WO1995003391A1 - Process for making transparent soaps - Google Patents
Process for making transparent soaps Download PDFInfo
- Publication number
- WO1995003391A1 WO1995003391A1 PCT/EP1994/002152 EP9402152W WO9503391A1 WO 1995003391 A1 WO1995003391 A1 WO 1995003391A1 EP 9402152 W EP9402152 W EP 9402152W WO 9503391 A1 WO9503391 A1 WO 9503391A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soap
- weight
- process according
- translucent
- shear
- Prior art date
Links
- 239000000344 soap Substances 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000203 mixture Substances 0.000 claims abstract description 56
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 19
- 239000000194 fatty acid Substances 0.000 claims abstract description 19
- 229930195729 fatty acid Natural products 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 150000005846 sugar alcohols Polymers 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000013538 functional additive Substances 0.000 claims abstract description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 7
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 7
- 238000002425 crystallisation Methods 0.000 claims abstract description 6
- 230000008025 crystallization Effects 0.000 claims abstract description 6
- 239000003607 modifier Substances 0.000 claims abstract description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000000600 sorbitol Substances 0.000 claims abstract description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 18
- 150000004665 fatty acids Chemical class 0.000 claims description 18
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 9
- 150000002763 monocarboxylic acids Chemical class 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 239000003760 tallow Substances 0.000 claims description 6
- 239000002304 perfume Substances 0.000 claims description 5
- 229920006395 saturated elastomer Polymers 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000000975 dye Substances 0.000 claims description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 235000019482 Palm oil Nutrition 0.000 claims description 3
- 239000003240 coconut oil Substances 0.000 claims description 3
- 235000019864 coconut oil Nutrition 0.000 claims description 3
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 claims description 3
- 239000003752 hydrotrope Substances 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- 239000003346 palm kernel oil Substances 0.000 claims description 3
- 235000019865 palm kernel oil Nutrition 0.000 claims description 3
- 239000002540 palm oil Substances 0.000 claims description 3
- ULQISTXYYBZJSJ-UHFFFAOYSA-N 12-hydroxyoctadecanoic acid Chemical compound CCCCCCC(O)CCCCCCCCCCC(O)=O ULQISTXYYBZJSJ-UHFFFAOYSA-N 0.000 claims description 2
- KIHBGTRZFAVZRV-UHFFFAOYSA-N 2-Hydroxyoctadecanoic acid Natural products CCCCCCCCCCCCCCCCC(O)C(O)=O KIHBGTRZFAVZRV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004150 EU approved colour Substances 0.000 claims description 2
- 102000004190 Enzymes Human genes 0.000 claims description 2
- 108090000790 Enzymes Proteins 0.000 claims description 2
- 239000004909 Moisturizer Substances 0.000 claims description 2
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 239000003963 antioxidant agent Substances 0.000 claims description 2
- 239000002738 chelating agent Substances 0.000 claims description 2
- 239000002781 deodorant agent Substances 0.000 claims description 2
- 239000003974 emollient agent Substances 0.000 claims description 2
- 239000006260 foam Substances 0.000 claims description 2
- 239000004872 foam stabilizing agent Substances 0.000 claims description 2
- 230000002070 germicidal effect Effects 0.000 claims description 2
- 230000001333 moisturizer Effects 0.000 claims description 2
- 239000003921 oil Substances 0.000 claims description 2
- 235000019198 oils Nutrition 0.000 claims description 2
- 229940006093 opthalmologic coloring agent diagnostic Drugs 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 239000003352 sequestering agent Substances 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims description 2
- -1 pearlescers Substances 0.000 claims 2
- 150000007513 acids Chemical class 0.000 claims 1
- 238000005096 rolling process Methods 0.000 claims 1
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 claims 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000012149 noodles Nutrition 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000008149 soap solution Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940079776 sodium cocoyl isethionate Drugs 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- FRHNXUKHAUWMOQ-UHFFFAOYSA-M sodium;16-methylheptadecanoate Chemical compound [Na+].CC(C)CCCCCCCCCCCCCCC([O-])=O FRHNXUKHAUWMOQ-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- QUEDXNHFTDJVIY-UHFFFAOYSA-N γ-tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0095—Solid transparent soaps or detergents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/22—Organic compounds, e.g. vitamins
- C11D9/26—Organic compounds, e.g. vitamins containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/22—Organic compounds, e.g. vitamins
- C11D9/26—Organic compounds, e.g. vitamins containing oxygen
- C11D9/262—Organic compounds, e.g. vitamins containing oxygen containing carbohydrates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D9/00—Compositions of detergents based essentially on soap
- C11D9/04—Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
- C11D9/22—Organic compounds, e.g. vitamins
- C11D9/26—Organic compounds, e.g. vitamins containing oxygen
- C11D9/265—Organic compounds, e.g. vitamins containing oxygen containing glycerol
Definitions
- the present invention relates to a process of preparing transparent soaps in which a soap is subjected to mechanical working and shear.
- the invention also relates to the transparent soap thus obtained.
- Transparent and translucent soaps have an aesthetic appeal to the consumer and have been associated with purity -and hence with “naturalness”.
- the essential difference between transparent and translucent soap is related to the relative quality of the light transmitted.
- transparent is understood having the property of transmitting light without appreciable scattering, so that objects placed behind a transparent soap bar are entirely visible and can easily be discerned.
- translucent is understood having the property of allowing light to pass through partially or diffusely so that objects placed behind a translucent soap bar cannot clearly be distinguished (therefore also called partly transparent or semi-transparent) .
- the translucency is evaluated by measuring the light transmission of a slice of soap having a thickness of 18.5 mm before and after the preparation according to the present invention, using a reflectometer according to Dr B. Lange, Type LMG 008. The result is expressed as a percentage of the light transmission of a matted glass standard. The transmission of the matted glass standard compared to air is 8.3% and this transmission of the standard is taken as 100%.
- a dried conventional type of toilet soap in solid form is dissolved in boiling ethanol, or the saponification is effected in an ethanol-water mixture. If a clear solution is obtained, the major part of the ethanol is removed by evaporation to form a clear, viscous soap solution. This is poured into moulds and cooled. The solidified soap is pressed out into the desired shape and is placed for many weeks in conditioning rooms. During conditioning more water and alcohol is evaporated and consequently the final product becomes firm.
- The. disadvantages of this process are the long duration of the process and all the disadvantages of working with volatile and toxic solvents, which also from an ecological point of view is disadvantageous.
- the "mechanical working" methods involve some sort of intensive mechanical working or shearing of a cooled and partially dried soap base. It is usual to add effective amounts of crystallization inhibitors to the liquid soap before drying in order to enhance translucency. Translucency is only achieved after mechanical working or shearing to a considerable degree, e.g. by mixing in a Z- blade mixer, or by multiple milling using 3, 4 or 5-rolled steel mills, or by using a cavity transfer mixer. Such processes have been described in United States Patent Specification US-A-2,970,116 (Lever Brothers Company) and European Patent Specification EP-B-0,090,649 (Unilever).
- the minimum requirement is the presence of alkali metal soaps of saturated and unsaturated monocarboxylic or fatty acids having from 8 to 24 carbon atoms, polyhydric alcohol and water.
- the presence of specific crystallization modifiers has also appeared to be very beneficial for the obtainable degree of transparency.
- the transparency can also noticeably be enhanced by the presence of some perfumes or fragrants.
- the degree of mechanical working can even be less, if certain perfumes are added to the formulation.
- the mechanical energy and shear imparted to the soap it has been observed that the degree of mechanical working and shear should be such as to induce the optimal translucency and dependent on the soap formulation the soap extrusion temperature should be from 40°C to 50°C.
- the heat treatment according to the present invention given to the translucent soap preferably after mechanical working and shear is effected such that the temperature of the soap is brought to a core temperature between 45°C and 65°C, preferably between 55°C and 65°C.
- the heat treatment is preferably effected by means of microwave heating, but it is also possible to effect the heat treatment already during the mechanical working.and high shear e.g. in a twin-screw extruder.
- the present invention therefore relates to a process of preparing transparent or translucent soap, in which a soap is subjected to sufficient mechanical working and shear so as to induce translucency, which is characterized by the steps of:
- a soap composition comprising from 60% to 80% by weight of an alkali metal soap of saturated and unsaturated monocarboxylic or fatty acids having from 8 to 24 carbon atoms, from 5% to 20% by weight of at least one polyhydric-alcohol and from 5% to 20% by weight of water (all percentages based on the total composition) to mechanical working and shear so as to impart translucency, and
- the soap composition may also comprise up to 20% by weight of the total composition of at least one sugar or at least one at least partially hydrogenated sugar, up to 25% by weight of the total composition of a crystallization modifier and up to 20% by weight of the total composition of hydrotropes, and surfactants.
- the soap composition may also comprise functional additives.
- the soap comprises a mixture of soluble soaps and insoluble soaps.
- soluble soaps are to be understood throughout this specification and the attached claims: the salts of saturated monocarboxylic acids or fatty acids having from 8 to 14 carbon atoms and additionally the salts of oleic acid and polyunsaturated monocarboxylic or fatty acids having from 8 to 22 carbon atoms.
- insoluble soaps are to be understood throughout this specification and the attached claims: the salts of saturated monocarboxylic or fatty acids having from 16 to 24 carbon atoms.
- the salts of the monocarboxylic or fatty acids are preferably sodium salts, but small amounts of potassium soaps, ammonium soaps or alkanolamine soaps may also be present.
- soaps The selection of the soaps depends on availability and cost, but suitable soaps are derived from coconut oil, palm kernel oil, tallow, hydrogenated tallow, palm oil, and the like and mixtures thereof. It is preferred to use soaps prepared from 70-80% tallow and 20-30% coconut oil, palm oil and/or palm kernel oil.
- the polyhydric alcohol to be used in the soap composition according to the present invention may be glycerol, polyethylene glycols, propylene glycol and mixtures of polyhydric alcohols. Preferably, from 5% to 15% by weight of the total composition of polyhydric alcohol is used.
- the soap composition may also comprise up to 25% by weight of the total composition of a crystallization modifier, such as hydroxystearic acid, dimerized and/or trimerized fatty acid, elaidic acid, iso-stearic acid and their alkali metal soaps.
- a crystallization modifier such as hydroxystearic acid, dimerized and/or trimerized fatty acid, elaidic acid, iso-stearic acid and their alkali metal soaps.
- the use of hydrogenated monomer fraction ("isostearic acid") as obtained in the polymerization of unsaturated fatty acids is preferred (for a method of preparing such acid; see United States Patent US-A-2,812,342 (Peters)).
- the soap composition according to the present invention may also comprise up to 20% by weight of the total composition of hydrotropes, such as triethanolamine, a ine soaps and surfactants.
- hydrotropes such as triethanolamine, a ine soaps and surfactants.
- the functional additive may be selected from the group consisting of antioxidants, such as tocopherols, BHA, BHT and the like; chelating agents, such as EDTA and the like; colouring agents; deodorants; dyes; emollients, such as cosmetic oils; enzymes; foam boosters, which may be selected from anionic, a photeric, nonionic and certain cationic surfactants, such as sodium cocoyl isethionate, sodium lauryl ether sulphate and the like; foam stabilizers; germicides; lathering agents; moisturizers; optical dyes; pearlescers; perfumes; sequestering agents; skin conditioners, such as dimerized fatty acids; solvents such as propylene glycol, glycerol, sorbitol, and the like; stabilizers; superfatting agents, such as fatty acids; UV absorbers and mixtures of these functional additives.
- antioxidants such as tocopherols, BHA, BHT and the like
- the functional additives may be used in any desired quantity to effect the desired functional characteristics, and usually minor amounts from about 0.01% by weight up to 10% by weight are used. Some of the additives may be used in larger amounts, however.
- the moisture content of the soap can be adjusted to within the limits required for translucency and then the soap is subjected to mechanical working and shear e.g. in a Z-blade mixer, on a roller mill or in a cavity transfer mixer (preferably as described in European Patent
- the heat treatment according to the present invention may be applied to formed (translucent) soap bars or tablets, but it may also be applied to soap noodles before they are converted into the desired shape and size.
- the heat treatment is effected such that the core temperature of the soap reaches a value between 45° and 65°C, preferably from 55°C and 65°C.
- the heat treatment is effected by means of microwave heating using microwave ovens with a frequency of e.g. 915 MHz or 2450 MHz.
- the mechanical working and shear imparting treatment and the heat treatment are effected simultaneously.
- the present invention also relates to the translucent or transparent soap obtained by the process according to the present invention. This soap may be in the form of noodles or in finished tablet or bar form of regular or irregular shape and any required size. When in bar form, there may have been inserted into the bar a plastic toy, animal or other phantasy figure.
- the mixture of the sodium soap was brought into a mixer, and after mixing the composition was passed through standard soap manufacture apparatus in 30 to 45 minutes, care being taken that the temperature of the soap mass did not exceed 40-45°C
- the soap was extruded and converted, into bars and some of these were put into a standard microwave oven, operating at 2450 MHz, at a setting of 15% of the maximum power. In 10 seconds the core temperature of the bars was 60°C. At this moment the bars were taken out of the oven and allowed to cool to 20°C.
- An excellent transparent soap bar was obtained having the following translucency (TL) values:
- a soap composition was prepared of 60% by weight of sodium soap of tallow fatty acids, 20% by weight of sodium soap of palm kernel fatty acids, 4.2% by weight of sodium stearate and 10% by weight of sodium iso-stearate. Of this mixture 70.9% by weight was mixed with 4.2% by weight of sorbitol, 5.8% by weight of glycerol, 15% by weight of water and 2.5% by weight of free fatty acids. The soap mixture was converted into bars having a translucency value of 76.2% and then heated (both as described in Examples I-III) after which the bars had a translucency value of 105.5%
- a soap composition was prepared of 47.7% by weight of sodium soap of tallow fatty acids, 11.9% by weight of sodium soap of palm kernel fatty acids, 15% by weight of the sodium salt of laurylethersulphate having an average of 3 moles of ethylene oxide, 7% by weight of glycerol, 18% by weight of water and 0.4% by weight of sodium chloride.
- the soap mixture was converted into bars as described in Examples I-III, and these had a translucency value of 76.4%. After heating as described in Examples I-III, the translucency value was 89.8%.
- Example VI Example VI
- a soap composition was prepared as described in Example II, but now 1.5% by weight of perfume were added. After formation into bars, the translucency value was 17.2% and after the heat treatment as described in Example 2, the translucency value was 60.1%.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Emergency Medicine (AREA)
- Molecular Biology (AREA)
- Detergent Compositions (AREA)
- Cosmetics (AREA)
Abstract
A process of preparing transparent or translucent soap comprises subjecting a soap composition to mechanical working and shear to impart translucency, subsequently heating (preferably by microwave heating) the soap to a core temperature of 45 °C to 65 °C, preferably 55 °C to 65 °C, and cooling the soap. The soap composition comprises 60-80 % by weight of alkali metal soaps of C8-C24 fatty acids, 5-20 % by weight of at least one polyhydric alcohol and 5-20 % by weight of water (all percentages based on the total soap composition). Preferably the soap also comprises a sugar or sugar alcohol, like sorbitol; a crystallization modifier, such as isostearic acid; and a functional additive. Also the transparent or translucent soap has been claimed.
Description
Process for making transparent soaps
The present invention relates to a process of preparing transparent soaps in which a soap is subjected to mechanical working and shear. The invention also relates to the transparent soap thus obtained.
Transparent and translucent soaps have an aesthetic appeal to the consumer and have been associated with purity -and hence with "naturalness". The essential difference between transparent and translucent soap is related to the relative quality of the light transmitted. By "transparent" is understood having the property of transmitting light without appreciable scattering, so that objects placed behind a transparent soap bar are entirely visible and can easily be discerned.
By "translucent" is understood having the property of allowing light to pass through partially or diffusely so that objects placed behind a translucent soap bar cannot clearly be distinguished (therefore also called partly transparent or semi-transparent) .
In the present specification and the attached claims the translucency is evaluated by measuring the light transmission of a slice of soap having a thickness of 18.5 mm before and after the preparation according to the present invention, using a reflectometer according to Dr B. Lange, Type LMG 008. The result is expressed as a percentage of the light transmission of a matted glass standard. The transmission of the matted glass standard compared to air is 8.3% and this transmission of the standard is taken as 100%.
Although for coloured soap there is some dependence on the colour, this difference can be neglected for non-coloured soap bars or tablets.
There are two basic manufacturing methods for making translucent and/or transparent soaps, the one route is
called the "solvent method" and the other the "mechnical working" method.
In the "solvent method", a dried conventional type of toilet soap in solid form is dissolved in boiling ethanol, or the saponification is effected in an ethanol-water mixture. If a clear solution is obtained, the major part of the ethanol is removed by evaporation to form a clear, viscous soap solution. This is poured into moulds and cooled. The solidified soap is pressed out into the desired shape and is placed for many weeks in conditioning rooms. During conditioning more water and alcohol is evaporated and consequently the final product becomes firm. The. disadvantages of this process are the long duration of the process and all the disadvantages of working with volatile and toxic solvents, which also from an ecological point of view is disadvantageous.
Another method used is the so-called "semi-boiled" process, in which a suitable blend of fatty materials is reacted with a strong solution of sodium hydroxide in a closed mixing vessel. Only water vapour is allowed to escape and upon completion of the saponification process, the liberated glycerol is retained in the final soap. After addition of the required other ingredients, the final warm and viscous soap solution is poured into moulds for rapid cooling, which enhances transparency. Hereafter the products are shaped (stamped) and packaged.
The "mechanical working" methods involve some sort of intensive mechanical working or shearing of a cooled and partially dried soap base. It is usual to add effective amounts of crystallization inhibitors to the liquid soap before drying in order to enhance translucency. Translucency is only achieved after mechanical working or shearing to a considerable degree, e.g. by mixing in a Z- blade mixer, or by multiple milling using 3, 4 or 5-rolled steel mills, or by using a cavity transfer mixer. Such processes have been described in United States Patent
Specification US-A-2,970,116 (Lever Brothers Company) and European Patent Specification EP-B-0,090,649 (Unilever). One of the disadvantages of this method is that shear- sensitive additives under the prevailing conditions of temperature and pressure can be seriously reduced in quality, so that their performance in the final product is far from optimal. Moreover the bars obtained are translucent and usually not transparent and there are limitations in the production in that the soap needs extensive recycling over the production line in order to get the right temperature and the required amount of shear. Also the soap tends to stick to the stamping dies.
It has now been found during extensive experiments that the physical transition from opaque to transparent or vice versa constitutes a delicate equilibrium, which appears to be dependent on the soap formulation, on the amount of mechanical working and shear imparted to the soap, and in particular it has been found that a specific heat treatment (preferably after the mechanical working) of the translucent soap obtained will induce transparency in the translucent soap.
With regard to the soap formulation, the minimum requirement is the presence of alkali metal soaps of saturated and unsaturated monocarboxylic or fatty acids having from 8 to 24 carbon atoms, polyhydric alcohol and water. The presence of specific crystallization modifiers has also appeared to be very beneficial for the obtainable degree of transparency. The transparency can also noticeably be enhanced by the presence of some perfumes or fragrants. In some instances the degree of mechanical working can even be less, if certain perfumes are added to the formulation. With regard to the mechanical energy and shear imparted to the soap, it has been observed that the degree of mechanical working and shear should be such as to induce the optimal translucency and dependent on the soap
formulation the soap extrusion temperature should be from 40°C to 50°C.
The heat treatment according to the present invention given to the translucent soap preferably after mechanical working and shear is effected such that the temperature of the soap is brought to a core temperature between 45°C and 65°C, preferably between 55°C and 65°C.
The heat treatment is preferably effected by means of microwave heating, but it is also possible to effect the heat treatment already during the mechanical working.and high shear e.g. in a twin-screw extruder.
It is known from British Patent Specification GB-A- 2,203,752 (S. Fox) to manufacture a floating soap by incorporating a certain amount of water into soap and irradiating the shaped, water containing soap with microwave irradiation to a temperature of 100° to 200°C for a period of 1 to 3 minutes. There is no reference whatsoever to translucency or transparency, however. In United States Patent Specification US-A-4,885,108 (Colgate-Palmolive Comp.) soap bars are heated in a closed container (optionally after having removed brand names by shaving) to 100°-120°F (37°-49°C) for sufficient time to soften the bar, after which the softened bar is formed into its required shape and size. There is no indication of translucency or transparency, however, nor is there any suggestion to these properties.
The present invention therefore relates to a process of preparing transparent or translucent soap, in which a soap is subjected to sufficient mechanical working and shear so as to induce translucency, which is characterized by the steps of:
(a) subjecting a soap composition, comprising from 60% to 80% by weight of an alkali metal soap of
saturated and unsaturated monocarboxylic or fatty acids having from 8 to 24 carbon atoms, from 5% to 20% by weight of at least one polyhydric-alcohol and from 5% to 20% by weight of water (all percentages based on the total composition) to mechanical working and shear so as to impart translucency, and
(b) subjecting the translucent soap obtained to a heat treatment in which the temperature of the soap is brought to a core temperature of from 45°C to -65°C, and
(c) cooling the soap.
The soap composition may also comprise up to 20% by weight of the total composition of at least one sugar or at least one at least partially hydrogenated sugar, up to 25% by weight of the total composition of a crystallization modifier and up to 20% by weight of the total composition of hydrotropes, and surfactants. Finally, the soap composition may also comprise functional additives.
The soap comprises a mixture of soluble soaps and insoluble soaps. By "soluble" soaps are to be understood throughout this specification and the attached claims: the salts of saturated monocarboxylic acids or fatty acids having from 8 to 14 carbon atoms and additionally the salts of oleic acid and polyunsaturated monocarboxylic or fatty acids having from 8 to 22 carbon atoms. By "insoluble" soaps are to be understood throughout this specification and the attached claims: the salts of saturated monocarboxylic or fatty acids having from 16 to 24 carbon atoms. The salts of the monocarboxylic or fatty acids are preferably sodium salts, but small amounts of potassium soaps, ammonium soaps or alkanolamine soaps may also be present. The selection of the soaps depends on availability and cost, but suitable soaps are derived from coconut oil, palm kernel oil, tallow, hydrogenated tallow, palm oil, and the like and mixtures thereof. It is preferred to use soaps prepared
from 70-80% tallow and 20-30% coconut oil, palm oil and/or palm kernel oil.
The polyhydric alcohol to be used in the soap composition according to the present invention may be glycerol, polyethylene glycols, propylene glycol and mixtures of polyhydric alcohols. Preferably, from 5% to 15% by weight of the total composition of polyhydric alcohol is used.
The soap composition may also comprise up to 25% by weight of the total composition of a crystallization modifier, such as hydroxystearic acid, dimerized and/or trimerized fatty acid, elaidic acid, iso-stearic acid and their alkali metal soaps. The use of hydrogenated monomer fraction ("isostearic acid") as obtained in the polymerization of unsaturated fatty acids is preferred (for a method of preparing such acid; see United States Patent US-A-2,812,342 (Peters)).
Finally, the soap composition according to the present invention may also comprise up to 20% by weight of the total composition of hydrotropes, such as triethanolamine, a ine soaps and surfactants.
Also effective amounts of functional additives may be present. The functional additive may be selected from the group consisting of antioxidants, such as tocopherols, BHA, BHT and the like; chelating agents, such as EDTA and the like; colouring agents; deodorants; dyes; emollients, such as cosmetic oils; enzymes; foam boosters, which may be selected from anionic, a photeric, nonionic and certain cationic surfactants, such as sodium cocoyl isethionate, sodium lauryl ether sulphate and the like; foam stabilizers; germicides; lathering agents; moisturizers; optical dyes; pearlescers; perfumes; sequestering agents; skin conditioners, such as dimerized fatty acids; solvents such as propylene glycol, glycerol, sorbitol, and the like;
stabilizers; superfatting agents, such as fatty acids; UV absorbers and mixtures of these functional additives.
The functional additives may be used in any desired quantity to effect the desired functional characteristics, and usually minor amounts from about 0.01% by weight up to 10% by weight are used. Some of the additives may be used in larger amounts, however.
With regard to the mechanical working and shear imparting treatment, the moisture content of the soap can be adjusted to within the limits required for translucency and then the soap is subjected to mechanical working and shear e.g. in a Z-blade mixer, on a roller mill or in a cavity transfer mixer (preferably as described in European Patent
Specification EP-B-0,090,649) so as to impart the optimal translucency. But any other effective method, known per se may be used. The effect of the subsequent heat treatment according to the present invention is optimal, when the soap has received sufficient mechanical working and shear i.e. has reached optimal translucency allowed by the formulation.
The heat treatment according to the present invention may be applied to formed (translucent) soap bars or tablets, but it may also be applied to soap noodles before they are converted into the desired shape and size. In general the heat treatment is effected such that the core temperature of the soap reaches a value between 45° and 65°C, preferably from 55°C and 65°C. Preferably the heat treatment is effected by means of microwave heating using microwave ovens with a frequency of e.g. 915 MHz or 2450 MHz. In another embodiment the mechanical working and shear imparting treatment and the heat treatment are effected simultaneously.
The present invention also relates to the translucent or transparent soap obtained by the process according to the present invention. This soap may be in the form of noodles or in finished tablet or bar form of regular or irregular shape and any required size. When in bar form, there may have been inserted into the bar a plastic toy, animal or other phantasy figure.
The process according to the present invention is now illustrated by the following examples.
Examples I-III
Three soap compositions were prepared, starting with the following formulations (all percentages are percentages by weight) :
The mixture of the sodium soap was brought into a mixer, and after mixing the composition was passed through standard soap manufacture apparatus in 30 to 45 minutes, care being taken that the temperature of the soap mass did not exceed 40-45°C
The soap was extruded and converted, into bars and some of these were put into a standard microwave oven, operating at 2450 MHz, at a setting of 15% of the maximum power. In 10 seconds the core temperature of the bars was 60°C. At this moment the bars were taken out of the oven and allowed to cool to 20°C. An excellent transparent soap bar was obtained having the following translucency (TL) values:
Example IV
A soap composition was prepared of 60% by weight of sodium soap of tallow fatty acids, 20% by weight of sodium soap of palm kernel fatty acids, 4.2% by weight of sodium stearate and 10% by weight of sodium iso-stearate. Of this mixture 70.9% by weight was mixed with 4.2% by weight of sorbitol, 5.8% by weight of glycerol, 15% by weight of water and 2.5% by weight of free fatty acids. The soap mixture was converted into bars having a translucency value of 76.2% and then heated (both as described in Examples I-III) after which the bars had a translucency value of 105.5%
Example V
A soap composition was prepared of 47.7% by weight of sodium soap of tallow fatty acids, 11.9% by weight of sodium soap of palm kernel fatty acids, 15% by weight of the sodium salt of laurylethersulphate having an average of 3 moles of ethylene oxide, 7% by weight of glycerol, 18% by weight of water and 0.4% by weight of sodium chloride. The soap mixture was converted into bars as described in Examples I-III, and these had a translucency value of 76.4%. After heating as described in Examples I-III, the translucency value was 89.8%.
Example VI
A soap composition was prepared as described in Example II, but now 1.5% by weight of perfume were added. After formation into bars, the translucency value was 17.2% and after the heat treatment as described in Example 2, the translucency value was 60.1%.
Claims
1. A process of preparing transparent or translucent soap, in which a soap is subjected to sufficient mechanical working and shear so as to induce translucency, characterized by the steps of:
(a) subjecting a soap composition comprising from 60% to 80% by weight of an alkali metal soap of saturated and unsaturated monocarboxylic or fatty acids having from 8 to 24 carbon atoms, from 5% to 20% by weight of at least one polyhydric alcohol and from 5% to 20% by weight of water (all percentages being based on the total composition) to mechanical working and shear so as to impart translucency, and
(b) subjecting the translucent soap obtained to a heat treatment in which the temperature of the soap is brought to a core temperature of 45°C to 65°C, and
(c) cooling the soap.
2. A process according to Claim 1, in which in step (b) the core temperature of the soap is brought to 55°C to 65°C.
3. A process according to Claim l, in which in step (b) the heat treatment is effected by microwave heating.
4. A process according to Claim 1, in which steps (a) and (b) are effected simultaneously.
5. A process according to Claim 1, in which the soap composition is subjected to mechanical working and shear in an apparatus selected from the group consisting of Z-blade mixers, rolling mills and cavity transfer mixers.
6. A process according to Claim 1, in which the alkali metal soap of the fatty acids is prepared from a mixture of 70% to 80% by weight of tallow, and from 20% to 30% by weight of an oil selected from the group consisting of palm oil, coconut oil, palm kernel oil, and mixtures thereof.
7. A process according to Claim 1, in which the polyhydric alcohol is selected from the group consisting of glycerol, polyethylene glycols, propylene glycol, and mixtures thereof.
8. A process according to Claim 1, in which from 5% to 15% by weight based on the total composition of polyhydric alcohol is used.
9. A process according to Claim l, in which the soap composition comprises up to 20% by weight, based on the total composition, of at least one sugar or at least one at least partially hydrogenated sugar.
10. A process according to Claim 1, in which the soap composition comprises sorbitol.
11. A process according to Claim 1, in which the soap composition comprises up to 20% by weight, based on the total composition, of a crystallization modifier, selected from the group consisting of hydroxystearic acid, dimerized fatty acid, trimerized fatty acid, polymerized fatty acid, elaidic acid, isostearic acid, the alkali metal soaps of these acids, and mixtures thereof.
12. A process according to Claim 1, in which the soap composition comprises up to 20% by weight, based on the total composition, of hydrotrope.
13. A process according to Claim 1, in which the soap composition comprises an effective amount of a functional additive, selected from the group consisting of antioxidants, chelating agents, colouring agents, deodorants, dyes, emollients, enzymes, foam boosters, foam stabilizers, germicides, lathering agents, moisturizers, optical dyes, pearlescers, perfumes, sequestering agents, skin conditioners, solvents, stabilizers, superfatting agents, UV absorbers, and mixtures thereof.
14. A process according to Claim 1, in which the soap composition comprises up 10% by weight, based on the total composition of a functional additive.
15. A translucent or transparent soap, whenever prepared by the process as claimed in Claims 1-14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU73452/94A AU7345294A (en) | 1993-07-23 | 1994-06-30 | Process for making transparent soaps |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93202180 | 1993-07-23 | ||
EP93202180.1 | 1993-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995003391A1 true WO1995003391A1 (en) | 1995-02-02 |
Family
ID=8214002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1994/002152 WO1995003391A1 (en) | 1993-07-23 | 1994-06-30 | Process for making transparent soaps |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU7345294A (en) |
WO (1) | WO1995003391A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0709453A3 (en) * | 1994-10-13 | 1998-11-25 | Vioryl Chemical And Agricultural Industry Research S.A. | Method for the production of transparent soap |
EP0814151A3 (en) * | 1996-06-18 | 1999-11-10 | DALLI-WERKE WÄSCHE-UND KÖRPERPFLEGE GmbH & Co.KG. | Transparent soap composition and bars of soap produced therefrom |
EP1057888A3 (en) * | 2000-09-01 | 2001-05-02 | Shiseido Honey-Cake Industry Co., Ltd. | Transparent solid detergent composition |
WO2003010273A1 (en) * | 2001-07-23 | 2003-02-06 | Unilever Plc | Improved detergent bar and a process for manufacture |
JP2012087252A (en) * | 2010-10-21 | 2012-05-10 | Kao Corp | Framed soap |
WO2012039690A3 (en) * | 2010-09-21 | 2012-06-07 | Dalan Κiμυα Endüstri Anonim Şirketi | Performance booster particles |
US11419802B2 (en) | 2018-11-12 | 2022-08-23 | Conopco, Inc. | Extruded soap bar containing 12-hydroxystearic acid with enhanced antimicrobial efficacy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0090649A1 (en) * | 1982-03-29 | 1983-10-05 | Unilever N.V. | Detergent bar processing |
GB2126604A (en) * | 1982-09-02 | 1984-03-28 | Colgate Palmolive Co | Translucent antibacterial soap and process for manufacture thereof |
GB2203752A (en) * | 1987-04-21 | 1988-10-26 | Sarah Fox | Manufacture of floating soap |
US4885108A (en) * | 1986-08-12 | 1989-12-05 | Colgate-Palmolive Company | Method of shaping of soap bar |
-
1994
- 1994-06-30 AU AU73452/94A patent/AU7345294A/en not_active Abandoned
- 1994-06-30 WO PCT/EP1994/002152 patent/WO1995003391A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0090649A1 (en) * | 1982-03-29 | 1983-10-05 | Unilever N.V. | Detergent bar processing |
GB2126604A (en) * | 1982-09-02 | 1984-03-28 | Colgate Palmolive Co | Translucent antibacterial soap and process for manufacture thereof |
US4885108A (en) * | 1986-08-12 | 1989-12-05 | Colgate-Palmolive Company | Method of shaping of soap bar |
GB2203752A (en) * | 1987-04-21 | 1988-10-26 | Sarah Fox | Manufacture of floating soap |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0709453A3 (en) * | 1994-10-13 | 1998-11-25 | Vioryl Chemical And Agricultural Industry Research S.A. | Method for the production of transparent soap |
EP0814151A3 (en) * | 1996-06-18 | 1999-11-10 | DALLI-WERKE WÄSCHE-UND KÖRPERPFLEGE GmbH & Co.KG. | Transparent soap composition and bars of soap produced therefrom |
EP1057888A3 (en) * | 2000-09-01 | 2001-05-02 | Shiseido Honey-Cake Industry Co., Ltd. | Transparent solid detergent composition |
US6352965B1 (en) | 2000-09-01 | 2002-03-05 | Shiseido Co., Ltd. | Transparent solid detergent composition |
WO2003010273A1 (en) * | 2001-07-23 | 2003-02-06 | Unilever Plc | Improved detergent bar and a process for manufacture |
US6730643B2 (en) | 2001-07-23 | 2004-05-04 | Unilever Home & Personal Care Usa Division Of Conopco, Inc. | Detergent bar and a process for manufacture |
AU2002319277B2 (en) * | 2001-07-23 | 2005-02-17 | Unilever Plc | Improved detergent bar and a process for manufacture |
CZ297934B6 (en) * | 2001-07-23 | 2007-05-02 | Unilever N. V. | Transparent soap bar |
WO2012039690A3 (en) * | 2010-09-21 | 2012-06-07 | Dalan Κiμυα Endüstri Anonim Şirketi | Performance booster particles |
JP2012087252A (en) * | 2010-10-21 | 2012-05-10 | Kao Corp | Framed soap |
US11419802B2 (en) | 2018-11-12 | 2022-08-23 | Conopco, Inc. | Extruded soap bar containing 12-hydroxystearic acid with enhanced antimicrobial efficacy |
Also Published As
Publication number | Publication date |
---|---|
AU7345294A (en) | 1995-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2894912A (en) | Isethionate detergent bar | |
US5952289A (en) | Soap-based laundry bars with improved firmness | |
EP0385796B1 (en) | Detergent bar | |
US2970116A (en) | Soapmaking process | |
US5041234A (en) | Transparent soap bars which may contain short chain monohydric alcohols, and a method of making the same | |
US6730643B2 (en) | Detergent bar and a process for manufacture | |
JPH10504336A (en) | How to make transparent personal cleansing solids | |
US5417876A (en) | Transparent soap formulations and methods of making same | |
US5529714A (en) | Transparent soap formulations and methods of making same | |
AU2002319277A1 (en) | Improved detergent bar and a process for manufacture | |
WO1995003391A1 (en) | Process for making transparent soaps | |
RU2361907C2 (en) | Bars of fatty acid soap/fatty acid, which are processed and have good foam | |
JP3625828B2 (en) | Fragrance composition | |
EP0710276A1 (en) | Process for producing transparent soap material | |
Jungermann et al. | Glycerine in bar soaps | |
US6228822B1 (en) | Synthetic detergent base material and synthetic detergent bar produced therefrom | |
US5888953A (en) | Use of microwave energy to form soap bars | |
GB1570142A (en) | Detergent toilet bar bomposition and binder therefor | |
KR100435849B1 (en) | A semitransparent soap composition | |
IL29064A (en) | Detergent compositions | |
JPH09502469A (en) | Method for producing transparent soap material | |
JPH07122078B2 (en) | Transparent solid cleaning agent | |
JP2549076B2 (en) | Transparent soap composition | |
Jungermann | Glycerine in Bar Soaps Eric Jungermann Jungermann Associates, Inc., Phoenix, Arizona Beth Lynch Neutrogena Corporation, Los Angeles, California | |
JPH03167300A (en) | Transparent soap composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |