WO1995016144A1 - Bearing structure - Google Patents

Bearing structure Download PDF

Info

Publication number
WO1995016144A1
WO1995016144A1 PCT/JP1994/002082 JP9402082W WO9516144A1 WO 1995016144 A1 WO1995016144 A1 WO 1995016144A1 JP 9402082 W JP9402082 W JP 9402082W WO 9516144 A1 WO9516144 A1 WO 9516144A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
bearing
cylindrical member
fitting hole
bearing structure
Prior art date
Application number
PCT/JP1994/002082
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Takahashi
Toru Hashimoto
Mitsuhiro Miyake
Kiyoshi Shinjo
Shigeo Tsukakoshi
Hisakazu Miya
Naoto Nishimoto
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Mikuni Corporation
Tokyo Roki Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha, Mikuni Corporation, Tokyo Roki Corporation filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Publication of WO1995016144A1 publication Critical patent/WO1995016144A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/02Sliding-contact bearings
    • F16C25/04Sliding-contact bearings self-adjusting

Definitions

  • the present invention relates to a bearing structure for supporting a rotating shaft of a butterfly valve used for an intake device of an internal combustion engine mounted on, for example, an automobile, and more particularly, to a (radial) bearing structure for supporting the rotating shaft in a radial direction.
  • a bearing structure for supporting a rotating shaft of a butterfly valve used for an intake device of an internal combustion engine mounted on, for example, an automobile and more particularly, to a (radial) bearing structure for supporting the rotating shaft in a radial direction.
  • FIG. 1 For example, as a bearing structure for supporting a rotating shaft of a multiple butterfly valve used in an intake device of an internal combustion engine, there is one as shown in FIG.
  • the valve body 1 of the intake device is provided with a rotary shaft insertion hole 1b penetrating through the intake passages in a direction orthogonal to the six intake passages.
  • a rotating shaft 2a for firmly supporting the valve body 2 is inserted into the fitting hole 1b from one end of the valve body 1, whereby the rotating shaft 2a is rotatably supported.
  • the inner peripheral wall of the fitting hole 1b provided in the valve body 1 itself serves as a bearing
  • the inner peripheral wall of the fitting hole 1b has a lubricating metal dry bearing.
  • the rotating shaft 2a and the valve It is assumed that the bearings have different clear coefficients due to the difference in thermal expansion coefficient when they are made of different materials such as steel and aluminum, or that they are made of the same material. However, even if the bearing clearance fluctuates due to the difference in the amount of expansion and contraction due to the shape, it is not possible to compensate for such fluctuation in the clearance, and therefore, the rotating shaft 2a has the bearing hole. A rattling sound may be generated in the vehicle, or a sudden state may occur when the rotation resistance of the rotation shaft 2a increases due to the close contact state.
  • the intake device such as the valve body 1 or the rotating shaft 2a of the intake device, which was conventionally formed of a metal material such as aluminum or steel, the use of resin as a part of the study is considered. Have been.
  • the object of the present invention is to reduce the weight of the product and, particularly, to control the ambient temperature and the like. Regardless of the difference in the amount of expansion and contraction deformation of the bearing area due to the change, we will provide a bearing structure that can reliably achieve the original function of the bearing with high accuracy.
  • the present invention is a bearing structure for rotatably supporting a rotating shaft disposed in a shell in a radial direction thereof, wherein the shell has an axis in the same direction as the axis of the rotating shaft.
  • a frustum-shaped fitting hole wherein the rotating shaft has a fitting hole inside for rotatably fitting the fitting hole, and has a truncated cone-shaped outer shape; It is characterized in that it is supported by a fitted cylindrical member.
  • the rotating shaft is rotatably supported on the shell via the cylindrical member, and the cylindrical member having the outer shape of a truncated cone is formed on the shell. It is formed and fitted into a fitting hole which also has the shape of a truncated cone.
  • the cylindrical member moves along the inner surface of the fitting hole, that is, in the axial direction so as to absorb the increase in volume, and The optimal happiness can be maintained without reducing the clarity in the area. That is, by utilizing the wedge action of the cylindrical member having the tapered shape, a predetermined bearing function can be obtained regardless of changes in the ambient temperature. In addition, by providing a restricting member for restricting the movement of the cylindrical member in the horizontal direction, even if the cylindrical member moves due to thermal expansion or the like, the cylindrical member is restricted to a predetermined range, thereby preventing the cylindrical member from falling off.
  • FIG. 1 is a cross-sectional view showing a bearing structure of a multiple butterfly valve in a conventional intake device
  • FIG. 2 is an external plan view of an intake device employing a bearing structure according to the present invention
  • FIG. 3 is an external side view of the intake device at the arrow R in FIG. 2
  • FIG. 4 is an external side view of the intake device at the arrow L in FIG. 2
  • FIG. FIG. 6 is a cross-sectional view of the intake device taken along a line BB in FIG. 2
  • FIG. 6 is a partial cross-sectional view showing a bearing structure according to the present invention
  • FIG. It is a minute enlarged sectional view.
  • FIG. 2 shows a plan view of the external appearance of the air intake device, and as shown in the drawing, is made of a combination of resin die-cast products forming three regions I, 11 and 1II. That is, a branch portion (I) connected to the head intake port of the engine, a valve body (11) as a shell housing a multiple butterfly valve serving as an intake switching valve, a surge tank, The cover part (1 1 1) that forms the bypass intake passage is made by injection molding, etc. After that, each is integrally joined by vibration welding or the like on the joining flange surface.
  • FIG. 3 is a side view of the external appearance of the intake device shown in FIG. 2 as viewed in the direction of arrow R. As shown, a flange portion for mounting a throttle body for adjusting the output of the engine is shown. Along with 10, there is disposed an end bearing 20 that rotatably supports one end of a rotating shaft of the multiple butterfly valve.
  • FIG. 4 shows an external side view of the intake device shown in FIG. 2 as viewed in the direction of arrow L.
  • the outer surface has one end supported by an end bearing 20.
  • An actuator 30 having a gear mechanism built therein is attached to the other end of the rotary shaft of the continuous butterfly valve.
  • FIG. 5 is a cross-sectional view taken along a line BB in FIG. 2, and a multiple butterfly valve for opening and closing the intake passage 10 is arranged in this region.
  • a multiple butterfly valve arranged in a valve body ( ⁇ ) as a shell has a valve body 21 and a rotating shaft 21a for supporting the same. It is integrally formed of a material.
  • One end of the rotating shaft 2 la is rotatably supported by the end bearing 20, and the rotating shaft located between the valve bodies 21 is rotatably supported by the intermediate bearing 22. ing.
  • the other end of the rotating shaft 21a is connected to an actuator for driving the multiple butterfly valve.
  • This actiyue 30 When the worm gear 32 is rotated by a drive source (not shown), the worm wheel 31 that rotates with the worm gear 31 rotates, and the rotating shaft 2 1a that is integrally fixed to the worm wheel 31. Is to rotate.
  • the inner surface of the worm wheel 31 is urged outward by a spring 33, and a flange portion 21b formed integrally with the rotating shaft 21a has a valve body 21b. It is in contact with the inner wall of ( ⁇ ) and acts as a thrilling good luck.
  • the connection structure between the rotating shaft 21a and the worm wheel 31 will be described.
  • the worm wheel 31 protrudes from the gear portion and has a fitting hole therein.
  • a cylindrical member 31a having 31b is provided, while a fitting shaft 21c is provided at an end of the rotating shaft 21a. Then, the worm wheel 31 is assembled so that the fitting shaft 21c can be fitted and fitted into the fitting hole 31b, so that the two can be firmly and firmly fixed. ing.
  • Such a bearing portion is a feature of the present invention, and its structure will be described in detail below.
  • a cylindrical member 23 having a fitting hole 23 a for fitting is fitted. That is, the rotating shaft (columnar member) is supported by the valve body ( ⁇ ) via the cylindrical member 23.
  • the cylindrical member 23 is fitted into the fitting hole 25 having a truncated cone shape like the outer wall thereof, a wedge action is generated on the fitting surface. That is, due to an increase in the ambient temperature, etc., the fitting hole 25 of the cylindrical member 3 la (rotating shaft), the cylindrical member 23 and the valve body ( ⁇ ) undergoes expansion deformation. When the amount of expansion deformation of the cylindrical member 31a and the cylindrical member 23 is larger than the amount of expanded deformation, as shown in FIG. The cylindrical member 23 is moved in the direction of arrow S by the contact surface direction component H of the contacting force W.
  • the outer peripheral surface of the cylindrical member 31 a (rotating shaft) does not engage with the inner wall surface (bearing surface) of the fitting hole 23 a of the cylindrical member 23.
  • the desired euphoria can be obtained by maintaining the clarity.
  • the structure is such that the direct rotation is supported by a hole formed in the valve body as in the conventional example, or if a cylindrical member is not a truncated cone but a mere cylinder, No wedge effect occurs, especially when the amount of expansion due to rotation is large. If it is large, the clearance on the Yuuki receiving surface will be small, and it may be difficult to rotate by the rotation $.
  • the cylindrical member 23 having a truncated cone shape as described above, it is possible to ensure a predetermined bearing function regardless of the difference in the amount of expansion and contraction deformation of each component. it can.
  • a restricting member 24 for restricting the movement of the cylindrical member 23 to a predetermined range is disposed so as to abut on one end surface 23 c of the cylindrical member 23.
  • the tubular member 23 can be prevented from falling out of the fitting hole 25.
  • regulating members 24 are provided independently of each other, a configuration in which the inner end surface of the worm wheel 31 is used as the regulating portion may be employed. Further, the regulating member 24 is formed using an elastic material to prevent the cylindrical member 23 from rattling due to engine vibration. May be taken.
  • a frusto-conical fitting hole having an axis in the same direction as the axis of the rotating shaft is formed in the valve body as a shell. Fitted into the fitting hole The rotating shaft is rotatably supported by the fitting hole (bearing hole) provided in the external truncated cone-shaped cylindrical member to be fitted. Even if each member expands and deforms, the cylindrical member having the shape of a truncated cone moves in the axial direction by wedge action, so that a predetermined clearance can always be secured in the bearing region. However, a desired bearing function can be maintained.
  • the cylindrical member can be prevented from falling out of the fitting hole, and the desired bearing function can be maintained as described above.
  • the bearing structure according to the present invention can be used as a radial bearing that supports a rotating shaft that fixes a butterfly valve of an intake device for an internal combustion engine, and that supports other rotating shafts. It is useful for use as a radial bearing that is mounted on a rotating shaft, and is particularly suitable for mounting from the axial direction of the rotating shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Lift Valve (AREA)
  • Support Of The Bearing (AREA)

Abstract

A bearing structure for radially rotatably supporting a rotating shaft disposed in a valve body serving as a shell unit wherein a truncated cone-shaped fitting hole (25) which has an axis in the same direction as that of the rotating shaft (21a) is provided in the valve body and wherein the rotating shaft is supported by means of a tubular member (23) which has therein an insertion hole (23a) into which the rotating shaft (21a, 31a) is fittingly inserted in such a manner as to freely rotate therein, has an external shape of a truncated cone, and is fittingly inserted into the fitting hole (25). With this bearing structure, it is possible to secure a desired bearing function irrespective of the deformation resulting from expansion and/or contraction of bearing constituent members due to change in ambient temperatures.

Description

明 細 軸 受 構 造 技術分野  Mechano-bearing structure Technical field
本発明は、 例えば自動車等に搭載される内燃エンジンの 吸気装置に用いられるバタフライバルブの回動軸を支持す る軸受構造に関し、 特に、 回動軸を径方向において支持す る (ラジアル) 軸受構造に関する。  The present invention relates to a bearing structure for supporting a rotating shaft of a butterfly valve used for an intake device of an internal combustion engine mounted on, for example, an automobile, and more particularly, to a (radial) bearing structure for supporting the rotating shaft in a radial direction. About.
背景技術  Background art
例えば、 内燃ェンジンの吸気装置に用いられる多連バタ フライバルブの回動軸を支持する軸受構造と しては、 第 1 図に示されるようなものがある。  For example, as a bearing structure for supporting a rotating shaft of a multiple butterfly valve used in an intake device of an internal combustion engine, there is one as shown in FIG.
図示されるように、 吸気装置のバルブボディ 1 には、 6 本の吸気通路に直交する方向において、 これらの吸気通路 を貫通する回動軸嵌入穴 1 bが開けられている。 そして、 各吸気通路においてバルブ本体 2を固着支持する回動軸 2 aがバルブボディ 1の一端側から嵌入穴 1 bに嵌挿せしめ られ、 これにより回動軸 2 aが回動自在に支持される構造 になっている。 すなわち、 バルブボディ 1 に設けられた嵌 入穴 1 bの内周壁そのものが $由受と しての役割を成すもの や嵌入穴 1 bの内周壁に潤滑性のある金属 ドライべァリ ン グを圧入し軸受と しての役割を持たせるものがある。  As shown in the figure, the valve body 1 of the intake device is provided with a rotary shaft insertion hole 1b penetrating through the intake passages in a direction orthogonal to the six intake passages. In each intake passage, a rotating shaft 2a for firmly supporting the valve body 2 is inserted into the fitting hole 1b from one end of the valve body 1, whereby the rotating shaft 2a is rotatably supported. Structure. In other words, the inner peripheral wall of the fitting hole 1b provided in the valve body 1 itself serves as a bearing, and the inner peripheral wall of the fitting hole 1b has a lubricating metal dry bearing. There is a type that press-fits the bearing and acts as a bearing.
このような軸受構造においては、 回動軸 2 a とバルブボ ディ 1力く、 各々鋼材とアル ミ ニウム材といったよ うに異種 材料にて形成される場合の熱膨張係数の相違による軸受部 ク リ アラ ンスの変動、 あるいは、 同種材料にて形成された と しても形状に起因した膨縮量の相違による軸受ク リアラ ンスの変動等を生じた場合に、 かかるク リ アラ ンスの変動 を補完することができず、 よって、 回動軸 2 aが軸受孔内 にてがたついて打音を発したり、 あるいは、 密着状態にな つて回動軸 2 aの回動抵抗が増加するといつた状態が生じ 得る。 In such a bearing structure, the rotating shaft 2a and the valve It is assumed that the bearings have different clear coefficients due to the difference in thermal expansion coefficient when they are made of different materials such as steel and aluminum, or that they are made of the same material. However, even if the bearing clearance fluctuates due to the difference in the amount of expansion and contraction due to the shape, it is not possible to compensate for such fluctuation in the clearance, and therefore, the rotating shaft 2a has the bearing hole. A rattling sound may be generated in the vehicle, or a sudden state may occur when the rotation resistance of the rotation shaft 2a increases due to the close contact state.
一方、 今日の自動車開発の方針の一つと して、 車両の軽 量化による低燃費車両の開発、 あるいは、 材質の変更及び 製造工程の簡単化等による低コス ト車両の開発が検討され ている。  On the other hand, as one of today's automobile development policies, the development of fuel-efficient vehicles by reducing the weight of vehicles or the development of low-cost vehicles by changing the material and simplifying the manufacturing process is being considered.
そ こで、 従来アル ミ ニウム材あるいは鋼材等の金属材料 により形成されていた上記吸気装置のバルブボディ 1 ある いは回動軸 2 a等についても、 その一環と して製品の樹脂 化が検討されている。  Therefore, as a part of the intake device, such as the valve body 1 or the rotating shaft 2a of the intake device, which was conventionally formed of a metal material such as aluminum or steel, the use of resin as a part of the study is considered. Have been.
しかしながら、 従来の吸気装置を構成する上記のよ うな 部品を単に樹脂化しただけでは、 金属材料に比べ樹脂材料 の方が機械的強度、 耐摩耗性、 伝熱性等の面で劣り、 また、 各構成部品の成形精度の低下あるいはばらつき等による組 み付け精度の低下といったような新たな問題が発生する。 上記従来技術の問題点等に鑑み、 本願発明の目的とする と ころは、 製品の軽量化を図りつつ、 特に雰囲気温度等の 変化による軸受領域の膨縮変形量の相違に拘らず、 軸受本 来の機能を確実に高精度にて達成し得る $由受構造を提供す る とにめる。 However, if the above-mentioned components constituting the conventional intake device are simply made of resin, the resin material is inferior in mechanical strength, abrasion resistance, heat transfer property, etc. as compared with the metal material. New problems arise, such as a decrease in the molding accuracy of the component parts or a decrease in the assembly accuracy due to variations or the like. In view of the above-described problems of the prior art, the object of the present invention is to reduce the weight of the product and, particularly, to control the ambient temperature and the like. Regardless of the difference in the amount of expansion and contraction deformation of the bearing area due to the change, we will provide a bearing structure that can reliably achieve the original function of the bearing with high accuracy.
発明の開示  Disclosure of the invention
本発明は、 殻体内に配置される回動軸をその径方向にお いて回動自在に支持する軸受構造であって、 前記殻体は、 前記回動軸の軸線と同一方向に軸線をもつ円錐台形状の嵌 合孔を有し、 前記回動軸は、 これを回動自在に嵌揷せしめ る嵌揷孔を内部に有しかつ円錐台形状の外形を成して前記 嵌合孔に嵌入嵌合せしめられた筒部材よって支持されてい る ことを特徴と している。  The present invention is a bearing structure for rotatably supporting a rotating shaft disposed in a shell in a radial direction thereof, wherein the shell has an axis in the same direction as the axis of the rotating shaft. A frustum-shaped fitting hole, wherein the rotating shaft has a fitting hole inside for rotatably fitting the fitting hole, and has a truncated cone-shaped outer shape; It is characterized in that it is supported by a fitted cylindrical member.
また、 前記筒部材の軸線方向における移動を規制する規 制部材を有する こ とをも特徴と している。  Further, it is characterized in that it has a regulating member for regulating the movement of the cylindrical member in the axial direction.
本発明の軸受構造によれば、 回動軸は殻体に対して筒部 材を介して回動自在に支持され、 さ らに、 外形が円錐台形 状をなすこの筒部材は、 殻体に成形されて同様に円錐台形 状をなす嵌合孔に嵌入嵌合せしめられている。  According to the bearing structure of the present invention, the rotating shaft is rotatably supported on the shell via the cylindrical member, and the cylindrical member having the outer shape of a truncated cone is formed on the shell. It is formed and fitted into a fitting hole which also has the shape of a truncated cone.
従って、 仮に回動軸、 筒部材及び殻体が熱膨張を生じた 場合は、 その容積の増加分を吸収できるように筒部材が嵌 合孔内面に沿って、 すなわち軸方向に移動し、 軸受領域に おける ク リ アラ ンスを狭めるようなこ とはな く 、 最適な幸由 受状態を維持する ことができ る。 すなわち、 テーパ形状を なす筒部材のく ざび作用を利用する こ とにより、 雰囲気温 度の変化に拘らず、 所定の軸受機能が得られる。 また、 筒部材の蚰線方向における移動を規制する規制部 材を設けるこ とにより、 熱膨張等により筒部材が移動して も所定範囲に規制され、 その抜け落ちが防止される。 Therefore, if the rotating shaft, the cylindrical member, and the shell body undergo thermal expansion, the cylindrical member moves along the inner surface of the fitting hole, that is, in the axial direction so as to absorb the increase in volume, and The optimal happiness can be maintained without reducing the clarity in the area. That is, by utilizing the wedge action of the cylindrical member having the tapered shape, a predetermined bearing function can be obtained regardless of changes in the ambient temperature. In addition, by providing a restricting member for restricting the movement of the cylindrical member in the horizontal direction, even if the cylindrical member moves due to thermal expansion or the like, the cylindrical member is restricted to a predetermined range, thereby preventing the cylindrical member from falling off.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の吸気装置における多連バタフライバル ブの軸受構造を示す断面図であり、 第 2図は、 本発明に係 る軸受構造を採用した吸気装置の外観平面図であり、 第 3 図は、 第 2図中の矢視 Rにおける吸気装置の外観側面図で あり、 第 4図は、 第 2図中の矢視 Lにおける吸気装置の外 観側面図であり、 第 5図は、 第 2図中の B— B部における 吸気装置の断面図であり、 第 6図は、 本発明に係る軸受構 造を示す部分断面図であり、 第 7図は、 筒状部材領域の部 分拡大断面図である。  FIG. 1 is a cross-sectional view showing a bearing structure of a multiple butterfly valve in a conventional intake device, and FIG. 2 is an external plan view of an intake device employing a bearing structure according to the present invention. FIG. 3 is an external side view of the intake device at the arrow R in FIG. 2, FIG. 4 is an external side view of the intake device at the arrow L in FIG. 2, and FIG. FIG. 6 is a cross-sectional view of the intake device taken along a line BB in FIG. 2, FIG. 6 is a partial cross-sectional view showing a bearing structure according to the present invention, and FIG. It is a minute enlarged sectional view.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の軸受構造を、 内燃エンジン用吸気装置に 内装された多連バタフライバルブの支持部に適用した実施 例について、 図面に基づき説明する。  Hereinafter, an embodiment in which the bearing structure of the present invention is applied to a support portion of a multiple butterfly valve provided in an intake device for an internal combustion engine will be described with reference to the drawings.
第 2図は、 吸気装置の外観平面図を示すものであり、 図 示されるよ うに、 3つの領域 I , 1 1 , 1 I I を形成する樹脂 ダイカス ト品の結合体からなっている。 すなわち、 ェンジ ンのへッ ド吸気ポー トに連結されるブラ ンチ部分 ( I ) 、 吸気の切換え弁たる多連バタフライバルブを内装する殻体 と してのバルブボディ (1 1 ) 、 サージタ ンク及び迂回吸気 通路を形成するカバー部分 (1 1 1 ) が各々射出成形法等に 基づいて成形され、 その後、 接合用フラ ンジ面において各 々が振動溶着等により一体的に結合されている。 FIG. 2 shows a plan view of the external appearance of the air intake device, and as shown in the drawing, is made of a combination of resin die-cast products forming three regions I, 11 and 1II. That is, a branch portion (I) connected to the head intake port of the engine, a valve body (11) as a shell housing a multiple butterfly valve serving as an intake switching valve, a surge tank, The cover part (1 1 1) that forms the bypass intake passage is made by injection molding, etc. After that, each is integrally joined by vibration welding or the like on the joining flange surface.
第 3図は、 第 2図に示す吸気装置の矢視 Rによる外観側 面図を示すものであり、 図示されるように、 エンジンの出 力を調整するスロ ッ トルボディ を取り付ける為のフラ ンジ 部 1 0と並んで、 多連バタフライバルブの回動軸の一端を 回動自在に支持する端部軸受 2 0が配置されている。  FIG. 3 is a side view of the external appearance of the intake device shown in FIG. 2 as viewed in the direction of arrow R. As shown, a flange portion for mounting a throttle body for adjusting the output of the engine is shown. Along with 10, there is disposed an end bearing 20 that rotatably supports one end of a rotating shaft of the multiple butterfly valve.
第 4図は、 第 2図に示す吸気装置の矢視 Lによる外観側 面図を示すものであり、 図示されるように、 かかる外側面 には一端が端部軸受 2 0により支持された多連バタフライ バルブの回動軸の他端部に付与せしめる、 歯車機構を内装 したァクチユエータ 3 0が取り付けられている。  FIG. 4 shows an external side view of the intake device shown in FIG. 2 as viewed in the direction of arrow L. As shown in the drawing, the outer surface has one end supported by an end bearing 20. An actuator 30 having a gear mechanism built therein is attached to the other end of the rotary shaft of the continuous butterfly valve.
第 5図は、 第 2図中の B— B部における断面図を示すも のであり、 この領域には吸気通路 1 0の開閉を行う多連バ タフライバルブが配置されている。 本図に示されるように、 殻体と してのバルブボディ ( Π ) 内に配置された多連バタ フライバルブは、 そのバルブ本体 2 1 とこれを支持する回 動軸 2 1 a とが樹脂材料により一体的に形成されている。 そして、 かかる回動軸 2 l aの一端が前述端部铀受 2 0に より、 また、 バルブ本体 2 1同士の間に位置する回動軸が 中間軸受 2 2により、 各々回動自在に支持されている。  FIG. 5 is a cross-sectional view taken along a line BB in FIG. 2, and a multiple butterfly valve for opening and closing the intake passage 10 is arranged in this region. As shown in this figure, a multiple butterfly valve arranged in a valve body (Π) as a shell has a valve body 21 and a rotating shaft 21a for supporting the same. It is integrally formed of a material. One end of the rotating shaft 2 la is rotatably supported by the end bearing 20, and the rotating shaft located between the valve bodies 21 is rotatably supported by the intermediate bearing 22. ing.
さ らに、 回動軸 2 1 aの他端部においては、 かかる多連 バタフライバルブを駆動させる為のァクチユエ一夕 3 0力 連結されている。 このァクチユエ一夕 3 0は、 モータ等の 駆動源 (不図示) により ウォームギヤ 3 2が回転せしめら れると、 これに喃合したウ ォームホイール 3 1が回転し、 このウォームホイール 3 1 と一体的に固着せしめられた回 動軸 2 1 aが回転するようになつている。 尚、 ウ ォームホ ィール 3 1 はその内側面がスプリ ング 3 3により外側に向 けて付勢されており、 回動軸 2 1 a と一体的に形成された フラ ンジ部 2 1 bがバルブボディ ( Π ) の内壁に当接して スラス ト幸由受と しての作用をなしている。 Further, the other end of the rotating shaft 21a is connected to an actuator for driving the multiple butterfly valve. This actiyue 30 When the worm gear 32 is rotated by a drive source (not shown), the worm wheel 31 that rotates with the worm gear 31 rotates, and the rotating shaft 2 1a that is integrally fixed to the worm wheel 31. Is to rotate. The inner surface of the worm wheel 31 is urged outward by a spring 33, and a flange portion 21b formed integrally with the rotating shaft 21a has a valve body 21b. It is in contact with the inner wall of (Π) and acts as a thrilling good luck.
こ こで、 前述回動軸 2 1 a とウ ォームホイール 3 1 との 連結構造について説明すると、 第 6図に示されるように、 ウォームホイール 3 1 には歯車部分から突出して内部に嵌 合孔 3 1 bを有した円柱状部材 3 1 aが設けられ、 一方、 回動軸 2 1 a の端部には嵌合軸部 2 1 cが設けられている。 そ して、 この嵌合軸部 2 1 cが嵌合孔 3 1 bに嵌入嵌合せ しめられるように、 ウ ォームホイール 3 1 を組み付ける こ とで、 両者は確実堅固に固着される構造となっている。  Here, the connection structure between the rotating shaft 21a and the worm wheel 31 will be described. As shown in FIG. 6, the worm wheel 31 protrudes from the gear portion and has a fitting hole therein. A cylindrical member 31a having 31b is provided, while a fitting shaft 21c is provided at an end of the rotating shaft 21a. Then, the worm wheel 31 is assembled so that the fitting shaft 21c can be fitted and fitted into the fitting hole 31b, so that the two can be firmly and firmly fixed. ing.
また、 前述端部轴受 2 0及び中間 $由受 2 2に支持された 回動軸 2 1 aの他端部も同様に $由受と しての筒部材 2 3に より回動自在に支持されている。  Similarly, the other end of the rotating shaft 21a supported by the end bearing 20 and the intermediate $ bearing 22 is also rotatable by the cylindrical member 23 serving as the $ bearing. Supported.
かかる軸受部は本願発明の特徴とすると ころであり、 以 下のその構造について詳述する。  Such a bearing portion is a feature of the present invention, and its structure will be described in detail below.
第 7図に示されるように、 回動軸 2 l aの嵌合軸部 2 1 c に対して嵌合固着されたウォームホイール 3 1 の円柱状 部材 3 1 aの外周面とバルブボディ ( Π ) に形成された円 錐台形状の嵌合孔 2 5との間には、 同様に外形が円錐台形 状をなす外壁面 2 3 bを有し、 中央部に回動軸と しての円 柱状部材 3 1 aを嵌挿せしめる嵌揷孔 2 3 aを有した筒部 材 2 3が嵌合せしめられている。 すなわち、 回動軸 (円柱 状部材) が筒部材 2 3を介してバルブボディ ( Π ) に支持 された構造となっている。 As shown in FIG. 7, the outer peripheral surface of the cylindrical member 31a of the worm wheel 31 fitted and fixed to the fitting shaft portion 21c of the rotating shaft 2la and the valve body (Π) Circle formed on Similarly, an outer wall surface 23 b having a truncated cone shape is provided between the fitting hole 25 having a truncated frustum shape, and a cylindrical member 31 a serving as a rotation shaft is provided at the center. A cylindrical member 23 having a fitting hole 23 a for fitting is fitted. That is, the rotating shaft (columnar member) is supported by the valve body (Π) via the cylindrical member 23.
こ こで、 筒部材 2 3は、 その外壁と同様に円錐台形状を なす嵌合孔 2 5に嵌入嵌台せしめられている為、 その嵌台 面においてはく さび作用が生じる。 すなわち、 雰囲気温度 の上昇等により、 円柱状部材 3 l a (回動軸) 、 筒部材 2 3及びバルブボディ ( Π ) の嵌合孔 2 5が膨張変形を生じ、 特に、 嵌合孔 2 5の拡大変形量に対して、 円柱状部材 3 1 a及び筒部材 2 3の膨張変形量が大きい場合、 第 7図に示 されるように、 この筒部材 2 3の嵌合孔 2 5内壁面に当接 する当接力 Wの当接面方向分力 Hによって、 筒部材 2 3は 矢印 S方向に移動するこ とになる。 かかる筒部材の移動に より、 円柱状部材 3 1 a (回動軸) の外周面と筒部材 2 3 の嵌揷孔 2 3 a内壁面 (軸受面) とが嚙み合う ことなく、 所定のク リアラ ンスを維持して所望の幸由受作用を得ること ができる。  Here, since the cylindrical member 23 is fitted into the fitting hole 25 having a truncated cone shape like the outer wall thereof, a wedge action is generated on the fitting surface. That is, due to an increase in the ambient temperature, etc., the fitting hole 25 of the cylindrical member 3 la (rotating shaft), the cylindrical member 23 and the valve body (Π) undergoes expansion deformation. When the amount of expansion deformation of the cylindrical member 31a and the cylindrical member 23 is larger than the amount of expanded deformation, as shown in FIG. The cylindrical member 23 is moved in the direction of arrow S by the contact surface direction component H of the contacting force W. By the movement of the cylindrical member, the outer peripheral surface of the cylindrical member 31 a (rotating shaft) does not engage with the inner wall surface (bearing surface) of the fitting hole 23 a of the cylindrical member 23. The desired euphoria can be obtained by maintaining the clarity.
仮に、 従来例の如く バルブボディ に形成した孔により直 接回動 $由を支持する構造、 あるいは、 筒部材を介在させて もそれが円錐台形状ではなく単なる円筒状のものであれば、 上述の如き く さび作用は発生せず、 特に回動 由の膨張量が 大きい場合には、 幸由受介面における ク リ アラ ンスが小さ く なり、 回動 $由の回動が困難になる場合がある。 For example, if the structure is such that the direct rotation is supported by a hole formed in the valve body as in the conventional example, or if a cylindrical member is not a truncated cone but a mere cylinder, No wedge effect occurs, especially when the amount of expansion due to rotation is large. If it is large, the clearance on the Yuuki receiving surface will be small, and it may be difficult to rotate by the rotation $.
これに対し、 本発明では上述の如く 円錐台形状をなす筒 部材 2 3を介在させたこ とで、 各構成部分の膨縮変形量の 相違に抅らず、 所定の軸受機能を確保することができる。  On the other hand, in the present invention, by interposing the cylindrical member 23 having a truncated cone shape as described above, it is possible to ensure a predetermined bearing function regardless of the difference in the amount of expansion and contraction deformation of each component. it can.
また、 第 7図に示されるように、 かかる筒部材 2 3の移 動を所定の範囲に規制する規制部材 2 4を筒部材 2 3の一 端面 2 3 c に当接するように配置する こ とで、 筒部材 2 3 が嵌合孔 2 5から抜け落ちるのを防止できる。  In addition, as shown in FIG. 7, a restricting member 24 for restricting the movement of the cylindrical member 23 to a predetermined range is disposed so as to abut on one end surface 23 c of the cylindrical member 23. Thus, the tubular member 23 can be prevented from falling out of the fitting hole 25.
次に、 かかる軸受部の組み付け手順について説明する。 先ず、 前述中間軸受 2 2等により多連バタフライバルブを バルブボディ 内に配置固定した後、 筒部材 2 3を嵌合孔 2 5に嵌入嵌合せしめる。 この際、 嵌合孔 2 5の先端部にス ト ツパ壁 2 6を形成して筒部材の他端面 2 3 dが当接する ように し、 もって、 筒部材 2 3の嵌入量を規制してもよい。 その後、 リ ング状の規制部材 2 4をウ ォームホイール 3 1 の円柱状部材 3 1 a に遊嵌させた状態にて、 ウ ォームホイ ール 3 1 を回動 $由 2 l a に連結固着する。 これにより、 多 連バタフライバルブの回動軸他端部をラ ジアル方向におい て支持する軸受が構成される こ とになる。 尚、 上述規制部 材 2 4は、 别個独立のものを設けたが、 ウ ォームホイール 3 1 の内側端面を規制部と して用いる構成であってもよい。 また、 規制部材 2 4を弾性材料を用いて形成し、 筒部材 2 3がェンジンの振動によつてがたつく のを防止する構成を 採ってもよい。 Next, a procedure for assembling the bearing will be described. First, after the multiple butterfly valve is arranged and fixed in the valve body by the intermediate bearing 22 or the like, the cylindrical member 23 is fitted into the fitting hole 25 and fitted. At this time, a stopper wall 26 is formed at the tip of the fitting hole 25 so that the other end surface 23 d of the cylindrical member comes into contact with the cylindrical member 23, thereby restricting the amount of fitting of the cylindrical member 23. You may. Then, with the ring-shaped regulating member 24 loosely fitted to the cylindrical member 31 a of the worm wheel 31, the worm wheel 31 is connected and fixed to the rotation $ 2 la. This constitutes a bearing that supports the other end of the rotating shaft of the multiple butterfly valve in the radial direction. Although the above-mentioned regulating members 24 are provided independently of each other, a configuration in which the inner end surface of the worm wheel 31 is used as the regulating portion may be employed. Further, the regulating member 24 is formed using an elastic material to prevent the cylindrical member 23 from rattling due to engine vibration. May be taken.
以上述べたように、 本願発明の軸受構造によれば、 殻体 と してのバルブボディ に回動軸の軸線方向と同一方向に軸 線をもつ円錐台形状の嵌合孔を形成し、 この嵌合孔に嵌入 嵌合せしめられる外形円錐台形状の筒部材に設けた嵌挿孔 (軸受孔) によって回動軸を回動自在に支持する構造と し ている故、 雰囲気温度の上昇等により各部材が膨張変形を 生じても、 円錐台形状をした筒部材がく さび作用によりそ の軸線方向に移動するこ とで、 軸受領域において、 常に所 定のク リアランスを確保することができ、 もって、 所望の 軸受機能を維持することができる。  As described above, according to the bearing structure of the present invention, a frusto-conical fitting hole having an axis in the same direction as the axis of the rotating shaft is formed in the valve body as a shell. Fitted into the fitting hole The rotating shaft is rotatably supported by the fitting hole (bearing hole) provided in the external truncated cone-shaped cylindrical member to be fitted. Even if each member expands and deforms, the cylindrical member having the shape of a truncated cone moves in the axial direction by wedge action, so that a predetermined clearance can always be secured in the bearing region. However, a desired bearing function can be maintained.
また、 筒部材の軸方向への移動を規制する規制部材を設 けることにより、 筒部材が嵌合孔から抜け落ちることを防 止でき、 上述同様に所望の軸受機能を維持することができ る o  In addition, by providing a regulating member for regulating the movement of the cylindrical member in the axial direction, the cylindrical member can be prevented from falling out of the fitting hole, and the desired bearing function can be maintained as described above.
産業上の利用可能性  Industrial applicability
以上のように、 本発明に係る軸受構造は、 内燃エンジン 用吸気装置のバタフライバルブを固定する回動軸を回動自 在に支持するラジアル軸受と して、 又、 その他の回動軸を 支持するラジアル軸受と して用いるのに有用であり、 特に 回動軸の軸線方向から装着する場合に適している。  As described above, the bearing structure according to the present invention can be used as a radial bearing that supports a rotating shaft that fixes a butterfly valve of an intake device for an internal combustion engine, and that supports other rotating shafts. It is useful for use as a radial bearing that is mounted on a rotating shaft, and is particularly suitable for mounting from the axial direction of the rotating shaft.

Claims

a 求 の 範 囲 a Range of request
1 . 殻体内に配置される回動軸をその径方向において回 動自在に支持する 由受構造であって、 前記殻体は、 前記回 動軸の軸線と同一方向に軸線をもつ円錐台形状の嵌合孔を 有し、 前記回動軸は、 これを回動自在に嵌挿し得る嵌揷孔 を内部に有しかつ円錐台形状の外形を成して前記嵌合孔に 嵌入嵌合せしめられた筒部材によって支持されていること を特徴とする軸受構造。 1. A supporting structure for rotatably supporting a rotating shaft disposed in a shell in a radial direction thereof, wherein the shell has a truncated cone shape having an axis in the same direction as the axis of the rotating shaft. The rotating shaft has a fitting hole in which the rotating shaft can be rotatably inserted, and has a truncated conical outer shape, and is fitted into the fitting hole. A bearing structure characterized by being supported by a cylindrical member provided.
2 . 前記筒部材の軸線方向における移動を規制する規制 部材を有することを特徴とする請求の範囲第 1項記載の軸 受構造。  2. The bearing structure according to claim 1, further comprising a regulating member for regulating movement of the cylindrical member in the axial direction.
PCT/JP1994/002082 1993-12-10 1994-12-12 Bearing structure WO1995016144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31092193A JPH07167141A (en) 1993-12-10 1993-12-10 Bearing construction
JP5/310921 1993-12-10

Publications (1)

Publication Number Publication Date
WO1995016144A1 true WO1995016144A1 (en) 1995-06-15

Family

ID=18010995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002082 WO1995016144A1 (en) 1993-12-10 1994-12-12 Bearing structure

Country Status (2)

Country Link
JP (1) JPH07167141A (en)
WO (1) WO1995016144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291900B1 (en) 1997-09-15 2001-09-18 General Electric Company Electrical energy management for manually powered devices
EP2468242A1 (en) 2010-12-27 2012-06-27 KPSS-Kao Professional Salon Services GmbH Bleaching composition comprising magnesium salt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559811U (en) * 1978-10-19 1980-04-23
JPS61241522A (en) * 1985-04-19 1986-10-27 Ube Ind Ltd Ceramic bearing
JPS61241521A (en) * 1985-04-19 1986-10-27 Ube Ind Ltd Ceramic bearing
JPH03503305A (en) * 1988-10-13 1991-07-25 カーエスベー・アクチエンゲゼルシャフト Bearing for shaft of canned motor pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559811U (en) * 1978-10-19 1980-04-23
JPS61241522A (en) * 1985-04-19 1986-10-27 Ube Ind Ltd Ceramic bearing
JPS61241521A (en) * 1985-04-19 1986-10-27 Ube Ind Ltd Ceramic bearing
JPH03503305A (en) * 1988-10-13 1991-07-25 カーエスベー・アクチエンゲゼルシャフト Bearing for shaft of canned motor pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291900B1 (en) 1997-09-15 2001-09-18 General Electric Company Electrical energy management for manually powered devices
EP2468242A1 (en) 2010-12-27 2012-06-27 KPSS-Kao Professional Salon Services GmbH Bleaching composition comprising magnesium salt

Also Published As

Publication number Publication date
JPH07167141A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
US7219652B2 (en) Bearing support device
WO1995016112A1 (en) Suction control device for a multi-cylinder internal combustion engine
JP3260269B2 (en) Ball joint for steering
US5445049A (en) Torsional vibration damper
US7111609B2 (en) Intake air control device having strain absorbing structure
JPH07158458A (en) Intake control device for multiple cylinder internal combustion engine
WO1995016144A1 (en) Bearing structure
WO2017056883A1 (en) Intake air control device
KR20050013495A (en) Rotary vibration damper
JP2008190369A (en) Resin butterfly valve device and resin throttle device of internal combustion engine using the same
US11242775B2 (en) Valve timing adjustment device
JPH07158457A (en) Intake control device for multiple cylinder internal combustion engine
JPH07167140A (en) Bearing
JPH0257210B2 (en)
US20200025061A1 (en) Charging device with a wastegate valve device
JP2000145482A (en) Throttle control device
JP3905560B2 (en) Intake device for internal combustion engine
JPH0735824U (en) Intake control device for multi-cylinder internal combustion engine
JPH04125340A (en) Torsional damper
JPH0450444Y2 (en)
JPH10267111A (en) Gear drive device and governor drive gear
JPH0629512Y2 (en) Water pump
JP2001132480A (en) Intake air control system of internal combustion engine
JPH0424114Y2 (en)
JPH0735142Y2 (en) Shaft coupling

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642