WO1995014210A1 - Dispositif de mesure par interferometrie laser - Google Patents

Dispositif de mesure par interferometrie laser Download PDF

Info

Publication number
WO1995014210A1
WO1995014210A1 PCT/FR1994/001340 FR9401340W WO9514210A1 WO 1995014210 A1 WO1995014210 A1 WO 1995014210A1 FR 9401340 W FR9401340 W FR 9401340W WO 9514210 A1 WO9514210 A1 WO 9514210A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
beams
reflected
parallel
reflecting
Prior art date
Application number
PCT/FR1994/001340
Other languages
English (en)
Inventor
Bernard Fondeur
Original Assignee
Bernard Fondeur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernard Fondeur filed Critical Bernard Fondeur
Publication of WO1995014210A1 publication Critical patent/WO1995014210A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02061Reduction or prevention of effects of tilts or misalignment

Definitions

  • the subject of the invention is a measurement device by laser interferometry making it possible to measure any displacement of a reflector in a certain cone of possible operation, thanks to a tracking system of the reflector which has the advantage of do not introduce any error in the measurement.
  • the principle of a measurement or a control by interferometry resides in the counting of the interference fringes caused by the lengthening of the path of a light beam compared to a fixed path of a reference beam, the two beams coming from the same source, divided by a separator
  • recombined reflected beam exhibits interference, exploited by a measurement cell, when the mobile reflector moves.
  • monofrequency with which the interference fringes correspond to the half-wavelength of light in air (about 0.3 micrometers) the other dual-frequency with which we operate the variation (Doppler effect) of the two frequencies emitted in the recombined beam.
  • Quality equipment is equipment in which the energy distribution in the beams returning from the targets to the measurement cell is balanced.
  • the reflectors are constituted by mirrors in the shape of a cube corner which have the property of returning the reflected ray parallel to the incident ray which they receive and symmetrically with respect to their apex.
  • you must therefore know the direction of this movement and install the device in this direction so that the beams emitted in the direction of the movable cube corner are always intercepted by it and so that there is always an exploitable return.
  • Another method consists in ensuring a pursuit of the target whatever its trajectory within given limits. It is then permissible to implement light structures and of low cost and therefore to practice metrology with an accuracy at least equal to that of the huge expensive and heavy machines which exist on the market.
  • the means for ensuring a correct continuation of the movement of a target must act on all of the incident and reflected beams relating to the reference target and to the moving target to neutralize the influence of the geometric uncertainties and mechanical play of the device. continuation along the length of the beam path.
  • One of the known techniques consists in placing the optical tracking device upstream of the separator in order to act on the incident beam before its separation and on the reflected beam while it is being recombined.
  • the invention therefore relates to a device for measuring by laser interferometry the variation of the distance separating two points of the mobile space relative to each other and each equipped with a reflecting target , comprising a source of a coherent beam of light, a separating surface arranged on the path of the beam to divide it into two beams, each of which is oriented towards a target, one passing through and the other deflected, and which has a reflective surface of the deflected beam to orient it parallel to the passing beam, an optical tracking mechanism receiving on the one hand the two parallel beams to orient them while maintaining their parallelism in the direction of the two targets so that each beam is constantly kept pointed at the corresponding target, and on the other hand, the parallel beams reflected by the targets, to direct them while maintaining their r respectively parallel to the separating and reflecting surfaces.
  • FIG. 1 is a diagram illustrating a first embodiment of the invention
  • FIG. 2 is a diagram illustrating a second embodiment of the invention.
  • FIG. 3 is a diagram of the embodiment of Figure 1 in which the tracking device is shown in more detail.
  • a laser beam 1 comes from a source 2 and meets a semi-reflective separating surface 3 which divides the beam 1 into two beams 4 and 5, the beam 4 being said to pass through, that is to say not deflected, and the beam 5 being deflected.
  • the beam 5 meets a reflecting surface 6 which makes it possible to orient it parallel to the direction of the passing beam 4.
  • These two beams penetrate into an optical tracking system which is represented diagrammatically at 7 and, conventionally, comprises a plurality of mirrors movable relative to each other allowing beams 4 and 5 to be kept parallel while allowing targets 8, 9 to be reached, one of which 8 is fixed while the other 9 is, of course, mobile, within determined limits born.
  • the targets 8 and 9 are here represented as cube corners in the field of metrology and laser inter ⁇ ferometry and which have the property of reflecting an incident beam parallel to itself, and this whatever the incidence of this beam relative to the target, the incident beam and the reflected beam being symmetrical to each other with respect to a median axis passing through the top of the cube corner which materializes the point of the corresponding space.
  • the optical system of the tracking device 7 is such that each of the mirrors which it comprises receives not only the beams 4 and 5 upstream, but also the beams reflected 4 'and 5' by the targets 8 and 9. Thanks to this condition, the mechanical and geometric uncertainties of this set of mirrors of the tracking device neutralize each other and have no influence on the length of the light paths.
  • the deflected beam 5 it reaches the moving target 9 and the beam reflected 5 'by this moving target reaches the semi-reflecting surface 3 in an area which, moreover, is crossed by the beam 4' reflected by the target 8 and by the mirror 6.
  • a recombined beam 10 is directed towards a measurement cell which makes it possible to appreciate the displacement of the target 9 relative to the target 8 and more exactly the projection of this displacement on the direction of the beams 4, 4 ', 5 and 5'.
  • the beam 5, 5 ′ relating to the moving target 9 frames the beam 4, 4 ′ relating to the fixed target 8.
  • the target 8 should be relatively narrow and hardly exceeds the sum of two diameters of a beam, that is to say 12 mm on a side, ie 16 to 18 mm of opening for the beams of machines currently on the market.
  • the target 9 may itself have an opening of the order of thirty millimeters.
  • the fixed target 8 ′ is transparent to the deflected beam 5 simply by truncating its summit.
  • the deflected beam 5 can therefore reach the moving target 9 'through the fixed target 8', the deflected ray 5, 5 'then being framed by the passing ray 4, 4' relating to the fixed target 8 '.
  • the device in FIG. 2 comprises a last reflecting mirror 11 which makes it possible to return the recombined beam in the direction of a measurement cell 12 which is associated and close to the source of the laser beam 1. This latter mirror can of course be installed on the device shown in FIG. 1.
  • the diagrams illustrating the two embodiments of the invention show that the incidence of the beam 1 on the semi-reflecting surface 3 remains constant during the operation of the device. It follows that, correctly set at the origin, the semi-reflecting surface 3 optimally shares the energy between the beams 4 and 5. This therefore eliminates any difficulty arising from a variation in this sharing of energy due to the variation of the incidence of the beams on the reflecting plate.
  • the beam passing through is that intended for the fixed target.
  • the tracking system comprises a carriage 13 movable parallel to the beams 4 and 5 coming from the semi-reflecting surface 3 and from the mirror 6 (arrows A, B).
  • This carriage 13 carries a plane mirror 14 which receives all the beams 4, 5, 4 ', 5' by means of which the average light path of all these beams passes through a plane mirror 15 along a path substantially perpendicular to the arrows A and B, this mirror 15 being carried by a secondary carriage 16 movable relative to the carriage 13 perpendicular to the direction of movement A, B of the carriage 13 (arrows C, D).
  • the average light path of the beams 4, 4 ′, 5 and 5 ′ then meets a last plane mirror 17 which can be oriented around two axes contained in its plane and perpendicular by means of servo motors 18, 19.
  • the mirrors 14, 15 and the carriages 13 and 16 make it possible to place the light beams in a volume determined by the amplitude of the travel of the carriages.
  • This volume is intercepted by the mirror 17 which authorizes placing the mean axis of the set of beams in alignment with the vertices of the cube corners 8 and 9 if these are contained in a determined cone whose vertex could be the top of the cube corner 8 if it is fixed as will be the case in most of the cases of use of the device.
  • the cube corner 8 being for example between 0.5 m and 1 m from the mirror 17 and the cube corner 9 about ten meters from the target 8, it is understood that the volume in which the target 9 will evolve can be significant without interruption of the prosecution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Dispositif de mesure par interférométrie laser de la variation de la distance séparant un point fixe et un point mobile de l'espace équipés chacun d'une cible (8, 9) réfléchissante, comportant une source (2) d'un faisceau (1) de lumière cohérente, une surface (3) séparatrice disposée sur le trajet du faisceau (1) pour le partager en deux faisceaux (4, 5) l'un traversant et l'autre dévié (5) et comportant une surface réfléchissante (6) du faisceau dévié (5) pour l'orienter parallèlement au faisceau traversant (4), un mécanisme optique (7) de poursuite recevant d'une part, en entrée les deux faisceaux parallèles (4 et 5) pour les orienter en conservant leur parallélisme en direction des deux cibles (8, 9) de manière que l'un des faisceaux (4, 5) soit constamment maintenu pointé sur respectivement les cibles (8, 9) et d'autre part les faisceaux parallèles réfléchis (4', 5') par les mêmes cibles (8, 9) pour les diriger en maintenant leur parallélisme vers respectivement les surfaces séparatrice (3) et réfléchissante (6).

Description

DISPOSITIF DE MESURE PAR I TERFEROMETRIE LASER
L'invention a pour objet un dispositif de mesure par interférométrie laser permettant de mesurer un déplace¬ ment quelconque d'un réflecteur dans un certain cône d'ex¬ ploitation possible, grâce à un système de poursuite du réflecteur qui présente l'avantage de n'introduire aucune erreur dans la mesure.
Le principe d'une mesure ou d'un contrôle par interférométrie, notamment avec un laser, réside dans le comptage des franges d'interférences provoquées par l'allon- gement du trajet d'un faisceau lumineux par rapport à un trajet fixe d'un faisceau de référence, les deux faisceaux étant issus d'une même source, divisés par un séparateur
(lame ou miroir semi-réfléchissant, prisme polarisant, prisme de NICOL...) jusqu'à, pour l'un, un réflecteur fixe et pour l'autre, un réflecteur mobile, les faisceaux étant alors réfléchis vers le séparateur où ils se recombinent. Le faisceau réfléchi recombiné présente des interférences, exploitées par une cellule de mesure, lorsque le réflecteur mobile bouge. II existe deux familles de lasers l'une dite monofréquence avec laquelle les franges d'interférence correspondent à la demi-longueur d'onde de la lumière dans l'air (environ 0,3 micromètres), l'autre bifréquence avec laquelle on exploite la variation (effet Doppler) des deux fréquences émises dans le faisceau recombiné.
Un appareillage de qualité est un appareillage dans lequel la répartition énergétique dans les faisceaux qui reviennent des cibles vers la cellule de mesure est équili¬ brée. On rappellera que les réflecteurs sont constitués par des miroirs en forme de coin de cube qui ont la propriété de renvoyer le rayon réfléchi parallèlement au rayon incident qu'ils reçoivent et symétriquement par rapport à leur sommet. Pour mesurer ou contrôler un déplacement, il faut donc connaître la direction de ce déplacement et installer l'appareil dans cette direction afin que les faisceaux émis en direction du coin de cube mobile soient toujours intercep¬ tés par lui et qu'il y ait donc toujours un retour exploita¬ ble. Une autre méthode consiste à assurer une poursuite de la cible quelle que soit sa trajectoire dans des limites données. Il est alors permis de mettre en oeuvre des structu¬ res légères et de faible coût et donc de pratiquer une métrologie d'une précision au moins égale à celle des énormes machines coûteuses et lourdes qui existent sur le marché
(nécessité d'une climatisation, d'un guidage soigné, d'un matériau stabilité et de manoeuvres de masses importantes) .
Les moyens pour assurer une poursuite correcte du déplacement d'une cible doivent agir sur l'ensemble des faisceaux incidents et réfléchis relatifs à la cible de référence et à la cible mobile pour neutraliser l'influence des incertitudes géométriques et des jeux mécaniques du dispositif de poursuite sur la longueur du trajet des faisceaux. L'une des techniques connues consiste à placer le dispositif optique de poursuite en amont du séparateur afin d'agir sur le faisceau incident avant sa séparation et sur le faisceau réfléchi alors qu'il est recombiné.
Une autre technique confondre le dispositif de poursuite et le séparateur.
Ces deux techniques présentent un inconvénient car elles modifient, au cours de la poursuite, l'angle du faisceau incident par rapport à la lame semi-réfléchissante. En effet, la répartition de la quantité d'énergie entre le faisceau traversant et le faisceau dévié par cette lame est directement liée à cette incidence, que ce faisceau soit à fréquence unique ou à double fréquence. Aussi, pour toutes les incidences différentes de 45°, il existe une pollution d'un faisceau par l'autre qui, au niveau de l'interprétation agit comme un bruit et nuit à la qualité des résultats. La présente invention entend éliminer cet inconvé¬ nient en proposant un dispositif dans lequel l'optique de poursuite est située au-delà de la lame séparatrice par rapport à la source tout en agissant sur la totalité des faisceaux incidents et réfléchis.
A cet effet l'invention a donc pour objet un dispositif de mesure par interférométrie laser de la varia¬ tion de la distance séparant deux points de l'espace mobiles l'un par rapport à l'autre et équipés chacun d'une cible réfléchissante, comportant une source d'un faisceau de lumière cohérente, une surface séparatrice disposée sur le trajet du faisceau pour le partager en deux faisceaux dont chacun est orienté en direction d'une cible, l'un traversant et l'autre dévié, et qui comporte une surface réfléchissante du faisceau dévié pour l'orienter parallèlement au faisceau traversant, un mécanisme optique de poursuite recevant en entrée d'une part les deux faisceaux parallèles pour les orienter tout en conservant leur parallélisme en direction des deux cibles de manière que chaque faisceau soit constam- ment maintenu pointé sur la cible correspondante, et d'autre part, les faisceaux parallèles réfléchis par les cibles, pour les diriger tout en maintenant leur parallélisme respective¬ ment vers les surfaces séparatrice et réfléchissante. On comprend que par cette disposition on conserve inchangé l'angle d'incidence du faisceau issu de la source sur la surface séparatrice, supprimant ainsi tous les problèmes liés à la variation de la répartition des énergies entre faisceaux déviés et faisceaux traversants qui se produisait lorsque l'incidence du faisceau issu de la source sur la surface séparatrice, variait lors d'une mesure.
La qualité de la séparation des faisceaux ainsi réalisée permet de ne mettre en oeuvre qu'une seule source à partir de laquelle on procède à plusieurs divisions du faisceau afin de pouvoir réaliser des mesures multiples. D'autres caractéristiques et avantages ressortiront de la description de deux exemples de réalisation donnés ci- après à titre purement indicatif.
Il sera fait référence aux dessins annexés dans lesquels : - la figure 1 est un schéma illustrant un premier mode de réalisation de l'invention,
- la figure 2 est un schéma illustrant un second mode de réalisation de l'invention.
- la figure 3 est un schéma du mode de réalisation de la figure 1 dans lequel le dispositif de poursuite est représenté plus en détail.
Sur ces figures, un faisceau laser 1 est issu d'une source 2 et rencontre une surface séparatrice 3 semi-réflé¬ chissante qui divise le faisceau 1 en deux faisceaux 4 et 5, le faisceau 4 étant dit traversant, c'est à dire non dévié, et le faisceau 5 étant dévié.
Le faisceau 5 rencontre une surface réfléchissante 6 qui permet de l'orienter parallèlement à la direction du faisceau traversant 4. Ces deux faisceaux pénètrent dans un système de poursuite optique qui est représenté schématique- ment en 7 et, classiquement, comporte une pluralité de miroirs mobiles les uns par rapport aux autres permettant de conserver parallèles les faisceaux 4 et 5 tout en permettant d'atteindre des cibles 8, 9 dont l'une 8 est fixe tandis que l'autre 9 est mobile bien entendu, dans des limites détermi¬ nées.
Les cibles 8 et 9 sont ici représentées comme des coins de cube dans le domaine de la métrologie et de l' inter¬ férométrie laser et qui ont comme propriété de réfléchir un faisceau incident parallèlement à lui-même, et ce quelle que soit l'incidence de ce faisceau par rapport à la cible, le faisceau incident et le faisceau réfléchi étant symétriques l'un de l'autre par rapport à un axe médian passant par le sommet du coin de cube qui matérialise le point de l'espace correspondant. Le système optique du dispositif 7 de poursuite est tel que chacun des miroirs qu'il comporte reçoit non seule¬ ment les faisceaux 4 et 5 en amont, mais également les faisceaux réfléchis 4' et 5' par les cibles 8 et 9. Grâce à cette condition, les incertitudes mécaniques et géométriques de cet ensemble de miroirs du dispositif de poursuite se neutralisent et n'ont aucune influence sur la longueur des chemins lumineux.
Le faisceau dévié 5 atteint quant à lui la cible mobile 9 et le faisceau réfléchi 5' par cette cible mobile atteint la surface semi-réfléchissante 3 dans une zone qui, par ailleurs, est traversée par le faisceau 4' réfléchi par la cible 8 et par le miroir 6. Ainsi, un faisceau recombiné 10 est dirigé vers une cellule de mesure qui permet d'appré- cier le déplacement de la cible 9 par rapport à la cible 8 et plus exactement la projection de ce déplacement sur la direction des faisceaux 4, 4', 5 et 5' .
Dans le cas de la figure 1, le faisceau 5 , 5' relatif à la cible mobile 9 encadre le faisceau 4, 4' relatif à la cible fixe 8. Pour que cela soit possible, il convient que la cible 8 soit relativement étroite et ne dépasse guère la somme de deux diamètres d'un faisceau c'est à dire 12 mm de côté soit 16 à 18 mm d'ouverture pour les faisceaux des machines actuellement sur le marché. La cible 9 pourra elle, posséder une ouverture de l'ordre d'une trentaine de millimè¬ tres .
A la figure 2, la cible fixe 8' est transparente au faisceau dévié 5 simplement par troncature de son sommet. Le faisceau dévié 5 peut donc atteindre la cible mobile 9' au travers de la cible fixe 8' , le rayon dévié 5, 5' étant alors encadré par le rayon traversant 4, 4' relatif à la cible fixe 8' . En outre, le dispositif de la figure 2 comporte un dernier miroir réfléchissant 11 qui permet de renvoyer le faisceau recombiné en direction d'une cellule de mesure 12 qui est associé et voisin de la source du faisceau laser 1. Ce dernier miroir peut bien entendu être installé sur le dispositif représenté à la figure 1.
Les schémas illustrant les deux réalisations de l'invention font apparaître que l'incidence du faisceau 1 sur la surface semi-réfléchissante 3 reste constante pendant le fonctionnement du dispositif. Il s'ensuit que, correcte¬ ment réglée à l'origine, la surface semi-réfléchissante 3 partage de manière optimale l'énergie entre les faisceaux 4 et 5. De ce fait, on élimine toute difficulté née d'une variation dans ce partage d'énergie due à la variation de l'incidence des faisceaux sur la lame réfléchissante.
Dans les exemples de réalisation décrits ci-dessus, le faisceau traversant est celui destiné à la cible fixe.
Ce n'est pas sortir du cadre de l'invention que de prévoir d'affecter le faisceau (5) dévié à la cible fixe et le faisceau traversant (4) à la cible mobile.
A la figure 3 le système optique de poursuite du dispositif selon l'invention est représenté de manière plus détaillée que dans les schémas précédents. On retrouve sur cette figure les éléments déjà décrits en regard de la figure 1 et de la figure 2 avec les mêmes références .
Le système de poursuite comporte un chariot 13 mobile parallèlement aux faisceaux 4 et 5 issus de la surface semi-réfléchissante 3 et du miroir 6 (flèches A, B) . Ce chariot 13 porte un miroir plan 14 qui reçoit tous les faisceaux 4, 5, 4', 5' grâce auquel le chemin lumineux moyen de tous ces faisceaux passe par un miroir plan 15 le long d'un trajet sensiblement perpendiculaire aux flèches A et B, ce miroir 15 étant porté par un chariot secondaire 16 mobile par rapport au chariot 13 perpendiculairement à la direction du mouvement A, B du chariot 13 (flèches C, D) . Le trajet lumineux moyen des faisceaux 4, 4', 5 et 5' rencontre ensuite un dernier miroir plan 17 orientable autour de deux axes contenus son plan et perpendiculaires grâce à des moteurs d'asservissement 18, 19. Les miroirs 14, 15 et les chariots 13 et 16 permettent de placer les faisceaux lumineux dans un volume déterminé par l'amplitude de la course des chariots. Ce volume est intercepté par le miroir 17 qui autorise de placer l'axe moyen de l'ensemble des faisceaux dans l'alignement des sommets des coins de cube 8 et 9 si ceux-ci sont contenus dans un cône déterminé dont le sommet pourrait être le sommet du coin de cube 8 s'il est fixe comme ce sera le cas dans la majeure partie des cas d'utilisation du dispositif. Le coin de cube 8 étant par exemple entre 0,5 m et 1 m du miroir 17 et le coin de cube 9 à une dizaine de mètres de la cible 8, on comprend que le volume dans lequel la cible 9 évoluera peut être important sans interruption de la poursuite.

Claims

REVENDICATIONS
1. Dispositif de mesure par interférométrie laser de la variation de la distance séparant deux points de l'espace mobiles l'une par rapport à l'autre et équipés chacun d'une cible (8, 9) réfléchissante, comportant une source (2) d'un faisceau (1) de lumière cohérente, une surface (3) séparatrice disposée sur le trajet du faisceau
(1) pour le partager en deux faisceaux (4, 5) dont chacun est destiné à une cible (8, 9) , l'un traversant (4) et l'autre dévié (5) , caractérisé en ce qu'il comporte une surface réfléchissante (6) du faisceau dévié (5) pour l'orienter parallèlement au faisceau traversant (4) , un mécanisme optique (7) de poursuite recevant en entrée d'une part les deux faisceaux parallèles (4 et 5) pour les orienter tout en conservant leur parallélisme en direction des deux cibles (8, 9) de manière que chacun des faisceaux (4, 5) soit constam¬ ment maintenu pointé sur la cible correspondante (8, 9) et d'autre part les faisceaux parallèles réfléchis (5', 4') par les cibles (8, 9) pour les diriger respectivement, tout en maintenant leur parallélisme, respectivement vers les surfaces séparatrice (3) et réfléchissante (6) .
2. Dispositif selon la revendication 1, caractérisé en ce que la cible (8') la plus proche du mécanisme de poursuite est fixe et en ce que le faisceau incident sur et réfléchi par cette cible mobile (8') encadre le faisceau incident sur et réfléchi par l'autre cible (9') , la cible fixe (8') étant transparente au faisceau relatif à la cible mobile.
3. Dispositif selon la revendication 1, caractérisé en ce que la cible (8') la plus proche du mécanisme de poursuite est fixe et en ce que le faisceau incident sur et réfléchi par la cible fixe est encadré par le faisceau incident sur et réfléchi par la cible mobile (9) , la cible fixe (8) étant de dimensions plus faibles que celles de la cible mobile (9) pour être comprise entre les faisceaux (5, 5') relatifs à la cible mobile (9) .
PCT/FR1994/001340 1993-11-19 1994-11-16 Dispositif de mesure par interferometrie laser WO1995014210A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9313886A FR2712691B1 (fr) 1993-11-19 1993-11-19 Dispositif de mesure par interférométrie laser.
FR93/13886 1993-11-19

Publications (1)

Publication Number Publication Date
WO1995014210A1 true WO1995014210A1 (fr) 1995-05-26

Family

ID=9453058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/001340 WO1995014210A1 (fr) 1993-11-19 1994-11-16 Dispositif de mesure par interferometrie laser

Country Status (2)

Country Link
FR (1) FR2712691B1 (fr)
WO (1) WO1995014210A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004096A1 (fr) * 2012-06-25 2014-01-03 Oracle International Corporation Détecteur de mouvement de bande latérale

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH694343A5 (de) * 1999-07-28 2004-11-30 Leica Geosystems Ag Verfahren und Vorrichtung zur Distanzmessung.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1300514A (fr) * 1961-09-14 1962-08-03 Zeiss Jena Veb Carl Dispositif pour la formation d'une valeur expérimentale par interférence, applicable à des installations de mesure et de commande
DE1251040B (fr) * 1967-09-28
US4278351A (en) * 1979-05-09 1981-07-14 Nasa Interferometer
GB2079000A (en) * 1980-06-30 1982-01-13 Zeiss Jena Veb Carl Two-stage interferometer
EP0079981A1 (fr) * 1981-11-25 1983-06-01 Ibm Deutschland Gmbh Symétrisation de la phase d'un front d'ondes optiques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1251040B (fr) * 1967-09-28
FR1300514A (fr) * 1961-09-14 1962-08-03 Zeiss Jena Veb Carl Dispositif pour la formation d'une valeur expérimentale par interférence, applicable à des installations de mesure et de commande
US4278351A (en) * 1979-05-09 1981-07-14 Nasa Interferometer
GB2079000A (en) * 1980-06-30 1982-01-13 Zeiss Jena Veb Carl Two-stage interferometer
EP0079981A1 (fr) * 1981-11-25 1983-06-01 Ibm Deutschland Gmbh Symétrisation de la phase d'un front d'ondes optiques

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004096A1 (fr) * 2012-06-25 2014-01-03 Oracle International Corporation Détecteur de mouvement de bande latérale
US8760786B2 (en) 2012-06-25 2014-06-24 Oracle International Corporation Lateral tape motion detector

Also Published As

Publication number Publication date
FR2712691A1 (fr) 1995-05-24
FR2712691B1 (fr) 1995-12-22

Similar Documents

Publication Publication Date Title
US5583638A (en) Angular michelson interferometer and optical wavemeter based on a rotating periscope
US5066119A (en) Optical device for phase detection testing optical systems, especially ophthalmic lenses
JP2008515028A (ja) 光遅延装置
EP0028548A1 (fr) Système de correlation optique en temps réel
US5715047A (en) Scanning mode sensor for detection of flow inhomogeneities
CN102135449A (zh) 高速转镜傅里叶变换光谱偏振探测方法及系统
FR2647912A1 (fr) Dispositif optique a reseau pour le controle, en transmission, par detection de phase, d'un quelconque systeme optique, en particulier d'une lentille ophtalmique
EP0846274B1 (fr) Sonde velocimetrique optique
US20060092424A1 (en) Swept-angle SPR measurement system
EP0645645B1 (fr) Sonde vélocimétrique et clinométrique à laser
CA2126245C (fr) Procede et dispositif de mesure differentielle d'indices de refraction et utilisation associee
EP0702246B1 (fr) Dispositif embarquable de mesure de rétrodiffusion de lumière
WO1996007120A1 (fr) Systeme de reperage d'orientation d'un instrument d'observation
WO1995014210A1 (fr) Dispositif de mesure par interferometrie laser
US4125778A (en) Apparatus for laser anemometry
EP0189217A1 (fr) Analyseur optico-mécanique ayant un champ de télémétrie fixe
EP0151057B1 (fr) Interféromètre de vitesse à sensibilité continûment variable
JP7551736B2 (ja) ラマンスペクトルを測定するための装置及びその方法
FR2564198A1 (fr) Dispositif d'analyse et de correction de surfaces d'onde en temps reel
US4624573A (en) Total optical loss measurement device
FR2612628A1 (fr) Dispositif de mesure par interferometrie laser
EP2309236B1 (fr) Téléscope concentrateur de champ destiné à des missions de sondage atmosphérique
CH629299A5 (fr) Dispositif pour determiner la qualite du poli des surfaces optiques.
FR2513375A1 (fr) Interferometre a basculement invariable et a miroirs plans
FR2725034A1 (fr) Tete d'emission-reception pour anemometre doppler longitudinal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase