WO1995009624A1 - Compounds, compositions and treatment of allergies and inflammation - Google Patents
Compounds, compositions and treatment of allergies and inflammation Download PDFInfo
- Publication number
- WO1995009624A1 WO1995009624A1 PCT/US1994/010815 US9410815W WO9509624A1 WO 1995009624 A1 WO1995009624 A1 WO 1995009624A1 US 9410815 W US9410815 W US 9410815W WO 9509624 A1 WO9509624 A1 WO 9509624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- formula
- cr4r5
- compounds
- optionally substituted
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/45—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C255/46—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention relates to novel compounds, pharmaceutical compositions containing these compounds, and their use in treating allergic and inflammatory diseases and for inhibiting the production of Tumor Necrosis Factor (TNF).
- TNF Tumor Necrosis Factor
- Bronchial asthma is a complex, multifactorial disease characterized by reversible narrowing of the airway and hyperreactivity of the respiratory tract to external stimuli. Identification of novel therapeutic agents for asthma is made difficult by the fact that multiple mediators are responsible for the development of the disease. Thus, it seems unlikely that eliminating the effects of a single mediator will have a substantial effect on all three components of chronic asthma.
- An alternative to the "mediator approach” is to regulate the activity of the cells responsible for the pathophysiology of the disease. One such way is by elevating levels of cAMP (adenosine cyclic 3',5'- monophosphate).
- Cyclic AMP has been shown to be a second messenger mediating the biologic responses to a wide range of hormones, neurotransmitters and drugs; [Krebs Endocrinology Proceedings of the 4th International Congress Excerpta Medica, 17-29, 1973].
- adenylate cyclase is activated, which converts Mg + -ATP to cAMP at an accelerated rate.
- Cyclic AMP modulates the activity of most, if not all, of the cells that contribute to the pathophysiology of extrinsic (allergic) asthma.
- an elevation of cAMP would produce beneficial effects including: 1) airway smooth muscle relaxation, 2) inhibition of mast cell mediator release, 3) suppression of neutrophil degranulation, 4) inhibition of basophil degranulation, and 5) inhibition of monocyte and macrophage activation.
- compounds that activate adenylate cyclase or inhibit phosphodiesterase should be effective in suppressing the inappropriate activation of airway smooth muscle and a wide variety of inflammatory cells.
- the principal cellular mechanism for the inactivation of cAMP is hydrolysis of the 3'-phosphodiester bond by one or more of a family of isozymes referred to as cyclic nucleotide phosphodiesterases (PDEs).
- PDE IV cyclic nucleotide phosphodiesterase
- PDE IV inhibitors are markedly potentiated when adenylate cyclase activity of target cells is elevated by appropriate hormones or autocoids, as would be the case in vivo.
- PDE IV inhibitors would be effective in the asthmatic lung, where levels of prostaglandin E2 and prostacyclin (activators of adenylate cyclase) are elevated.
- Such compounds would offer a unique approach toward the pharmacotherapy of bronchial asthma and possess significant therapeutic advantages over agents currently on the market.
- TNF Tumor Necrosis Factor
- rheumatoid arthritis rheumatoid spondylitis
- osteoarthritis gouty arthritis and other arthritic conditions
- sepsis septic shock, endotoxic shock, gram negative sepsis
- toxic shock syndrome adult respiratory distress syndrome
- cerebral malaria chronic pulmonary inflammatory disease
- silicosis pulmonary sarcoidosis
- bone resorption diseases reperfusion injury, graft vs.
- AIDS cachexia secondary to infection or malignancy
- AIDS cachexia secondary to human acquired immune deficiency syndrome
- AIDS AIDS
- ARC AIDS related complex
- keloid formation scar tissue formation, Crohn's disease, ulcerative colitis, or pyresis
- autoimmune diseases such as multiple sclerosis, autoimmune diabetes and systemic lupus erythematosis.
- - AIDS results from the infection of T lymphocytes with Human Immunodeficiency
- HIV Virus
- HIV-1 HIV-1
- HIV-2 HIV-2
- HIV-3 HIV-3
- HIV entry into the T lymphocyte requires T lymphocyte activation.
- Viruses such as HTV-1 or HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HIV, the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication.
- Cytokines are implicated in activated T-cell-mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by inhibition of cytokine production, notably TNF, in an HIV-infected individual aids in limiting the maintenance of T cell activation, thereby reducing the progression of HIV infectivity to previously uninfected cells which results in a slowing or elimination of the progression of immune dysfunction caused by HIV infection.
- Monocytes, macrophages, and related cells such as kupffer and glial cells, have also been implicated in maintenance of the HIV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells.
- TNF cytomegalovirus
- TNF is also associated with yeast and fungal infections. Specifically Candida albicans has been shown to induce TNF production in vitro in human monocytes and natural killer cells. [See Riipi et al, Infection and Immunity, 58(9):2750-54, 1990; and Jafari et al., Journal of Infectious Diseases, 164:389-95, 1991. See also Wasan et al., Antimicrobial Agents and Chemotherapy, 35,(10):2046-48, 1991; and Luke et al., Journal of Infectious Diseases, 162:211-214,1990].
- This invention relates to the novel compounds of Formula (I) as shown below, useful in the mediation or inhibition of the enzymatic activity (or catalytic activity) of phosphodiesterase IV (PDE IV). These compounds also have Tumor Necrosis Factor
- This invention also relates to the pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent.
- the invention also relates to a method of mediation or inhibition of the enzymatic activity (or catalytic activity) of PDE IV in mammals, including humans, which comprises administering to a mammal in need thereof an effective amount of a compound of Formula (I) as shown below.
- the invention further provides a method for the treatment of allergic and inflammatory disease which comprises administering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I).
- the invention also provides a method for the treatment of asthma which comprises administering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I).
- This invention also relates to a method of inhibiting TNF production in a mammal, including humans, which method comprises administering to a mammal in need of such treatment, an effective TNF inhibiting amount of a compound of Formula (I).
- This method may be used for the prophylactic treatment or prevention of certain TNF mediated disease states amenable thereto.
- This invention also relates to a method of treating a human afflicted with a human immunodeficiency virus (HIV), which comprises administering to such human an effective TNF inhibiting amount of a compound of Formula (I).
- HAV human immunodeficiency virus
- Compounds of Formula (I) are also useful in the treatment of additional viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo.
- Novel compounds of this invention are represented by Formula (I):
- Rl is -(CR4R5)nC(O)O(CR4R5)mR6, -(CR4R5)nC(O)NR4(CR4R5)mR6, - (CR4R5)nO(CR4R5) m R6, or -(CR4Rs) r R6 wherein the alkyl moieties may be optionally substituted with one or more halogens; m is 0 to 2; n is 1 to 4; r is 0 to 6; R4 and R5 are independently selected hydrogen or C 1-2 alkyl;
- R6 is hydrogen, methyl, hydroxyl, aryl, halo substituted aryl, aryloxyCi-3 alkyl, halo substituted aryloxyCi-3 alkyl, indanyl, indenyl, C7-H polycycloalkyl, tetrahydrofuranyl, furanyl, tetrahydropyranyl, pyranyl, tetrahydrothienyl, thienyl, tetrahydrothiopyranyl, thiopyranyl, C3-6 cycloalkyl, or a C4-6 cycloalkyl containing one or two unsaturated bonds, wherein the cycloalkyl and heterocyclic moieties may be optionally substituted by 1 to 3 methyl groups or one ethyl group; provided that: a) when R6 is hydroxyl, then m is 2; or b) when R6 is hydroxyl, then r is 2 to 6; or c) when R6 is
- X2 is O or NR8;
- X3 is hydrogen or X;
- R2 is independently selected from -CH3 or -CH2CH3 optionally substituted by 1 or more halogens; s is 0 to 4;
- Z' is O, NR9, NOR8, NCN, C(-CN)2, CR ⁇ CN, CR8NO2, CR8C(O)OR8, CR8C(O)NR8R8, C(-CN)NO2, C(-CN)C(O)OR9, or C(-CN)C(O)NR ⁇ R8 ;
- Rl2 is C3-7 cycloalkyl, (2-, 3- or 4-pyridyl), pyrimidyl, pyrazolyl, (1- or 2- imidazolyl), thiazolyl, triazolyl, pyrrolyl, piperazinyl, piperidinyl, morpholinyl, furanyl, (2- or 3-thienyl), (4- or 5-thiazolyl), quinolinyl, naphthyl, or phenyl;
- R8 is independently selected from hydrogen or R9;
- R8' is R8 or fluorine
- R9 is Cj_4 alkyl optionally substituted by one to three fluorines;
- R 10 is OR8 or Rn;
- R*U is hydrogen, or Cj_4 alkyl optionally substituted by one to three fluorines; or when Rio and Ri 1 are as NRio l 1 they may together with the nitrogen form a 5 to 7 membered ring optionally containing at least one additional heteroatom selected from O, N, or S;
- Rl3 is oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl, imidazolidinyl, thiazolidinyl, isoxazolyl, oxadiazolyl, or thiadiazolyl, and each of these heterocyclic rings is connected through a carbon atom and each may be unsubstituted or substituted by one or two C ⁇ _2 alkyl groups;
- R 4 is hydrogen or R7; or when R8 and R14 are as NR ⁇ Rl4 they may together with the nitrogen form a 5 to 7 membered ring optional
- Rl5 is C(O)Rl4, C(O)NR4Rl4, S(O)2R7, or S(O)2NR4Ri4; provided that: (f) when Z is O, X2 is oxygen, X3 is hydrogen, s is 0, and X is YR2, then R3 is other than hydrogen;
- This invention also relates to a method of mediating or inhibiting the enzymatic activity (or catalytic activity) of PDE IV in a mammal in need thereof and to inhibiting the production of TNF in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I).
- Phosphodiesterase IV inhibitors are useful in the treatment of a variety of allergic and inflammatory diseases including: asthma, chronic bronchitis, atopic dermatitis, urticaria, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, eosinophilic granuloma, psoriasis, rheumatoid arthritis, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury of the myocardium and brain, chronic glomerulonephritis, endotoxic shock and adult respiratory distress syndrome.
- PDE IV inhibitors are useful in the treatment of diabetes insipidus and central nervous system disorders such as depression and multi-infarct dementia.
- viruses contemplated for treatment herein are those that produce TNF as a result of infection, or those which are sensitive to inhibition, such as by decreased replication, directly or indirectly, by the TNF inhibitors of Formula (I).
- viruses include, but are not limited to HIV-1, HIV-2 and HIV-3, cytomegalovirus (CMV), influenza, adenovirus and the Herpes group of viruses, such as, but not limited to, Herpes zoster and Herpes simplex.
- This invention more specifically relates to a method of treating a mammal, afflicted with a human immunodeficiency virus (HIV), which comprises administering to such mammal an effective TNF inhibiting amount of a compound of Formula (I).
- the compounds of this invention may also be used in association with the veterinary treatment of animals, other than in humans, in need of inhibition of TNF production.
- TNF mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections. Examples of such viruses include, but are not limited to feline immunodeficiency virus (FIV) or other retroviral infection such as equine infectious anemia virus, caprine arthritis virus, visna virus, maedi virus and other lentiviruses.
- the compounds of this invention are also useful in treating yeast and fungal infections, where such yeast and fungi are sensitive to upregulation by TNF or will elicit TNF production in vivo.
- a preferred disease state for treatment is fungal meningitis.
- the compounds of Formula (I) may be administered in conjunction with other drugs of choice for systemic yeast and fungal infections.
- Drugs of choice for fungal infections include but are not limited to the class of compounds called the polymixins, such as Polymycin B, the class of compounds called the imidazoles, such as clotrimazole, econazole, miconazole, and ketoconazole; the class of compounds called the triazoles, such as fluconazole, and itranazole, and the class of compound called the Amphotericins, in particular Amphotericin B and liposomal Amphotericin B.
- polymixins such as Polymycin B
- imidazoles such as clotrimazole, econazole, miconazole, and ketoconazole
- triazoles such as fluconazole, and itranazole
- Amphotericins in particular Amphotericin B and liposomal Amphotericin B.
- the compounds of Formula (I) may also be used for inhibiting and/or reducing the toxicity of an anti-fungal, anti-bacterial or anti-viral agent by administering an effective amount of a compound of Formula (I) to a mammal in need of such treatment.
- a compound of Formula (I) is administered for inhibiting or reducing the toxicity of the Amphotericin class of compounds, in particular Amphotericin B.
- Preferred compounds are as follows: When Ri for the compounds of Formula (I) is an alkyl substituted by 1 or more halogens, the halogens are preferably fluorine and chlorine, more preferably a Ci-4 alkyl substituted by 1 or more fluorines.
- the preferred halo-substituted alkyl chain length is one or two carbons, and most preferred are the moieties -CF3, -CH2F, -CHF2, -CF2CHF2, -CH2CF3, and -CH2CHF2.
- Preferred Ri substitutents for the compounds of Formula (I) are CH2-cyclopropyl, CH2-C5-6 cycloalkyl, C4-6 cycloalkyl, C7.11 polycycloalkyl, (3- or 4-cyclopentenyl), phenyl, tetrahydrofuran-3-yl, benzyl or Cl-2 alkyl optionally substituted by 1 or more fluorines, -(CH2)l-3C(O)O(CH2) ⁇ -2CH3, -(CH2)1-3O(CH 2 )0-2CH 3 , and -(CH 2 )2-4OH.
- the R4 and R5 terms are independently hydrogen or alkyl.
- the individual hydrogen atoms of the repeating methylene unit or the branching hydrocarbon can optionally be substituted by fluorine independent of each other to yield, for instance, the preferred Ri substitutions, as noted above.
- Ri is a C7-H polycycloalkyl
- examples are bicyclo[2.2.1]-heptyl, bicyclo[2.2.2]octyl, bicyclo[3.2.1]octyl, tricyclo[5.2.1.0 2 ' 6]decyl, etc. additional examples of which are described in Saccamano et al, WO 87/06576, published 5 November 1987, whose disclosure is incorporated herein by reference in its entirety.
- Preferred Z terms are O, NCN, NR7, NORi4, NORi5, NNR4Ri4,
- Preferred X groups for Formula (I) are those wherein X is YR2 and Y is oxygen.
- the preferred X2 group for Formula (I) is that wherein X2 is oxygen.
- the preferred X3 group for Formula (I) is that wherein X3 is hydrogen.
- Preferred R2 groups, where applicable, is a Ci-2 alkyl optionally substituted by 1 or more halogens.
- the halogen atoms are preferably fluorine and chlorine, more preferably fluorine.
- More preferred R2 groups are those wherein R2 is methyl, or the fluoro-substituted alkyls, specifically a Cl-2 alkyl, such as a -CF3, -CHF2, or -CH2CHF2 moiety. Most preferred are the -CHF2 and -CH3 moieties.
- R3 moieties are C(O)NH2, C ⁇ CR ⁇ , CN, C(Z')H, CH2OH, CH2F, CF2H, and CF3. More preferred are C ⁇ CH and CN.
- Z' is preferably O or NOR8-
- R7 moieties include optionally substituted -(CH2)l-2(cyclopropyl), - (CH2)0-2(cyclobutyl), -(CH2)0-2(cyclopentyl), -(CH2) ⁇ -2(cyclohexyl), -(CH2)0-2(2-, 3- or 4-pyridyl), (CH2)l-2(2-imidazolyl), (CH2)2(4-morpholinyl), (CH2)2(4-piperazinyl), (CH2)l-2(2-thienyl), (CH2)l-2( -thiazolyl), and (CH2)0-2phenyl;
- Preferred rings when Rio and Ri 1 in the moiety -NRioRl 1 together with the nitrogen to which they are attached form a 5 to 7 membered ring optionally containing at least one additional heteroatom selected from O, N, or S include, but are not limited to 1- imidazolyl, 2-(R8)-l -imidazolyl, 1 -pyrazolyl, 3-(R8)-l -pyrazolyl, 1-triazolyl, 2-triazolyl, 5-(R8)-l -triazolyl, 5-(R8)-2-triazolyl, 5-(R8)-l-tetrazolyl, 5-(R8)-2-tetrazolyl, 1- tetrazolyl, 2-tetrazloyl, morpholinyl, piperazinyl, 4-(R8)-l -piperazinyl, or pyrrolyl ring.
- the respective rings may be additionally substituted, where applicable, on an available nitrogen or carbon by the moiety R7 as described herein for Formula (I).
- Illustrations of such carbon substitutions includes, but is not limited to, 2-(R7)-l-imidazolyl, 4-(R7)-l -imidazolyl, 5-(R7)-l -imidazolyl, 3-(R7)-l -pyrazolyl, 4-(R7)-l -pyrazolyl, 5-(R7)-l -pyrazolyl, 4-(R7)-2-triazolyl, 5-(R7)-2-triazolyl, 4-(R7)-l -triazolyl, 5-(R7)-l -triazolyl, 5-(R7)-l-tetrazolyl, and 5-(R7)-2-tetrazolyl.
- R7 Applicable nitrogen substitution by R7 includes, but is not limited to, l-(R7)-2-tetrazolyl, 2-(R7)-l-tetrazolyl, 4-(R7)-l -piperazinyl. Where applicable, the ring may be substituted one or more times by R7.
- Preferred groups for NR8R14 which contain a heterocyclic ring are 5-(Rl4)-l- tetrazolyl, 2-(R 14)- 1 -imidazolyl, 5-(Ri4)-2-tetrazolyl, 4-(Ri4)-l-piperazinyl, or 4-(R 15)- 1 -piperazinyl.
- Preferred rings for R13 include (2-, 4- or 5-imidazolyl), (3-, 4- or 5-pyrazolyl), (4- or 5-triazolyl[ 1,2,3]), (3- or 5-triazolyl[ 1,2,4]), (5-tetrazolyl), (2-, 4- or 5-oxazolyl), (3-, 4- or 5-isoxazolyl), (3- or 5-oxadiazolyl[ 1,2,4]), (2-oxadiazolyl[ 1,3,4]), (2-thiadiazolyl[l,3,4]), (2-, 4-, or 5-thiazolyl), (2-, 4-, or 5-oxazolidinyl), (2-, 4-, or 5-thiazolidinyl), or (2-, 4-, or 5-imidazolidinyl).
- the heterocyclic ring itself may be optionally substituted by R8 either on an available nitrogen or carbon atom, such as l-(R8)-2-imidazolyl, l-(R8)-4-imidazolyl, l-(R8)-5-imidazolyl, l-(R8)-3-pyrazolyl, l-(R8)-4-pyrazolyl, l-(R8)-5-pyrazolyl, l-(R8)-4- triazolyl, or l-(R8)-5-triazolyl.
- the ring may be substituted one or more times by R8-
- Ri is -CH2-cyclopropyl, - CH2-C5-6 cycloalkyl, -C4-6 cycloalkyl, tetrahydrofuran-3-yl, (3- or 4-cyclopentenyl), benzyl or -Ci-2 alkyl optionally substituted by 1 or more fluorines, and -(CH2)2-4 OH;
- R2 is methyl or fluoro-substituted alkyl,
- R3 is CN or C ⁇ CR ⁇
- X is YR2-
- R is -CH2-cyclopropyl, cyclopentyl, methyl or CF2H
- R3 is CN or C ⁇ CH
- X is YR2
- Y is oxygen
- X2 is oxygen
- X3 is hydrogen
- R2 is CF2H or methyl.
- a preferred subgenus of Formula (I) are the compounds of Formula (la)
- Rl is CH2-cyclopropyl, CH2-C5-6 cycloalkyl, C4-6 cycloalkyl, C7-H polycycloalkyl, (3- or 4-cyclopentenyl), phenyl, tetrahydrofuran-3-yl, benzyl or Cl-2 alkyl optionally substituted by 1 or more fluorines, -(CH2)l-3C(O)O(CH2)0-2CH3, -(CH2)l-3 ⁇ (CH 2 )0-2CH3, and -(CH 2 )2-4OH;
- X is YR2, halogen, nitro, NR4R5, or formyl amine; Y is O or S(O)m 1 ; m' is O, 1, or 2; R2 is -CH3 or -CH2CH3 optionally substituted by 1 or more halogens; R3 is C 1-4 alkyl, halo- substituted C1-4 alkyl, CH2NHC(O)C(O)NH2, CN, CH2OR8, C(Z")H, C(O)OR8, C(O)NR8Rl0, or C ⁇ CR ⁇ ;
- Z' is O or NOR8
- R7 is -(CR4R5)qRi2 or C ⁇ . ⁇ alkyl wherein the R12 or C _6 alkyl group is optionally substituted one or more times by C 1-2 alkyl optionally substituted by one to three fluorines, -F, -Br, -Cl, -NO2, -Si(R4)3, -NRioRl l, -C(O)R8, -CO2R8, -OR8, -CN, -C(O)NR ⁇ oRll, -OC(O)NR ⁇ oRl l, -OC(O)Rs, -NRi ⁇ C(O)NR ⁇ oRl l, -NR ⁇ oC(O)Rn, -NRi ⁇ C(O)OR9, -NRi ⁇ C(O)Ri3, -C(NRi ⁇ )NR ⁇ oRl l, -C(NCN)NRioRl l, - C(NCN)SR9, -NR
- Rl2 is C3-7 cycloalkyl, (2-, 3- or 4-pyridyl), (1- or 2-imidazolyl), piperazinyl, morpholinyl, (2- or 3-thienyl), (4- or 5-thiazolyl), or phenyl;
- R is independently selected from hydrogen or R9;
- R9 is Cj_4 alkyl optionally substituted by one to three fluorines;
- R o is OR ⁇ or Rn;
- R is hydrogen or Cj_4 alkyl optionally substituted by one to three fluorines; or when Rio and Ri 1 are as NRioRl 1 they may together with the nitrogen form a 5 to 7 membered ring optionally containing at least one additional heteroatom selected from O, N, or S;
- R13 is oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl, imidazolidinyl, thiazolidinyl, isoxazolyl, oxadiazolyl, or thiadiazolyl, and each of these heterocyclic rings is connected through a carbon atom and each may be unsubstituted or substituted by one or two C ⁇ _2 alkyl groups;
- Rl4 is hydrogen or R7; or when R8 and R14 are as NR8R14 they may together with the nitrogen form a 5 to 7 membered ring optionally containing one or more additional heteroatoms selected from O, N, or S;
- R 15 is C(O)Ri4, C(O)NR4Ri4, S(O)2R7, or S(O)2NR4Rl4; provided that when R12 is N-imidazolyl, N-triazolyl, N-pyrrolyl, N-piperazinyl, or N-morpholinyl, then q is not 1; or the pharmaceutically acceptable salts thereof.
- An exemplified preferred compound of Formula (I) is 3-cyano-3-(cyclopentyloxy- 4-methoxyphenyl)cyclohexan- 1 -one.
- C1.3 alkyl C1.4 alkyl
- C ⁇ g alkyl or “alkyl” groups as used herein is meant to include both straight or branched chain radicals of 1 to 10, unless the chain length is limited thereto, including, but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and the like.
- Alkenyl means both straight or branched chain radicals of 1 to 6 carbon lengths, unless the chain length is limited thereto, including but not limited to vinyl, 1-propenyl, 2- propenyl, 2-propynyl, or 3-methyl-2-propenyl.
- cycloalkyl or “cycloalkyl alkyl” means groups of 3-7 carbon atoms, such as cyclopropyl, cyclopropylmethyl, cyclopentyl, or cyclohexyl.
- Aryl or “aralkyl”, unless specified otherwise, means an aromatic ring or ring system of 6-10 carbon atoms, such as phenyl, benzyl, phenethyl, or naphthyl.
- the aryl is monocyclic, i.e, phenyl.
- the alkyl chain is meant to include both straight or branched chain radicals of 1 to 4 carbon atoms.
- Heteroaryl means an aromatic ring system containing one or more heteroatoms, such as imidazolyl, triazolyl, oxazolyl, pyridyl, pyrimidyl, pyrazolyl, pyrrolyl, furanyl, or thienyl.
- Halo means all halogens, i.e., chloro, fluoro, bro o, or i ⁇ do.
- “Inhibiting the production of IL- 1 " or “inhibiting the production of TNF” means: a) a decrease of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels by inhibition of the in vivo release of IL-1 by all cells, including but not limited to monocytes or macrophages; b) a down regulation, at the translational or transcriptional level, of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels; or c) a down regulation, by inhibition of the direct synthesis of EL-1 or TNF levels as a postranslational event.
- TNF mediated disease or disease states means any and all disease states in which TNF plays a role, either by production of TNF itself, or by TNF causing another cytokine to be released, such as but not limited to IL-1 or IL-6.
- TNF- ⁇ also known as lymphotoxin
- TNF- ⁇ also known as cachectin
- TNF- ⁇ also known as cachectin
- both TNF- ⁇ and TNF- ⁇ are inhibited by the compounds of the present invention and thus are herein referred to collectively as "TNF” unless specifically delineated otherwise.
- TNF- ⁇ is inhibited.
- Cytokine means any secreted polypeptide that affects the functions of cells, and is a molecule which modulates interactions between cells in immune, inflammatory, or hematopoietic responses.
- a cytokine includes, but is not limited to, monokines and lymphokines regardless of which cells produce them.
- the cytokine inhibited by the present invention for use in the treatment of a HIV-infected human must be a cytokine which is implicated in (a) the initiation and/or maintenance of T cell activation and/or activated T cell-mediated HTV gene expression and/or replication, and/or (b) any cytokine-mediated disease associated problem such as cachexia or muscle degeneration.
- his cytokine is TNF- ⁇ .
- All of the compounds of Formula (I) are useful in the method of inhibiting the production of TNF, preferably by macrophages, monocytes or macrophages and monocytes, in a mammal, including humans, in need thereof. All of the compounds of Formula (I) are useful in the method of inhibiting or mediating the enzymatic or catalytic activity of PDE IV and in treatment of disease states mediated thereby.
- RESULTS OF PREPARATION Preparing compounds of Formula (I) can be carried out by one of skill in the art according to the procedures outlined in the Examples, infra.
- the preparation of any remaining compounds of Formula (I) not described therein may be prepared by the analogous processes disclosed herein which comprise: a) for compounds wherein X and X3 are other than Br, I, NO2, amine, formyl amine, or S(O)m' when m' is 1 or 2, reacting a compound of Formula (2)
- Ri represents Ri as defined in relation to Formula (I) or a group convertable to Ri
- X represents X as defined in relation to Formula (I) or a group convertable to X
- X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 and X4 is a counter ion (e.g., lithium, magnesium, etc.) with a compound of the Formula (3)
- X5 is, e.g., OCH3, OC2H5, OCH(CH3)2, etc., followed by appropriate workup to provide a compound of the Formula (4)
- Ri represents Rl as defined in relation to Formula (I) or a group convertable to Rl and X represents X as defined in relation to Formula (I) or a group convertable to X and X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 (see the patent application WO 91 15-451 -A published by WIPO).
- Michael-type reaction of such a compound of the Formula (4) with the appropriate precursor of R3 then provides a compound of the Formula (1); for example, use of diethylaluminum cyanide provides a compound of the Formula (1) wherein Rl represents Rl as defined in relation to Formula (I) or a group convertable to Ri and X represents X as defined in relation to Formula (I) or a group convertable to X and X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 and.R3 is CN.
- Trituration from ether/hexanes provided an off-white solid (7.33 g, 68%). Further purification of the mother liquor by flash chromatography, eluting with 1:3 ethyl acetate/hexanes, followed by trituration from ether/hexanes, provided a white solid (1.59 g, 7%). mp 89-90°C. Anal. (Ci8H22 ⁇ 3-l/8 H2O) calcd: C 74.91, H 7.77; found: C 74 96, H 7.76.
- a compound of Formula (I) or a pharmaceutically acceptable salt thereof for the treatment of humans and other mammals, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
- the compounds of Formula (I), or a pharmaceutically acceptable salt thereof can be used in the manufacture of a medicament for the prophylatic or therapeutic treatment of any disease state in a human or other mammal which is mediated by inhibition of PDE IV, such as but not limited to asthma, allergic, or inflammatory diseases.
- the compounds of Formula (I) are administered in an amount sufficient to treat such a disease in a human or other mammal.
- a compound of Formula (I), or a pharmaceutically acceptable salt thereof for the treatment of humans and other mammals, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
- the amount of a compound of Formula (I) required for therapeutic effect on topical administration will, of course, vary with the compound chosen, the nature and severity of the condition and the animal undergoing treatment, and is ultimately at the discretion of the physician.
- the daily dosage regimen for oral administration is suitably about .001 mg/kg to lOOmg/kg, preferably 0.01 mg/Kg to 40 mg/Kg, of a compound of Formula (I) or a pharmaceutically acceptable salt thereof calculated as the free base.
- the active ingredient may be administered from 1 to 6 times a day, sufficient to exhibit activity. No toxic effects are expected when these compounds are administered in accordance with the present invention.
- Formula (I) can be determined using a battery of five distinct PDE isozymes.
- the tissues used as sources of the different isozymes are as follows: 1) PDE lb, porcine aorta; 2) PDE Ic, guinea-pig heart; 3) PDE III, guinea-pig heart; 4) PDE IV, human monocyte; and 5) PDE V (also called "la"), canine trachealis.
- PDEs la, lb, Ic and III are partially purified using standard chromatographic techniques [Torphy and Cieslinski, Mol. Pharmacol., 37:206-214, 1990].
- PDE IV is purified to kinetic homogeneity by the sequential use of anion-exchange followed by heparin-Sepharose chromatography [Torphy et al., J. Biol. Chem., 267:1798-1804, 1992].
- Phosphodiesterase activity is assayed as described in the protocol of Torphy and Cieslinski, Mol. Pharmacol., 37:206-214, 1990. Positive ICso's in the nanomolar to ⁇ M range for compounds of the workings examples described herein for Formula (I) have been demonstrated.
- EXAMPLE D The ability of selected PDE IV inhibitors to increase cAMP accumulation in intact tissues is assessed using U-937 cells, a human monocyte cell line that has been shown to contain a large amount of PDE IV.
- U-937 cells a human monocyte cell line that has been shown to contain a large amount of PDE IV.
- nondifferentiated U-937 cells approximately 10* ⁇ cells/reaction tube
- PDE inhibitors for one minute
- l ⁇ M prostaglandin E2 for an additional four minutes.
- Five minutes after initiating the reaction cells were lysed by the addition of 17.5% perchloric acid, the pH was neutralized by the addition of 1M potassium carbonate and cAMP content was assessed by RIA.
Landscapes
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Pulmonology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69427485T DE69427485T2 (en) | 1993-10-01 | 1994-09-23 | CONNECTIONS, PREPARATIONS AND TREATMENT OF ALLERGIES AND IGNITIONS |
AU80111/94A AU8011194A (en) | 1993-10-01 | 1994-09-23 | Compounds, compositions and treatment of allergies and inflammation |
JP7510846A JPH09503505A (en) | 1993-10-01 | 1994-09-23 | Compounds, compositions and treatment of allergies and inflammation |
EP94931286A EP0727990B1 (en) | 1993-10-01 | 1994-09-23 | Compounds, compositions and treatment of allergies and inflammation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13021593A | 1993-10-01 | 1993-10-01 | |
US08/130,215 | 1993-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995009624A1 true WO1995009624A1 (en) | 1995-04-13 |
Family
ID=22443610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/010815 WO1995009624A1 (en) | 1993-10-01 | 1994-09-23 | Compounds, compositions and treatment of allergies and inflammation |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0727990B1 (en) |
JP (1) | JPH09503505A (en) |
AU (1) | AU8011194A (en) |
DE (1) | DE69427485T2 (en) |
WO (1) | WO1995009624A1 (en) |
ZA (1) | ZA947659B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7153824B2 (en) | 2003-04-01 | 2006-12-26 | Applied Research Systems Ars Holding N.V. | Inhibitors of phosphodiesterases in infertility |
EP2088154A1 (en) | 2004-03-09 | 2009-08-12 | Ironwood Pharmaceuticals, Inc. | Methods and compositions for the treatment of gastrointestinal disorders |
EP2193808A1 (en) | 1999-08-21 | 2010-06-09 | Nycomed GmbH | Synergistic combination |
EP2223920A2 (en) | 1996-06-19 | 2010-09-01 | Aventis Pharma Limited | Substituted azabicyclic compounds |
WO2011069038A2 (en) | 2009-12-03 | 2011-06-09 | Synergy Pharmaceuticals, Inc. | Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases |
WO2012118972A2 (en) | 2011-03-01 | 2012-09-07 | Synegy Pharmaceuticals Inc. | Process of preparing guanylate cyclase c agonists |
WO2013138352A1 (en) | 2012-03-15 | 2013-09-19 | Synergy Pharmaceuticals Inc. | Formulations of guanylate cyclase c agonists and methods of use |
WO2014131024A2 (en) | 2013-02-25 | 2014-08-28 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase and their uses |
WO2014151206A1 (en) | 2013-03-15 | 2014-09-25 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase and their uses |
WO2014151200A2 (en) | 2013-03-15 | 2014-09-25 | Synergy Pharmaceuticals Inc. | Compositions useful for the treatment of gastrointestinal disorders |
EP2810951A2 (en) | 2008-06-04 | 2014-12-10 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
WO2014197720A2 (en) | 2013-06-05 | 2014-12-11 | Synergy Pharmaceuticals, Inc. | Ultra-pure agonists of guanylate cyclase c, method of making and using same |
WO2015021358A2 (en) | 2013-08-09 | 2015-02-12 | Dominique Charmot | Compounds and methods for inhibiting phosphate transport |
EP2998314A1 (en) | 2007-06-04 | 2016-03-23 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
EP3241839A1 (en) | 2008-07-16 | 2017-11-08 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders |
WO2020237096A1 (en) | 2019-05-21 | 2020-11-26 | Ardelyx, Inc. | Combination for lowering serum phosphate in a patient |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993019750A1 (en) * | 1992-04-02 | 1993-10-14 | Smithkline Beecham Corporation | Compounds useful for treating allergic or inflammatory diseases |
DE69328778T2 (en) * | 1992-04-02 | 2000-11-23 | Smithkline Beecham Corp., Philadelphia | COMPOUNDS FOR THE TREATMENT OF INFLAMMATORY DISEASES AND FOR INHIBITING THE PRODUCTION OF TUMORNESCROSE FACTOR |
WO1995003794A1 (en) * | 1993-07-30 | 1995-02-09 | Smithkline Beecham Corporation | 3-cyano-3-(3,4-disubstituted)phenylcyclohexyl-1-carboxylates |
-
1994
- 1994-09-23 AU AU80111/94A patent/AU8011194A/en not_active Abandoned
- 1994-09-23 JP JP7510846A patent/JPH09503505A/en not_active Ceased
- 1994-09-23 WO PCT/US1994/010815 patent/WO1995009624A1/en active IP Right Grant
- 1994-09-23 DE DE69427485T patent/DE69427485T2/en not_active Expired - Lifetime
- 1994-09-23 EP EP94931286A patent/EP0727990B1/en not_active Expired - Lifetime
- 1994-09-30 ZA ZA947659A patent/ZA947659B/en unknown
Non-Patent Citations (2)
Title |
---|
CHEM. PHARM. BULL., Vol. 24(7), issued 1976, TAKEDA et al., "Azabicycloalkanes as Analgetics. II 1 An Improved Synthesis of 1-Phenyl-6-Azabicyclo(3,2,1)-Octane Derivatives", pages 1514-1526. * |
See also references of EP0727990A4 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2223920A2 (en) | 1996-06-19 | 2010-09-01 | Aventis Pharma Limited | Substituted azabicyclic compounds |
EP2193808A1 (en) | 1999-08-21 | 2010-06-09 | Nycomed GmbH | Synergistic combination |
US7153824B2 (en) | 2003-04-01 | 2006-12-26 | Applied Research Systems Ars Holding N.V. | Inhibitors of phosphodiesterases in infertility |
EP2088154A1 (en) | 2004-03-09 | 2009-08-12 | Ironwood Pharmaceuticals, Inc. | Methods and compositions for the treatment of gastrointestinal disorders |
EP2998314A1 (en) | 2007-06-04 | 2016-03-23 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
EP2810951A2 (en) | 2008-06-04 | 2014-12-10 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
EP3241839A1 (en) | 2008-07-16 | 2017-11-08 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders |
EP2923706A1 (en) | 2009-12-03 | 2015-09-30 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia |
WO2011069038A2 (en) | 2009-12-03 | 2011-06-09 | Synergy Pharmaceuticals, Inc. | Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases |
WO2012118972A2 (en) | 2011-03-01 | 2012-09-07 | Synegy Pharmaceuticals Inc. | Process of preparing guanylate cyclase c agonists |
EP3708179A1 (en) | 2012-03-15 | 2020-09-16 | Bausch Health Ireland Limited | Formulations of guanylate cyclase c agonists and methods of use |
WO2013138352A1 (en) | 2012-03-15 | 2013-09-19 | Synergy Pharmaceuticals Inc. | Formulations of guanylate cyclase c agonists and methods of use |
EP4309673A2 (en) | 2012-03-15 | 2024-01-24 | Bausch Health Ireland Limited | Formulations of guanylate cyclase c agonists and methods of use |
WO2014131024A2 (en) | 2013-02-25 | 2014-08-28 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase and their uses |
EP3718557A2 (en) | 2013-02-25 | 2020-10-07 | Bausch Health Ireland Limited | Guanylate cyclase receptor agonist sp-333 for use in colonic cleansing |
WO2014151206A1 (en) | 2013-03-15 | 2014-09-25 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase and their uses |
WO2014151200A2 (en) | 2013-03-15 | 2014-09-25 | Synergy Pharmaceuticals Inc. | Compositions useful for the treatment of gastrointestinal disorders |
WO2014197720A2 (en) | 2013-06-05 | 2014-12-11 | Synergy Pharmaceuticals, Inc. | Ultra-pure agonists of guanylate cyclase c, method of making and using same |
EP4424697A2 (en) | 2013-06-05 | 2024-09-04 | Bausch Health Ireland Limited | Ultra-pure agonists of guanylate cyclase c, method of making and using same |
EP3492106A1 (en) | 2013-08-09 | 2019-06-05 | Ardelyx, Inc. | Compounds and methods for inhibiting phosphate transport |
EP3884935A1 (en) | 2013-08-09 | 2021-09-29 | Ardelyx, Inc. | Compounds and methods for inhibiting phosphate transport |
WO2015021358A2 (en) | 2013-08-09 | 2015-02-12 | Dominique Charmot | Compounds and methods for inhibiting phosphate transport |
WO2020237096A1 (en) | 2019-05-21 | 2020-11-26 | Ardelyx, Inc. | Combination for lowering serum phosphate in a patient |
Also Published As
Publication number | Publication date |
---|---|
EP0727990A4 (en) | 1999-03-10 |
JPH09503505A (en) | 1997-04-08 |
EP0727990A1 (en) | 1996-08-28 |
DE69427485T2 (en) | 2002-04-25 |
ZA947659B (en) | 1995-08-07 |
AU8011194A (en) | 1995-05-01 |
EP0727990B1 (en) | 2001-06-13 |
DE69427485D1 (en) | 2001-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0633775B1 (en) | Compounds useful for treating inflammatory diseases and for inhibiting production of tumor necrosis factor | |
WO1993019750A1 (en) | Compounds useful for treating allergic or inflammatory diseases | |
WO1993019747A1 (en) | Compounds useful for treating allergic and inflammatory diseases | |
US5449687A (en) | 4-phenyl-1,2-cyclohexyl derivatives and anti-inflammatory compositions and methods thereof | |
EP0633771A1 (en) | Compounds | |
EP0727990B1 (en) | Compounds, compositions and treatment of allergies and inflammation | |
WO1995009623A1 (en) | Anti-allergic, anti-inflammatory compounds, compositions and uses | |
WO1995009836A1 (en) | Cyanocyclohexane compounds, compositions, and uses thereof | |
EP0722322A1 (en) | Compounds, compositions and treatment of allergies and inflammation therewith | |
WO1995009837A1 (en) | Cyano compounds | |
WO1996020157A1 (en) | 3,3-(disubstituted)cyclohexan-1-ol dimers and related compounds | |
AU675640C (en) | Compounds useful for treating allergic or inflammatory diseases | |
EP0796091A1 (en) | 3,3-(disubstituted)cyclohexan-1-ol monomers and related compounds | |
WO1996019993A1 (en) | 1,3,3-(trisubstituted)cyclohex-1-ene monomers and related compounds | |
EP0799036A1 (en) | 4,4-(disubstituted)cyclohexan-1-ylidine acetate dimers and related compounds | |
WO1996020174A1 (en) | 1,3,3-(trisubstituted)cyclohexane monomers and related compounds | |
NZ299781A (en) | 4-(substituted phenyl)-cyclohexanone derivatives and pharmaceutical compositions thereof | |
EP0802791A1 (en) | 3,3-(disubstituted)cyclohexan-1-ylidine acetate dimers and related compounds | |
WO1996019978A1 (en) | 1,3,3-(trisubstituted)cyclohex-1-ene dimers and related compounds | |
WO1996019979A1 (en) | 1,4,4-(trisubstituted)cyclohexane dimers and related compounds | |
WO1996019994A1 (en) | 3,3-(disubstituted)cyclohexan-1-carboxylate monomers and related compounds | |
EP0794773A1 (en) | 1,4,4-(trisubstituted)cyclohexane monomers and related compounds | |
EP0796092A1 (en) | 3,3-(disubstituted)cyclohexan-1-one dimers and related compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AU BB BG BR BY CA CN CZ FI GE HU JP KG KP KR KZ LK LT LV MD MG MN NO NZ PL RO RU SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994931286 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1994931286 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1997 619710 Date of ref document: 19970627 Kind code of ref document: A Format of ref document f/p: F |
|
WWG | Wipo information: grant in national office |
Ref document number: 1994931286 Country of ref document: EP |