WO1995000875A1 - Optical laminated sheet and production thereof - Google Patents

Optical laminated sheet and production thereof Download PDF

Info

Publication number
WO1995000875A1
WO1995000875A1 PCT/JP1993/000876 JP9300876W WO9500875A1 WO 1995000875 A1 WO1995000875 A1 WO 1995000875A1 JP 9300876 W JP9300876 W JP 9300876W WO 9500875 A1 WO9500875 A1 WO 9500875A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sheet
resin
active energy
laminated sheet
Prior art date
Application number
PCT/JP1993/000876
Other languages
French (fr)
Japanese (ja)
Inventor
Rinjiro Ichikawa
Hiroshi Komori
Haruyuki Tsuboi
Original Assignee
Fujimori Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP03353496A priority Critical patent/JP3098303B2/en
Priority claimed from JP03353496A external-priority patent/JP3098303B2/en
Application filed by Fujimori Kogyo Co., Ltd. filed Critical Fujimori Kogyo Co., Ltd.
Priority to PCT/JP1993/000876 priority patent/WO1995000875A1/en
Publication of WO1995000875A1 publication Critical patent/WO1995000875A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/068Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using ionising radiations (gamma, X, electrons)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers

Definitions

  • the present invention relates to an optical laminated sheet having extremely excellent surface smoothness, particularly to an optical laminated sheet suitable for an electrode substrate for manufacturing a liquid crystal display panel.
  • the present invention also relates to a method for industrially advantageously producing such an optical laminated sheet. Background technology
  • Japanese Unexamined Patent Publication (Kokai) No. 63-71892 states that at least one side of a base material layer made of a sheet of a polycarbonate resin or the like and having a retardation value of 3 ⁇ or less has an aqueous anchor coat layer. After that, an electrode substrate for a liquid crystal display panel is shown in which a single-layer or multiple-layer protective layer made of a gas-permeable resin or a cured cross-linkable resin is provided on the anchor coat layer. .
  • Japanese Patent Application Laid-Open No. Sho 64-50021 discloses that a laminate of an air-permeable synthetic resin film layer and a crosslinked resin cured material layer has their respective air-permeable synthetic resin film layer surfaces facing each other.
  • An electrode substrate for a liquid crystal display panel having a configuration integrated and laminated via an adhesive layer in a state is shown.
  • Japanese Patent Application Laid-Open No. 640000/1988 discloses that a cross-linking agent capable of reacting with the air-permeable synthetic resin film layer on both sides of the air-permeable synthetic resin film layer formed by the casting film forming method.
  • Japanese Patent Application Laid-Open No. 2-137972 discloses that an alcohol-soluble ultraviolet-curable adhesive is provided on the resin layer side of a substrate sheet having a retardation value of 3 ⁇ or less having a resin layer having no solvent resistance.
  • a laminate sheet for laminating a liquid crystal display panel is shown in which a layer or a water-based thermosetting adhesive layer is laminated, and a releasable sheet is further laminated on the adhesive layer.
  • a sheet having a layer structure of a resin sheet such as polycarbonate, a Z anchor coating layer, a gas-resistant synthetic resin layer, and a Z-fuoxy ether-based crosslinked polymer layer is mentioned.
  • Japanese Patent Application Laid-Open No. 2-149898 / 1992 discloses that the electrode support film side of an electrode support film with a transparent electrode having a configuration in which a transparent electrode is provided on one side of a rollable electrode support film is lettered. It shows a liquid crystal cell substrate with a transparent electrode, which is laminated and integrated with a base material with a lightness value of 8 O nm or less and a light transmittance of 60% or more, and a resin film as an example of the electrode support film.
  • a transparent electrode such as ITO is formed on the crosslinked resin cured material layer, and an alignment film is further provided thereon. Assemble into a liquid crystal cell.
  • the liquid crystal sealed between the substrates is TN (twisted * nematic) liquid crystal, slight irregularities on the substrate surface on the side where the transparent electrode is formed will have little effect on the product quality. This is because a liquid crystal display panel assembled from a liquid crystal cell using TN liquid crystal is achromatic, and a panel is acceptable if the shading is clear.
  • the liquid crystal to be sealed between the substrates is STN (super-twisted nematic) liquid crystal
  • the STN liquid crystal can be used, for example, at 270 ° even though the gap between the substrates is only about 5 to 6 ⁇ m. Since the twist is only about a degree, even if there are slight irregularities on the surface of the substrate on the side where the transparent electrode is formed, the display will be colored purple or ⁇ and the screen will be very difficult to see. This was the biggest weakness of the liquid crystal display panel using the substrate.
  • the above-cited electrode substrate according to the present applicant's application has not sufficiently solved this problem.
  • the present invention provides an optical laminated sheet having extremely excellent surface smoothness, particularly an optical laminated sheet suitable for an electrode substrate for manufacturing a liquid crystal display panel. It is an object of the present invention to provide a method for industrially advantageously producing an optical laminated sheet. Disclosure of the invention
  • the optical laminated sheet of the present invention is a laminated sheet in which an active energy linearly curable resin cured layer (2) is provided directly or via an anchor coating layer on an optically isotropic substrate sheet (1).
  • the surface roughness of the free surface of the active energy linear curable resin cured layer (2) is 0.5 wm or less, the retardation value of the whole laminated sheet is 6 O nm or less, and the visible light transmittance is 6 0% or more.
  • the method for producing an optical laminated sheet of the present invention comprises the steps of: providing an optically isotropic base sheet (1) with or without an anchor coating layer; and a smoothing mold (3) having a smooth surface.
  • the resin liquid (2a) of the active energy ray-curable resin composition is supplied to the gap between the two, so that the resin liquid (2a) is sandwiched between the two layers, and then the active energy ray is applied to hold the resin liquid (2a).
  • the layer (2b) is cured to form an active energy ray-curable resin cured layer (2).
  • sheet means thin layers, and do not limit the thickness.
  • optically isotropic substrate sheet (1) examples include polycarbonate, polymethyl methacrylate, polyether sulfone, polysulfone, polyarylate, amorphous polyolefin, polyparabanic acid-based resin, and polyamide.
  • a crosslinked resin cured layer, an air-permeable resin layer, and the like may be laminated on the back side.
  • Examples of such a layer configuration include a base sheet layer, a base sheet layer, a Z base sheet layer, a base sheet layer, an air-permeable resin layer, a base sheet layer, a crosslinked resin cured layer, and a base sheet layer / There are air-permeable resin layer / crosslinked resin cured material layer, base sheet layer / air-permeable resin layer Z, air-permeable resin layer / base sheet layer, and the like.
  • an anchor coating layer or an adhesive layer Can be provided.
  • An anchor coating layer can be provided on the surface of the base sheet (1).
  • the substrate sheet (1) has a heat deformation temperature of 80 ° C or more.
  • the base sheet (1) is obtained by the casting method and the extrusion method, and its thickness is often about 30 urn to 3 mm.
  • examples of the crosslinkable resin in the crosslinked resin cured material layer include phenoxy ether type crosslinkable resins, epoxy resins, acrylic resins, acrylic epoxy resins, melamine resins, phenol resins, and urethane resins.
  • a particularly preferred resin among the crosslinkable resins is a phenoxy ether type polymer represented by the following chemical formula 1.
  • R 1 to R 6 are each hydrogen, a lower alkyl group having 1 to 3 carbon atoms or Br, R 7 is a lower alkylene group having 2 to 4 carbon atoms, m is an integer of 0 to 3, n Represents an integer of 20 to 300.
  • a cross-linking reaction of a polyfunctional compound as a cross-linking agent with the hydrogen portion of the hydroxyl group of the polymer gives a phenoxy ether-type cross-linked polymer. .
  • a crosslinking agent polyfunctional compound
  • a group having a high reactivity with a hydroxyl group for example, an isocyanate group, a carboxyl group, or a reactivity inducing group in a carboxyl group (for example, halide, Compounds having two or more active amides, active esters, acid anhydride groups, etc.)
  • polysocials are important.
  • acrylyl resins include compounds containing at least three or more acryloyloxy groups or Z and methylacryloyloxy groups in the molecule (hereinafter, polyfunctional (meth) acryloyloxy).
  • a polyfunctional unsaturated monomer containing at least 3 or more (meth) acryloyloxy groups in the molecule, at least 50% by weight based on the total unsaturated monomers,
  • it is a composition comprising an unsaturated monomer mixture containing 70% by weight, particularly preferably 90% by weight or more, and / or an initial radical reactant thereof.
  • gas-permeable resin constituting the gas-permeable resin layer examples include, for example, a polymer formed from a polymer containing 50 mol% or more of an acrylonitrile component, a bul alcohol component, or a vinylidene halide component.
  • a polymer having a hydroxyl group such as polyvinyl alcohol or a copolymer modified or grafted product thereof, and an ethylene-vinyl alcohol copolymer having an ethylene content of 15 to 50 mol% is important. .
  • the air-permeable resin layer is usually formed by a casting method, and has an oxygen permeability (measured according to AST D-1434-75) of 30 cc, 24 hr ⁇ m 2 ⁇ atm or less, especially 20 cc. / 24hr ⁇ m 2 ⁇ atm or less and still more 1 0 ccZ 24hr ⁇ m 2 ⁇ atm or less it is desirable.
  • the thickness of the air-permeable resin layer is suitably set in the range of 1 to 50 urn, particularly 2 to 20 ym.
  • the active energy linear curable resin constituting the active energy ray curable resin cured layer (2) includes a prepolymer or Z and a monomer having photopolymerizability, and other monofunctional or polyfunctional monomers as necessary.
  • a resin composition containing a seed polymer, a photopolymerization initiator, and a sensitizer is used.
  • examples of the photopolymerizable polymer include polyester acrylate, polyester urethane acrylate, epoxy acrylate, and polyol acrylate.
  • examples of the photopolymerizable monomer include monofunctional acrylate, Examples include bifunctional acrylates and trifunctional or higher acrylates.
  • epoxy acrylates having good physical properties after curing are particularly useful, and it is desirable to use at least some of them.
  • a phosphazene-based resin represented by the following chemical formula 2 is preferably used in addition to the above.
  • the active energy ray-curable resin is an ultraviolet-curable resin
  • usually a small amount of a photoinitiator or a photosensitizer is used in combination.
  • a photoinitiator various photocuring agents including acetate phenones, benzophenones, Michlerketone, benzyl, benzoin, benzoin ether, benzylketals, and thioxanthone are used.
  • Sensitizers include amines, getylaminoethyl methacrylate Various types of sensitizers, such as birds, are used.
  • the resin composition usually does not contain a solvent, but if necessary, a small amount of a solvent may be used in combination.
  • the thickness of the active energy ray-curable resin cured layer (2) can be set as appropriate; 220 im, especially 2 L: often L O / im.
  • the optical laminated sheet of the present invention is preferably produced by the following first method. That is, the resin liquid (2a) of the active energy ray-curable resin composition is provided in the gap between the base sheet (1) and the smoothing film made of a smooth film (3). The resin liquid (2a) is supplied so as to be sandwiched between both layers.
  • the base sheet (1) is supplied to the film forming roll (4a) in advance, and the smoothing mold material (3) is supplied to the film forming roll (4b) in advance, and both the film forming rolls (4a), ( The gap between 4b) is adjusted to a predetermined value.
  • the ports (4a) and (4b) for film formation should be configured so that they can be kept warm if necessary.
  • the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
  • active energy include ultraviolet rays and electron beams.
  • the integrated light quantity and dose during irradiation with active energy are set to the optimal range in consideration of the thickness of the active energy ray-curable resin cured layer (2), etc., and the smooth peeling property of the smoothed mold material (3) is determined.
  • the solvent resistance of the active energy ray-curable resin cured layer (2) should be ensured.
  • a laminate composed of the base sheet (1) Z-active energy ray-curable resin cured layer (2) / smoothed mold material (3) is obtained, and the laminate is smoothed at any subsequent stage.
  • the coating material (3) is peeled off to obtain a laminated sheet comprising a base material sheet (1) a cured Z-active energy ray-curable resin layer (2).
  • the smoothing mold material (3) include biaxially stretched polyester films such as biaxially stretched polyethylene terephthalate sheet, biaxially stretched polyethylene terephthalate sheet, and biaxially stretched polyethylene naphthalate sheet; For example, a biaxially oriented polypropylene film is used.
  • a biaxially oriented polyethylene terephthalate film is particularly important.
  • the surface has been subjected to corona discharge or flame treatment, it will be difficult to peel off the smoothing mold material (3) in the subsequent steps, so care should be taken to use a material that is not subjected to such treatment. .
  • These smooth films are required to have a surface roughness of 0.15 wm or less, preferably 0.05 ym or less, and even 0.01 or less, and have a surface roughness of 0.15 ⁇ . When it becomes too large, it becomes impossible to obtain an optical laminated sheet having the intended smoothness.
  • the surface smoothness is significantly improved by the biaxial stretching, so that the smoothness can be increased to the utmost.
  • the second method for producing the optical laminated sheet of the present invention comprises the steps of providing an active energy to one of the base sheet (1) provided with or without an anchor coating layer or the smoothed mold material (3) formed of a smooth film.
  • the resin liquid (2a) of the line-curable resin composition is cast, and while the casting layer is covered with the smoothing material (3) or the base sheet (1), the holding layer ( While controlling the thickness of 2b), the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
  • the third method for producing the optical laminated sheet of the present invention comprises the steps of: forming an active energy on a base sheet (1) provided with or without an anchor coating layer.
  • the resin liquid (2a) of the lugi straight-curing resin composition is cast, and the smoothing glass as the mold material (3) is pressed against the casting layer while the thickness of the sandwiching layer (2b) is maintained.
  • This is a method in which the sandwiching layer (2b) is cured by irradiation with active energy rays while controlling the thickness of the active energy ray-curable resin cured layer (2). In this method, the used glass is used repeatedly.
  • the surface roughness of the free surface of the active energy ray-curable resin cured layer (2) of the laminated sheet obtained by each of the above methods may be 0.5% depending on the degree of surface smoothness of the smoothed mold material (3). ⁇ or less, preferably 0.2 wni or less, more preferably 0.1 wm or less. Generally, the surface roughness of a melt-extruded film is 3 to 4 ⁇ m for a 100-m thick film, and the surface roughness of a cast film is 2-3 ⁇ m for a 100-thick film. The surface roughness of the free surface of the cured layer (2) is so small that it can be said that it is not common sense.
  • the active energy ray-curable resin cured layer (2) of the laminated sheet also has excellent heat resistance, solvent resistance, and transparent electrode forming property.
  • the laminated sheet of the present invention has an overall retardation value of 6 O nm or less, preferably 3 O nm or less, and a visible light transmittance of 60% or more, preferably 7 Desirably, it is 0% or more.
  • a transparent electrode is provided on the active energy ray-curable resin cured layer (2) of the laminated sheet having the layer structure composed of the base sheet (1) Z active energy ray-curable resin cured layer (2) obtained above. If an alignment film is formed thereon, a liquid crystal cell substrate can be manufactured.
  • Transparent electrodes are formed by vacuum deposition, sputtering, ion plating, metal spraying, metal plating, chemical vapor deposition, The Leh method is used, and the sputtering method is particularly important.
  • the material of the transparent electrode metals such as Sn, In, Ti, Pb, and Tb or oxides thereof are mainly used, and the layer thickness of the transparent electrode is at least 100 angstroms, and furthermore, Usually, it is set to 200 angstrom or more.
  • the surface smoothness of the free surface of the active energy ray-curable resin cured layer (2) located on the surface of the laminated sheet is extremely high. Even when it is used as an electrode substrate of a liquid crystal cell to be sealed, it does not cause the screen to be very hard to see because the display is colored in purple or green.
  • the display is colored purple, green, or the like, and the screen is extremely dark. It does not cause the situation to be difficult to see.
  • the present invention has inferior display characteristics even if a plastics substrate is used in place of a glass substrate for the purpose. There is no such thing.
  • FIG. 1 is a process diagram showing an example of a production process of the optical laminated sheet of the present invention.
  • the meanings of the reference numerals in the figure are as follows. (1)... Base sheet,
  • parts means parts by weight.
  • FIG. 1 is a process chart showing an example of a production process of the optical laminated sheet of the present invention.
  • (5) is a tank
  • (6) is a jacket
  • (7) a lip-shaped discharge port
  • (4a) and (4b) are a pair of film forming rolls.
  • (8) is an ultraviolet irradiation device.
  • (9) is a nip roll
  • (10) is a release roll for releasing the laminated sheet (S).
  • one side of a polycarbonate sheet is water-soluble and quaternized.
  • An ester urethane-based anchor coating agent is applied and dried to form a 0.5 ⁇ m-thick anchor coating layer.
  • ethylene-vinyl having an ethylene content of 32 mol% is added.
  • phenoxy ether resin manufactured by Toto Kasei Co., Ltd.
  • 40 parts of methyl ethyl ketone 20 parts of cellosolve acetate, and tolylene diisocyanate
  • a curable resin composition consisting of 40 parts of a 75% solution of an adduct with trimethylolpropane (Coronet L, manufactured by Nippon Polyurethane Co., Ltd.) was applied using an applicator, and was applied at 8 CTC. After drying for 4 minutes, the mixture was heated at 130 ° C. for 20 minutes to form a phenoxy ether resin-based crosslinked resin cured material layer having a thickness of 10 °.
  • a photoisotropic sheet ( ⁇ ) having a layer structure of the base sheet (1) a gas-permeable resin layer and a crosslinked resin cured material layer was obtained.
  • a resin solution (2a) of an active energy ray-curable resin composition was prepared by adding 1 part of benzophenone to 100 parts of epoxyacrylic resin “V-254PA” manufactured by Shin-Tetsu Iron & Chemicals Co., Ltd. .
  • This resin liquid (2a) was charged into a tank (5), a heating medium was sent to a jacket (6) to keep the content at about 30 ° C, and deaerated. Then, pressure was applied to the upper space of the tank (5), and the resin liquid (2a) was discharged from the discharge port (7) into the gap between the film forming rolls (4a) and (4b).
  • the film-forming rolls (4a) and (4b) are supplied with the above-mentioned optically isotropic sheet ( ⁇ ) and the smoothing mold material (3) in advance, respectively.
  • the resin discharged from the discharge roller (7) The liquid (2a) was sandwiched between the surface of the base sheet (1) of the optically isotropic sheet ( ⁇ ) and the smooth surface of the smoothing mold member (3) so as to form a sandwiching layer (2b).
  • the sandwiched sheet after passing through the film forming rolls (4a) and (4b) was irradiated with ultraviolet light by an ultraviolet irradiation device (8) under the following conditions, and then the smoothing mold material (3) was peeled off.
  • the sandwiching layer (2b) was cured by the irradiation of ultraviolet rays, and became an active energy ray-curable resin cured layer (2).
  • a laminated sheet (S) having a layer configuration of the active energy ray-curable resin cured layer (2) and the Z-light isotropic sheet ( ⁇ ) was obtained.
  • the peeling and removal of the smoothing mold material (3) may be performed at a later date after being wound on a winder once instead of immediately after the ultraviolet irradiation.
  • Table 1 shows the conditions and results. The meanings of the evaluation items are as follows.
  • Thickness is the thickness of the formed energy ray-curable resin cured layer (2). • Peelability Smoothness Smooth peeling of biaxially stretched polyethylene terephthalate film as mold material (3). ( ⁇ : good, X : bad)
  • the surface smoothness of the free surface of the active energy ray-curable resin cured layer (2) is measured by a non-contact type surface roughness meter using light interference.
  • the laminated sheet (S) was immersed in dimethyl acetate amide at 44 ⁇ 1 ° C for 5 minutes to observe the dissolution of the active energy ray-curable resin cured layer (2). ( ⁇ : No abnormality, X: Dissolution) Table 1
  • the thickness of the cured sheet (2) of the active energy linear curable resin (2) of No. 1 No. 4 laminated sheet (S) obtained above was sputtered.
  • a transparent electrode consisting of a 500 angstrom IT0 layer was directly formed.
  • an alignment film was formed and rubbed, a liquid crystal cell was assembled, and a retardation plate and a polarizing plate were laminated by a conventional method to produce a liquid crystal display panel.
  • the obtained liquid crystal display panel showed no coloration in the display, and had performance comparable to that of a liquid crystal display panel using glass as a substrate.
  • Example 1 was repeated except that a polycarbonate sheet (polyester sheet (manufactured by Kaneka Chemical Co., Ltd., thickness 100 oo un !, letter de-tion value: 15 mn)) was used instead of the polycarbonate sheet as the base sheet (1).
  • An optically isotropic sheet ( ⁇ ) was obtained in the same manner as in 1.
  • a resin solution (2a) of an active energy ray-curable resin composition was prepared by adding 1 part of benzophenone to 100 parts of a phosphazene-based curable resin “Idemitsu PPZ” manufactured by Idemitsu Petrochemical Co., Ltd.
  • Example 1 was repeated except that the above-mentioned optically isotropic sheet (II) and the resin liquid (2a) were used.
  • Table 2 shows the conditions and results.
  • Example 1 No .:! To No. 4, the base sheet of the optically isotropic sheet ( ⁇ ) was coated on the surface (1) with a water-soluble quaternized ester and a urethane anchor coat.
  • Example 1 was repeated except that a coating agent was applied and dried to provide an anchor coating layer having a thickness of 0.5 wm, and the resin liquid (2a) was brought into contact with the surface on the anchor coating layer side.
  • a coating agent was applied and dried to provide an anchor coating layer having a thickness of 0.5 wm, and the resin liquid (2a) was brought into contact with the surface on the anchor coating layer side.
  • the resin liquid (2a) of Example 1 was cast on the surface of the base sheet (1) of the optically isotropic sheet (1) of Example 1, and the smoothed mold material (3) was added to the casting layer.
  • Ultraviolet irradiation was performed while controlling the thickness of the sandwiching layer (2b) to 5.0 wm while pressing the smoothed glass having a surface roughness of 0.05 as the above), and then the glass was peeled off.
  • the surface roughness of the active energy ray-curable resin cured layer (2) surface of the obtained laminated sheet (S) was not more than Q.lwm.
  • the optical laminated sheet obtained by the method of the present invention is particularly important as an electrode substrate for manufacturing a liquid crystal display panel, but is also applicable to applications such as retardation plate members, polarizing plate members, optical disks, and optical cards. can do.

Abstract

A process for producing an optical laminated sheet by supplying a resin fluid (2a) comprising an actinic-radiation-curable resin composition into a gap between a base sheet (1) made of polycarbonate, polyarylate or the like and a smoothening template material (3) having a smooth surface to thereby form an interposed layer (2b) and curing the layer (2b) by irradiating with an actinic radiation to thereby form an actinic-radiation-cured resin layer (2). The template material (3) usable herein includes a biaxially oriented polyethylene terephthalate film which has a surface roughness of 0.004 νm and does not cause corona discharge. As a result, the surface roughness of a free surface of the cured resin layer (2) can be reduced to, for example, 0.1 νm or less.

Description

曰月糸田 ¾  Say 糸
光学用積層シートおよびその製造法 技 術 分 野  Optical laminated sheet and its manufacturing method
本発明は、 表面平滑性の極めてすぐれた光学用積層シート、 殊に 液晶表示パネル製造用の電極基板に適した光学用積層シー卜に関す るものである。 またそのような光学用積層シートを工業上有利に製 造する方法に関するものである。 背 景 技 術  The present invention relates to an optical laminated sheet having extremely excellent surface smoothness, particularly to an optical laminated sheet suitable for an electrode substrate for manufacturing a liquid crystal display panel. The present invention also relates to a method for industrially advantageously producing such an optical laminated sheet. Background technology
〈従来の技術〉  <Conventional technology>
液晶表示用透明電極の基板としては、 従来はガラスが用いられて いたが、 薄型にできないこと、 耐衝撃性が劣ること、 量産化しにく いことなどの問題点があるため、 最近ではブラスチックス基板を用 いることが多くなつており、 本出願人においても以下に述べるよう ないくつかの出願を行っている。  Conventionally, glass has been used as a substrate for transparent electrodes for liquid crystal displays.However, blastics have recently been used due to problems such as the inability to be made thin, poor impact resistance, and difficulty in mass production. The use of substrates is increasing, and the applicant has also filed several applications as described below.
たとえば、 特開昭 6 3 - 7 1 8 2 9号公報には、 ポリカーボネ一 ト系樹脂等のシー卜からなるレターデ一ション値 3 Ο ηιη以下の基材 層の少なく とも片面に水性アンカーコート層を設けた後、 そのアン カーコ一卜層の上に耐透気性樹脂または および架橋性樹脂硬化物 からなる単層または複層の保護層を設けた液晶表示パネル用電極基 板が示されている。  For example, Japanese Unexamined Patent Publication (Kokai) No. 63-71892 states that at least one side of a base material layer made of a sheet of a polycarbonate resin or the like and having a retardation value of 3Οηιη or less has an aqueous anchor coat layer. After that, an electrode substrate for a liquid crystal display panel is shown in which a single-layer or multiple-layer protective layer made of a gas-permeable resin or a cured cross-linkable resin is provided on the anchor coat layer. .
特開昭 6 4 - 5 0 0 2 1号公報には、 耐透気性合成樹脂フィルム 層と架橋性樹脂硬化物層との積層体同士が、 それぞれの耐透気性合 成樹脂フィルム層面が対向する状態で接着剤層を介して積層一体化 された構成を有する液晶表示パネル用電極基板が示されている。 特開昭 6 4 - 5 0 0 2 2号公報には、 流延製膜法により形成され た耐透気性合成樹脂フィルム層の両面に、 その耐透気性合成樹脂 フィルム層と反応しうる架橋剤を使用した架橋性樹脂硬化物層を流 延法により直接形成させるようにした液晶表示パネル用電極基板の 製造法が示されている。 Japanese Patent Application Laid-Open No. Sho 64-50021 discloses that a laminate of an air-permeable synthetic resin film layer and a crosslinked resin cured material layer has their respective air-permeable synthetic resin film layer surfaces facing each other. An electrode substrate for a liquid crystal display panel having a configuration integrated and laminated via an adhesive layer in a state is shown. Japanese Patent Application Laid-Open No. 640000/1988 discloses that a cross-linking agent capable of reacting with the air-permeable synthetic resin film layer on both sides of the air-permeable synthetic resin film layer formed by the casting film forming method. A method for manufacturing an electrode substrate for a liquid crystal display panel in which a cured crosslinkable resin layer is formed directly by a casting method using the method described above.
特開平 2 - 1 3 7 9 2 2号公報には、 耐溶剤性を有しない樹脂層 を有するレターデーショ ン値 3 Ο ηιη以下の基材シー卜の樹脂層側 に、 アルコール可溶性紫外線硬化型接着剤層または水系熱硬化型接 着剤層を積層し、 さらにその接着剤層上に剥離性シー卜を積層した 液晶表示パネル製造用の貼着型積層シー卜が示されており、 基材 シートの例として、 ポリカーボネー卜等の樹脂シー卜 Zアンカー コーティ ング層ノ耐透気性合成樹脂層 Zフユノキシエーテル系架橋 重合体層の層構成を有するシー卜があげられている。  Japanese Patent Application Laid-Open No. 2-137972 discloses that an alcohol-soluble ultraviolet-curable adhesive is provided on the resin layer side of a substrate sheet having a retardation value of 3ηηιη or less having a resin layer having no solvent resistance. A laminate sheet for laminating a liquid crystal display panel is shown in which a layer or a water-based thermosetting adhesive layer is laminated, and a releasable sheet is further laminated on the adhesive layer. As an example, a sheet having a layer structure of a resin sheet such as polycarbonate, a Z anchor coating layer, a gas-resistant synthetic resin layer, and a Z-fuoxy ether-based crosslinked polymer layer is mentioned.
特開平 2 - 1 4 9 8 1 9号公報には、 ロール状に巻回可能な電極 支持フィルムの片面に透明電極を設けた構成を有する透明電極付き 電極支持フィルムの電極支持フィルム側を、 レターデ一ション値が 8 O nm以下、 光線透過率が 6 0 %以上の母材に貼着により積層一体 化した透明電極付き液晶セル基板が示されており、 電極支持フィル ムの例として、 樹脂フィルム層 Zアンカーコーティング層 架橋性 樹脂硬化物層、 樹脂フィルム層 アンカーコーティング層/耐透気 性合成樹脂フィルム層 Z架橋性樹脂硬化物層、 架橋性樹脂硬化物層 Z耐透気性合成樹脂フィルム層/アンカ一コーティ ング層/樹脂 フィルム層 アンカーコーティ ング層 Z耐透気性合成樹脂フィルム 層 架橋性樹脂硬化物層、 架橋性樹脂硬化物層 耐透気性合成樹脂 フィルム層 接着剤層 Z耐透気性合成樹脂フィルム層 架橋性樹脂 硬化物層などの層構成を有するフィルムがあげられている。 〈発明が解決しょうとする課題〉 Japanese Patent Application Laid-Open No. 2-149898 / 1992 discloses that the electrode support film side of an electrode support film with a transparent electrode having a configuration in which a transparent electrode is provided on one side of a rollable electrode support film is lettered. It shows a liquid crystal cell substrate with a transparent electrode, which is laminated and integrated with a base material with a lightness value of 8 O nm or less and a light transmittance of 60% or more, and a resin film as an example of the electrode support film. Layer Z anchor coating layer Crosslinkable resin cured layer, resin film layer Anchor coating layer / air-permeable synthetic resin film layer Z cross-linked resin cured layer, crosslinked resin cured layer Z Air-permeable synthetic resin film layer / Anchor coating layer / resin film layer Anchor coating layer Z Air-permeable synthetic resin film layer Cross-linked resin cured product layer, Cross-linked resin cured product layer Air-permeable synthetic resin film layer Adhesive layer Z A film having a layer structure such as an air-permeable synthetic resin film layer, a cross-linkable resin cured product layer, and the like is mentioned. <Problems to be solved by the invention>
上にあげたシート状基板を液晶表示パネル製造用の電極基板とし て用いる場合は、 架橋性樹脂硬化物層上に I T O等の透明電極を形 成させ、 さらにその上に配向膜を設けてから、 液晶セルに組み立て る。 この場合、 基板間に封じ込める液晶が T N (ツイステド *ネマ チック) 液晶である場合には、 透明電極形成側の基板表面の多少の 凹凸は製品品質にほとんど影響を及ぼさない。 というのは、 T N 液晶を用いた液晶セルから組み立てた液晶表示パネルは無彩色で あって、 濃淡さえはっきりすればパネルとして合格となるからであ る。  When the above-mentioned sheet substrate is used as an electrode substrate for manufacturing a liquid crystal display panel, a transparent electrode such as ITO is formed on the crosslinked resin cured material layer, and an alignment film is further provided thereon. Assemble into a liquid crystal cell. In this case, if the liquid crystal sealed between the substrates is TN (twisted * nematic) liquid crystal, slight irregularities on the substrate surface on the side where the transparent electrode is formed will have little effect on the product quality. This is because a liquid crystal display panel assembled from a liquid crystal cell using TN liquid crystal is achromatic, and a panel is acceptable if the shading is clear.
しかしながら、 基板間に封じ込める液晶が S T N (スーパ一 * ッ イステド · ネマチック) 液晶である場合には、 基板間の間隙が 5〜 6 u m 程度にすぎないにもかかわらず S T N液晶によりたとえば 2 7 0 ° 程度のツイストがなされるため、 透明電極形成側の基板表 面にわずかの凹凸があっても表示に紫、 綠などの色がついて画面が 非常に見にく くなるという事態を生じ、 この点がプラスチックス基 板を用いた液晶表示パネルの最大の弱点となっていた。 上に引用し た本出願人の出願にかかる電極基板も、 この問題点については充分 な解決がなされていなかった。  However, if the liquid crystal to be sealed between the substrates is STN (super-twisted nematic) liquid crystal, the STN liquid crystal can be used, for example, at 270 ° even though the gap between the substrates is only about 5 to 6 μm. Since the twist is only about a degree, even if there are slight irregularities on the surface of the substrate on the side where the transparent electrode is formed, the display will be colored purple or 綠 and the screen will be very difficult to see. This was the biggest weakness of the liquid crystal display panel using the substrate. The above-cited electrode substrate according to the present applicant's application has not sufficiently solved this problem.
本発明は、 このような背景下において、 表面平滑性の極めてすぐ れた光学用積層シート、 殊に液晶表示パネル製造用の電極基板に適 した光学用積層シートを提供すること、 およびそのような光学用積 層シートを工業上有利に製造する方法を提供することを目的とする ものである。 発 明 の 開 示 本発明の光学用積層シートは、 光等方性を有する基材シート (1 ) 上に直接またはアンカーコーティ ング層を介して活性エネルギ一線 硬化型樹脂硬化層(2 ) を設けた積層シートであって、 前記活性エネ ルギ一線硬化型樹脂硬化層(2 ) の自由面の表面粗度が 0. 5 w m 以下 であり、 積層シート全体のレターデーシヨ ン値が 6 O nm以下、 可視 光線透過率が 6 0 %以上であることを特徴とするものである。 - また本発明の光学用積層シー卜の製造法は、 アンカーコーティ ン グ層を設けまたは設けない光等方性を有する基材シート (1 ) と平滑 面を有する平滑化铸型材(3) との間隙に活性エネルギー線硬化型樹 脂組成物の樹脂液(2a)を供給して該樹脂液(2a)が両者間に層状に挟 持されるようにし、 ついで活性エネルギー線の照射によりその挟持 層(2b)を硬化させて活性エネルギー線硬化型樹脂硬化層(2 ) となす ことを特徴とするものである。 Under such a background, the present invention provides an optical laminated sheet having extremely excellent surface smoothness, particularly an optical laminated sheet suitable for an electrode substrate for manufacturing a liquid crystal display panel. It is an object of the present invention to provide a method for industrially advantageously producing an optical laminated sheet. Disclosure of the invention The optical laminated sheet of the present invention is a laminated sheet in which an active energy linearly curable resin cured layer (2) is provided directly or via an anchor coating layer on an optically isotropic substrate sheet (1). The surface roughness of the free surface of the active energy linear curable resin cured layer (2) is 0.5 wm or less, the retardation value of the whole laminated sheet is 6 O nm or less, and the visible light transmittance is 6 0% or more. Further, the method for producing an optical laminated sheet of the present invention comprises the steps of: providing an optically isotropic base sheet (1) with or without an anchor coating layer; and a smoothing mold (3) having a smooth surface. The resin liquid (2a) of the active energy ray-curable resin composition is supplied to the gap between the two, so that the resin liquid (2a) is sandwiched between the two layers, and then the active energy ray is applied to hold the resin liquid (2a). The layer (2b) is cured to form an active energy ray-curable resin cured layer (2).
以下本発明を詳細に説明する。 なお 「シート」 、 「フィルム」 、 「層」 とあるのはいずれも薄層物という意味であり、 厚さを限定す るものではない。  Hereinafter, the present invention will be described in detail. The terms “sheet”, “film”, and “layer” all mean thin layers, and do not limit the thickness.
光等方性を有する基材シート (1 ) としては、 ポリカーボネー卜、 ポリメチルメタク リ レー卜、 ポリエーテルスルホン、 ポリスルホ ン、 ポリアリ レー 卜、 アモルファスポリオレフイ ン、 ポリパラバン 酸系樹脂、 ポリアミ ドなどがあげられ、 その背面側に架橋性樹脂硬 化物層、 耐透気性樹脂層などが積層されていてもよい。 そのような 層構成の例は、 基材シート層、 基材シート層 Z基材シート層、 基材 シート層 耐透気性樹脂層、 基材シート層 架橋性樹脂硬化物層、 基材シート層/耐透気性樹脂層/架橋性樹脂硬化物層、 基材シー卜 層/耐透気性樹脂層 Z耐透気性樹脂層/基材シート層などである。 なお積層構成の場合は、 層間にアンカーコーティ ング層や接着剤層 を設けることができる。 また基材シー ト (1 ) の表面にはアンカー コーティ ング層を設けることもできる。 Examples of the optically isotropic substrate sheet (1) include polycarbonate, polymethyl methacrylate, polyether sulfone, polysulfone, polyarylate, amorphous polyolefin, polyparabanic acid-based resin, and polyamide. A crosslinked resin cured layer, an air-permeable resin layer, and the like may be laminated on the back side. Examples of such a layer configuration include a base sheet layer, a base sheet layer, a Z base sheet layer, a base sheet layer, an air-permeable resin layer, a base sheet layer, a crosslinked resin cured layer, and a base sheet layer / There are air-permeable resin layer / crosslinked resin cured material layer, base sheet layer / air-permeable resin layer Z, air-permeable resin layer / base sheet layer, and the like. In the case of a laminated structure, an anchor coating layer or an adhesive layer Can be provided. An anchor coating layer can be provided on the surface of the base sheet (1).
基材シー 卜 (1 ) は熱変形温度が 8 0 °C以上であることが望まし い。 基材シー ト (1 ) は流延法ゃ押出法によ り得られ、 その厚さは 3 0 u rn 〜 3 mm程度とすることが多い。  It is desirable that the substrate sheet (1) has a heat deformation temperature of 80 ° C or more. The base sheet (1) is obtained by the casting method and the extrusion method, and its thickness is often about 30 urn to 3 mm.
上記中、 架橋性樹脂硬化物層における架橋性樹脂としては、 フエ ノキシエーテル型架橋性樹脂、 エポキシ樹脂、 アクリル樹脂、 ァク リルエポキシ樹脂、 メラミン樹脂、 フエノール樹脂またはウレタン 樹脂などがあげられる。  In the above, examples of the crosslinkable resin in the crosslinked resin cured material layer include phenoxy ether type crosslinkable resins, epoxy resins, acrylic resins, acrylic epoxy resins, melamine resins, phenol resins, and urethane resins.
架橋性樹脂の中で特に好ましい樹脂は、 下記の化 1 で示される フエノキシエーテル型重合体である。  A particularly preferred resin among the crosslinkable resins is a phenoxy ether type polymer represented by the following chemical formula 1.
R 1 R 1
(化 1 )
Figure imgf000007_0001
(Formula 1)
Figure imgf000007_0001
R '  R '
(式中、 R 1 〜R 6 は、 それぞれ水素、 炭素数 1〜3の低級アルキ ル基または B r 、 R 7 は炭素数 2〜4の低級アルキレン基、 mは 0〜3の整数、 nは 2 0 ~ 3 0 0の整数をそれぞれ意味する。 ) この重合体の水酸基の水素部分に架橋剤である多官能性化合物を 架橋反応させると、 フヱノキシエーテル型架橋重合体が得られる。 架橋重合体を得るために反応させる架橋剤 (多官能性化合物) とし ては、 水酸基との反応活性が高い基、 例えば、 イソシァネート基、 カルボキシル基、 カルボキシル基における反応性誘導基 (たとえば ハライ ド、 活性アミ ド、 活性エステル、 酸無水物基等) 、 メルカプ ト等を同一または異なって 2以上有する化合物などが用いられ、 特にポリィソシァネー卜が重要である。 (Wherein, R 1 to R 6 are each hydrogen, a lower alkyl group having 1 to 3 carbon atoms or Br, R 7 is a lower alkylene group having 2 to 4 carbon atoms, m is an integer of 0 to 3, n Represents an integer of 20 to 300.) A cross-linking reaction of a polyfunctional compound as a cross-linking agent with the hydrogen portion of the hydroxyl group of the polymer gives a phenoxy ether-type cross-linked polymer. . As a crosslinking agent (polyfunctional compound) to be reacted to obtain a crosslinked polymer, a group having a high reactivity with a hydroxyl group, for example, an isocyanate group, a carboxyl group, or a reactivity inducing group in a carboxyl group (for example, halide, Compounds having two or more active amides, active esters, acid anhydride groups, etc.) In particular, polysocials are important.
上記のうちァクリル樹脂としては、 分子中に少なく とも 3個以上 のァク リロイル才キシ基または Zおよびメ夕ァクリロイルォキシ基 を含有する化合物 (以下、 多官能 (メタ) ァクリロイルォキシ基含 有化合物という) を主成分とする多官能不飽和単量体または およ びその初期ラジカル反応物を主成分とする組成物をあげることがで きる。 特に好ましいのは、 分子中に少なく とも 3個以上の (メタ) ァクリロイルォキシ基を含有する多官能不飽和単量体を、 全不飽和 単量体に対して 5 0重量%以上、 好ましくは 7 0重量%、 特に好ま しくは 9 0重量%以上含有する不飽和単量体混合物または/および その初期ラジカル反応物から成る組成物である。  Among the above, acrylyl resins include compounds containing at least three or more acryloyloxy groups or Z and methylacryloyloxy groups in the molecule (hereinafter, polyfunctional (meth) acryloyloxy). A polyfunctional unsaturated monomer whose main component is a compound containing an xyl group) and a composition whose main component is an initial radical reactant thereof. Particularly preferred is a polyfunctional unsaturated monomer containing at least 3 or more (meth) acryloyloxy groups in the molecule, at least 50% by weight based on the total unsaturated monomers, Preferably, it is a composition comprising an unsaturated monomer mixture containing 70% by weight, particularly preferably 90% by weight or more, and / or an initial radical reactant thereof.
耐透気性樹脂層を構成する耐透気性樹脂としては、 たとえば、 ァク リ ロ二ト リル成分、 ビュルアルコール成分またはハ口ゲン化 ビニリデン成分を 5 0モル%以上含有する重合体から形成された層 があげられ、 特にポリ ビニルアルコールまたはその共重合変性物あ るいはグラフ 卜物、 エチレン含量が 1 5〜 5 0モル%のエチレン一 ビニルアルコール共重合体など、 水酸基を有するポリマーが重要で あな。  Examples of the gas-permeable resin constituting the gas-permeable resin layer include, for example, a polymer formed from a polymer containing 50 mol% or more of an acrylonitrile component, a bul alcohol component, or a vinylidene halide component. Particularly, a polymer having a hydroxyl group such as polyvinyl alcohol or a copolymer modified or grafted product thereof, and an ethylene-vinyl alcohol copolymer having an ethylene content of 15 to 50 mol% is important. .
耐透気性樹脂層は通常流延法によ り形成され、 その酸素透過率 ( AST D- 1434-75に準じて測定) が 3 0 cc, 24hr · m2 · atm 以下、 殊に 2 0 cc/ 24hr · m2 · atm 以下さらには 1 0 ccZ 24hr · m2 · atm 以下であることが望ましい。 耐透気性樹脂層の厚さは、 1〜 5 0 u rn 、 殊に 2〜2 0 y m の範囲に設定するのが適当である。 The air-permeable resin layer is usually formed by a casting method, and has an oxygen permeability (measured according to AST D-1434-75) of 30 cc, 24 hr · m 2 · atm or less, especially 20 cc. / 24hr · m 2 · atm or less and still more 1 0 ccZ 24hr · m 2 · atm or less it is desirable. The thickness of the air-permeable resin layer is suitably set in the range of 1 to 50 urn, particularly 2 to 20 ym.
活性エネルギー線硬化型樹脂硬化層(2) を構成する活性エネル ギ一線硬化型樹脂としては、 光重合性を有するプレボリマーまたは Zおよびモノマーに、 必要に他の単官能または多官能モノマー、 各 種ポリマー、 光重合開始剤、 増感剤を配合した樹脂組成物が用いら れる。 The active energy linear curable resin constituting the active energy ray curable resin cured layer (2) includes a prepolymer or Z and a monomer having photopolymerizability, and other monofunctional or polyfunctional monomers as necessary. A resin composition containing a seed polymer, a photopolymerization initiator, and a sensitizer is used.
ここで光重合性ブレポリマーとしては、 ポリエステルァクリ レー 卜、 ポリエステルウレタンァク リ レート、 エポキシァクリ レー卜、 ポリオールァク リ レートなどが例示され、 光重合性モノマーとして は、 単官能ァク リ レー卜、 2官能ァクリ レー卜、 3官能以上のァク リ レー卜などが例示される。 これらの中では、 硬化後の物性が良好 なエポキシァクリ レー卜が特に有用であるので、 これを少なく とも 一部用いることが望ましい。  Here, examples of the photopolymerizable polymer include polyester acrylate, polyester urethane acrylate, epoxy acrylate, and polyol acrylate.Examples of the photopolymerizable monomer include monofunctional acrylate, Examples include bifunctional acrylates and trifunctional or higher acrylates. Of these, epoxy acrylates having good physical properties after curing are particularly useful, and it is desirable to use at least some of them.
光重合性を有するブレポリマ一またはモノマーとしては、 上記の ほか、 下記の化 2で示されるホスファゼン系樹脂も好適に用いられ る。  As the photopolymerizable blepolymer or monomer, a phosphazene-based resin represented by the following chemical formula 2 is preferably used in addition to the above.
(化 2
Figure imgf000009_0001
(Chemical 2
Figure imgf000009_0001
活性エネルギー線硬化型樹脂が紫外線硬化型樹脂であるときは、 通常光開始剤や增感剤を少量併用するが、 樹脂の種類によっては これらを配合しないで紫外線照射しても硬化する場合がある。 光開 始剤としてはァセ 卜フエノ ン類、 ベンゾフエノ ン類、 ミヒラーケ卜 ン、 ベンジル、 ベンゾイ ン、 ベンゾイ ンエーテル、 ベンジルケター ル類、 チォキサン 卜 ン類をはじめとする種々の光硬化剤が用いら れ、 增感剤としてはァミン類、 ジェチルアミノエチルメタクリ レー 卜をはじめとする種々の增感剤が用いられる。 When the active energy ray-curable resin is an ultraviolet-curable resin, usually a small amount of a photoinitiator or a photosensitizer is used in combination. . As the photoinitiator, various photocuring agents including acetate phenones, benzophenones, Michlerketone, benzyl, benzoin, benzoin ether, benzylketals, and thioxanthone are used. Sensitizers include amines, getylaminoethyl methacrylate Various types of sensitizers, such as birds, are used.
樹脂組成物は通常は溶剤を含まないが、 もし必要なら少量の溶剤 を併用しても差し支えない。  The resin composition usually does not contain a solvent, but if necessary, a small amount of a solvent may be used in combination.
活性エネルギー線硬化型樹脂硬化層(2) の厚さは適宜に設定でき る力 ;!〜 2 0 i m 、 殊に 2〜: L O /im とすることが多い。  The thickness of the active energy ray-curable resin cured layer (2) can be set as appropriate; 220 im, especially 2 L: often L O / im.
本発明の光学用積層シー卜は、 好適には次の第 1の方法により製 造される。 すなわち、 アンカーコーティ ング層を設けまたは設けな ぃ基材シート (1) と平滑フィルムからなる平滑化铸型材(3) との間 隙に活性エネルギー線硬化型樹脂組成物の樹脂液(2a)を供給して 該樹脂液(2a)が両者間に層状に挟持されるようにする。 基材シー卜 (1) は製膜用ロール(4a)に、 平滑化铸型材(3) は製膜用ロール(4b) にそれぞれ予め供給しておき、 両製膜用ロール(4a), (4b)間の間隙 は所定の値に調整しておく。 製膜用口一ル(4a), (4b)は必要に応じ 保温可能に構成しておく。  The optical laminated sheet of the present invention is preferably produced by the following first method. That is, the resin liquid (2a) of the active energy ray-curable resin composition is provided in the gap between the base sheet (1) and the smoothing film made of a smooth film (3). The resin liquid (2a) is supplied so as to be sandwiched between both layers. The base sheet (1) is supplied to the film forming roll (4a) in advance, and the smoothing mold material (3) is supplied to the film forming roll (4b) in advance, and both the film forming rolls (4a), ( The gap between 4b) is adjusted to a predetermined value. The ports (4a) and (4b) for film formation should be configured so that they can be kept warm if necessary.
ついで、 活性エネルギー線の照射により上記の挟持層(2b)を硬化 させて活性エネルギー線硬化型樹脂硬化層(2) となす。 活性エネル ギ一線としては、 紫外線、 電子線などがあげられる。 活性エネル ギ一線照射時の積算光量や線量は、 活性エネルギー線硬化型樹脂 硬化層(2) の厚さなどを考慮して最適範囲に設定し、 平滑化铸型材 (3) の円滑剥離性や活性エネルギー線硬化型樹脂硬化層(2) の耐溶 剤性を確保するようにする。  Next, the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2). Examples of the active energy include ultraviolet rays and electron beams. The integrated light quantity and dose during irradiation with active energy are set to the optimal range in consideration of the thickness of the active energy ray-curable resin cured layer (2), etc., and the smooth peeling property of the smoothed mold material (3) is determined. The solvent resistance of the active energy ray-curable resin cured layer (2) should be ensured.
これにより、 基材シー卜 (1) Z活性エネルギー線硬化型樹脂硬化 層(2) /平滑化铸型材(3) よりなる積層体が得られるので、 爾後の 任意の段階でその積層体から平滑化铸型材(3) を剥離除去し、 基材 シート (1) Z活性エネルギー線硬化型樹脂硬化層(2) よりなる積層 シー卜を得る。 上記における平滑化铸型材(3 ) としては、 二軸延伸ポリエチレン テレフ夕レー卜シート、 二軸延伸ポリプチレンテレフタレートシ一 ト、 二軸延伸ポリエチレンナフタレートシー卜等の二軸延伸ポリェ ステルフィルムや、 二軸延伸ポリプロピレンフィルムなどが用いら れ、 コストおよび平滑性を加味すると二軸延伸ポリエチレンテレフ タレートフィルムが特に重要である。 この場合、 その表面がコロナ 放電や火炎処理されていると、 爾後の工程での平滑化铸型材(3) の 剥離が困難となるので、 そのような処理を施さないものを用いるよ うに留意する。 As a result, a laminate composed of the base sheet (1) Z-active energy ray-curable resin cured layer (2) / smoothed mold material (3) is obtained, and the laminate is smoothed at any subsequent stage. The coating material (3) is peeled off to obtain a laminated sheet comprising a base material sheet (1) a cured Z-active energy ray-curable resin layer (2). Examples of the smoothing mold material (3) include biaxially stretched polyester films such as biaxially stretched polyethylene terephthalate sheet, biaxially stretched polyethylene terephthalate sheet, and biaxially stretched polyethylene naphthalate sheet; For example, a biaxially oriented polypropylene film is used. In view of cost and smoothness, a biaxially oriented polyethylene terephthalate film is particularly important. In this case, if the surface has been subjected to corona discharge or flame treatment, it will be difficult to peel off the smoothing mold material (3) in the subsequent steps, so care should be taken to use a material that is not subjected to such treatment. .
これらの平滑フィルムは、 その表面粗度が 0. 15 w m 以下、 好まし くは 0. 05 y m 以下、 さらには 0. 01 以下であることが要求され、 表面粗度が 0. 15 ίχ ηι よりも大きくなると所期の平滑性を有する光学 用積層シー卜が得られなくなる。 上記の二軸延伸ポリエチレンテレ フタレートフィルムのうち填料を配合しないものは、 二軸延伸によ り表面平滑性が顕著に向上するので、 平滑性を極限にまで上げるこ とができる。  These smooth films are required to have a surface roughness of 0.15 wm or less, preferably 0.05 ym or less, and even 0.01 or less, and have a surface roughness of 0.15 ίχηι. When it becomes too large, it becomes impossible to obtain an optical laminated sheet having the intended smoothness. Among the biaxially stretched polyethylene terephthalate films described above, in which no filler is blended, the surface smoothness is significantly improved by the biaxial stretching, so that the smoothness can be increased to the utmost.
本発明の光学用積層シートを製造する第 2の方法は、 アンカ一 コーティ ング層を設けまたは設けない基材シー卜 (1 ) または平滑 フィルムからなる平滑化鐯型材(3) の一方に活性エネルギー線硬化 型樹脂組成物の樹脂液(2a)を流延しておき、 該流延層に平滑化铸型 材(3 ) または基材シート(1 ) を被覆させながらロールの間隙により 挟持層(2b)の厚さを制御しつつ、 活性エネルギー線の照射により挟 持層(2b)を硬化させて活性エネルギー線硬化型樹脂硬化層(2 ) とな す方法である。  The second method for producing the optical laminated sheet of the present invention comprises the steps of providing an active energy to one of the base sheet (1) provided with or without an anchor coating layer or the smoothed mold material (3) formed of a smooth film. The resin liquid (2a) of the line-curable resin composition is cast, and while the casting layer is covered with the smoothing material (3) or the base sheet (1), the holding layer ( While controlling the thickness of 2b), the sandwiching layer (2b) is cured by irradiation with active energy rays to form an active energy ray-curable resin cured layer (2).
本発明の光学用積層シートを製造する第 3の方法は、 アンカー コーティ ング層を設けまたは設けない基材シー卜(1 ) 上に活性エネ ルギ一線硬化型樹脂組成物の樹脂液(2a)を流延しておき、 該流延層 に平滑化鐯型材(3) としての平滑加工したガラスを押し当てながら 挟持層(2b)の厚さを制御しつつ、 活性エネルギー線の照射により挟 持層(2b)を硬化させて活性エネルギー線硬化型樹脂硬化層(2) とな す方法である。 この方法においては、 使用したガラスを反復使用す る。 The third method for producing the optical laminated sheet of the present invention comprises the steps of: forming an active energy on a base sheet (1) provided with or without an anchor coating layer. The resin liquid (2a) of the lugi straight-curing resin composition is cast, and the smoothing glass as the mold material (3) is pressed against the casting layer while the thickness of the sandwiching layer (2b) is maintained. This is a method in which the sandwiching layer (2b) is cured by irradiation with active energy rays while controlling the thickness of the active energy ray-curable resin cured layer (2). In this method, the used glass is used repeatedly.
上記の各方法により得られる積層シー卜の活性エネルギー線硬化 型樹脂硬化層(2) の自由面の表面粗度は、 平滑化铸型材(3) の表面 平滑性の程度などなどに応じ、 0.5ίχπι 以下、 好ましくは 0.2wni 以下、 さらに好ましくは 0.1 wm 以下となる。 一般に、 溶融押出 フィルムの表面粗度は 1 0 0 m 厚のフイルムで 3〜4 um 、 流延 製膜フィルムの表面粗度は 1 0 0 厚のフイルムで 2〜3 um で あるから、 活性エネルギー線硬化型樹脂硬化層(2) の自由面の表面 粗度は常識外とも言えるほど小さいものである。  The surface roughness of the free surface of the active energy ray-curable resin cured layer (2) of the laminated sheet obtained by each of the above methods may be 0.5% depending on the degree of surface smoothness of the smoothed mold material (3). ίχπι or less, preferably 0.2 wni or less, more preferably 0.1 wm or less. Generally, the surface roughness of a melt-extruded film is 3 to 4 μm for a 100-m thick film, and the surface roughness of a cast film is 2-3 μm for a 100-thick film. The surface roughness of the free surface of the cured layer (2) is so small that it can be said that it is not common sense.
また、 積層シートの活性エネルギー線硬化型樹脂硬化層(2) の耐 熱性、 耐溶剤性、 透明電極形成性もすぐれたものとなる。  Further, the active energy ray-curable resin cured layer (2) of the laminated sheet also has excellent heat resistance, solvent resistance, and transparent electrode forming property.
本発明の積層シートは、 光学的用途に用いることを考慮して、 その全体のレターデーション値が 6 O nm以下、 好ましくは 3 O nm 以下、 可視光線透過率が 6 0 %以上、 好ましくは 7 0 %以上である ことが望ましい。  The laminated sheet of the present invention has an overall retardation value of 6 O nm or less, preferably 3 O nm or less, and a visible light transmittance of 60% or more, preferably 7 Desirably, it is 0% or more.
上記で得た基材シート (1) Z活性エネルギー線硬化型樹脂硬化層 (2) よりなる層構成の積層シートの活性エネルギー線硬化型樹脂硬 化層(2) 上に透明電極を設け、 さらにその上から配向膜を形成すれ ば、 液晶セル基板が作製できる。  A transparent electrode is provided on the active energy ray-curable resin cured layer (2) of the laminated sheet having the layer structure composed of the base sheet (1) Z active energy ray-curable resin cured layer (2) obtained above. If an alignment film is formed thereon, a liquid crystal cell substrate can be manufactured.
透明電極の形成には、 真空蒸着法、 スパッタリング法、 イオンプ レーティ ング法、 金属溶射法、 金属メツキ法、 化学蒸着法、 スプ レー法などが採用され、 特にスパッタリング法が重要である。 透明 電極の材質としては、 主として S n 、 I n 、 T i 、 P b 、 T b 等の 金属またはそれらの酸化物が用いられ、 透明電極の層厚は、 少なく とも 1 0 0オングストローム、 さらには 2 0 0オングストローム以 上とするのが通常である。 Transparent electrodes are formed by vacuum deposition, sputtering, ion plating, metal spraying, metal plating, chemical vapor deposition, The Leh method is used, and the sputtering method is particularly important. As the material of the transparent electrode, metals such as Sn, In, Ti, Pb, and Tb or oxides thereof are mainly used, and the layer thickness of the transparent electrode is at least 100 angstroms, and furthermore, Usually, it is set to 200 angstrom or more.
作用 Action
本発明の光学用積層シー卜にあっては、 積層シー卜の表面に位置 する活性エネルギー線硬化型樹脂硬化層(2) の自由面の表面平滑度 が極めて高いので、 たとえばこれを S T N液晶を封入する液晶セル の電極基板として用いた場合であっても、 表示に紫、 緑などの色が ついて画面が非常に見にく くなるという事態を生じない。  In the optical laminated sheet of the present invention, the surface smoothness of the free surface of the active energy ray-curable resin cured layer (2) located on the surface of the laminated sheet is extremely high. Even when it is used as an electrode substrate of a liquid crystal cell to be sealed, it does not cause the screen to be very hard to see because the display is colored in purple or green.
発明の効果 The invention's effect
本発明の光学用積層シー卜にあっては、 たとえばこれを S T N液 晶を封入する液晶セルの電極基板として用いた場合であっても、 表 示に紫、 緑などの色がついて画面が非常に見にく くなるという事態 を生じない。  In the optical laminated sheet of the present invention, for example, even when this is used as an electrode substrate of a liquid crystal cell in which STN liquid crystal is sealed, the display is colored purple, green, or the like, and the screen is extremely dark. It does not cause the situation to be difficult to see.
液晶表示パネルは年々大型化すると共に、 S T N液晶方式の普及 には目を見張るものがあるが、 本発明により、 その用途にガラス基 板に代えてプラスチックス基板を用いても、 表示特性が遜色のない ものとなるのである。  While the size of liquid crystal display panels is increasing year by year, and the spread of STN liquid crystal systems is remarkable, the present invention has inferior display characteristics even if a plastics substrate is used in place of a glass substrate for the purpose. There is no such thing.
そして、 このようにすぐれた性能が得られるにもかかわらず、 そ の製造工程がシンブルであるという工業上の有利さを有する。 図面の簡単な説明  In spite of obtaining such excellent performance, there is an industrial advantage that the manufacturing process is a thimble. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の光学用積層シー卜の製造工程の一例を示したェ 程図である。 図中の符号の意味は次の通りである。 (1) …基材シート、 FIG. 1 is a process diagram showing an example of a production process of the optical laminated sheet of the present invention. The meanings of the reference numerals in the figure are as follows. (1)… Base sheet,
(Γ)…光等方性シート、  (Γ)… Light isotropic sheet,
(2) …活性エネルギー線硬化型樹脂硬化層.  (2) ... active energy ray-curable resin cured layer.
(2a)…樹脂液、 (2b)…挟持層、  (2a) ... resin liquid, (2b) ... sandwiching layer,
(3) …平滑化铸型材、  (3)… Smoothing 铸
(4a) , (4b)…製膜用ロール、  (4a), (4b) ... roll for film formation,
(5) …タンク、  (5)… tank,
(6) …ジャケッ 卜、  (6) ... jacket,
(7) …吐出口、  (7)… Discharge port,
(8) …紫外線照射装置、  (8)… UV irradiation equipment,
(9) …二ップロール、  (9)… two rolls,
(10)…剥離用ロール、  (10) ... peeling roll,
(S) …積層シート 発明を実施するための最良の態様  (S) ... Laminated sheet Best mode for carrying out the invention
次に実施例をあげて本発明をさらに説明する。 以下 「部」 とある のは重量部である。  Next, the present invention will be further described with reference to examples. Hereinafter, “parts” means parts by weight.
実施例 1 Example 1
図 1は本発明の光学用積層シートの製造工程の一例を示した工程 図である。  FIG. 1 is a process chart showing an example of a production process of the optical laminated sheet of the present invention.
図 1中、 (5) はタンク、 (6) はジャケッ ト、 (7) リップ状の吐出 口、 (4a) , (4b)は 1対の製膜用ロールである。 (8) は紫外線照射装 置である。 (9) はニップロール、 (10)は積層シート(S) を剥離する ための剥離用ロールである。  In FIG. 1, (5) is a tank, (6) is a jacket, (7) a lip-shaped discharge port, and (4a) and (4b) are a pair of film forming rolls. (8) is an ultraviolet irradiation device. (9) is a nip roll, and (10) is a release roll for releasing the laminated sheet (S).
基材シート (1) の一例としてポリカーボネートシート (厚さ 1 1 0 urn 、 レターデーシヨン値 1 2 nm) の片面に水溶性四級化 エステルウレタン系アンカーコーティ ング剤を塗布、 乾燥して厚さ 0. 5 u m のアンカ一コーティ ング層を設けた後、 そのアンカーコー ティ ング層の上から、 エチレン含量 3 2モル%のエチレン一ビニル アルコール共重合体 2 0部、 水 4 5部、 n—プロパノール 5 0部、 メチロール化メラミン (住友化学工業株式会社製スミテック M— 3 ) 4部よりなる組成の樹脂液を流延し、 温度 1 1 0 °Cの乾燥機中を通 過させて乾燥させた。 これにより、 厚さ 8 u rn の耐透気性樹脂層が 形成された。 As an example of the base material sheet (1), one side of a polycarbonate sheet (thickness 110 urn, retardation value 12 nm) is water-soluble and quaternized. An ester urethane-based anchor coating agent is applied and dried to form a 0.5 μm-thick anchor coating layer. Then, from the top of the anchor coating layer, ethylene-vinyl having an ethylene content of 32 mol% is added. A resin solution having a composition consisting of 20 parts of an alcohol copolymer, 45 parts of water, 50 parts of n-propanol, and 4 parts of methylolated melamine (Sumitec M-3 manufactured by Sumitomo Chemical Co., Ltd.) was cast at a temperature of 1 part. It was dried by passing through a dryer at 10 ° C. As a result, an air-permeable resin layer having a thickness of 8 urn was formed.
ついで、 この耐透気性樹脂層の上から、 フエノキシエーテル樹脂 (東都化成株式会社製) 4 0部、 メチルェチルケトン 4 0部、 セロ ソルブアセテート 2 0部、 ト リ レンジイソシァネートと ト リメチ ロールプロパンとのァダク 卜体の 7 5 %溶液 (日本ポリウレタン株 式会社製コロネ一ト L ) 4 0部よりなる組成の硬化性樹脂組成物を アプリケーターを使用して塗布し、 8 CTCで 4分間乾燥してから、 1 3 0 °Cで 2 0分間加熱して、 厚さ 1 0 のフエノキシエーテル 樹脂系の架橋性樹脂硬化物層を形成させた。  Then, from the top of the air-permeable resin layer, 40 parts of phenoxy ether resin (manufactured by Toto Kasei Co., Ltd.), 40 parts of methyl ethyl ketone, 20 parts of cellosolve acetate, and tolylene diisocyanate A curable resin composition consisting of 40 parts of a 75% solution of an adduct with trimethylolpropane (Coronet L, manufactured by Nippon Polyurethane Co., Ltd.) was applied using an applicator, and was applied at 8 CTC. After drying for 4 minutes, the mixture was heated at 130 ° C. for 20 minutes to form a phenoxy ether resin-based crosslinked resin cured material layer having a thickness of 10 °.
これにより、 基材シート (1) 耐透気性樹脂層ノ架橋性樹脂硬化 物層の層構成を有する光等方性シー卜(Γ )が得られた。  As a result, a photoisotropic sheet (Γ) having a layer structure of the base sheet (1) a gas-permeable resin layer and a crosslinked resin cured material layer was obtained.
別途、 平滑化鐯型材(3) として、 厚さ 5 0 m 、 表面粗度 0. 004 W m のコロナ放電処理していない二軸延伸ポリエチレンテレフタ レートフィルム (帝人株式会社製 0タイプ) を準備した。 Separately, prepare a smoothed鐯型material (3), the thickness 5 0 m, the surface roughness 0. 004 W m biaxially oriented polyethylene terephthalate film that is not corona discharge treatment of the (Teijin Ltd. 0 type) did.
新曰鉄化学株式会社製のエポキシァクリル樹脂 「V— 2 5 4 P A」 1 0 0部にベンゾフヱノ ン 1部を加え、 活性エネルギー線硬化型樹 脂組成物の樹脂液(2a)を調製した。  A resin solution (2a) of an active energy ray-curable resin composition was prepared by adding 1 part of benzophenone to 100 parts of epoxyacrylic resin “V-254PA” manufactured by Shin-Tetsu Iron & Chemicals Co., Ltd. .
この樹脂液(2a)をタンク(5) に仕込み、 ジャケッ ト (6) に熱媒を 送って内容物を約 3 0 °Cに保温すると共に、 脱気を行った。 ついでタンク (5) の上部空間に圧を加え、 製膜用ロール(4a) , (4b)の間隙に吐出口 (7) から樹脂液(2a)を吐出した。 This resin liquid (2a) was charged into a tank (5), a heating medium was sent to a jacket (6) to keep the content at about 30 ° C, and deaerated. Then, pressure was applied to the upper space of the tank (5), and the resin liquid (2a) was discharged from the discharge port (7) into the gap between the film forming rolls (4a) and (4b).
この製膜用ロール(4a) , (4b)には、 予め上記の光等方性シート (Γ)および平滑化铸型材(3) をそれぞれ供給してあり、 吐出ロ(7) から吐出した樹脂液(2a)が光等方性シート (Γ)の基材シート(1) 面 と平滑化铸型材(3) の平滑面との間に挟持されて挟持層(2b)となる ようにした。  The film-forming rolls (4a) and (4b) are supplied with the above-mentioned optically isotropic sheet (Γ) and the smoothing mold material (3) in advance, respectively. The resin discharged from the discharge roller (7) The liquid (2a) was sandwiched between the surface of the base sheet (1) of the optically isotropic sheet (Γ) and the smooth surface of the smoothing mold member (3) so as to form a sandwiching layer (2b).
製膜用ロール(4a) , (4b)通過後の挟持シ一卜を紫外線照射装置 (8) にて下記の条件で紫外線照射後、 平滑化铸型材(3) を剥離除去 した。 紫外線照射により挟持層(2b)は硬化して、 活性エネルギー線 硬化型樹脂硬化層(2) となった。 これにより、 活性エネルギー線 硬化型樹脂硬化層(2) Z光等方性シート(Γ)の層構成を有する積層 シート (S) が得られた。 なお平滑化铸型材(3) の剥離除去は、 紫外 線照射後にすぐ行わずに、 一旦巻取機に巻き取ってから、 後日行う ようにしてもよい。  The sandwiched sheet after passing through the film forming rolls (4a) and (4b) was irradiated with ultraviolet light by an ultraviolet irradiation device (8) under the following conditions, and then the smoothing mold material (3) was peeled off. The sandwiching layer (2b) was cured by the irradiation of ultraviolet rays, and became an active energy ray-curable resin cured layer (2). As a result, a laminated sheet (S) having a layer configuration of the active energy ray-curable resin cured layer (2) and the Z-light isotropic sheet (Γ) was obtained. The peeling and removal of the smoothing mold material (3) may be performed at a later date after being wound on a winder once instead of immediately after the ultraviolet irradiation.
紫外線照射条件  UV irradiation conditions
紫外線照射装置 ゥシォ電機株式会社製 UV C - 2 53/ 1 M ランプ 高圧水銀ランプ 80WZcmまたは 1 2 0  UV irradiator ゥ Shio Electric Co., Ltd. UV C-2 53/1 M lamp High pressure mercury lamp 80 WZcm or 120
W/cm  W / cm
照射距離 2 00關  Irradiation distance 200
コ ンベア速度 5 m/min rこは 3m/min  Conveyor speed 5 m / min r 3 m / min
条件および結果を表 1に示す。 なお、 評価項目の意味は下記の通 りである。  Table 1 shows the conditions and results. The meanings of the evaluation items are as follows.
•厚さ  •thickness
(2) 厚は、 形成したエネルギー線硬化型樹脂硬化層(2) の厚さ。 •剥離性 平滑化铸型材(3) としての二軸延伸ポリエチレンテレフ夕レー 卜フ ィ ルムの剥離の円滑さ。 (〇 : 良好、 X :不良) (2) Thickness is the thickness of the formed energy ray-curable resin cured layer (2). • Peelability Smoothness Smooth peeling of biaxially stretched polyethylene terephthalate film as mold material (3). (〇: good, X : bad)
粗度  Roughness
活性エネルギー線硬化型樹脂硬化層(2) の自由面の表面平滑度 を、 光の干渉を利用した非接触式表面粗さ計により測定。  The surface smoothness of the free surface of the active energy ray-curable resin cured layer (2) is measured by a non-contact type surface roughness meter using light interference.
R値  R value
積層シート (S) 全体のレターデーシヨ ン値。  The letter value of the entire laminated sheet (S).
透過率  Transmittance
積層シート ) 全体の可視光線透過率。  Laminated sheet) Overall visible light transmittance.
硬度  Hardness
鉛筆硬度  Pencil hardness
耐溶剤性  Solvent resistance
積層シ一卜 (S) を 4 4 ± 1 °Cのジメチルァセ卜アミ ド中に 5分 間浸漬して、 活性エネルギー線硬化型樹脂硬化層(2) の溶解の有 無を観察した。 (〇 :異常なし、 X : 溶解) 表 1  The laminated sheet (S) was immersed in dimethyl acetate amide at 44 ± 1 ° C for 5 minutes to observe the dissolution of the active energy ray-curable resin cured layer (2). (〇: No abnormality, X: Dissolution) Table 1
積算光鼋 (2) 厚 剥離性 粗 度 R値 透過率 硬度 耐溶剤 Total light intensity (2) Thickness Peelability Roughness R value Transmittance Hardness Solvent resistance
No. (mJ/ctn') ( u m) ( u m) (run) (%) 性No. (mJ / ctn ') (u m) (u m) (run) (%)
1 一 354 3.5 〇 <0.1 15 91 4H 〇1 354 3.5 〇 <0.1 15 91 4H 〇
2 354 4.0 〇 <0.1 15 90 4H 〇2 354 4.0 〇 <0.1 15 90 4H 〇
3 538 7.0 〇 <0.1 15 90 5H 〇3 538 7.0 〇 <0.1 15 90 5H 〇
4 675 8.0 〇 <0.1 15 89 5H 〇 4 675 8.0 〇 <0.1 15 89 5H 〇
次に、 上記で得た No. 1 No.4の積層シ一卜 (S) の活性エネル ギ一線硬化型樹脂硬化層(2) 面に、 スパッタ リ ング法により厚さ 500オングス トロームの I T 0層からなる透明電極を直接形成さ せた。 以下このシートを電極基板として用いて、 常法に従い、 配向 膜の形成とラビング処理、 液晶セルの組み立て、 位相差板および偏 光板の積層を行い、 液晶表示パネルを作製した。 得られた液晶表示 パネルは、 表示に着色が見られず、 ガラスを基板として用いた液晶 表示パネルと遜色のない性能を有していた。 Next, the thickness of the cured sheet (2) of the active energy linear curable resin (2) of No. 1 No. 4 laminated sheet (S) obtained above was sputtered. A transparent electrode consisting of a 500 angstrom IT0 layer was directly formed. Using this sheet as an electrode substrate, an alignment film was formed and rubbed, a liquid crystal cell was assembled, and a retardation plate and a polarizing plate were laminated by a conventional method to produce a liquid crystal display panel. The obtained liquid crystal display panel showed no coloration in the display, and had performance comparable to that of a liquid crystal display panel using glass as a substrate.
実施例 2 Example 2
基材シート (1) として、 ポリカーボネートシートに代えてポリア リ レー 卜シー ト (鐘淵化学株式会社製、 厚さ l O O un! 、 レター デ一ショ ン値 1 5mn) を用いたほかは実施例 1 と同様にして光等方 性シー卜 (Γ)を得た。  Example 1 was repeated except that a polycarbonate sheet (polyester sheet (manufactured by Kaneka Chemical Co., Ltd., thickness 100 oo un !, letter de-tion value: 15 mn)) was used instead of the polycarbonate sheet as the base sheet (1). An optically isotropic sheet (Γ) was obtained in the same manner as in 1.
出光石油化学株式会社製のホスファゼン系硬化性樹脂 「出光 P P Z」 1 00部にベンゾフヱノ ン 1部を加え、 活性エネルギー線硬化 型樹脂組成物の樹脂液(2a)を調製しすこ。  A resin solution (2a) of an active energy ray-curable resin composition was prepared by adding 1 part of benzophenone to 100 parts of a phosphazene-based curable resin “Idemitsu PPZ” manufactured by Idemitsu Petrochemical Co., Ltd.
上述の光等方性シ一卜 (Γ)および樹脂液(2a)を用いたほかは実施 例 1を繰り返した。 条件および結果を表 2に示す。 表 2  Example 1 was repeated except that the above-mentioned optically isotropic sheet (II) and the resin liquid (2a) were used. Table 2 shows the conditions and results. Table 2
積算光量 (2) 厚 剥離性 粗 度 R値 硬度 耐溶剤 Integrated light intensity (2) Thickness Releasing Roughness Hardness Solvent resistant
No. (mJ/cm2) ( u m) ( m) (nm) (¾) 性No. (mJ / cm 2 ) (um) (m) (nm) (¾)
5 354 4.0 〇 <0.1 18 89 7Η 〇5 354 4.0 〇 <0.1 18 89 7Η 〇
6 538 6.5 〇 <0.1 18 88 7Η 〇 6 538 6.5 〇 <0.1 18 88 7Η 〇
実施例 3 Example 3
実施例 1の No. :!〜 No.4において、 光等方性シー卜 (Γ)の基材 シ一卜 (1) 面に水溶性四級化エステルゥレタン系アンカーコーティ ング剤を塗布、 乾燥して、 厚さ 0.5wm のアンカーコ一ティング層 を設け、 このアンカーコーティ ング層側の面に樹脂液(2a)が接触す るようにしたほかは実施例 1を繰り返したところ、 実施例 1 とほぼ 同じ結果が得られた。 In Example 1, No .:! To No. 4, the base sheet of the optically isotropic sheet (Γ) was coated on the surface (1) with a water-soluble quaternized ester and a urethane anchor coat. Example 1 was repeated except that a coating agent was applied and dried to provide an anchor coating layer having a thickness of 0.5 wm, and the resin liquid (2a) was brought into contact with the surface on the anchor coating layer side. However, almost the same results as in Example 1 were obtained.
実施例 4 Example 4
実施例 1の光等方性シー卜 (Γ)の基材シー卜(1) 面に実施例 1の 樹脂液(2a)を流延しておき、 該流延層に平滑化铸型材(3) としての 平滑加工した表面粗度 0.05 のガラスを押し当てながら挟持層 (2b)の厚さを 5.0wm に制御しつつ紫外線照射を行い、 ついでガラ スを剥離除去した。 得られた積層シート(S) の活性エネルギー線硬 化型樹脂硬化層(2) 面の表面粗度は Q.lwm 以下であった。 産業上の利用可能性  The resin liquid (2a) of Example 1 was cast on the surface of the base sheet (1) of the optically isotropic sheet (1) of Example 1, and the smoothed mold material (3) was added to the casting layer. Ultraviolet irradiation was performed while controlling the thickness of the sandwiching layer (2b) to 5.0 wm while pressing the smoothed glass having a surface roughness of 0.05 as the above), and then the glass was peeled off. The surface roughness of the active energy ray-curable resin cured layer (2) surface of the obtained laminated sheet (S) was not more than Q.lwm. Industrial applicability
本発明の方法により得られる光学用積層シートは、 液晶表示パネ ル製造用の電極基板として特に重要であるが、 位相差板用部材、 偏 光板用部材、 光ディスク、 光カードなどの用途にも適用することが できる。  The optical laminated sheet obtained by the method of the present invention is particularly important as an electrode substrate for manufacturing a liquid crystal display panel, but is also applicable to applications such as retardation plate members, polarizing plate members, optical disks, and optical cards. can do.

Claims

言青求の範囲 Scope of word blue
1 . 光等方性を有する基材シート (1) 上に直接またはアンカー コ一ティ ング層を介して活性エネルギー線硬化型樹脂硬化層(2) を 設けた積層シートであって、 前記活性エネルギー線硬化型樹脂硬化 層(2) の自由面の表面粗度が 0.5 win 以下であり、 積層シート全体 のレターデーション値が 6 O nm以下、 可視光線透過率が 6 0 %以上 である光学用積層シート。  1. A laminated sheet in which an active energy ray-curable resin cured layer (2) is provided directly or via an anchor coating layer on a base sheet (1) having optical isotropy, Optical lamination with a surface roughness of free surface of the cured layer (2) of less than 0.5 win, a retardation value of the entire laminated sheet of 6 O nm or less, and a visible light transmittance of 60% or more. Sheet.
2. アンカーコーティ ング層を設けまたは設けない光等方性を有 する基材シート (1) と平滑面を有する平滑化铸型材(3) との間隙に 活性エネルギー線硬化型樹脂組成物の樹脂液(2a)を供給して該樹脂 液(2a)が両者間に層状に挟持されるようにし、 ついで活性エネル ギ一線の照射によりその挟持層(2b)を硬化させて活性ェネルギ一線 硬化型樹脂硬化層(2) となすことを特徴とする光学用積層シー卜の 製造法。  2. The resin of the active energy ray-curable resin composition is placed in the gap between the optically isotropic base sheet (1) with or without an anchor coating layer (1) and the smoothed mold material (3) with a smooth surface. The liquid (2a) is supplied so that the resin liquid (2a) is sandwiched between the two layers, and the sandwiched layer (2b) is cured by irradiating the active energy with the active energy to cure the resin. A method for producing a laminated sheet for optics, comprising forming a cured layer (2).
PCT/JP1993/000876 1991-12-16 1993-06-28 Optical laminated sheet and production thereof WO1995000875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03353496A JP3098303B2 (en) 1991-12-16 1991-12-16 Manufacturing method of optical laminated sheet
PCT/JP1993/000876 WO1995000875A1 (en) 1991-12-16 1993-06-28 Optical laminated sheet and production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP03353496A JP3098303B2 (en) 1991-12-16 1991-12-16 Manufacturing method of optical laminated sheet
PCT/JP1993/000876 WO1995000875A1 (en) 1991-12-16 1993-06-28 Optical laminated sheet and production thereof

Publications (1)

Publication Number Publication Date
WO1995000875A1 true WO1995000875A1 (en) 1995-01-05

Family

ID=26434415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000876 WO1995000875A1 (en) 1991-12-16 1993-06-28 Optical laminated sheet and production thereof

Country Status (1)

Country Link
WO (1) WO1995000875A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1316402A1 (en) * 2001-11-28 2003-06-04 Tesa AG Process for manufacturing of nanotextured or microtextured polymer films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371829A (en) * 1986-09-14 1988-04-01 Toyobo Co Ltd Electrode substrate for liquid crystal display panel
JPH02165104A (en) * 1988-12-20 1990-06-26 Matsushita Electric Ind Co Ltd Production of color filter substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371829A (en) * 1986-09-14 1988-04-01 Toyobo Co Ltd Electrode substrate for liquid crystal display panel
JPH02165104A (en) * 1988-12-20 1990-06-26 Matsushita Electric Ind Co Ltd Production of color filter substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1316402A1 (en) * 2001-11-28 2003-06-04 Tesa AG Process for manufacturing of nanotextured or microtextured polymer films

Similar Documents

Publication Publication Date Title
JP5009690B2 (en) Polarizing plate, image display device, and manufacturing method of polarizing plate
JP2006163082A (en) Optical member, manufacturing method thereof and liquid crystal display device
JP2003185842A (en) Polarizing plate
JP3160072B2 (en) Manufacturing method of optical laminated sheet
JP3098304B2 (en) Manufacturing method of optical laminated sheet
JP3151051B2 (en) Manufacturing method of optical laminated sheet
WO1995000875A1 (en) Optical laminated sheet and production thereof
JP3488012B2 (en) Plastics board
JP3098303B2 (en) Manufacturing method of optical laminated sheet
JP2000167999A (en) Film having hardened film layer of radiation curable resin composition
JP3088814B2 (en) Manufacturing method of optical laminated sheet
WO1995000877A1 (en) Optical laminated sheet and production thereof
JPH0830766B2 (en) Composite phase plate
WO1995000876A1 (en) Optical laminated sheet and production thereof
JP3534804B2 (en) Manufacturing method of optical sheet
JP3045579B2 (en) Manufacturing method of optical laminated sheet
KR20010002247A (en) A manufacturing method for polarizing film with pressure sensitive adhesive layer
JP3190076B2 (en) Manufacturing method of phase difference compensator
JPH05313012A (en) Manufacture of color filter
JP3090988B2 (en) Manufacturing method of optical laminated sheet
JP3040859B2 (en) Manufacturing method of optical laminated sheet
WO1995019579A1 (en) Protective sheet for producing polarizing plate and polarizing plate
JP3434968B2 (en) Plastics board
JPH07124969A (en) Manufacture of antiglare optical sheet
JP2645519B2 (en) Manufacturing method of liquid crystal cell substrate with transparent electrode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase