WO1995000747A1 - Method of operating a cogas plant, and a cogas plant operated by this method - Google Patents

Method of operating a cogas plant, and a cogas plant operated by this method Download PDF

Info

Publication number
WO1995000747A1
WO1995000747A1 PCT/DE1994/000657 DE9400657W WO9500747A1 WO 1995000747 A1 WO1995000747 A1 WO 1995000747A1 DE 9400657 W DE9400657 W DE 9400657W WO 9500747 A1 WO9500747 A1 WO 9500747A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
steam
water
pressure
stage
Prior art date
Application number
PCT/DE1994/000657
Other languages
German (de)
French (fr)
Inventor
Marcel Moricet
Bert Rukes
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1995000747A1 publication Critical patent/WO1995000747A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a method for operating a gas and steam turbine plant (CCGT plant) in which the heat contained in the relaxed working medium from the gas turbine is used to generate steam for the steam turbine connected to a water-steam circuit . It continues to focus on a combined cycle plant that uses this process.
  • CCGT plant gas and steam turbine plant
  • the heat contained in the relaxed working fluid from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a steam generator or waste heat boiler downstream of the gas turbine, in which heating surfaces are arranged in the form of tubes or tube bundles. These in turn are switched into the water-steam cycle of the steam turbine.
  • the water-steam cycle comprises several, for example two, pressure stages, each pressure stage having a preheating, an evaporator and a superheater heating surface.
  • a thermodynamic efficiency of about 50% to 55% is achieved, depending on the pressure conditions prevailing in the water-steam cycle of the steam turbine.
  • the invention is based on the object of specifying a method for operating such a gas and steam turbine installation with which an increase in the thermodynamic efficiency is achieved. In a suitable gas and steam turbine plant, this should be achieved with particularly simple means.
  • the stated object is achieved according to the invention in that a is preheated by means of fuel used for the gas turbine.
  • the fuel is preheated advantageously by indirect heat exchange of the fuel with a partial flow of preheated water taken from the water-steam cycle of the steam turbine, which water is returned to the water-steam cycle after the heat has been exchanged with the fuel.
  • the partial flow for heating the fuel is expediently taken from either a high-pressure stage or a low-pressure stage of the water-steam cycle.
  • a partial flow is taken from both the high-pressure stage and the low-pressure stage and used for a two-stage fuel heating.
  • the fuel is moistened and heated by direct heat exchange with preheated water.
  • the water used for humidification is preheated by indirect heat exchange with the first partial stream taken from the low-pressure stage of the water-steam cycle.
  • the heated fuel is then further heated by indirect heat exchange with the second partial stream taken from the high-pressure stage of the water-steam cycle.
  • the fuel is preheated to a temperature of 100 ° C. to 400 ° C.
  • the fuel is advantageously preheated to a temperature of approximately 150 ° C.
  • the fuel is preheated to a temperature of approximately 280 ° C. to 320 ° C.
  • the fuel is preheated to a temperature of likewise 280 ° C to 320 ° C.
  • the above object is achieved in that a heat exchanger is provided for fuel preheating, which is connected on the primary side in the water-steam cycle and on the secondary side in the fuel line.
  • the heat exchanger is advantageously connected in parallel with the condensate preheater on the primary side.
  • the preheated water of the partial flow used to preheat the fuel is at low pressure.
  • the heat exchanger can also be connected in parallel with the high-pressure preheater, so that the preheated water of the partial flow serving to preheat the fuel is at a correspondingly high pressure.
  • a further heat exchanger is expediently provided, which is arranged on the secondary side in the flow direction of the fuel upstream of the first heat exchanger. It is also connected on the primary side to the low-pressure stage of the water-steam cycle and is parallel to the condensate preheater, while the first heat exchanger is connected to the high-pressure stage of the water-steam cycle for further heating of the fuel and is parallel to the high-pressure preheater.
  • the preheating of the fuel in the first stage is expediently carried out by moistening the fuel by means of preheated water conducted in a water circuit.
  • a fuel humidifier is connected in the fuel line, in which the fuel and the preheated water are guided in counterflow to one another.
  • the preheating of the The water serving as fuel is humidified in the further heat exchanger connected to the low-pressure stage of the water-steam cycle.
  • FIGS. 1 and 2 a gas and steam turbine system with a heat exchanger connected at alternative points to a water-steam circuit of the steam turbine for preheating Bren s off, and
  • Figure 3 shows a gas and steam turbine system according to Figures 1 and 2 with two heat exchangers for fuel moistening and - preheating.
  • a gas and steam turbine plant according to FIGS. 1 to 3 comprises a gas turbine plant 1 a and a steam turbine plant 1 b.
  • the gas turbine system 1 a comprises a gas turbine 2 with a coupled air compressor 3 and a combustion chamber 4 connected upstream of the gas turbine 2 and which is connected to a fresh air line 5 of the air compressor 3.
  • a fuel line 6 opens into the combustion chamber 4 of the gas turbine 2.
  • the gas turbine 2 and the air compressor 3 as well as a generator 7 sit on a common shaft 8.
  • the steam turbine system 1b comprises a steam turbine 10 with a coupled generator 11 and, in a water-steam circuit 12, a capacitor 13 connected downstream of the steam turbine 10 and a waste heat steam generator 14.
  • the steam turbine 10 consists of a high-pressure part 10a and a low-pressure part 10b, which drive the generator 11 via a common shaft 15.
  • An exhaust pipe 17 is connected to an inlet 14a of the heat recovery steam generator 14 for supplying working medium AM ′ or flue gas relaxed in the gas turbine 2 to the heat recovery steam generator 14.
  • the relaxed working medium AM 1 from the gas turbine 2 leaves the heat recovery steam generator 14 via its outlet 14b in the direction of a chimney (not shown).
  • the steam generator 14 comprises a condensate preheater 20 and a low-pressure evaporator 22 as well as a low-pressure superheater 24. It also comprises in a high-pressure stage of the water-steam circuit 12 a high-pressure preheater or economizer 26, a high-pressure evaporator 28 and a high-pressure superheater 30.
  • the low-pressure superheater 24 is connected to the low-pressure part 10b of the steam turbine 10 via a steam line 32.
  • the high-pressure superheater 30 is connected to the high-pressure part 10 a of the steam turbine 10 via a steam line 34.
  • the low-pressure part 10b of the steam turbine 10 is connected on the output side to the condenser 13 via a steam line 36.
  • the water-steam circuit 12 shown in FIGS. 1 to 3 is thus made up of two pressure stages. However, it can also be constructed from three pressure stages.
  • the waste heat steam generator 14 additionally has a medium-pressure evaporator and a medium-pressure superheater, which are connected to the water-steam circuit 12 and are connected to a medium-pressure part of the steam turbine 10.
  • the condenser 13 is connected to the condensate preheater 20 via a condensate line 42.
  • a condensate pump 44 is located in the condensate line 42.
  • the condensate preheater 20 is connected on the outlet side to a feed water tank 46.
  • the feed water tank 46 is connected on the output side via a low pressure pump 48 to a water / steam separation vessel 50 of the low pressure stage.
  • the low-pressure superheater 24 and - via a circulation pump 52 - the low-pressure evaporator 22 are connected to this vessel 50.
  • the feed water tank 46 is also connected on the output side via a high-pressure pump 54 to the economizer 26, which in turn is connected on the output side to a water-steam separation vessel 56 of the high-pressure stage.
  • the high-pressure superheater 30 and - via a circulating pump 58 - the high-pressure evaporator 28 are connected to the vessel 56.
  • a steam line 60 connected to the steam line 32 also opens into the feed water tank 46.
  • the feed water tank 46 is connected to the condensate line 42 via a circulation pump 59.
  • the secondary side of a heat exchanger 62 is connected into the fuel line 6 and, according to FIG. 1, is connected in parallel with the condensate preheater 20.
  • the heat exchanger 62 is connected on the primary side via an inflow line 64 to the feed water tank 46 and via an outflow line 66 to the condensate line 42.
  • a pump 68 is connected to the inflow line 64.
  • a throttle 70 is connected in the outflow line 66.
  • a heat exchanger 62 ' is connected in parallel with the economizer 26 on the primary side.
  • the heat exchanger 62 ' is connected on the primary side via an inflow line 64' to the outlet of the economizer 26 and via an outflow line 66 'to the suction side of the high-pressure pump 54.
  • a throttle 70 ' is connected in the outflow line 66'.
  • the combustion chamber 4 is supplied with liquid or gaseous fuel BS, for example natural gas or heating oil, via the fuel line 6.
  • the fuel BS is preheated in the heat exchanger 62, 62 'to a temperature T ] _ of 100 ° C. to 400 ° C.
  • the preheated fuel BS is used to generate the Working medium AM for the gas turbine 2 in the combustion chamber 4 burns with compressed fresh air L from the air compressor 3.
  • the hot and high-pressure working medium AM or flue gas that arises during the combustion is expanded in the gas turbine 2 and drives it and the air compressor 3 and the generator 7.
  • the relaxed working medium AM 'emerging from the gas turbine 2 with a temperature T2 of approximately 550 ° C. is introduced into the waste heat steam generator 14 via the exhaust gas line 17 and used there to generate steam for the steam turbine 10.
  • the flue gas stream and the water-steam circuit 12 are linked to one another in countercurrent.
  • vapors are generated at different pressure levels, the enthalpy of which is used to generate electricity in the steam turbine 10.
  • steam can be generated with a pressure p N of 6 bar and a temperature T N of 200 ° C.
  • steam can be generated with a pressure p H of 80 bar and a temperature T H of 520 ° C.
  • the expanded steam emerging from the low-pressure part 10b of the steam turbine 10 is fed to the condenser 13 via the steam line 36 and condenses there.
  • the condensate is pumped into the condensate preheater 20 via the condensate pump 44 and preheated there.
  • the preheated condensate flows into the feed water tank 46.
  • a partial stream t 1 of the preheated feed water which is at low pressure is removed from the feed water tank 46 via the inflow line 64.
  • This partial flow t ] _ is first brought to a pressure above the fuel pressure by means of the pump 68 and then fed to the heat exchanger 62. There, the heat contained in the partial flow t_ of the preheated feed water is transferred to the fuel BS by indirect heat exchange.
  • the partial flow t 1 of the cooled feed water which is conducted via the outflow line 66 is first throttled and then mixed with the condensate flowing via the condensate line 42.
  • the fuel is preheated at a fuel pressure p BS of 5 to 20 bar.
  • the partial flow t] _ of the preheated feed water is brought to a pressure above the fuel pressure by means of the pump 68.
  • fuel preheating to a temperature T of about 150 ° C. is achieved.
  • preheated feed water under high pressure is fed to the heat exchanger 62 '.
  • a partial flow t ′ ⁇ of the preheated feed water, which is under high pressure, is removed from the economizer 26 via the discharge line 64 ′.
  • the partial flow t'i is conducted via the discharge line 66 'and, after throttling in the throttle 70', the water-steam circuit 12 of the steam turbine 10 between the feed water tank 46 and fed to the high pressure pump 54 again.
  • a two-stage fuel preheating takes place.
  • the fuel BS is heated to a temperature T3 of approximately 130 ° C. to 150 ° C.
  • the fuel is heated in a fuel humidifier 80 connected to the fuel line 6 by direct heat exchange with heated water UW flowing in a water circuit 82.
  • the circulating water UW is heated by indirect heat exchange in a further heat exchanger 83 connected on the secondary side in the water circuit 82.
  • the heat exchanger 83 is connected on the primary side to the water-steam circuit 12 of the steam turbine.
  • a partial flow t ′′ 1 of the preheated feed water is taken from the feed water tank 46, similarly to the exemplary embodiment according to FIG. 1, via an inflow line 64 ′′ and a pump 68 ′′.
  • the partial flow t ′′ 1 is fed back to the water-steam circuit 12 via an outflow line 66 ′′ connected to the condensate preheater 22.
  • the heat exchanger 83 is located at least in part of the condensate preheater 20 parallel.
  • the fuel BS fed to the fuel humidifier 80 in the manner of a countercurrent column at the sump 84 is saturated from below with the water UW trickling down from the head 86 in the countercurrent.
  • the pressure, temperature and throughput of the circulating water UW depend on the minimally achievable degree of saturation of the fuel BS and on the minimum required sprinkling density within the fuel humidifier 80, so that only part of the water UW used evaporates. This part is fresh water FW replaced, which is fed via a fresh water line 88 to the water circuit 82, into which a pump 90 is connected.
  • the fuel BS heats up from below, while the water UW cools down from above.
  • the water UW emerging at the sump 84 of the fuel humidifier 80 is mixed with the fresh water FW and heated by indirect heat exchange with the partial flow t ′′ ′′ of the preheated feed water.
  • Pressure, temperature and quantity per unit of time of the partial flow t ⁇ _ • ⁇ depend on the operating state of the fuel humidifier 80 and are selected such that the water temperature at the head 86 of the fuel humidifier 80 above the saturation state of the the heated fuel BS 'leaving the humidifier 80.
  • the on the temperature T3 of e.g. 150 ° C heated fuel BS ' is further heated in a second stage by means of a heat exchanger 62' 'to a temperature T] _ of 250 ° C to 320 ° C.
  • the heat exchanger 62 * ' which is connected downstream of the fuel humidifier 80 in the fuel line 6, is connected on the primary side - as in the exemplary embodiment according to FIG. 2 - to the high-pressure stage of the water-steam circuit 12 of the steam turbine 10.
  • the further heating of the fuel BS ' takes place by indirect heat exchange with a partial stream t2 of the preheated feed water which is under high pressure and which is taken from the high pressure stage.
  • This partial flow t2 is fed to the heat exchanger 62 ′′ via a feed line 64 ′′ ′′ connected to the high-pressure preheater 26. After the heat exchange and subsequent throttling in the throttle 70 '' 'lying in an outflow line 66' '', the partial flow t2 is fed to the condensate preheater 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention concerns a method of operating a combined gas and steam turbine (COGAS) plant (1a, 1b) in which the heat in the exhaust gases (AM') produced by the gas turbine (2) is used to generate steam for the steam turbine (10) which is connected into a water/steam circuit (12). In order to increase the thermal efficiency, the invention calls for the fuel (BS) used to generate the hot gases (AM) which drive the gas turbine (2) to be pre-heated. The plant (1a, 1b) includes a combustion chamber (4) connected in front of the gas turbine (2), the fuel line (6) to the combustion chamber passing through a heat exchanger (62, 62') connected to the water/steam circuit (12).

Description

Beschreibungdescription
Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-AnlageProcess for operating a gas and steam turbine plant and a combined cycle gas plant
Die Erfindung betrifft ein Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage (GuD-Anlage) , bei der die im ent¬ spannten Arbeitsmittel aus der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die in einen Wasser-Dampf-Kreis- lauf geschaltete Dampfturbine genutzt wird. Sie richtet sich weiter auf eine nach diesem Verfahren arbeitende GuD-Anlage.The invention relates to a method for operating a gas and steam turbine plant (CCGT plant) in which the heat contained in the relaxed working medium from the gas turbine is used to generate steam for the steam turbine connected to a water-steam circuit . It continues to focus on a combined cycle plant that uses this process.
Bei einer Gas- und Dampfturbinenanlage wird die im entspann¬ ten Arbeitsmittel aus der Gasturbine enthaltene Wärme zur Er- zeugung von Dampf für die Dampfturbine genutzt. Die Wärme¬ übertragung erfolgt in einem der Gasturbine nachgeschalteten Dampferzeuger oder Abhitzekessel, in dem Heizflächen in Form von Rohren oder Rohrbündeln angeordnet sind. Diese wiederum sind in den Wasser-Dampf-Kreislauf der Dampfturbine geεchal- tet. Der Wasser-Dampf-Kreislauf umfaßt mehrere, zum Beispiel zwei, Druckstufen, wobei jede Druckstufe eine Vorwärm-, eine Verdampfer- und eine Überhitzer-Heizfläche aufweist. Mit ei¬ ner derartigen, zum Beispiel aus der europäischen Patent¬ schrift 0 148 973 bekannten, GuD-Anlage wird je nach den im Wasser-Dampf-Kreislauf der Dampfturbine herrschenden Druck¬ verhältnissen ein thermodynamischer Wirkungsgrad von etwa 50 % bis 55 % erreicht.In a gas and steam turbine system, the heat contained in the relaxed working fluid from the gas turbine is used to generate steam for the steam turbine. The heat transfer takes place in a steam generator or waste heat boiler downstream of the gas turbine, in which heating surfaces are arranged in the form of tubes or tube bundles. These in turn are switched into the water-steam cycle of the steam turbine. The water-steam cycle comprises several, for example two, pressure stages, each pressure stage having a preheating, an evaporator and a superheater heating surface. With such a combined cycle plant, known for example from European patent specification 0 148 973, a thermodynamic efficiency of about 50% to 55% is achieved, depending on the pressure conditions prevailing in the water-steam cycle of the steam turbine.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer derartigen Gas- und Dampfturbinenanlage an¬ zugeben, mit dem eine Steigerung des thermodynamisehen Wir¬ kungsgrads erreicht wird. Dies soll bei einer geeigneten Gas- und Dampfturbinenanlage mit besonders einfachen Mitteln er¬ reicht werden.The invention is based on the object of specifying a method for operating such a gas and steam turbine installation with which an increase in the thermodynamic efficiency is achieved. In a suitable gas and steam turbine plant, this should be achieved with particularly simple means.
Bezüglich des Verfahrens wird die genannte Aufgabe erfin¬ dungsgemäß dadurch gelöst, daß ein zur Erzeugung des Arbeits- mittels für die Gasturbine eingesetzter Brennstoff vorgewärmt wird.With regard to the method, the stated object is achieved according to the invention in that a is preheated by means of fuel used for the gas turbine.
Die Brennstoffvorwärmung erfolgt vorteilhafterweise durch in- direkten Wärmetausch des Brennstoffs mit einem dem Wasser- Dampf-Kreislauf der Dampfturbine entnommenen Teilstrom vorge¬ wärmten Wassers, das nach erfolgtem Wärmetausch mit dem Brennstoff dem Wasser-Dampf-Kreislauf wieder zugeführt wird. Der Teilstrom zum Aufwärmen des Brennstoffs wird zweckmäßi- gerweise entweder einer Hochdruck-Stufe oder einer Nieder¬ druck-Stufe des Wasser-Dampf-Kreislaufs entnommen.The fuel is preheated advantageously by indirect heat exchange of the fuel with a partial flow of preheated water taken from the water-steam cycle of the steam turbine, which water is returned to the water-steam cycle after the heat has been exchanged with the fuel. The partial flow for heating the fuel is expediently taken from either a high-pressure stage or a low-pressure stage of the water-steam cycle.
Gemäß einer vorteilhaften Weiterbildung werden sowohl der Hochdruck-Stufe als auch der Niederdruck-Stufe jeweils ein Teilstrom entnommen und für eine zweistufige Brennstoffauf- wärmung verwendet. Dabei wird in einer ersten Stufe der Brennstoff durch direkten Wärmetausch mit vorgewärmtem Wasser befeuchtet und dabei erwärmt. Die Vorwärmung des zur Befeuch¬ tung dienenden Wassers erfolgt durch indirekten Wärmetausch mit dem der Niederdruck-Stufe des Wasser-Dampf-Kreislaufs entnommenen ersten Teilstrom. In einer zweiten Stufe wird an¬ schließend der erwärmte Brennstoff durch indirekten Wärme¬ tausch mit dem der Hochdruck-Stufe des Wasser-Dampf-Kreis¬ laufs entnommenen zweiten Teilstrom weiter erwärmt.According to an advantageous development, a partial flow is taken from both the high-pressure stage and the low-pressure stage and used for a two-stage fuel heating. In a first stage, the fuel is moistened and heated by direct heat exchange with preheated water. The water used for humidification is preheated by indirect heat exchange with the first partial stream taken from the low-pressure stage of the water-steam cycle. In a second stage, the heated fuel is then further heated by indirect heat exchange with the second partial stream taken from the high-pressure stage of the water-steam cycle.
Bei Verwendung eines flüssigen oder gasförmigen Brennstoffs (Heizöl, Erdgas) erfolgt eine Brennstoffvorwärmung auf eine Temperatur von 100° C bis 400° C. Für den Fall, daß der Teil¬ strom der Niederdruck-Stufe des Wasser-Dampf-Kreislaufs ent- nommen wird, erfolgt zweckmäßigerweise eine Vorwärmung des Brennstoffs auf eine Temperatur von etwa 150° C. Für den Fall, daß der Teilstrom der Hochdruck-Stufe des Wasser-Dampf- Kreislaufs entnommen wird, erfolgt eine Vorwärmung des Brennstoffs auf eine Temperatur von etwa 280° C bis 320° C. Für den Fall einer zweistufigen Brennstoffvorwärmung mit Brennstoffbefeuchtung erfolgt eine Vorwärmung des Brennstoffs auf eine Temperatur von ebenfalls 280° C bis 320° C. Bezüglich der Gas- und Dampfturbinenanlage mit einer der Gas¬ turbine vorgeschalteten Brennkammer, in die eine Brennstoff¬ leitung mündet, und mit einem in einen mindestens zwei Druck¬ stufen aufweisenden Wasser-Dampf-Kreislauf der Dampfturbine geschalteten Abhitzedampferzeuger, der einen Kondensatvorwär¬ mer und einen Hochdruckvorwärmer aufweist, wird die genannte Aufgabe erfindungsgemäß dadurch gelöst, daß zur Brennstoff- vorwärmung ein Wärmetauscher vorgesehen ist, der primärseitig in den Wasser-Dampf-Kreislauf und sekundärseitig in die Brennstoffleitung geschaltet ist.If a liquid or gaseous fuel (heating oil, natural gas) is used, the fuel is preheated to a temperature of 100 ° C. to 400 ° C. In the event that the partial flow is taken from the low-pressure stage of the water-steam cycle , the fuel is advantageously preheated to a temperature of approximately 150 ° C. In the event that the partial stream is removed from the high-pressure stage of the water-steam circuit, the fuel is preheated to a temperature of approximately 280 ° C. to 320 ° C. In the case of a two-stage fuel preheating with fuel humidification, the fuel is preheated to a temperature of likewise 280 ° C to 320 ° C. With regard to the gas and steam turbine system with a combustion chamber upstream of the gas turbine, into which a fuel line opens, and with a steam-steam circuit of the steam turbine connected in at least two pressure stages, which has a condensate preheater and has a high-pressure preheater, the above object is achieved in that a heat exchanger is provided for fuel preheating, which is connected on the primary side in the water-steam cycle and on the secondary side in the fuel line.
Der Wärmetauscher ist primärseitig zweckmäßigerweise dem Kon¬ densatVorwärmer parallel geschaltet. In diesem Fall steht das vorgewärmte Wasser des zur Brennstoffvorwärmung dienenden Teilstroms unter niedrigem Druck. Der Wärmetauscher kann primärseitig aber auch dem Hochdruckvorwärmer parallel ge¬ schaltet sein, so daß das vorgewärmte Wasser des zur Brenn¬ stoffvorwärmung dienenden Teilstroms unter entsprechend hohem Druck steht.The heat exchanger is advantageously connected in parallel with the condensate preheater on the primary side. In this case, the preheated water of the partial flow used to preheat the fuel is at low pressure. On the primary side, however, the heat exchanger can also be connected in parallel with the high-pressure preheater, so that the preheated water of the partial flow serving to preheat the fuel is at a correspondingly high pressure.
Für den Fall einer zweistufigen Brennstoffvorwärmung mit Brennstoffbefeuchtung ist zweckmäßigerweise ein weiterer Wär¬ metauscher vorgesehen, der sekundärseitig in Strömungsrich¬ tung des Brennstoffs vor dem ersten Wärmetauscher angeordnet ist. Er ist außerdem primärseitig an die Niederdruck-Stufe des Wasser-Dampf-Kreislaufs angeschlossen und liegt parallel zum Kondensatvorwärmer, während der erste Wärmetauscher zur weiteren Erwärmung des Brennstoffs an die Hochdruck-Stufe des Wasser-Dampf-Kreislaufs angeschlossen ist und parallel zum Hochdruckvorwärmer liegt.In the case of two-stage fuel preheating with fuel moistening, a further heat exchanger is expediently provided, which is arranged on the secondary side in the flow direction of the fuel upstream of the first heat exchanger. It is also connected on the primary side to the low-pressure stage of the water-steam cycle and is parallel to the condensate preheater, while the first heat exchanger is connected to the high-pressure stage of the water-steam cycle for further heating of the fuel and is parallel to the high-pressure preheater.
Die Vorwärmung des Brennstoffs in der ersten Stufe erfolgt zweckmäßigerweise durch Befeuchtung des Brennstoffs mittels in einem Wasser-Kreislauf geführten, vorgewärmten Wassers. Dazu ist in die Brennstoffleitung ein Brennstoffbefeuchter geschaltet, in dem der Brennstoff und das vorgewärmte Wasser zueinander im Gegenstrom geführt sind. Die Vorwärmung des zur Befeuchtung des Brennstoffs dienenden Wassers erfolgt in dem mit der Niederdruck-Stufe des Wasser-Dampf-Kreislaufs verbundenen weiteren Wärmetauscher.The preheating of the fuel in the first stage is expediently carried out by moistening the fuel by means of preheated water conducted in a water circuit. For this purpose, a fuel humidifier is connected in the fuel line, in which the fuel and the preheated water are guided in counterflow to one another. The preheating of the The water serving as fuel is humidified in the further heat exchanger connected to the low-pressure stage of the water-steam cycle.
Ausführungsbeispiele der Erfindung werden anhand einer Zeich¬ nung näher erläutert. Es zeigen:Embodiments of the invention are explained in more detail with reference to a drawing. Show it:
Figuren 1 und 2 eine Gas- und Dampfturbinenanlage mit einem an alternativen Stellen an einen Wasser-Dampf-Kreislauf der Dampfturbine angeschlossenen Wärmetauscher zur Bren s off- vorwärmung, undFigures 1 and 2, a gas and steam turbine system with a heat exchanger connected at alternative points to a water-steam circuit of the steam turbine for preheating Bren s off, and
Figur 3 eine Gas- und Dampfturbinenanlage gemäß den Figuren 1 und 2 mit zwei Wärmetauschern zur Brennstoffbefeuchtung und - vorwärmung.Figure 3 shows a gas and steam turbine system according to Figures 1 and 2 with two heat exchangers for fuel moistening and - preheating.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.Corresponding parts are provided with the same reference symbols in all figures.
Eine Gas- und Dampfturbinenanlage gemäß den Figuren 1 bis 3 umfaßt eine Gasturbinenanlage la und eine Dampfturbinenanlage lb. Die Gasturbinenanlage la umfaßt eine Gasturbine 2 mit angekoppeltem Luftverdichter 3 und eine der Gasturbine 2 vorgeschaltete Brennkammer 4, die an eine Frischluftleitung 5 des Luftverdichters 3 angeschlossen ist. In die Brennkammer 4 der Gasturbine 2 mündet eine Brennstoffleitung 6. Die Gasturbine 2 und der Luftverdichter 3 sowie ein Generator 7 sitzen auf einer gemeinsamen Welle 8.A gas and steam turbine plant according to FIGS. 1 to 3 comprises a gas turbine plant 1 a and a steam turbine plant 1 b. The gas turbine system 1 a comprises a gas turbine 2 with a coupled air compressor 3 and a combustion chamber 4 connected upstream of the gas turbine 2 and which is connected to a fresh air line 5 of the air compressor 3. A fuel line 6 opens into the combustion chamber 4 of the gas turbine 2. The gas turbine 2 and the air compressor 3 as well as a generator 7 sit on a common shaft 8.
Die Dampfturbinenanlage lb umfaßt eine Dampfturbine 10 mit angekoppeltem Generator 11 und in einem Wasser-Dampf-Kreis¬ lauf 12 einen der Dampfturbine 10 nachgeschalteten Kondensa¬ tor 13 sowie einen Abhitzedampferzeuger 14.The steam turbine system 1b comprises a steam turbine 10 with a coupled generator 11 and, in a water-steam circuit 12, a capacitor 13 connected downstream of the steam turbine 10 and a waste heat steam generator 14.
Die Dampfturbine 10 besteht aus einem Hochdruckteil 10a und einem Niederdruckteil 10b, die über eine gemeinsame Welle 15 den Generator 11 antreiben. Zum Zuführen von in der Gasturbine 2 entspanntem Arbeitsmit¬ tel AM' oder Rauchgases in den Abhitzedampferzeuger 14 ist eine Abgasleitung 17 an einen Eingang 14a des Abhitzedampf¬ erzeugers 14 angeschlossen. Das entspannte Arbeitsmittel AM1 aus der Gasturbine 2 verläßt den Abhitzedampferzeuger 14 über dessen Ausgang 14b in Richtung auf einen (nicht darge¬ stellten) Kamin.The steam turbine 10 consists of a high-pressure part 10a and a low-pressure part 10b, which drive the generator 11 via a common shaft 15. An exhaust pipe 17 is connected to an inlet 14a of the heat recovery steam generator 14 for supplying working medium AM ′ or flue gas relaxed in the gas turbine 2 to the heat recovery steam generator 14. The relaxed working medium AM 1 from the gas turbine 2 leaves the heat recovery steam generator 14 via its outlet 14b in the direction of a chimney (not shown).
Der Dampferzeuger 14 umfaßt in einer Niederdruck-Stufe des Wasser-Dampf-Kreislaufs 12 einen Kondensatvorwärmer 20 und einen Niederdruck-Verdampfer 22 sowie einen Niederdruck-Über¬ hitzer 24. Er umfaßt weiter in einer Hochdruck-Stufe des Was¬ ser-Dampf-Kreislaufs 12 einen Hochdruck-Vorwärmer oder Econo- mizer 26, einen Hochdruck-Verdampfer 28 und einen Hochdruck- Überhitzer 30. Der Niederdruck-Überhitzer 24 ist über eine Dampfleitung 32 mit dem Niederdruckteil 10b der Dampfturbine 10 verbunden. Der Hochdruck-Überhitzer 30 ist über eine Dampfleitung 34 mit dem Hochdruckteil 10a der Dampfturbine 10 verbunden. Der Niederdruckteil 10b der Dampfturbine 10 ist ausgangsseitig über eine Dampfleitung 36 an den Kondensator 13 angeschlossen.In a low-pressure stage of the water-steam circuit 12, the steam generator 14 comprises a condensate preheater 20 and a low-pressure evaporator 22 as well as a low-pressure superheater 24. It also comprises in a high-pressure stage of the water-steam circuit 12 a high-pressure preheater or economizer 26, a high-pressure evaporator 28 and a high-pressure superheater 30. The low-pressure superheater 24 is connected to the low-pressure part 10b of the steam turbine 10 via a steam line 32. The high-pressure superheater 30 is connected to the high-pressure part 10 a of the steam turbine 10 via a steam line 34. The low-pressure part 10b of the steam turbine 10 is connected on the output side to the condenser 13 via a steam line 36.
Der in den Figuren 1 bis 3 dargestellte Wasser-Dampf-Kreis¬ lauf 12 ist somit aus zwei Druckstufen aufgebaut. Er kann aber auch aus drei Druckstufen aufgebaut sein. In diesem Fall weist der Abhitzedampferzeuger 14 in nicht näher dargestell¬ ter Art und Weise zusätzlich einen Mitteldruck-Verdampfer und einen Mitteldruck-Überhitzer auf, die in den Wasser-Dampf- Kreislauf 12 geschaltet und mit einem Mitteldruckteil der Dampfturbine 10 verbunden sind.The water-steam circuit 12 shown in FIGS. 1 to 3 is thus made up of two pressure stages. However, it can also be constructed from three pressure stages. In this case, the waste heat steam generator 14 additionally has a medium-pressure evaporator and a medium-pressure superheater, which are connected to the water-steam circuit 12 and are connected to a medium-pressure part of the steam turbine 10.
Der Kondensator 13 ist über eine Kondensatleitung 42 mit dem Kondensatvorwärmer 20 verbunden. In der Kondensatleitung 42 liegt eine Kondensatpumpe 44. Der Kondensatvorwärmer 20 ist ausgangsseitig mit einem Speisewasserbehälter 46 verbunden. Der Speisewasserbehälter 46 ist ausgangsseitig über eine Nie¬ derdruckpumpe 48 mit einem Wasser-Dampf-Trenngefäß 50 der Niederdruck-Stufe verbunden. An dieses Gefäß 50 ist der Nie¬ derdruck-Überhitzer 24 und - über eine Umwälzpumpe 52 - der Niederdruck-Verdampfer 22 angeschlossen. Der Speisewasserbe¬ hälter 46 ist ausgangsseitig außerdem über eine Hochdruck¬ pumpe 54 mit dem Economizer 26 verbunden, der seinerseits ausgangsseitig mit einem Wasser-Dampf-Trenngefäß 56 der Hoch¬ druck-Stufe verbunden ist. An das Gefäß 56 ist der Hochdruck- Überhitzer 30 und - über eine Umwälzpumpe 58 - der Hochdruck- Verdampfer 28 angeschlossen. Weiter mündet in den Speisewas¬ serbehälter 46 eine an die Dampfleitung 32 angeschlossene Dampfleitung 60. Ferner ist der Speisewasserbehälter 46 über eine Umwälzpumpe 59 an die Kondensatleitung 42 angeschlossen.The condenser 13 is connected to the condensate preheater 20 via a condensate line 42. A condensate pump 44 is located in the condensate line 42. The condensate preheater 20 is connected on the outlet side to a feed water tank 46. The feed water tank 46 is connected on the output side via a low pressure pump 48 to a water / steam separation vessel 50 of the low pressure stage. The low-pressure superheater 24 and - via a circulation pump 52 - the low-pressure evaporator 22 are connected to this vessel 50. The feed water tank 46 is also connected on the output side via a high-pressure pump 54 to the economizer 26, which in turn is connected on the output side to a water-steam separation vessel 56 of the high-pressure stage. The high-pressure superheater 30 and - via a circulating pump 58 - the high-pressure evaporator 28 are connected to the vessel 56. A steam line 60 connected to the steam line 32 also opens into the feed water tank 46. Furthermore, the feed water tank 46 is connected to the condensate line 42 via a circulation pump 59.
In die Brennstoffleitung 6 ist die Sekundärseite eines Wärme¬ tauschers 62 geschaltet, der gemäß Figur 1 primärseitig dem Kondensatvorwärmer 20 parallel geschaltet ist. Dazu ist der Wärmetauscher 62 primärseitig über eine Zuströmleitung 64 mit dem Speisewasserbehälter 46 und über eine Abströmleitung 66 mit der Kondensatleitung 42 verbunden. In die Zuströmleitung 64 ist eine Pumpe 68 geschaltet. In die Abströmleitung 66 ist eine Drossel 70 geschaltet.The secondary side of a heat exchanger 62 is connected into the fuel line 6 and, according to FIG. 1, is connected in parallel with the condensate preheater 20. For this purpose, the heat exchanger 62 is connected on the primary side via an inflow line 64 to the feed water tank 46 and via an outflow line 66 to the condensate line 42. A pump 68 is connected to the inflow line 64. A throttle 70 is connected in the outflow line 66.
Gemäß Figur 2 ist ein Wärmetauscher 62 ' primärseitig dem Eco¬ nomizer 26 parallel geschaltet. Dazu ist der Wärmetauscher 62' primärseitig über eine Zuströmleitung 64' mit dem Ausgang des Economizers 26 und über eine Abströmleitung 66' mit der Saugseite der Hochdruckpumpe 54 verbunden. In die Abströmlei- tung 66' ist eine Drossel 70' geschaltet.According to FIG. 2, a heat exchanger 62 'is connected in parallel with the economizer 26 on the primary side. For this purpose, the heat exchanger 62 'is connected on the primary side via an inflow line 64' to the outlet of the economizer 26 and via an outflow line 66 'to the suction side of the high-pressure pump 54. A throttle 70 'is connected in the outflow line 66'.
Beim Betrieb der Gas- und Dampfturbinenanlage la, lb wird der Brennkammer 4 über die Brennstoffleitung 6 flüssiger oder gasförmiger Brennstoff BS, zum Beispiel Erdgas oder Heizöl, zugeführt. Dabei wird der Brennstoff BS in dem Wärmetauscher 62, 62' auf eine Temperatur T]_ von 100 °C bis 400 °C vorge¬ wärmt. Der vorgewärmte Brennstoff BS wird zur Erzeugung des Arbeitsmittels AM für die Gasturbine 2 in der Brennkammer 4 mit verdichteter Frischluft L aus dem Luftverdichter 3 ver¬ brannt. Das bei der Verbrennung entstehende heiße und unter hohem Druck stehende Arbeitsmittel AM oder Rauchgas wird in der Gasturbine 2 entspannt und treibt dabei diese und den Luftverdichter 3 sowie den Generator 7 an. Das aus der Gas¬ turbine 2 mit einer Temperatur T2 von etwa 550 °C austretende entspannte Arbeitsmittel AM' wird über die Abgasleitung 17 in den Abhitzedampferzeuger 14 eingeleitet und dort zur Er- zeugung von Dampf für die Dampfturbine 10 genutzt. Zu diesem Zweck sind der Rauchgasstrom und der Wasser-Dampf-Kreislauf 12 im Gegenstrom miteinander verknüpft.When the gas and steam turbine system la, lb is in operation, the combustion chamber 4 is supplied with liquid or gaseous fuel BS, for example natural gas or heating oil, via the fuel line 6. The fuel BS is preheated in the heat exchanger 62, 62 'to a temperature T ] _ of 100 ° C. to 400 ° C. The preheated fuel BS is used to generate the Working medium AM for the gas turbine 2 in the combustion chamber 4 burns with compressed fresh air L from the air compressor 3. The hot and high-pressure working medium AM or flue gas that arises during the combustion is expanded in the gas turbine 2 and drives it and the air compressor 3 and the generator 7. The relaxed working medium AM 'emerging from the gas turbine 2 with a temperature T2 of approximately 550 ° C. is introduced into the waste heat steam generator 14 via the exhaust gas line 17 and used there to generate steam for the steam turbine 10. For this purpose, the flue gas stream and the water-steam circuit 12 are linked to one another in countercurrent.
Um eine besonders gute Wärmeausnutzung zu erreichen, werden Dämpfe bei unterschiedlichen Druckniveaus erzeugt, deren Enthalpie zur Stromerzeugung in der Dampfturbine 10 genutzt wird. So kann in der Niederdruck-Stufe Dampf mit einem Druck pN von 6 bar und einer Temperatur TN von 200 °C erzeugt wer¬ den. In der Hochdruck-Stufe kann Dampf mit einem Druck pH von 80 bar bei einer Temperatur TH von 520 °C erzeugt werden.In order to achieve particularly good heat utilization, vapors are generated at different pressure levels, the enthalpy of which is used to generate electricity in the steam turbine 10. In the low-pressure stage, steam can be generated with a pressure p N of 6 bar and a temperature T N of 200 ° C. In the high pressure stage steam can be generated with a pressure p H of 80 bar and a temperature T H of 520 ° C.
Der aus dem Niederdruckteil 10b der Dampfturbine 10 austre¬ tende entspannte Dampf wird über die Dampfleitung 36 dem Kon¬ densator 13 zugeführt und kondensiert dort. Das Kondensat wird über die Kondensatpumpe 44 in den Kondensatvorwärmer 20 gepumpt und dort vorgewärmt. Das vorgewärmte Kondensat strömt in den Speisewasserbehälter 46.The expanded steam emerging from the low-pressure part 10b of the steam turbine 10 is fed to the condenser 13 via the steam line 36 and condenses there. The condensate is pumped into the condensate preheater 20 via the condensate pump 44 and preheated there. The preheated condensate flows into the feed water tank 46.
Gemäß dem Ausführungsbeispiel nach Figur 1 wird zur Vorwär- mung des Brennstoffs BS dem Speisewasserbehälter 46 über die Zuströmleitung 64 ein Teilstrom tι_ des vorgewärmten und unter niedrigem Druck stehenden Speisewassers entnommen. Dieser Teilstrom t]_ wird mittels der Pumpe 68 zunächst auf einen Druck oberhalb des Brennstoffdrucks gebracht und anschließend dem Wärmetauscher 62 zugeführt. Dort wird durch indirekten Wärmetausch die im Teilstrom t_ des vorgewärmten Speisewas- serε enthaltene Wärme auf den Brennstoff BS übertragen. Der über die Abströmleitung 66 geführte Teilstrom tι_ des abge¬ kühlten Speisewassers wird zunächst gedrosselt und an¬ schließend mit dem über die Kondensatleitung 42 strömenden Kondensat vermischt. Die Brennstoffvorwärmung erfolgt bei ei- nem brennstoffseitigen Druck pBS von 5 bis 20 bar. Um ein Eindringen von gasförmigen Bestandteilen des Brennstoffs BS in das Kondenat oder Speisewasser zu vermeiden, wird der Teilstrom t]_ des vorgewärmten Speisewassers mittels der Pumpe 68 auf einen Druck oberhalb des Brennstoffdrucks gebracht. Durch den indirekten Wärmetausch zwischen dem Teilstrom t]_ des vorgewärmten und unter niedrigem Druck stehenden Speise¬ wassers und dem Brennstoff BS in dem Wärmetauscher 62 wird eine Brennstoffvorwärmung auf eine Temperatur Tι_ von etwa 150° C erzielt.According to the exemplary embodiment according to FIG. 1, in order to preheat the fuel BS, a partial stream t 1 of the preheated feed water which is at low pressure is removed from the feed water tank 46 via the inflow line 64. This partial flow t ] _ is first brought to a pressure above the fuel pressure by means of the pump 68 and then fed to the heat exchanger 62. There, the heat contained in the partial flow t_ of the preheated feed water is transferred to the fuel BS by indirect heat exchange. The The partial flow t 1 of the cooled feed water which is conducted via the outflow line 66 is first throttled and then mixed with the condensate flowing via the condensate line 42. The fuel is preheated at a fuel pressure p BS of 5 to 20 bar. In order to prevent gaseous constituents of the fuel BS from entering the condensate or feed water, the partial flow t] _ of the preheated feed water is brought to a pressure above the fuel pressure by means of the pump 68. As a result of the indirect heat exchange between the partial flow t ] of the preheated and low-pressure feed water and the fuel BS in the heat exchanger 62, fuel preheating to a temperature T of about 150 ° C. is achieved.
Mit der Anlagenschaltung gemäß Figur 1 wird eine Wirkungs¬ gradsteigerung gegenüber dem eingangs erwähnten Wirkungsgrad um 0,3 bis 0,4 %-Punkte erreicht.With the system circuit according to FIG. 1, an increase in efficiency compared to the efficiency mentioned at the outset is achieved by 0.3 to 0.4 percentage points.
Bei dem Ausführungsbeispiel gemäß Figur 2 wird dem Wärme¬ tauscher 62 ' unter hohem Druck stehendes vorgewärmtes Speise¬ wasser zugeführt. Dazu wird dem Economizer 26 über die Ab¬ strömleitung 64 ' ein Teilstrom t ' ι des vorgewärmten und unter hohem Druck stehenden Speisewassers entnommen. Nach erfolgtem indirekten Wärmetausch mit dem Brennstoff BS wird der Teil- strom t'i über die Abströmleitung 66' geführt und nach er¬ folgter Drosselung in der Drossel 70' dem Wasser-Dampf-Kreis¬ lauf 12 der Dampfturbine 10 zwischen dem Speisewasserbehälter 46 und der Hochdruckpumpe 54 wieder zugeführt. Durch den in- direkten Wärmetausch in dem Wärmetauscher 62* zwischen dem Teilstrom t'i des vorgewärmten und unter hohem Druck stehen¬ den Speisewassers aus der Hochdruck-Stufe des Wasser-Dampf- Kreiεlaufs 12 und dem Brennstoff BS wird eine Brennstoffvor- wärmung auf eine Temperatur T]_ von etwa 280 °C erreicht. Mit einer Schaltung gemäß dem Ausführungsbeispiel nach Figur 2 wird eine Wirkungsgradsteigerung um 0,5 bis 0,6 %-Punkte erreicht.In the exemplary embodiment according to FIG. 2, preheated feed water under high pressure is fed to the heat exchanger 62 '. For this purpose, a partial flow t ′ ι of the preheated feed water, which is under high pressure, is removed from the economizer 26 via the discharge line 64 ′. After indirect heat exchange with the fuel BS has taken place, the partial flow t'i is conducted via the discharge line 66 'and, after throttling in the throttle 70', the water-steam circuit 12 of the steam turbine 10 between the feed water tank 46 and fed to the high pressure pump 54 again. Due to the indirect heat exchange in the heat exchanger 62 * between the partial flow t'i of the preheated and high-pressure feed water from the high-pressure stage of the water-steam circuit 12 and the fuel BS, fuel preheating is reduced to one Temperature T] _ reached of about 280 ° C. With a circuit according to the exemplary embodiment according to FIG. 2, an efficiency increase of 0.5 to 0.6 percentage points is achieved.
Beim Ausführungsbeispiel gemäß Figur 3, bei dem die Gas- und Dampfturbinenanlage la, lb in gleicher Weise aufgebaut ist wie in den Ausführungsbeispielen gemäß den Figuren 1 und 2, erfolgt eine zweistufige Brennstoffvorwärmung. Dabei wird in einer ersten Stufe der Brennstoff BS auf eine Temperatur T3 von etwa 130° C bis 150 °C erwärmt.Die Brennstofferwärmung erfolgt in einem in die Brennstoffleitung 6 geschalteten Brennstoffbefeuchter 80 durch direkten Wärmetausch mit in einem Wasserkreislauf 82 strömendem, erwärmtem Wasser UW. Die Erwärmung des umlaufenden Wassers UW erfolgt durch indirekten Wärmetausch in einem sekundärseitig in den Wasserkreislauf 82 geschalteten weiteren Wärmetauscher 83. Der Wärmetauscher 83 ist primärseitig an den Wasser-Dampf-Kreislauf 12 der Dampfturbine angeschlossen. Dem Speisewasserbehälter 46 wird - ähnlich wie im Ausführungsbeispiel gemäß Figur 1 - über eine Zuströmleitung 64'' und eine Pumpe 68'' ein Teilstrom t' ' 1 des vorgewärmten Speisewassers entnommen. Der Teilstrom t' ' 1 wird nach erfolgtem indirektem Wärmetausch mit dem im Wasserkreislauf 82 umlaufenden Wasser UW über eine an den Kondensatvorwärmer 22 angeschlossene Abströmleitung 66' ' dem Wasser-Dampf-Kreislauf 12 wieder zugeführt.Der Wärmetauscher 83 liegt mindestens einem Teil des Kondensatvorwärmers 20 parallel.In the exemplary embodiment according to FIG. 3, in which the gas and steam turbine system 1 a, 1 b is constructed in the same way as in the exemplary embodiments according to FIGS. 1 and 2, a two-stage fuel preheating takes place. In a first stage, the fuel BS is heated to a temperature T3 of approximately 130 ° C. to 150 ° C. The fuel is heated in a fuel humidifier 80 connected to the fuel line 6 by direct heat exchange with heated water UW flowing in a water circuit 82. The circulating water UW is heated by indirect heat exchange in a further heat exchanger 83 connected on the secondary side in the water circuit 82. The heat exchanger 83 is connected on the primary side to the water-steam circuit 12 of the steam turbine. A partial flow t ″ 1 of the preheated feed water is taken from the feed water tank 46, similarly to the exemplary embodiment according to FIG. 1, via an inflow line 64 ″ and a pump 68 ″. After indirect heat exchange with the water UW circulating in the water circuit 82, the partial flow t ″ 1 is fed back to the water-steam circuit 12 via an outflow line 66 ″ connected to the condensate preheater 22. The heat exchanger 83 is located at least in part of the condensate preheater 20 parallel.
Der dem Brennstoffbefeuchter 80 in der Art einer Gegenstrom- kolonne am Sumpf 84 zugeführte Brennstoff BS wird mit dem im Gegenstrom vom Kopf 86 herabrieselnden Wasser UW von unten nach oben aufgesättigt. Druck, Temperatur und Durchsatz des umlaufenden Wassers UW richten sich nach dem minimal erreich¬ baren Aufsättigungsgrad des Brennstoffs BS sowie nach der minimalen erforderlichen Berieselungsdichte innerhalb des Brennstoffbefeuchters 80, so daß nur ein Teil des eingesetz¬ ten Wassers UW verdampft. Dieser Teil wird durch Frischwasser FW ersetzt, das über eine Frischwasserleitung 88 dem Wasser¬ kreislauf 82, in den eine Pumpe 90 geschaltet ist, zugeführt wird. Infolge des Aufsattigungεvorgangs erwärmt sich der Brennstoff BS von unten nach oben, während sich das u lau- fende Wasser UW von oben nach unten abkühlt. Das am Sumpf 84 des Brennstoffbefeuchters 80 austretende Wasser UW wird mit dem Frischwasser FW vermischt und durch indirekten Wärme¬ tausch mit dem Teilstrom t' ']_ des vorgewärmten Speisewassers erwärmt. Druck, Temperatur und Menge pro Zeiteinheit des Teilstroms tι_ • ■ richten sich dabei nach dem Betriebszustand des Brennstoffbefeuchters 80 und sind so gewählt, daß bei leichtem Überdruck des Teilstromε t' 'ι_ die Wassertemperatur am Kopf 86 des Brennstoffbefeuchters 80 oberhalb des Sätti¬ gungszustandes des den Brennstoffbefeuchter 80 verlassenden, erwärmten Brennstoffs BS' liegt.The fuel BS fed to the fuel humidifier 80 in the manner of a countercurrent column at the sump 84 is saturated from below with the water UW trickling down from the head 86 in the countercurrent. The pressure, temperature and throughput of the circulating water UW depend on the minimally achievable degree of saturation of the fuel BS and on the minimum required sprinkling density within the fuel humidifier 80, so that only part of the water UW used evaporates. This part is fresh water FW replaced, which is fed via a fresh water line 88 to the water circuit 82, into which a pump 90 is connected. As a result of the saturation process, the fuel BS heats up from below, while the water UW cools down from above. The water UW emerging at the sump 84 of the fuel humidifier 80 is mixed with the fresh water FW and heated by indirect heat exchange with the partial flow t ″ ″ of the preheated feed water. Pressure, temperature and quantity per unit of time of the partial flow tι_ • ■ depend on the operating state of the fuel humidifier 80 and are selected such that the water temperature at the head 86 of the fuel humidifier 80 above the saturation state of the the heated fuel BS 'leaving the humidifier 80.
Der auf die Temperatur T3 von z.B. 150° C erwärmte Brennstoff BS' wird in einer zweiten Stufe mittels eines Wärmetauschers 62'' auf eine Temperatur T]_ von 250° C bis 320° C weiter er- wärmt. Der Wärmetauscher 62*', der sekundärseitig dem Brenn¬ stoffbefeuchter 80 in der Brennstoffleitung 6 nachgeschaltet ist, ist primärseitig - wie bei dem Ausführungsbeispiel nach Figur 2 - an die Hochdruck-Stufe des Wasser-Dampf-Kreislaufes 12 der Dampfturbine 10 angeschloεsen. Die weitere Erwärmung des Brennstoffε BS' erfolgt dabei durch indirekten Wärme¬ tausch mit einem der Hochdruck-Stufe entnommenen Teilstrom t2 des vorgewärmten und unter hohem Druck stehenden Speisewas- sers. Dieser Teilstrom t2 wird dem Wärmetauscher 62'' über eine an den Hochdruckvorwärmer 26 angeschlosεene Zuεtrömlei- tung 64 ' ' ' zugeführt. Nach erfolgtem Wärmetausch sowie an¬ schließender Drosselung in der in einer Abströmleitung 66''' liegenden Drossel 70''' wird der Teilstrom t2 dem Kondensat¬ vorwärmer 20 zugeführt.The on the temperature T3 of e.g. 150 ° C heated fuel BS 'is further heated in a second stage by means of a heat exchanger 62' 'to a temperature T] _ of 250 ° C to 320 ° C. The heat exchanger 62 * ', which is connected downstream of the fuel humidifier 80 in the fuel line 6, is connected on the primary side - as in the exemplary embodiment according to FIG. 2 - to the high-pressure stage of the water-steam circuit 12 of the steam turbine 10. The further heating of the fuel BS 'takes place by indirect heat exchange with a partial stream t2 of the preheated feed water which is under high pressure and which is taken from the high pressure stage. This partial flow t2 is fed to the heat exchanger 62 ″ via a feed line 64 ″ ″ connected to the high-pressure preheater 26. After the heat exchange and subsequent throttling in the throttle 70 '' 'lying in an outflow line 66' '', the partial flow t2 is fed to the condensate preheater 20.
Mit der Schaltung gemäß dem Ausführungsbeispiel nach Figur 3 wird eine Wirkungsgradsteigerung um 0,6 bis 0,7 %-Punkte er¬ reicht. Bei Schaltungen mit einem aus drei Druckstufen aufgebauten Wasser-Dampf-Kreislauf werden ohne Zwischenschaltung eines Brennstoffbefeuchters 80 Wirkungsgradsteigerungen von 0,4 bis 0,6 %-Punkten erreicht; mit Brennstoffbefeuchter 80 werden Wirkungsgradsteigerungen von 0,6 bis 0,8 %-Punkten erreicht. With the circuit according to the exemplary embodiment according to FIG. 3, an increase in efficiency of 0.6 to 0.7 percentage points is achieved. In circuits with a water-steam cycle built up from three pressure levels, 80 efficiency increases of 0.4 to 0.6 percentage points are achieved without the interposition of a fuel humidifier; With 80 fuel humidifier, efficiency increases of 0.6 to 0.8 percentage points are achieved.

Claims

Patentansprüche claims
1. Verfahren zum Betreiben einer Gas- und Dampfturbinenanla¬ ge, bei der die im entspannten Arbeitsmittel (AM') der Gas- turbine (2) enthaltene Wärme zur Erzeugung von Dampf für die in einen Wasser-Dampf-Kreislauf (12) geschaltete Dampfturbine (10) genutzt wird, d a d u r c h g e k e n n z e i c h n e t , daß ein zur Erzeugung des Arbeitsmittels (AM) für die Gasturbine (2) ein- gesetzter Brennstoff (BS) vorgewärmt wird.1. A method for operating a gas and steam turbine plant in which the heat contained in the relaxed working medium (AM ') of the gas turbine (2) is used to generate steam for the steam turbine connected to a water-steam circuit (12) (10) is used, characterized in that a fuel (BS) used to generate the working medium (AM) for the gas turbine (2) is preheated.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß eine Vor¬ wärmung des Brennstoffs (BS) auf eine Temperatur (T^) von 100 °C bis 400 °C erfolgt.2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that preheating the fuel (BS) to a temperature (T ^) of 100 ° C to 400 ° C takes place.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Vor¬ wärmung durch indirekten Wärmetausch des Brennstoffε (BS) mit einem dem Wasser-Dampf-Kreislauf (12) der Dampfturbine (10) entnommenen Teilstrom (tι_, t'^) erfolgt.3. The method according to claim 1 or 2, characterized in that the preheating by indirect heat exchange of the fuel (BS) with a from the water-steam circuit (12) of the steam turbine (10) withdrawn partial flow (tι_, t '^) .
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Was¬ ser-Dampf-Kreislauf (12) der Dampfturbine (10) mindestens zwei Druckstufen (20, 22, 24 und 26, 28, 30) aufweist, d a d u r c h g e k e n n z e i c h n e t , daß der Teil- strom (tι_ bzw. t'ι_) zur Vorwärmung des Brennstoffε (BS) einer4. The method according to any one of claims 1 to 3, wherein the water-steam circuit (12) of the steam turbine (10) has at least two pressure stages (20, 22, 24 and 26, 28, 30), characterized in that the Partial stream (tι_ or t'ι_) for preheating the fuel (BS) one
Niederdruck-Stufe (20, 22, 24) und/oder einer Hochdruck-StufeLow pressure stage (20, 22, 24) and / or a high pressure stage
(26, 28, 30) deε Waεεer-Dampf-Kreiεlaufε (12) entnommen wird.(26, 28, 30) of the water vapor circuit (12) is removed.
5. Verfahren nach Anεpruch 4, g e k e n n z e i c h n e t d u r c h eine zweiεtufige Brennεtoffaufwärmung, wobei in einer erεten Stufe der Brennstoff (BS) durch direkten Wärme¬ tausch mit durch indirekten Wärmetausch mit einem der Nieder- druck-Stufe (20, 22, 24) des Waεεer-Dampf-Kreiεlaufε (12) entnommenen erεten Teilstrom (t''ι) vorgewärmten Wasεer er¬ wärmt wird, und wobei in einer zweiten Stufe der erwärmte Brennstoff (BS1) durch indirekten Wärmetausch mit einem der Hochdruck-Stufe (26, 28, 30) des Wasser-Dampf-Kreislaufs (12) entnommenen zweiten Teilstrom (t2) weiter erwärmt wird.5. The method according to claim 4, characterized by a two-stage heating of the fuel, in a first stage the fuel (BS) by direct heat exchange with by indirect heat exchange with one of the low-pressure stage (20, 22, 24) of the water vapor -Kreiεlaufε (12) taken first partial stream (t''ι) preheated water is heated, and in a second stage the heated Fuel (BS 1 ) is further heated by indirect heat exchange with a second partial stream (t2) taken from the high-pressure stage (26, 28, 30) of the water-steam circuit (12).
6. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß das in der ersten Stufe durch indirekten Wärmetausch mit dem ersten Teilstrom (t' 'ι_) vorgewärmte Wasεer (UW) im Gegenεtrom zur Strömungεrichtung deε Brennstoffs (BS) geführt wird.6. The method of claim 5, d a d u r c h g e k e n n z e i c h n e t that the preheated in the first stage by indirect heat exchange with the first partial stream (t '' ι_) Wasεer (UW) in counter current to the flow direction of the fuel (BS) is performed.
7. Gas- und Dampfturbinenanlage (la, lb) mit einer der Gas¬ turbine (2) vorgeschalteten Brennkammer (4), in die eine Brennstoffleitung (6) mündet, und mit einem in einen minde- εtenε zwei Druckεtufen (20, 22, 24 und26, 28, 30) aufweisen- den Wasser-Dampf-Kreislauf (12) der Dampfturbine (10) ge¬ schalteten Abhitzedampferzeuger (14), wobei der Abhitze¬ dampferzeuger (14) einen Kondensatvorwärmer (20) und einen Hochdruckvorwärmer (26) aufweist, d a d u r c h g e k e n n z e i c h n e t , daß zur Brennstoffvorwärmung mittels vorgewärmten Wassers aus dem7. Gas and steam turbine system (la, lb) with a combustion chamber (4) upstream of the gas turbine (2), into which a fuel line (6) opens, and with one into at least two pressure stages (20, 22, 24 and 26, 28, 30) have the water-steam circuit (12) of the steam turbine (10) switched heat recovery steam generator (14), the heat recovery steam generator (14) having a condensate preheater (20) and a high pressure preheater (26) has, characterized in that for preheating fuel by means of preheated water from the
Wasser-Dampf-Kreislauf (12) der Dampfturbine (10) ein Wärme- tauεcher (62, 62', 62"') vorgesehen ist, der primärseitig an den Waεser-Dampf-Kreislauf (12) angeschlossen ist, und der sekundärseitig in die Brennstoffleitung (6) geschaltet ist.Water-steam circuit (12) of the steam turbine (10) a heat exchanger (62, 62 ', 62 "') is provided, which is connected on the primary side to the water-steam circuit (12) and which on the secondary side Fuel line (6) is switched.
8. Anlage nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß der Wär¬ metauscher (62, 62 ' , 62'') primärseitig dem Kondensatvorwär¬ mer (20) oder dem Hochdruckvorwärmer (26) parallelgeschaltet ist.8. System according to claim 7, so that the heat exchanger (62, 62 ', 62' ') is connected in parallel on the primary side to the condensate preheater (20) or the high pressure preheater (26).
9. Anlage nach Anspruch 7 oder 8, g e k e n n z e i c h n e t d u r c h einen weiteren Wär¬ metauscher (83), der sekundärεeitig in Strömungεrichtung deε Brennstoffs (BS) vor dem ersten Wärmetauscher (62'') angeord¬ net ist, und der primärseitig parallel zum Kondensatvorwärmer (20) liegt. 9. Plant according to claim 7 or 8, characterized by a further heat exchanger (83), which is arranged on the secondary side in the flow direction of the fuel (BS) upstream of the first heat exchanger (62 ''), and which is on the primary side parallel to the condensate preheater (20 ) lies.
10. Anlage nach Anεpruch 9, g e k e n n z e i c h n e t d r c h einen in Strömungεrichtung des Brennstoffε (BS) vor dem Wärmetauεcher (62'') in die Brennstoffleitung (6) ge¬ schalteten Brennεtoffbefeuchter (80), wobei der weitere Wär- metauscher (83) sekundärseitig zur Befeuchtung des Brenn¬ stoffs (BS) dienendes Wasεer (UW) erwärmt. 10. Plant according to claim 9, characterized by a fuel humidifier (80) connected in the flow direction of the fuel (BS) upstream of the heat exchanger (62 '') into the fuel line (6), the further heat exchanger (83) on the secondary side for humidification of the fuel (BS) serving water (UW) heated.
PCT/DE1994/000657 1993-06-24 1994-06-13 Method of operating a cogas plant, and a cogas plant operated by this method WO1995000747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4321081.3 1993-06-24
DE19934321081 DE4321081A1 (en) 1993-06-24 1993-06-24 Process for operating a gas and steam turbine plant and a combined cycle gas plant

Publications (1)

Publication Number Publication Date
WO1995000747A1 true WO1995000747A1 (en) 1995-01-05

Family

ID=6491176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/000657 WO1995000747A1 (en) 1993-06-24 1994-06-13 Method of operating a cogas plant, and a cogas plant operated by this method

Country Status (2)

Country Link
DE (1) DE4321081A1 (en)
WO (1) WO1995000747A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6041588A (en) * 1995-04-03 2000-03-28 Siemens Aktiengesellschaft Gas and steam turbine system and operating method
GB2360820A (en) * 2000-02-14 2001-10-03 Alstom Heat-recovery fuel preheat system in a combined-cycle power plant
CN1313714C (en) * 2000-07-25 2007-05-02 西门子公司 Method for operating gas and steam turbine installation and corresponding installation
CN1325770C (en) * 2000-10-17 2007-07-11 西门子公司 Device and method for preheating combustibles in combined gas and turbine installations
CN101644192A (en) * 2008-08-05 2010-02-10 通用电气公司 System und anordnungen zur heisswasserentnahme zum vorheizen von brennstoff in einem kombizykluskraftwerk
US10100680B2 (en) 2013-09-19 2018-10-16 Siemens Aktiengesellschaft Combined cycle gas turbine plant comprising a waste heat steam generator and fuel preheating step
US11118781B2 (en) 2016-07-19 2021-09-14 Siemens Energy Global GmbH & Co. KG Vertical heat recovery steam generator
US12031457B2 (en) 2022-10-25 2024-07-09 Ge Infrastructure Technology Llc Combined cycle power plant having reduced parasitic pumping losses

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357746A (en) * 1993-12-22 1994-10-25 Westinghouse Electric Corporation System for recovering waste heat
WO1996036793A1 (en) * 1995-05-18 1996-11-21 Westinghouse Electric Corporation Steam injected gas turbine system with steam compressor
DE19532081A1 (en) * 1995-08-31 1997-03-06 Abb Management Ag Operational sequence for combination gas turbine installation
DE19536839A1 (en) * 1995-10-02 1997-04-30 Abb Management Ag Process for operating a power plant
DE19544226B4 (en) * 1995-11-28 2007-03-29 Alstom Combined plant with multi-pressure boiler
EP0918151B1 (en) * 1997-11-19 2004-01-07 ALSTOM (Switzerland) Ltd Device and method to preheat fuel for a combustor
JP3897891B2 (en) * 1998-01-19 2007-03-28 株式会社東芝 Combined cycle power plant
DE19829088C2 (en) 1998-06-30 2002-12-05 Man Turbomasch Ag Ghh Borsig Electricity generation in a composite power plant with a gas and a steam turbine
DE19837251C1 (en) * 1998-08-17 2000-02-10 Siemens Ag Fossil-fuel burning gas and steam-turbine installation for power generation
DE60033738T2 (en) * 1999-07-01 2007-11-08 General Electric Co. Device for humidifying and heating fuel gas
DE19943782C5 (en) * 1999-09-13 2015-12-17 Siemens Aktiengesellschaft Gas and steam turbine plant
DE10056128A1 (en) 2000-11-13 2002-06-06 Alstom Switzerland Ltd Process for operating a gas turbine plant and a corresponding plant
CN1653253A (en) * 2002-03-14 2005-08-10 阿尔斯通技术有限公司 Power generating system
DE102007054467B4 (en) * 2007-11-13 2009-09-10 Triesch, Frank, Dr. Ing. Method for fuel preheating
EP2426337A1 (en) * 2010-09-03 2012-03-07 Siemens Aktiengesellschaft Device for fuel preheating and method for fuel preheating
EP4400703A1 (en) * 2023-01-11 2024-07-17 Linde GmbH Gas turbine process with pre-heating and steam loading of fuel gas and gas turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099374A (en) * 1976-04-15 1978-07-11 Westinghouse Electric Corp. Gasifier-combined cycle plant
EP0086504A2 (en) * 1982-02-16 1983-08-24 Shell Internationale Researchmaatschappij B.V. A process for generating mechanical power
JPS60198337A (en) * 1984-03-19 1985-10-07 Toshiba Corp Fuel system heater for gas turbine
US4793141A (en) * 1986-11-14 1988-12-27 Hitachi, Ltd. Gland sealing steam supply system for steam turbines
EP0391082A2 (en) * 1989-04-03 1990-10-10 Westinghouse Electric Corporation Improved efficiency combined cycle power plant
EP0588392A1 (en) * 1992-07-13 1994-03-23 N.V. Kema Steam and gas turbine power plant using moistened natural gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099374A (en) * 1976-04-15 1978-07-11 Westinghouse Electric Corp. Gasifier-combined cycle plant
EP0086504A2 (en) * 1982-02-16 1983-08-24 Shell Internationale Researchmaatschappij B.V. A process for generating mechanical power
JPS60198337A (en) * 1984-03-19 1985-10-07 Toshiba Corp Fuel system heater for gas turbine
US4793141A (en) * 1986-11-14 1988-12-27 Hitachi, Ltd. Gland sealing steam supply system for steam turbines
EP0391082A2 (en) * 1989-04-03 1990-10-10 Westinghouse Electric Corporation Improved efficiency combined cycle power plant
EP0588392A1 (en) * 1992-07-13 1994-03-23 N.V. Kema Steam and gas turbine power plant using moistened natural gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 47 (M - 456) 25 February 1986 (1986-02-25) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6041588A (en) * 1995-04-03 2000-03-28 Siemens Aktiengesellschaft Gas and steam turbine system and operating method
GB2360820A (en) * 2000-02-14 2001-10-03 Alstom Heat-recovery fuel preheat system in a combined-cycle power plant
CN1313714C (en) * 2000-07-25 2007-05-02 西门子公司 Method for operating gas and steam turbine installation and corresponding installation
CN1325770C (en) * 2000-10-17 2007-07-11 西门子公司 Device and method for preheating combustibles in combined gas and turbine installations
CN101644192A (en) * 2008-08-05 2010-02-10 通用电气公司 System und anordnungen zur heisswasserentnahme zum vorheizen von brennstoff in einem kombizykluskraftwerk
CN101644192B (en) * 2008-08-05 2014-04-02 通用电气公司 System und anordnungen zur heisswasserentnahme zum vorheizen von brennstoff in einem kombizykluskraftwerk
US10100680B2 (en) 2013-09-19 2018-10-16 Siemens Aktiengesellschaft Combined cycle gas turbine plant comprising a waste heat steam generator and fuel preheating step
US11118781B2 (en) 2016-07-19 2021-09-14 Siemens Energy Global GmbH & Co. KG Vertical heat recovery steam generator
US12031457B2 (en) 2022-10-25 2024-07-09 Ge Infrastructure Technology Llc Combined cycle power plant having reduced parasitic pumping losses

Also Published As

Publication number Publication date
DE4321081A1 (en) 1995-01-05

Similar Documents

Publication Publication Date Title
WO1995000747A1 (en) Method of operating a cogas plant, and a cogas plant operated by this method
DE69013981T2 (en) Heat recovery in a power plant with a combined cycle.
DE69833500T2 (en) ACCESSORIES FOR ENERGY EFFORT BY GAS TURBINE AND AIR HUMIDIFIER
EP0778397B1 (en) Method of operating a combined power plant with a waste heat boiler and a steam user
EP1023526B1 (en) Gas and steam turbine installation and method for operating an installation of this type
EP0523467B1 (en) Method of operating a gas and steam turbines plant and plant for carrying out the method
EP0750718B1 (en) Method of operating a gas and steam turbine installation and installation operating according to said method
EP0822320B1 (en) Gas and steam turbine plant
EP0591163B1 (en) Combined gas and steam turbine plant
DE3213837C2 (en) Exhaust steam generator with degasser, in particular for combined gas turbine-steam power plants
EP2368021B1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
EP0898641B1 (en) Gas and steam turbine plant and method of operating the same
WO1999010627A1 (en) Method for operating a gas and steam turbine installation and steam turbine installation for carrying out said method
EP0826096B2 (en) Process and device for degassing a condensate
EP0595009B1 (en) Method of operating a power plant and power plant working according to this method
DE69220240T2 (en) STEAM SYSTEM FOR A SYSTEM WITH SEVERAL BOILERS
EP0582898A1 (en) Method of operating a steam and gas turbine system and system for carrying out the method
EP0840837B1 (en) Process for running a gas and steam turbine plant and plant run by this process
DE60126810T2 (en) TURBINE ARRANGEMENT AND METHOD FOR OPERATING A TURBINE ARRANGEMENT
EP1425079B1 (en) Method and device for thermal de-gassing of the active substance of a two-phase process
DE4409811C1 (en) Method of driving heat steam producer partic. for gas and steam turbine installation
EP2385223A1 (en) Procedure for the increase of the efficiency of gas and steam turbine power plants
DE2243380B2 (en) STEAM POWER PLANT WITH FLUE GAS HEATED FEED WATER PREHEATER AND WATER HEATED AIR PREHEATER
DE10004187C1 (en) Gas-and-steam turbine plant operating method
WO1996016298A1 (en) Steam generation plant using the natural circulation system and process for starting the water circulation in such a plant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase