WO1995012129A1 - Coherent generation of pulse expanded/compressed transmission and reception signals in an identification system or sensor transmission and reception system - Google Patents

Coherent generation of pulse expanded/compressed transmission and reception signals in an identification system or sensor transmission and reception system Download PDF

Info

Publication number
WO1995012129A1
WO1995012129A1 PCT/DE1994/001263 DE9401263W WO9512129A1 WO 1995012129 A1 WO1995012129 A1 WO 1995012129A1 DE 9401263 W DE9401263 W DE 9401263W WO 9512129 A1 WO9512129 A1 WO 9512129A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
transmission
oscillator
output
Prior art date
Application number
PCT/DE1994/001263
Other languages
German (de)
French (fr)
Inventor
Valentin Magori
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1995012129A1 publication Critical patent/WO1995012129A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating

Definitions

  • the present invention relates to a Wegungsanord- voltage for coherent generation of transmit and Empfangssi ⁇ gnalen, in particular pulse-expanded / -komprim appearing transmitting and receiving signals in an identification or sensor transmitting and receiving system according to the preamble d there claim 1.
  • a circuit arrangement of the type in question is provided, in particular, for identification transmission and reception systems, in which identification tags, so-called ID tags, which work with acoustic surface waves as identification elements are used for identification purposes. These arrangements can also be used for sensor tasks in which the quantity to be sensed affects parameters of an SAW arrangement.
  • ID tags are components in which an electrical signal is converted by means of a transducer into an acoustic surface wave which is reflected by a sequence of reflectors, the reflected acoustic surface wave being transmitted by a transducer which is in is generally the same as the converter that converts the electrical input signal is converted back into an electrical signal.
  • a predetermined code is created which represents this ID tag.
  • the electrical signal representing the code is changed to the interrogation signal sending system is returned, whereby the location at which the ID tag is arranged can be identified.
  • Such identification systems can be used in a large variety of applications.
  • the present invention is based on the object of developing such identification systems in such a way that the range for the query, in particular of ID tags, can be considerably increased for a given output power without loss of resolution.
  • Figure 1 is a block diagram of a first embodiment of a ho odynen circuit arrangement according to the invention.
  • FIG. 2 shows a block diagram of a subcircuit for developing the exemplary embodiment according to FIG. 1 as a heterodyne circuit arrangement.
  • an oscillator 10 which delivers an output signal of frequency fg.
  • a sequence controller 11 is controlled by this output signal with the frequency fg in such a way that it supplies a pulse-shaped output signal f ⁇ .
  • This starting signal fi is fed into a filter 12, which is preferably a dispersive filter working with surface acoustic waves and thus provides a pulse-expanded output signal ⁇ 2.
  • This signal 2 is amplified by an amplifier 13 and forms a transmission signal at a connection 14.
  • the circuit of sequence control 11, filter 12, amplifier 13 and connection 14 therefore forms a transmitter circuit controlled by the oscillator 10.
  • the transmission signal at the connection 14 is optionally passed through a filter 15 and a switch 16 and possibly via a further filter 18 to an input / output 19, from which it is emitted, for example as described above, to an ID tag in a manner not shown becomes.
  • the filter 24 is preferably a dispersive filter which is complementary to the dispersive filter 12 in the transmitter circuit and which generates an impulse-compressed signal f3 from the received signal fj_.
  • This filter output signal f3 is fed into the demodulator 25 which is controlled by the output signal fg of the oscillator 10 and which delivers a signal £ 4 at its output.
  • a further demodulator 29 can be provided in the receiving circuit, in which the output signal f3 of the filter 24 and the oscillator output signal fg shifted in phase by 90 ° by a phase shifter 28 can also be provided
  • This demodulator 29 delivers a signal f4 ⁇ at its output.
  • the output signal £ 4 of the demodulator 25 is fed into a sample and hold stage 26, which controls the oscillator 10.
  • the signal f_ and possibly the signal f4 • are fed into a digital signal processor 27, which processes these signals further.
  • this further processing of the signals is not essential to the invention and therefore does not need to be explained in more detail here.
  • the sequence controller 11 can also be controlled by the digital signal processor 27. This possibility is also shown in dashed lines and need not be explained in more detail here, since it is not essential to the invention.
  • the sequence control 11 is synchronized with the output signal fg of the oscillator 10 and generates a short pulse ⁇ 1 at regular or irregular intervals at a predetermined point in time.
  • This pulse is fed via a pulse former stage, a driver stage or an additional pulse signal generator (these components are not shown) into the dispersive filter 12 working with surface acoustic waves and generates the expanded signal f2 at its output .
  • a pulse former stage a driver stage or an additional pulse signal generator (these components are not shown) into the dispersive filter 12 working with surface acoustic waves and generates the expanded signal f2 at its output .
  • the switch 16 and possibly the filter this signal is emitted via the input / output 19.
  • Part of the expanded pulse-shaped signal £ 2 is fed into the input 22 of the receiving circuit 22, 23, 24, 25 via the switch 16 controlled by the sequence control 11 and a coupling stage 20, possibly via further amplifiers, filters and attenuators.
  • the coupling stage 20, which is directly connected to the transmitter circuit or the input or Output of the filter 18 or can be connected to another suitable point of the transmitter circuit, that is, couples a part of the transmit signal into the receiver circuit.
  • the coupling element can possibly also be omitted if a signal overcoupled by parasitic overcoupling is suitable.
  • the pulse-compressed signal f3, whose center frequency is modulated with a filter function, is produced at the output of the dispersive filter 24, which is complementary to the filter 12.
  • Part of one of the output signals of the modulators 25 and 29, in the exemplary embodiment of the output signal f4 of the demodulator 25, is transferred to the sample and hold stage 26 at a predetermined point in time, which is determined by the sequence control 11 synchronized by the output signal fg of the oscillator 10 accepted.
  • the output signal of this sample and hold stage 26 may be used to control the frequency of the oscillator 10 after further filtering. If necessary, it is also possible to define an additional criterion from the amplitude of the pulse-compressed signal - e.g. B. deriving the maximum.
  • the transmission signal can also be coupled through a coupling element 20a at the IF level or a coupling element 20b at the output frequency level.
  • the sequence control 11 can also be implemented by a microprocessor or signal processor, the clock of which is synchronized with the oscillator 10 or derived from it by frequency division. With appropriate dimensioning of the circuit arrangement, the oscillator 10 snaps onto the center frequency of the impulse response function of the expander / compressor system, so that the received signals, which are received, for example, at the input / output 19 of ID tags, are coherently demodulated. You can therefore without loss of information, in particular the phase information, z. B. be evaluated by means of the digital signal processor 27.
  • FIG. 2 shows a circuit part with which a circuit arrangement according to FIG. 1 can be expanded to form a heterodyne circuit arrangement.
  • FIG. 2 shows the circuit part between the output 14 of the transmitting circuit and the input 22 of the receiving circuit according to FIG. 1 and schematically the coupling of this circuit part to the switch 16 according to FIG. 1.
  • an intermediate frequency oscillator 30 is provided, the output signal of which is mixed in mixers or modulators 31, 32 with the transmission signal at connection 14 or the reception signal at connection 22.
  • An intermediate frequency bandpass filter 33 and 34 is provided behind each of the mixers 31, 32.
  • the output signal of the bandpass 33 is sent via an amplifier 35 and possibly a further filter 37 as a transmission signal to the switch 16 according to FIG. 1, while the reception signal from the switch 16 optionally via a filter 38 and an amplifier 36 to the mixer or modulator 32 and on the bandpass 34 is given to the connector 22.
  • the mode of operation of the circuit arrangement according to FIG. 1 which has been expanded by the circuit part according to FIG. 2 corresponds to that described above. already explained operation of the circuit arrangement of Figure 1 alone.
  • FIGS. 1 and 2 are components known per se, the structure of which is well known to the person skilled in the art, so that details of these components need not be explained in more detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transceivers (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Circuitry is disclosed for generating in a coherent manner transmission and reception signals, in particular pulse expanded/compressed transmission and reception signals in an identification system or sensor transmission and reception system. In a circuitry for generating in a coherent manner transmission and reception signals in an identification system or sensor transmission and reception system, at least part of the transmission signal from a transmission circuit (10 to 14) is coupled into a reception circuit (22 to 27) and after being superimposed on the reception signal is used for synchronising an oscillator (10). The transmission signal is then derived from the output signal of the oscillator (10).

Description

Kohärente Erzeugung von impulsexpandierten/-komprimierten Sende- und Empfangssignalen in einem Identifikations- oder Sensor- Sende- und Coherent generation of pulse expanded / compressed transmit and receive signals in an identification or sensor transmit and
EmpfangssystemReceiving system
Schaltungsanordnung zur kohärenten Erzeugung von Sende- und Empfangs Signalen, insbesondere impulsexpandierten/ - komprimierten Sende- und Empfangssignalen in einem Identi¬ fikations- oder Sensor-Sende- und EmpfangssystemCircuit arrangement for the coherent generation of transmission and reception signals, in particular pulse-expanded / - compressed transmission and reception signals in an identification or sensor transmission and reception system
Die vorliegende Erfindung betrifft eine Schaltungsanord- nung zur kohärenten Erzeugung von Sende- und Empfangssi¬ gnalen, insbesondere impuls expandierten/ -komprimierten Sende- und Empfangssignalen in einem Identifikations- oder Sensor-Sende- und Empfangs System nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a Schaltungsanord- voltage for coherent generation of transmit and Empfangssi¬ gnalen, in particular pulse-expanded / -komprimierten transmitting and receiving signals in an identification or sensor transmitting and receiving system according to the preamble d there claim 1.
Eine Schaltungsanordnung der in Rede stehenden Art ist insbesondere für Identifikations-Sende- und Empfangssyste¬ me vorgesehen, in den für Identifizierungszwecke- als abzu¬ fragende Elemente mit akustischen Oberflächenwellen arbei- tende Identifizierungsmarken, sogenannte ID-Tags verwendet werden. Diese Anordnungen können auch für Sensoraufgaben eingesetzt werden, bei welchen sich die zu sensierende Größe auf Parameter einer OFW-Anordnung auswirkt. Derar¬ tige ID-Tags sind Bauelemente, in denen ein elektrisches Signal mittels eines Wandlers in eine akustische Oberflä¬ chenwelle umgesetzt wird, welche an einer Folge von Re¬ flektoren reflektiert wird, wobei die reflektierte aku¬ stische Oberflächenwelle durch einen Wandler, welcher in aller Regel gleich dem das elektrische Eingangssignal umsetzenden Wandler ist, wieder in ein elektrisches Signal umgesetzt wird. In Abhängigkeit von der Konfiguration der Reflektoren entsteht ein vorgegebener Code, welcher dieses ID-Tag repräsentiert. Das den Code repräsentierende elektrische Signal wird auf das das Abfragesignal aussendende System zurückgesendet, wodurch die Stelle identifizierbar ist, an der das ID-Tag angeordnet ist. Derartige Identifikationssysteme sind in einer großen Vielzahl von Anwendungsfällen verwendbar.A circuit arrangement of the type in question is provided, in particular, for identification transmission and reception systems, in which identification tags, so-called ID tags, which work with acoustic surface waves as identification elements are used for identification purposes. These arrangements can also be used for sensor tasks in which the quantity to be sensed affects parameters of an SAW arrangement. Such ID tags are components in which an electrical signal is converted by means of a transducer into an acoustic surface wave which is reflected by a sequence of reflectors, the reflected acoustic surface wave being transmitted by a transducer which is in is generally the same as the converter that converts the electrical input signal is converted back into an electrical signal. Depending on the configuration of the reflectors, a predetermined code is created which represents this ID tag. The electrical signal representing the code is changed to the interrogation signal sending system is returned, whereby the location at which the ID tag is arranged can be identified. Such identification systems can be used in a large variety of applications.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, derartige Identifikationssysteme so weiterzubilden, daß die Reichweite für die Abfrage insbesondere von ID-Tags bei gegebener Ausgangsleistung ohne Verlust an Auflösung erheblich gesteigert werden kann.The present invention is based on the object of developing such identification systems in such a way that the range for the query, in particular of ID tags, can be considerably increased for a given output power without loss of resolution.
Diese Aufgabe wird bei einer Schaltungsanordnung der ein¬ gangs genannten Art erfindungsgemäß durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 gelöst.This object is achieved according to the invention in a circuit arrangement of the type mentioned at the outset by the features of the characterizing part of patent claim 1.
Weiterbildungen der Erfindung sind Gegenstand von Unteran¬ sprüchen.Further developments of the invention are the subject of subclaims.
Die Erfindung wird nachfolgend anhand von in den Figuren der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigt:The invention is explained in more detail below with reference to exemplary embodiments shown in the figures of the drawing. It shows:
Figur 1 ein Blockschaltbild eines ersten Ausführungs¬ beispiels einer ho odynen Schaltungsanordnung gemäß der Erfindung; undFigure 1 is a block diagram of a first embodiment of a ho odynen circuit arrangement according to the invention; and
Figur 2 ein Blockschaltbild einer Teilschaltung zur Weiterbildung des Ausführungsbeispielε nach Figur 1 als heterodyne Schaltungsanordnung.FIG. 2 shows a block diagram of a subcircuit for developing the exemplary embodiment according to FIG. 1 as a heterodyne circuit arrangement.
Bei der Ausführungsform nach Figur 1 ist ein Oszillator 10 vorgesehen, der ein Ausgangssignal der Frequenz fg lie¬ fert. Durch dieses Ausgangssignal mit der Frequenz fg wird eine Ablaufsteuerung 11 derart gesteuert, daß sie ein impulsförmiges Ausgangssignal f^ liefert. Dieses Ausgangs- signal fi wird in ein Filter 12 eingespeist, das vorzugs¬ weise ein mit akustischen Oberflächenwellen arbeitendes dispersives Filter ist und damit ein impulsexpandiertes Ausgangssignal ±2 liefert. Dieses Signal 2 wird durch einen Verstärker 13 verstärkt und bildet an einem Anschluß 14 ein Sendesignal. Der Kreis aus Ablaufsteuerung 11, Filter 12, Verstärker 13 und Anschluß 14 bildet daher einen vom Oszillator 10 angesteuerten Senderkreis. Das Sendesignal am Anschluß 14 wird ggf. über ein Filter 15 und einen Schalter 16 und ggf. über ein weiteres Filter 18 auf einen Ein/Ausgang 19 gegeben wird, von dem es in nicht dargestellter Weise beispielsweise wie oben beschrieben auf ein ID-Tag abgestrahlt wird.In the embodiment according to FIG. 1, an oscillator 10 is provided which delivers an output signal of frequency fg. A sequence controller 11 is controlled by this output signal with the frequency fg in such a way that it supplies a pulse-shaped output signal f ^. This starting signal fi is fed into a filter 12, which is preferably a dispersive filter working with surface acoustic waves and thus provides a pulse-expanded output signal ± 2. This signal 2 is amplified by an amplifier 13 and forms a transmission signal at a connection 14. The circuit of sequence control 11, filter 12, amplifier 13 and connection 14 therefore forms a transmitter circuit controlled by the oscillator 10. The transmission signal at the connection 14 is optionally passed through a filter 15 and a switch 16 and possibly via a further filter 18 to an input / output 19, from which it is emitted, for example as described above, to an ID tag in a manner not shown becomes.
Ein am Ein/Ausgang 19 empfangenes beispielsweise von einem ID-Tag rückgesendetes Signal wird über den Schalter 16 ggf. über ein Filter 21 in einem Empfangskreis einge¬ speist, der durch einen Verstärker 23, ein Filter 24 und einen Demodulator 25 gebildet wird. Das Filter 24 ist vorzugsweise ein zum dispersiven Filter 12 im Senderkreis komplementäres dispersives Filter, das aus dem empfangenen Signal fj_ ein impulskomprimiertes Signal f3 erzeugt. Die¬ ses Filterausgangssignal f3 wird in dem vom Ausgangssignal fg des Oszillators 10 gesteuerten Demodulator 25 einge- speist, der an seinem Ausgang ein Signal £4 liefert.A signal received at the input / output 19, for example returned by an ID tag, is fed in via the switch 16, possibly via a filter 21, in a receiving circuit which is formed by an amplifier 23, a filter 24 and a demodulator 25. The filter 24 is preferably a dispersive filter which is complementary to the dispersive filter 12 in the transmitter circuit and which generates an impulse-compressed signal f3 from the received signal fj_. This filter output signal f3 is fed into the demodulator 25 which is controlled by the output signal fg of the oscillator 10 and which delivers a signal £ 4 at its output.
Ggf. kann im Empfangskreis ein weiterer Demodulator 29 vorgesehen sein, in den ebenfalls das Ausgangssignal f3 des Filters 24 und das durch einen Phasenschieber 28 um 90° in der Phase verschobene Oszillatorausgangssignal fgPossibly. A further demodulator 29 can be provided in the receiving circuit, in which the output signal f3 of the filter 24 and the oscillator output signal fg shifted in phase by 90 ° by a phase shifter 28 can also be provided
- Signal fg ■ - eingespeist wird. Dieser Demodulator 29 liefert an seinem Ausgang ein Signal f4■ . Das Ausgangssignal £4 des Demodulators 25 wird in einer Abtast- und Haltestufe 26 eingespeist, welche den Oszilla¬ tor 10 steuert. Weiterhin wird das Signal f_ und ggf. das Signal f4• in einen digitalen Signalprozessor 27 einge- speist, welcher diese Signale weiter verarbeitet. Diese Weiterverarbeitung der Signale ist jedoch nicht erfin¬ dungswesentlich und braucht daher hier nicht näher erläu¬ tert zu werden. Ggf. kann die Ablaufsteuerung 11 weiterhin auch vom digitalen Signalprozessor 27 angesteuert werden. Diese Möglichkeit ist ebenfalls gestrichelt dargestellt und braucht hier nicht näher erläutert zu werden, da sie nicht erfindungswesentlich ist.- Signal fg ■ - is fed. This demodulator 29 delivers a signal f4 ■ at its output. The output signal £ 4 of the demodulator 25 is fed into a sample and hold stage 26, which controls the oscillator 10. Furthermore, the signal f_ and possibly the signal f4 • are fed into a digital signal processor 27, which processes these signals further. However, this further processing of the signals is not essential to the invention and therefore does not need to be explained in more detail here. Possibly. the sequence controller 11 can also be controlled by the digital signal processor 27. This possibility is also shown in dashed lines and need not be explained in more detail here, since it is not essential to the invention.
Die Wirkungsweise der vorstehend beschriebenen Schaltungs- anordnung ist die folgende. Mit dem Ausgangssignal fg des Oszillators 10 wird die Ablaufsteuerung 11 synchronisiert, welche in regelmäßigen oder unregelmäßigen Abständen in einem vorgegebenen Zeitpunkt jeweils einen kurzen Impuls ±1 erzeugt. Dieser Impuls wird ggf. über eine Impulsfor- merstufe, eine Treiberstufe oder einen zusätzlichen Im¬ pulssignalgenerator (diese Komponenten sind nicht darge¬ stellt) in das als mit akustischen Oberflächenwellen ar¬ beitende dispersive Filter 12 eingespeist und erzeugt an dessen Ausgang des expandierte Signal f2. Dieses Signal wird nach Verstärkung durch den Verstärker 13 und ggf. nach Filterung durch das Filter 15, den Schalter 16 und ggf. das Filter 18 über den Ein/Ausgang 19 ausgesendet.The operation of the circuit arrangement described above is as follows. The sequence control 11 is synchronized with the output signal fg of the oscillator 10 and generates a short pulse ± 1 at regular or irregular intervals at a predetermined point in time. This pulse is fed via a pulse former stage, a driver stage or an additional pulse signal generator (these components are not shown) into the dispersive filter 12 working with surface acoustic waves and generates the expanded signal f2 at its output . After amplification by the amplifier 13 and, if appropriate, after filtering by the filter 15, the switch 16 and possibly the filter 18, this signal is emitted via the input / output 19.
Ein Teil des expandierten impulsförmigen Signals £2 wird über den von der Ablaufsteuerung 11 gesteuerten Schalter 16 und eine Koppelstufe 20 ggf. über weitere Verstärker, Filter und Dämpfungsglieder in den Eingang 22 des Emp¬ fangskreises 22, 23, 24, 25 eingespeist. Die Koppelstufe 20, die direkt mit dem Senderkreis oder dem Ein- oder Ausgang des Filters 18 oder mit einer sonstigen geeigneten Stelle des Senderkreises verbunden sein kann, überkoppelt also einen Teil des Sendesignals in den Empfangskreis. Eventuell kann das Koppelglied auch entfallen, wenn ein durch parasitäre Oberkopplung überkoppeltes Signal geeig¬ net ist. Am Ausgang des zum Filter 12 komplementären dis- persiven Filter 24 entsteht das impulskomprimierte Signal f3, dessen Mittenfrequenz mit einer Filterfunktion modu¬ liert ist. Durch Mischung des komprimierten Signals f3 mit dem Ausgangssignal fg des Oszillators 10 im Demodulator 25 entsteht das demodulierte Ausgangssignal f4 und ggf. das dazu ortogonale Signal f4• durch Mischung mit dem um 90° verschobenen Ausgangssignal fg des Oszillators 10.Part of the expanded pulse-shaped signal £ 2 is fed into the input 22 of the receiving circuit 22, 23, 24, 25 via the switch 16 controlled by the sequence control 11 and a coupling stage 20, possibly via further amplifiers, filters and attenuators. The coupling stage 20, which is directly connected to the transmitter circuit or the input or Output of the filter 18 or can be connected to another suitable point of the transmitter circuit, that is, couples a part of the transmit signal into the receiver circuit. The coupling element can possibly also be omitted if a signal overcoupled by parasitic overcoupling is suitable. The pulse-compressed signal f3, whose center frequency is modulated with a filter function, is produced at the output of the dispersive filter 24, which is complementary to the filter 12. Mixing the compressed signal f3 with the output signal fg of the oscillator 10 in the demodulator 25 results in the demodulated output signal f4 and possibly the signal f4, which is orthogonal thereto, by mixing with the output signal fg of the oscillator 10 shifted by 90 °.
Ein Teil eines der Ausgangssignale der Modulatoren 25 und 29, im Ausführungsbeispiel des Ausgangssignals f4 des Demodulators 25 wird in einem vorgegebenen Zeitpunkt, welcher von der durch das Ausgangssignal fg des Oszilla¬ tors 10 synchronisierten Ablaufsteuerung 11 festgelegt ist, in die Abtast- und Haltestufe 26 übernommen. Das Ausgangssignal dieser Abtast- und Haltestufe 26 wird ggf. nach weiterer Filterung zur Steuerung der Frequenz des Oszillators 10 ausgenutzt. Falls erforderlich, ist es auch möglich, zur Festlegung des vorgegebenen Zeitpunktes des Tastung der Abtast- und Haltestufe 26 durch die Ablauf¬ steuerung 11 ein zusätzliches Kriterium aus der Amplitude des impulskomprimierten Signals - z. B. das Maximum - abzuleiten. Die Oberkopplung des Sendesignals kann auch durch ein Koppelglied 20a auf der ZF-Ebene oder ein Kop- pelglied 20b auf der Ausgangsfrequenzebene erfolgen. Die Ablaufsteuerung 11 kann auch durch einen Mikroprozessor bzw. Signalprozessor realisiert sein, dessen Takt mit dem Oszillator 10 synchronisiert bzw. von diesen durch Fre¬ quenzteilung abgeleitet ist. Bei entsprechender Dimensionierung der Schaltungsanordnung rastet der Oszillator 10 auf der Mittenfrequenz der Im¬ pulsantwortfunktion des Expander-/Kompressorsystems ein, so daß die Empfangssignale, die beispielsweise am Ein/Ausgang 19 von ID-Tags empfangen werden, kohärent demoduliert werden. Sie können daher ohne Informationsver¬ lust, insbesondere der Phaseninformation, z. B. mittels des digitalen Signalprozessors 27 ausgewertet werden.Part of one of the output signals of the modulators 25 and 29, in the exemplary embodiment of the output signal f4 of the demodulator 25, is transferred to the sample and hold stage 26 at a predetermined point in time, which is determined by the sequence control 11 synchronized by the output signal fg of the oscillator 10 accepted. The output signal of this sample and hold stage 26 may be used to control the frequency of the oscillator 10 after further filtering. If necessary, it is also possible to define an additional criterion from the amplitude of the pulse-compressed signal - e.g. B. deriving the maximum. The transmission signal can also be coupled through a coupling element 20a at the IF level or a coupling element 20b at the output frequency level. The sequence control 11 can also be implemented by a microprocessor or signal processor, the clock of which is synchronized with the oscillator 10 or derived from it by frequency division. With appropriate dimensioning of the circuit arrangement, the oscillator 10 snaps onto the center frequency of the impulse response function of the expander / compressor system, so that the received signals, which are received, for example, at the input / output 19 of ID tags, are coherently demodulated. You can therefore without loss of information, in particular the phase information, z. B. be evaluated by means of the digital signal processor 27.
Die erfindungsgemäße Schaltungsanordnung ist nicht auf eine homodyne Ausführungsform nach Figur 1 beschränkt. Figur 2 zeigt einen Schaltungsteil, mit dem eine Schal¬ tungsanordnung nach Figur 1 zu einer heterodynen Schal- tungsanordnung erweitert werden kann. Figur 2 zeigt dabei den Schaltungsteil zwischen dem Ausgang 14 des Sendekrei¬ ses und dem Eingang 22 des Empfangskreises nach Figur 1 sowie schematisch die Ankopplung dieses Schaltungsteils an den Schalter 16 nach Figur 1.The circuit arrangement according to the invention is not restricted to a homodyne embodiment according to FIG. 1. FIG. 2 shows a circuit part with which a circuit arrangement according to FIG. 1 can be expanded to form a heterodyne circuit arrangement. FIG. 2 shows the circuit part between the output 14 of the transmitting circuit and the input 22 of the receiving circuit according to FIG. 1 and schematically the coupling of this circuit part to the switch 16 according to FIG. 1.
Gemäß Figur 2 ist ein Zwischenfrequenzoszillator 30 vorge¬ sehen, dessen Ausgangssignal in Mischern bzw. Modulatoren 31, 32 mit dem Sendesignal am Anschluß 14 bzw. dem Emp¬ fangssignal am Anschluß 22 gemischt wird. Hinter den Mischern 31, 32 ist jeweils ein Zwischenfrequenz-Bandpaß 33 bzw. 34 vorgesehen. Das Ausgangssignal des Bandpasses 33 wird über einen Verstärker 35 und ggf. ein weiteres Filter 37 als Sendesignal auf den Schalter 16 nach Figur 1 gegeben, während das Empfangssignal vom Schalter 16 ggf. über ein Filter 38 und einen Verstärker 36 auf den Mischer bzw. Modulator 32 und weiter über den Bandpaß 34 auf den Anschluß 22 gegeben wird. Im übrigen entspricht die Wir¬ kungsweise der durch den Schaltungsteil nach Figur 2 er¬ weiterten Schaltungsanordnung nach Figur 1 der oben be- reits erläuterten Wirkungsweise der Schaltungsanordnung nach Figur 1 allein.According to FIG. 2, an intermediate frequency oscillator 30 is provided, the output signal of which is mixed in mixers or modulators 31, 32 with the transmission signal at connection 14 or the reception signal at connection 22. An intermediate frequency bandpass filter 33 and 34 is provided behind each of the mixers 31, 32. The output signal of the bandpass 33 is sent via an amplifier 35 and possibly a further filter 37 as a transmission signal to the switch 16 according to FIG. 1, while the reception signal from the switch 16 optionally via a filter 38 and an amplifier 36 to the mixer or modulator 32 and on the bandpass 34 is given to the connector 22. Otherwise, the mode of operation of the circuit arrangement according to FIG. 1 which has been expanded by the circuit part according to FIG. 2 corresponds to that described above. already explained operation of the circuit arrangement of Figure 1 alone.
Es sei abschließend darauf hingewiesen, daß es sich bei den Komponenten nach den Figuren 1 und 2 allein um an sich bekannte Komponenten handelt, deren Aufbau dem Fachmann ohne weiteres geläufig ist, so daß Einzelheiten dieser Komponenten hier nicht näher erläutert zu werden brauchen. It should finally be pointed out that the components according to FIGS. 1 and 2 are components known per se, the structure of which is well known to the person skilled in the art, so that details of these components need not be explained in more detail here.

Claims

Patentansprüche claims
1. Schaltungsanordnung zur kohärenten Erzeugung von Sende- und Empfangssignalen, insbesondere impulsexpandier- ten/komprimierten Sende- und EmpfangsSignalen in einem1. Circuit arrangement for the coherent generation of transmission and reception signals, in particular pulse-expanded / compressed transmission and reception signals in one
Identifikations- oder Sensor-Sende- und EmpfangsSystem, mit einem Senderkreis (10 bis 14) und einem EmpfangskreisIdentification or sensor transmission and reception system, with one transmitter circuit (10 to 14) and one receiver circuit
(22 bis 27) , gekennzeichnet durch einen Oszillator (10) , aus dessen Ausgangssignal (fg) das Sendesignal ( £2 ) abge- leitet wird, einen Koppelzweig (16, 20) zur Einkopplung wenigstens eines sich einem Empfangssignal (fi) überla¬ gernden Teils des Sendesignals ( £2 ) 1 einen vom Oszillator- ausgangεsignal (fg) gesteuerten Demodulator (25) im Em¬ pfangskreis (25 bis 27) zur Demodulation eines vom Oberla- gerungssignal abgeleiteten Signal (f3) und durch eine An- steuerung des Oszillators (10) durch das Demodulatoraus- gangssignal (f4) zur Synchronisation des Oszillators (10) .(22 to 27), characterized by an oscillator (10), from whose output signal (fg) the transmission signal (£ 2) is derived, a coupling branch (16, 20) for coupling in at least one transmission signal (fi) part of the transmission signal (£ 2) 1, a demodulator (25) controlled by the oscillator output signal (fg) in the receiving circuit (25 to 27) for demodulating a signal (f3) derived from the superimposition signal and by controlling the Oscillator (10) by the demodulator output signal (f4) for the synchronization of the oscillator (10).
2. Schaltungsanordnung nach Anspruch 1, dadurch gekenn- zeichnet, daß im Senderkreis (10 bis 14) ein dispersives2. Circuit arrangement according to claim 1, characterized in that in the transmitter circuit (10 to 14) a dispersive
Filter (12) zur Erzeugung eines impulsexpandierten Sende¬ signals { £2 ) und im Empfangskreiε (22 bis 27) ein zum Filter (12) im Senderkreiε (10 bis 14) komplementäres dispersiveε Filter (24) zur Erzeugung eineε impulεkompri- mierten Demodulatoreingangεεignalε (f3) vorgeεehen iεt.Filter (12) for generating a pulse-expanded transmission signal {£ 2) and in the receiving circuit (22 to 27) a dispersive filter (24) complementary to the filter (12) in the transmitter circuit (10 to 14) for generating a pulse-compressed demodulator input signal signal ( f3) is provided.
3. Schaltungεanordnung nach Anεpruch 1 und/oder 2, dadurch gekennzeichnet, daß im Senderkreis (10 bis 14) eine vom Oszillatorausgangεεignal (fg) angeεteuerter Ablaufsteue- rung (11) zur Erzeugung eines Signals (f^) vorgesehen ist, aus dem das Sendesignal { £2 ) abgeleitet wird.3. Circuit arrangement according to claim 1 and / or 2, characterized in that a sequence control (11) controlled by the oscillator output signal (fg) is provided in the transmitter circuit (10 to 14) for generating a signal (f ^) from which the transmission signal {£ 2) is derived.
4. Schaltungsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Oszillator (10) über eine von der Ablaufsteuerung (11) gesteuerte Abtast- und Halte¬ stufe (26) an den Ausgang des Demodulators (25) angekop¬ pelt ist.4. Circuit arrangement according to one of claims 1 to 3, characterized in that the oscillator (10) via a the sampling and holding stage (26) controlled by the sequence controller (11) is coupled to the output of the demodulator (25).
5. Schaltungsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Koppelzweig (16, 20) einen den Sender- bzw. Empfangskreis (11 bis 14 bzw. 22 bis 27) auf einen Ein/Ausgang (19) koppelnden Umschalter (16) und eine den Senderkreisausgang (14) bei Umschaltung deε Um- Schalters (16) in Sendestellung auf den Empfangskreisein¬ gang (22) koppelnde Stufe (20) umfaßt).5. Circuit arrangement according to one of claims 1 to 4, characterized in that the coupling branch (16, 20) has a transmitter or receiver circuit (11 to 14 or 22 to 27) on an input / output (19) coupling switch ( 16) and a stage (20) coupling the transmitter circuit output (14) when the selector switch (16) is switched to the receive circuit input (22) in the transmit position).
6. Schaltungsanordnung nach einem der Ansprüche 1 bis 5, gekennzeichnet durch eine Ausbildung als Heterodyn-Schal- tung, derart, daß dem Ausgang (14) des Sendekreises (10 bis 14) und dem Eingang (22) des Empfangskreises (22 bis6. Circuit arrangement according to one of claims 1 to 5, characterized by an embodiment as a heterodyne circuit, such that the output (14) of the transmitting circuit (10 to 14) and the input (22) of the receiving circuit (22 to
27) jeweils ein Modulator (31 bzw. 32) vorgeschaltet ist, welche dem Ausgangsεignal eine Zwischenfrequenzoszillators27) a modulator (31 or 32) is connected upstream, which an intermediate frequency oscillator to the output signal
(30) das Sendesignal bzw. das Empfangεεignal aufmodulie- ren.(30) modulate the transmission signal or the reception signal.
7. Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, daß eine zur Synchronisation er¬ forderliche Signalüberkopplung auf der ZF-Ebene erfolgt.7. Circuit arrangement according to claim 6, characterized in that a signal coupling required for synchronization takes place at the IF level.
8. Schaltungsanordnung nach Anspruch 6, dadurch gekennzeichnet, daß eine zur Synchronisation er¬ forderliche Signalüberkopplung auf der Ausgangεfrequenz- ebene erfolgt.8. Circuit arrangement according to claim 6, characterized in that a signal coupling required for synchronization takes place on the output frequency level.
9. Schaltungsanordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Ablaufsteuerung (11) durch einen Mikroprozessor oder Signalprozessor realisiert ist, dessen Takt mit dem Oszillator (10) synchronisiert oder von diesem durch Frequenzteilung abgeleitet ist. 9. Circuit arrangement according to one of claims 1 to 8, characterized in that the sequence control (11) is implemented by a microprocessor or signal processor, whose clock is synchronized with the oscillator (10) or derived from it by frequency division.
PCT/DE1994/001263 1993-10-29 1994-10-27 Coherent generation of pulse expanded/compressed transmission and reception signals in an identification system or sensor transmission and reception system WO1995012129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4337088.8 1993-10-29
DE19934337088 DE4337088A1 (en) 1993-10-29 1993-10-29 Circuit arrangement for the coherent generation of transmission and reception signals, in particular pulse-expanded / compressed transmission and reception signals in an identification or sensor transmission and reception system

Publications (1)

Publication Number Publication Date
WO1995012129A1 true WO1995012129A1 (en) 1995-05-04

Family

ID=6501420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001263 WO1995012129A1 (en) 1993-10-29 1994-10-27 Coherent generation of pulse expanded/compressed transmission and reception signals in an identification system or sensor transmission and reception system

Country Status (2)

Country Link
DE (1) DE4337088A1 (en)
WO (1) WO1995012129A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427982A (en) * 1981-04-28 1984-01-24 The United States Of America As Represented By The Secretary Of The Navy Radar clutter reduction by use of frequency-diverse, wideband pulse-compression waveforms
EP0251498A2 (en) * 1986-06-21 1988-01-07 THORN EMI Electronics Limited Radar
US4757315A (en) * 1986-02-20 1988-07-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for measuring distance
GB2209643A (en) * 1987-09-04 1989-05-17 Marconi Gec Ltd Pulse compression radar

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1023434A (en) * 1973-03-02 1977-12-27 Salvatore Amoroso (Jr.) Single oscillator microwave transceiver
US3925729A (en) * 1974-08-29 1975-12-09 United Technologies Corp Skirt-tuned single oscillator transceiver
DE2744212C2 (en) * 1977-09-30 1979-11-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Duplex transceiver
JPS5621435A (en) * 1979-07-31 1981-02-27 Nissan Motor Co Ltd Extrahigh frequency transmitting and receiving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427982A (en) * 1981-04-28 1984-01-24 The United States Of America As Represented By The Secretary Of The Navy Radar clutter reduction by use of frequency-diverse, wideband pulse-compression waveforms
US4757315A (en) * 1986-02-20 1988-07-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for measuring distance
EP0251498A2 (en) * 1986-06-21 1988-01-07 THORN EMI Electronics Limited Radar
GB2209643A (en) * 1987-09-04 1989-05-17 Marconi Gec Ltd Pulse compression radar

Also Published As

Publication number Publication date
DE4337088A1 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
DE69504711T2 (en) Tuning procedure for automatic antenna couplers
DE69124762T2 (en) Antenna monitoring device with unit for measuring the standing wave ratio
DE69326672T2 (en) Time duplex transceiver
DE3047942C2 (en)
CH618819A5 (en)
DE102012013120B4 (en) Nahfeldkommunikations transmitter
DE3785070T2 (en) DATA TRANSFER USING A TRANSPARENT TONE-IN-BAND SYSTEM.
WO2003074887A9 (en) Active backscatter transponder, communication system comprising the same and method for transmitting data by way of such an active backscatter transponder
DE69023010T2 (en) METHOD FOR CONTACT-FREE TRANSMISSION OF MESSAGES.
DE1816033C3 (en)
DE3024277A1 (en) TRANSMITTER RECEIVER FOR FREQUENCY MODULATION OPERATION
DE69114704T2 (en) RADIO TEST LOOP FOR RADIO TRANSMITTERS / RECEIVERS.
DE1816033B2 (en) SENDING DEVICE FOR TRANSMISSION OF PULSES
DE3021216A1 (en) RELAY RECEIVER, ESPECIALLY FOR DUPLEX OPERATION
DE69114705T2 (en) RADIO TEST LOOP FOR RADIO TRANSMITTERS / RECEIVERS.
DE2040339C3 (en) System for coding and decoding signals
WO1995012129A1 (en) Coherent generation of pulse expanded/compressed transmission and reception signals in an identification system or sensor transmission and reception system
DE68921580T2 (en) Switching system for active reserve transmitters.
DE3342057A1 (en) Linearity control
DE3324693A1 (en) Method for measuring the two-way radio-frequency delay
DE69421212T2 (en) Sequential mode amplifier
DE2855808B1 (en) Homodyne transmission system with double sideband reflection factor modulator in the responder
DE69019226T2 (en) Spread spectrum communication system.
DE69114703T2 (en) RADIO TEST LOOP FOR RADIO TRANSMITTERS / RECEIVERS.
DE3033243C1 (en) Listening and interference arrangement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase