1993-12-22 | 1994-12-14 | Alkoxylation catalyst, process for the preparation of the catalyst and process for preparing alkoxylate with the use of the catalyst |
Country Status (5)
Country | Link |
---|---|
US (1) | US5686379A (en) |
EP (1) | EP0684872B1 (en) |
CN (1) | CN1119836A (en) |
DE (1) | DE69432858T2 (en) |
WO (1) | WO1995017248A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1117723A1 (en) † | 1998-09-05 | 2001-07-25 | Basf Aktiengesellschaft | Method for producing polyetherols by ring-opening polymerisation of alkylene oxides |
WO2005087696A1 (en) * | 2004-03-11 | 2005-09-22 | Basf Aktiengesellschaft | Method for producing monoalkylene glycol monoether |
EP2174926A2 (en) | 2008-10-08 | 2010-04-14 | Bayer MaterialScience AG | Method for manufacturing diaryl carbonates |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6504061B1 (en) | 1998-06-10 | 2003-01-07 | Lion Corporation | Alkoxylation catalyst and method for producing the same, and method for producing alkylene oxide adduct using the catalyst |
US6864353B2 (en) * | 2002-01-15 | 2005-03-08 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Production process for ethylene oxide copolymer |
DE60317747T2 (en) * | 2002-08-29 | 2008-10-30 | Kao Corp. | Production process for glycidyl ether adduct and catalyst used for this purpose |
JP2005239964A (en) * | 2004-02-27 | 2005-09-08 | Nippon Shokubai Co Ltd | Method for producing ethylene oxide-based copolymer |
US20060119089A1 (en) * | 2004-12-02 | 2006-06-08 | Patriot Lift Co., Llc | Stabilizing leg apparatus for a trailer |
CN103041860B (en) * | 2013-01-24 | 2015-03-25 | 凤台精兴生物科技有限公司 | Alkali compound catalyst used in synthesis reaction of nonyl phenol polyoxyethylene ether |
CN103920480B (en) * | 2014-04-19 | 2015-12-30 | 江苏怡达化学股份有限公司 | An a kind of step embeds the magnesium-aluminum-zirconium solid catalyst of synthesis alkoxyl alcohol ether-ether |
US10604614B2 (en) | 2017-09-22 | 2020-03-31 | Hexion Inc. | Compositions and methods to produce alkoxylated triazine-arylhydroxy-aldehyde condensates |
US10640475B2 (en) | 2017-09-22 | 2020-05-05 | Hexion Inc. | Compositions and methods to produce alkoxylated triazine-arlhydroxy-aldehyde condensates |
US10435503B2 (en) | 2017-09-22 | 2019-10-08 | Hexion Inc. | Compositions for polyurethane applications |
CN109722739B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Diol modified polyester fiber with trimethylsilyl lateral group and preparation method thereof |
CN109722730B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Semi-dull terylene pre-oriented yarn and preparation method thereof |
CN109736113B (en) * | 2018-12-27 | 2020-02-21 | 江苏恒力化纤股份有限公司 | Preparation method of polyester rope for sports |
CN109734889B (en) * | 2018-12-27 | 2021-01-05 | 江苏恒力化纤股份有限公司 | Sb in polyester synthesis process2O3Adding method of (1) |
CN109735941B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Super-bright polyester pre-oriented yarn and preparation method thereof |
CN109735926B (en) | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Easily-dyed porous modified polyester fiber and preparation method thereof |
CN109750374B (en) * | 2018-12-27 | 2020-07-07 | 江苏恒力化纤股份有限公司 | Semi-dull polyester low stretch yarn and preparation method thereof |
CN109930231B (en) * | 2018-12-27 | 2020-10-13 | 江苏恒力化纤股份有限公司 | Preparation method of polyester sun-shading cloth |
CN109722729B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Hexanediol modified polyester fiber with tert-butyl side group and preparation method thereof |
CN109735936B (en) * | 2018-12-27 | 2020-07-07 | 江苏恒力化纤股份有限公司 | Preparation method of polyester industrial yarn for heavy-duty hoisting belt |
CN109706543B (en) * | 2018-12-27 | 2021-02-05 | 江苏恒力化纤股份有限公司 | Terylene military tent and preparation method thereof |
CN109735937B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Polyester industrial yarn for industrial sewing thread and preparation method thereof |
CN109722740B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Degradable polyester fiber and preparation method thereof |
CN109735927B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Full-dull polyester low stretch yarn and preparation method thereof |
CN109735929B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Dibasic acid modified polyester fiber with tertiary butyl lateral group and preparation method thereof |
CN109722737B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Modified polyester fiber containing solid base catalyst and preparation method thereof |
CN109735932B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Easy-to-dye polyester DTY fiber and preparation method thereof |
CN109735935B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Preparation method of marine polyester cable rope |
CN109666984B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Modified polyester POY fiber containing solid heteropoly acid and preparation method thereof |
CN109505026B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Moisture-absorbing sweat-releasing polyester fiber and preparation method thereof |
CN109853074B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Dihydric alcohol modified polyester fiber with silicon-containing main chain and preparation method thereof |
CN109735919B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Heptanediol modified polyester fiber with tertiary butyl side group and preparation method thereof |
CN109666982B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Moisture-absorbing and sweat-releasing polyester fiber and preparation method thereof |
CN109722736B (en) * | 2018-12-27 | 2020-07-07 | 江苏恒力化纤股份有限公司 | Fluorine-containing diacid modified polyester FDY fiber and preparation method thereof |
CN109735947B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Water-repellent canvas and preparation method thereof |
CN109853082B (en) * | 2018-12-27 | 2020-08-14 | 江苏恒力化纤股份有限公司 | Sheath-core thermal fuse and preparation method thereof |
CN109735928B (en) * | 2018-12-27 | 2020-10-16 | 江苏恒力化纤股份有限公司 | Teslin cloth and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0421677A1 (en) * | 1989-10-04 | 1991-04-10 | The British Petroleum Company P.L.C. | Process for the preparation of glycol ethers |
WO1991013831A1 (en) * | 1990-03-15 | 1991-09-19 | Rover Group Limited | Magnesium aluminate with controlled surface area |
WO1992011224A1 (en) * | 1990-12-20 | 1992-07-09 | The British Petroleum Company Plc | Process for the preparation of glycol ethers |
EP0512843A1 (en) * | 1991-05-10 | 1992-11-11 | Sumitomo Chemical Company Limited | Magnesium-aluminium complex compounds and process for their preparation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375564A (en) * | 1981-12-23 | 1983-03-01 | Shell Oil Company | Alkoxylation process |
US5112788A (en) * | 1988-09-30 | 1992-05-12 | Union Carbide Chemicals & Plastics Technology Corporation | Alkoxylation using modified group iia metal-containing bimetallic or polymetallic catalysts |
US5104987A (en) * | 1990-09-20 | 1992-04-14 | Union Carbide Chemicals & Plastics Technology Corporation | Alkoxylation of active hydrogen-containing compounds |
US5191104A (en) * | 1990-09-20 | 1993-03-02 | Union Carbide Chemicals & Plastics Technology Corporation | Alkoxylation of carboxylated compounds |
-
1994
- 1994-12-14 CN CN94191556.5A patent/CN1119836A/en active Pending
- 1994-12-14 US US08/505,286 patent/US5686379A/en not_active Expired - Fee Related
- 1994-12-14 DE DE69432858T patent/DE69432858T2/en not_active Expired - Fee Related
- 1994-12-14 WO PCT/JP1994/002098 patent/WO1995017248A1/en active IP Right Grant
- 1994-12-14 EP EP95902953A patent/EP0684872B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0421677A1 (en) * | 1989-10-04 | 1991-04-10 | The British Petroleum Company P.L.C. | Process for the preparation of glycol ethers |
WO1991013831A1 (en) * | 1990-03-15 | 1991-09-19 | Rover Group Limited | Magnesium aluminate with controlled surface area |
WO1992011224A1 (en) * | 1990-12-20 | 1992-07-09 | The British Petroleum Company Plc | Process for the preparation of glycol ethers |
EP0512843A1 (en) * | 1991-05-10 | 1992-11-11 | Sumitomo Chemical Company Limited | Magnesium-aluminium complex compounds and process for their preparation |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1117723A1 (en) † | 1998-09-05 | 2001-07-25 | Basf Aktiengesellschaft | Method for producing polyetherols by ring-opening polymerisation of alkylene oxides |
EP1117723B2 (en) † | 1998-09-05 | 2008-04-30 | Basf Se | Method for producing polyetherols by ring-opening polymerisation of alkylene oxides |
WO2005087696A1 (en) * | 2004-03-11 | 2005-09-22 | Basf Aktiengesellschaft | Method for producing monoalkylene glycol monoether |
EP2174926A2 (en) | 2008-10-08 | 2010-04-14 | Bayer MaterialScience AG | Method for manufacturing diaryl carbonates |
DE102008050828A1 (en) | 2008-10-08 | 2010-04-15 | Bayer Materialscience Ag | Process for the preparation of diaryl carbonates |
Also Published As
Publication number | Publication date |
---|---|
EP0684872A1 (en) | 1995-12-06 |
EP0684872B1 (en) | 2003-06-25 |
US5686379A (en) | 1997-11-11 |
DE69432858D1 (en) | 2003-07-31 |
CN1119836A (en) | 1996-04-03 |
DE69432858T2 (en) | 2004-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5686379A (en) | Alkoxylation catalyst, process for the preparation of the catalyst and process for preparing alkoxylate with the use of the catalyst | |
EP0090445A2 (en) | Improved process for the polymerization of epoxides | |
US4302357A (en) | Catalyst for production of ethylene from ethanol | |
WO2011031928A1 (en) | Conversion of ethanol to a reaction product comprising 1-butanol using hydroxyapatite catalysts | |
AU615091B2 (en) | A process for preparing a catalyst capable of promoting the oxidative conversion of methane into higher hydrocarbons | |
EP0406415A1 (en) | Method of producing an alkylene oxide adduct. | |
US20060252946A1 (en) | Production process for glycidyl ether adduct and catalyst used for the process | |
JPH07227540A (en) | Catalyst for alkoxylation, production of the catalyst, and production of alkoxylate using the catalyst | |
WO1993022266A1 (en) | Alkoxylation process | |
US6514898B2 (en) | Process of preparing a fluid rare earth alkoxylation catalyst | |
US5102849A (en) | Supported rare earth and phosphorus catalyst | |
US5210325A (en) | Alkoxylation process catalyzed by supported rare earth elements | |
JP3911582B2 (en) | Catalyst for alkoxylation of complex oxide | |
JP3312883B2 (en) | Catalyst for alkoxylation, method for producing the same, and method for producing alkylene oxide adduct using the catalyst | |
US6504061B1 (en) | Alkoxylation catalyst and method for producing the same, and method for producing alkylene oxide adduct using the catalyst | |
US5104845A (en) | Group 1 metalloaluminum borates | |
CN107921421B (en) | Ethoxylation catalyst and method for producing the same | |
US5118870A (en) | Alkoxylation process catalyzed by rare earth and phosphorus-containing xerogels | |
JP4170562B2 (en) | Catalyst for alkylene oxide addition reaction | |
EP0965382B1 (en) | Method for producing alkylene oxide adduct | |
JP3417418B2 (en) | Method for producing alkylene carbonate | |
US5208199A (en) | Catalyst of rare earth and phosphorus-containing xerogels for alkoxylation process | |
JP2004105959A (en) | Method of producing glycidyl ether addition product and catalyst used for the method | |
JP4406489B2 (en) | Alkoxylation catalyst and process for producing alkylene oxide adducts using this catalyst | |
US5098879A (en) | Catalyst for preparation of ortho-alkylated phenols |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 94191556.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08505286 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995902953 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1995902953 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995902953 Country of ref document: EP |