WO1994029448A1 - Dna and protein coded for thereby - Google Patents

Dna and protein coded for thereby Download PDF

Info

Publication number
WO1994029448A1
WO1994029448A1 PCT/JP1994/000946 JP9400946W WO9429448A1 WO 1994029448 A1 WO1994029448 A1 WO 1994029448A1 JP 9400946 W JP9400946 W JP 9400946W WO 9429448 A1 WO9429448 A1 WO 9429448A1
Authority
WO
WIPO (PCT)
Prior art keywords
gly
ala
pro
ser
glu
Prior art date
Application number
PCT/JP1994/000946
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Nii
Yasukazu Nagase
Seiichi Mizushima
Original Assignee
Nawata, Hajime
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nawata, Hajime filed Critical Nawata, Hajime
Publication of WO1994029448A1 publication Critical patent/WO1994029448A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention acts on vascular endothelial cells, prostaglandin 1 2 from the cells (another name; prostacyclin (P Rosta cy clin), referred to as PG I 2 below) proteinaceous physiologically active substance having a production stimulating activity (Hereinafter referred to as PG I 2 production stimulating factor), a method for producing the PG I 2 production stimulating factor using the DNA, and the PG I 2 production stimulating factor produced and recognizing the PG I 2 production stimulating factor Antibodies and uses thereof.
  • PG I 2 production stimulating factor proteinaceous physiologically active substance having a production stimulating activity
  • Prostaglandins (pr 0 stag 1 andin, PG) were released in 1930 by Kurtzrock et al. [Proc. Soc. Exp. Biol. Med. 28, p. 268, 1930] and was reported as a uterine muscle contractile active substance present in semen. Since then, basic research on prostaglandins has developed rapidly. Prostaglandin is a collective term for biologically active substances based on prostanoic acid in human and animal tissues and organs, and a series of chemical reactions called arachidonic acid cascades starting from arachidonic acid in cells. Produces several kinds of prostaglandins having different chemical structures.
  • prostaglandin plays an important role as a vasoactive substance for vascular smooth muscle [Pathophysiology, Vol. 2, p. 792, 1983], and thromboxane is an active prostanoid derived from platelets and vascular wall.
  • TXA 2 TXA 2
  • vascular endothelial cells are physically and chemically When the stimulus is applied, it mainly produces PG I 2 and activates a mechanism that not only suppresses platelet activation but also regulates vascular wall tone (Tonus) to maintain local circulation homeostasis.
  • vascular disorders such as thrombosis and arteriosclerosis involves an imbalance in the production of TXA 2 and PG I 2, especially a decrease in the production of PG I 2 [Pretish Journal of Pharmacology— (Br J.
  • PG I 2 has a platelet aggregation inhibitory action, but also has a smooth muscle relaxing action on blood vessels and bronchi, a gastric acid secretion inhibitory action, and the like. While developing these physiological effects based on Hazuki PG I 2 itself as a medical drug is considered, half-life of the PG I 2 is extremely short as 5 minutes in water at 37 ° C neutral, chemically non It is a stable substance and has not been put to practical use. On the other hand, attempts have been made to develop chemically stable PGI 2 analogs as pharmaceuticals such as anticoagulants and vasodilators while maintaining the natural PGI 2 -like action.
  • PG I 2 be chemically unstable and have a short life. It is the natural function of PG Ia that it is locally produced and acts while preventing unnecessary inhibition of platelet aggregation.When a large amount of chemically stable PG I 2 analog is given, PG I Responsiveness to PGI 2 may be reduced, and it may not respond to PGI 2 in an emergency. In fact, pretreatment with prostaglandins (PGEi) and stable PG I 2 analogs has shown that in some cells, PG I 2 does not result in an increase in cAMP, which should occur naturally. Prostaglandins (Prostagl and ins.). 19, 2, 2980.
  • the PG I 2 production stimulating factor having such an effect is hemolytic uremic syndrome group, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia It can be used for the treatment of diabetes, heart failure, angina pectoris, ischemic heart disease, depressive heart disease, choroidal circulatory disorder, bronchial disease, gastric ulcer, pregnancy and eclampsia. It is expected that the local expression of the I 2 production stimulating factor will increase and decrease, and the concentration in the blood and urine will change.If such a change in the concentration of the PG I 2 production stimulating factor can be detected, it will be possible to measure it. It is thought that the above-mentioned diseases can be diagnosed.
  • the present inventors have conducted intensive studies on the PG I 2 production stimulating activity present in the blood and in the culture supernatant of a human-derived cultured cell line, and found that the culture supernatant of normal human diploid fibroblasts After confirming that a substance having PG I 2 production stimulating activity was present at a high concentration, we succeeded in isolating and purifying PG I 2 production stimulating factor from this culture supernatant, and determined a part of the amino acid sequence. [PCTZJ P 93/00294]. However, in order to obtain the proteinaceous physiologically active substances such as PG I 2 Stimulating Factor in large quantities, that the make isolation and identification of genes, to establish a production method using recombinant techniques was desired.
  • An object of the present invention is to provide a gene encoding a PG I 2 production stimulating factor which stimulates vascular endothelial cells to promote PG I 2 production in view of the above situation, (2) To provide a method for mass production of a production stimulating factor.
  • Another object of Tomo is to provide a medical pharmaceutical composition for the aforementioned diseases, based on the action of PG I 2 Stimulating Factor. It is still another object to provide a specific antibody against the PGI 2 production stimulating factor and a method for diagnosing the above-mentioned diseases using the antibody.
  • the present inventors have conducted intensive research to achieve the above-mentioned object, and as a result,
  • the present invention provides a novel DNA containing a part or all of a base sequence encoding an amino acid sequence represented by the following formula [1] or [2] (SEQ ID NO: 1 or 2 in the sequence listing). I do.
  • the present invention provides a novel DNA containing a part or all of the nucleotide sequence represented by the following formulas [3] to [4] (SEQ ID NO: 3 or 4 in the sequence listing).
  • a DNA having a base sequence complementary to DNA encoding the novel amino acid sequence represented by the formula [1] or [2], and a formula [3] or [4] Provided is a DNA having a nucleotide sequence complementary to the novel DNA represented.
  • the present invention relates to a vector obtained by introducing a DNA encoding the amino acid sequence represented by the formula [1] or [2] or a DNA represented by the formula [3] or [4], and A transformant transformed with the vector is provided. Then, to provide a PGI 2 production-stimulating factor obtainable by the process as well as the manipulation to produce PGI 2 production-stimulating factor by using the transformant.
  • the amino acid sequence of the PGI 2 production stimulating factor of the present invention is represented by the formula [1] or [2].
  • the protein contains a part or all of the amino acid sequence to be obtained. It preferably has the amino acid sequence represented by the following formula [5] or [6] (SEQ ID NO: 5 or 6 in the sequence listing).
  • This protein is characterized by its ability to stimulate vascular endothelial cells to promote PGI 2 production.
  • the present invention provides an antibody obtained by using a part or all of the amino acid sequence of the PG I 2 production stimulating factor of the present invention as an antigen, and a method for immunologically measuring the PG I 2 production stimulating factor using the antibody.
  • the present invention also provides a pharmaceutical composition for preventing or treating the following diseases, which comprises the above-mentioned PG I 2 production stimulating factor as an active ingredient.
  • Hemolytic uremic syndrome thrombotic thrombocytopenic purpura
  • peripheral arterial occlusion cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia, diabetes, heart failure, angina, ischemic heart disease, depression Hematologic heart disease, choroidal circulation disorder, bronchial disease, gastric ulcer, pregnancy eclampsia.
  • FIG. 1 is a schematic diagram illustrating the COS expression vector pM953.
  • FIG. 2 is a schematic diagram illustrating the CHO expression vector pM954.
  • FIG. 3 is a drawing showing the results of gel electrophoresis, showing the results of SDS-PAGE of the purified sample of pM953 ZCOS cell culture supernatant.
  • Figure 4 is a graph showing the elution pattern by DEAE-5 PW anion exchange chromatography.
  • FIG. 5 is a graph showing an elution pattern obtained by heparin-1 5PW affinity chromatography.
  • FIG. 6 is a graph showing an elution pattern obtained by protein one-pack gel filtration column chromatography.
  • FIG. 7 is a schematic diagram showing the experimental results by SDS-PAGE. Hereinafter, the present invention will be described in detail.
  • the present invention is a protein containing a part or all of an amino acid sequence represented by the following formula [1] or [2] and a DNA containing a part or the whole of a nucleotide sequence encoding the protein.
  • Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu 185 190 195
  • GCCGCGCGCCTCA CCGCCCCC CCGCCCTGC TCCTCGGACCG CCATGGAGCG GCCGTGTGG
  • AAAA 1124 is a protein of AAAA 1124 present invention.
  • a general genetic engineering technique is used.
  • the amino acid sequence of the PG I 2 production stimulating factor of the present invention is clarified, a DNA probe is prepared based on the amino acid sequence, and an appropriate cDNA library, preferably from mRNA obtained from normal human diploid fibroblasts, is prepared.
  • the cDNA of the PG I 2 production stimulating factor of the present invention can be obtained by screening the prepared cDNA library. Also, purified PG I
  • a part of the amino acid sequence determined by using a production stimulating factor or by amino acid sequence analysis or gene sequence analysis is synthesized as a synthetic peptide, which is used to immunize egrets and mice to obtain antibodies. Thereafter, the cDNA library can be screened using this antibody.
  • cDNA encoding the PG I 2 production stimulating factor of the present invention can be obtained by the following method.
  • preparation of total RNA is possible by a general guanidine thiosinate method, an AGPC method or a hot phenol method.
  • MRNA can be prepared by subjecting total RNA to affinity chromatography using oligo (dT) cellulose, poly-U-sepharose, or the like by a column method or a batch method.
  • a single-stranded cDNA is synthesized using reverse transcriptase, and then converted into a double-stranded cDNA using DNA polymerase. Acid Research (Nucl. Ac ids Res.), 1
  • a phage vector for cloning introduced into Igt10, ⁇ gt11, etc. Mouth packaging and infect E. coli.
  • a cDNA library is prepared.
  • cDNA can be synthesized according to the method of Gubler and Hoffman [Gene, 25, 263, 1983].
  • a commercially available cDNA synthesis kit (manufactured by Amersham, Boehringer, Invitrodin) may be used.
  • the above-mentioned cDNA can be introduced into a plasmid vector or a phage vector by adding a linker or the like.
  • the linker used is not particularly limited, but when using plasmid pEF-BOS, a BstXI linker is preferred. Addition of a linker and introduction of cDNA into plasmid and phage vector can also be performed using a commercially available ligation kit (Takara Shuzo).
  • the Escherichia coli to be transformed is not particularly limited as long as it is a commonly used strain, but HB101, DH5 and MC1061 / P3 are preferred. When ⁇ gt10 is used as a phage vector, NM514 is particularly preferred. Plasmid DNA into which cDNA has been introduced can be introduced into Escherichia coli by the electroporation method or the calcium chloride method. In vitro packaging can also be performed using a commercially available in vitro packaging kit (Stratagene, Amersham).
  • CDNA encoding the PGI 2 production stimulating factor of the present invention can be isolated by a combination of general cDNA screening methods. For example, a method of preparing a DNA probe based on the obtained partial amino acid sequence [PCTZJ P93Z00294] and directly screening a cDNA library, or preparing a PCR primer and selecting a clone having a DNA fragment amplified by the PCR method And so on.
  • a library capable of expressing cDNA for example, a library prepared using a ⁇ gt11 phage vector
  • a target clone can be selected using the antibody obtained by the above-described method.
  • select the desired clone using the PGI 2 production stimulating activity detected in the culture supernatant as an index be able to.
  • the nucleotide sequence of cDNA contained in the obtained target clone can be determined by the dideoxy termination method.
  • a preferred example of the determined DNA sequence is the following formula [3] Or [4].
  • GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGC
  • the DNA sequence of the present invention encodes the PG I 2 production stimulating factor of the present invention, and is a part of the DNA sequence represented by the formula [3] or [4]. Or all. Further, it may include a part of the DNA sequence represented by the formula [3] or [4].
  • the DNA sequence of the present invention may be synthesized using RNA as type III or may be synthesized organically. Moreover, you may obtain by amplifying by a PCR method.
  • the DNA sequence of the present invention also includes a partially modified base sequence due to the degeneracy of the genetic code.
  • the amino acid sequence encoding the DNA sequence obtained by the substitution is the amino acid sequence represented by the formula [1] or [2].
  • the complementary DNA sequence It may be complementary to the entire DNA sequence or may be complementary to a part thereof. Further, it may include a complementary DNA sequence as a part.
  • the DNA of the present invention may be combined with a DNA complementary thereto to form a double-stranded DNA, or may be single-stranded DNAs complementary to each other.
  • the present invention provides an amino acid sequence derived from the DNA sequence represented by the formula [3] or [4], and a novel protein represented by the formula [1] or [2].
  • the protein of the present invention may be a part of the formula [1] or [2], or may be the whole. It may also include a part of the amino acid sequence represented by the formula [1] or [2]. In particular, it may include a part of the amino acid sequence represented by the formula [5] or [6], which represents the mature protein obtained by removing the signal peptide from the amino acid sequence represented by the formula [1] or [2]. It is good, or it may be all.
  • the protein of the present invention is characterized by having a PG I 2 production stimulating activity, and the activity can be measured by the following method.
  • vascular endothelial cells collected from the thoracic aorta intima by the detachment method were subcultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum, and cultured until they reached a saturated cell density. After adding and incubating for 60 minutes, it is a stable metabolite of PGI 2 in the supernatant.
  • 6-keto PGF 1 ⁇ the amount of PGI 2 produced can be determined.
  • a commercially available 6-keto PGF1 ⁇ measurement kit may be used.
  • polypeptides can mutate a portion of the amino acid sequence or the structure of the polypeptide by natural or artificial mutation without altering its intrinsic function.
  • PG I 2 production stimulators of the present invention may also contain an array of structures corresponding to homologous mutants of all Amino acid sequence described above.
  • Escherichia coli [DH5 (pM953) and DH5 (pM954)] transformed with a plasmid (pM953, pM954) containing the DNA of SEQ ID NO: 3 in the sequence listing encoding the PGI 2 production stimulating factor of the present invention are: [Deposit No .: FEEM P-13672 (Deposit: June 3, 1993)], [Deposit No .: FERM P-13673 (Deposit date: June 3, 1993) [FEM BP-4684] and [FEEM BP-4685], respectively, on May 31, 1994.
  • a host-vector system can be used.
  • Escherichia coli when Escherichia coli is used as a host, an expression vector containing Lac UV5, a tryptophan promoter, an IPL promoter, or the like can be used as a promoter.
  • it can be obtained as a fusion protein with S-galactosidase using ⁇ gt11 which is one of the sperm vectors.
  • cultured mammalian cells can be used as a host, and monkey-derived COS cells, Chinese hamster-derived CHO cells, mouse-derived 3T3 cells, and human-derived fibroblasts are suitable. When these are used as hosts, expression vectors containing the SV40 early promoter, the adenovirus major late promoter, the / 5-actin promoter, the polypeptide chain growth factor promoter and the like can be used.
  • the PGPI of the present invention can be obtained by culturing each host under conditions that allow it to grow suitably, and by giving conditions that allow each promoter to function.
  • 2 Production stimulating factor can be obtained.
  • the expression of the PG I 2 production stimulating factor can be confirmed by the enzyme immunoassay (EIA) described below.
  • the PGI 2 production stimulating factor of the present invention obtained as described above can be purified by the following method. That is, the culture solution containing the PG I 2 production stimulating factor of the present invention is adsorbed to affinity mouth chromatography, for example, to a column or the like to which an antibody against heparin (HEPARIN) -5PW or PG I 2 production stimulating factor is bound. It can be isolated by elution with a linear concentration gradient method of sodium chloride.
  • Antibodies that recognize the PG I 2 production stimulating factor of the present invention can be prepared by immunizing a suitable animal with a suitable antigen.
  • the antigen may be a protein represented by the formula [5] or [6] or a peptide fragment thereof.
  • the animal used for immunization is preferably a mouse, a heron, a goat, a sheep, a poma, and the like.
  • a mouse can be used to obtain a monoclonal antibody.
  • Uses of the antibody include affinity chromatography, screening of cDNA libraries, immunological diagnostic methods, and the like.
  • an appropriate method can be selected from an immunoblot method, a radioimmunoassay method, an enzyme immunoassay method, and a fluorescence or luminescence measurement method.
  • the present invention further provides a PGI 2 production stimulator of the present invention, which is effective for the prevention and treatment of the various diseases described below, since PGI 2 has a platelet aggregation inhibitory action, a smooth muscle relaxing action, a gastric acid secretion inhibitory action, and the like. It is possible to provide a pharmaceutical composition containing the factor as at least one active ingredient.
  • Hemolytic uremic syndrome Hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia, diabetes, heart failure, angina, ischemic heart disease, depression Hematologic heart disease, choroidal circulation disorder, bronchial disease, gastric ulcer, pregnancy eclampsia.
  • the dosage of the PGI 2 production stimulating factor of the present invention varies depending on the sex, age, body weight, type of disease, disease state and dosage form of the patient, but the effective dosage is 111 2 to 2111 8 per day. 2, preferably in the range of 110 118 to 200 8/1 ⁇ 8.
  • the dosage form of the pharmaceutical composition of the present invention may be any dosage form capable of supplying an effective amount to the lesion of the disease, such as tablets, powders, powders, capsules, ointments, and sprays. Alternatively, injections and the like can be mentioned.
  • the pharmaceutical composition of the present invention may contain a commonly used pharmaceutical mixture such as a excipient, a stabilizing agent, or a solubilizing agent, as long as the pharmacological properties are not impaired. Good.
  • the excipient include Ringer's solution, phosphate buffer, human serum albumin, hydrolyzed gelatin, sucrose, dextran, polyethylene glycol, and the like, which are appropriately selected and used depending on the dosage form.
  • Normal human tetraploid fibroblasts were prepared in 4.8 ⁇ 10 4 cells ZmL in Dulbecco's modified Eagle's medium containing 15% fetal serum. 3 L of this cell suspension was inoculated in a rotary culture vessel, and cultured at 37 ° C under 5% carbon dioxide and 95% air. After the cell implantation 3, the culture was replaced with 3 L of Dulbecco's modified Eagle's medium containing fresh 15% fetal calf serum, and the culture was continued for 2 days.
  • the medium was removed, Ca 2+, the cells were washed with Mg 2+ free Dulbecco's monophosphate saline solution was added Hue Norure' de-free Dulbecco's modified Eagle's medium 3 L, 37 The culture was continued for 24 hours at ° C. Then, the medium was removed, Ca 2+, Mg 2+ free physiological phosphate buffer (PBS (-)) washing the cells with, 8 X 1 0 9 pieces from seven rotating culture vessels Cells were obtained.
  • PBS (-) physiological phosphate buffer
  • RNA was separated from total RNA using an oligo (dT) cellulose column. Specifically, 50 Omg of oligo (dT) cellulose resin was suspended in 20 OmM tris-hydrochloric acid buffer solution (containing pH 7.5.2 OmM EDTA, 400 mM sodium chloride and 0.1% SDS), and the volume was about 2 mL. Was prepared. Dissolve the total RNA obtained in step 2 in 3.5 mL of 0.5 mM EDTA, heat treat it at 65 ° C for 5 minutes, quench, and equilibrate an equal volume of 40 OmM Tris-HCl buffer solution (pH 7.5, pH 7.5 4 OmM EDTA. 800 mM sodium chloride and 0, 2% SDS) were added.
  • OmM tris-hydrochloric acid buffer solution containing pH 7.5.2 OmM EDTA, 400 mM sodium chloride and 0.1% SDS
  • Double-stranded cDNA using a cDNA synthesis system kit (Amersham) constructed based on an improved version of the method of Gubler and Hoffman [Gene, 25, 263, 1983]. Was synthesized.
  • a buffer for 5X single-stranded cDNA synthesis reaction attached to the cDNA synthesis system kit, sodium pyrophosphate solution, human placental ribonuclease inhibitor, mixed solution of deoxynucleoside triphosphate, 925KB Q [ 32 P] dCTP solution and oligo (dT) primer were mixed in order.
  • the 1 O ⁇ g poly (A) + RNA solution obtained in step 3 was added and gently mixed, and then 200 U of reverse transcriptase was added.
  • the reaction solution was 100 L. Mix gently and stir at 42 ° C for 40 minutes. It was cupped.
  • Buffer for double-stranded cDNA synthesis reaction attached to the above-mentioned cDNA synthesis system kit, 8 U E. coli ribonuclease 11, 230 U E. coli DNA polymerase I, 3.7 MBq [ 32 P] d CTP
  • the solutions were added sequentially, adjusted to a total volume of 500 / L with sterile water, and gently mixed. The tube was reacted at 12 ° C for 60 minutes and then at 22 ° C for 60 minutes, and then incubated at 70 ° C for 10 minutes.
  • reaction solution was returned to an ice bath, 20 U of T4 DNA polymerase was added, and the mixture was gently mixed, followed by reaction at 37 ° C for 10 minutes.
  • the reaction was quenched by adding 20 / L 0.25M EDTA (pH 8.0) to the reaction solution, extracted with funor chloroform, and precipitated with ethanol in the presence of ammonium acetate. A single-stranded cDNA was obtained.
  • BstXI linker manufactured by Invitrodin was added to the double-stranded cDNA.
  • the method was carried out using a DNA ligation kit (Takara Shuzo) according to the attached manual.
  • 15 L of a solution obtained by adding about 500 ng of BstXI linker to about 500 ng of the double-stranded cDNA synthesized in Step 4 100 mM Tris-HCl buffer (pH 7.6), 5 mM magnesium chloride, 300 mM (Containing sodium chloride).
  • 15 L of an enzyme solution (DNA Ligation Kit Solution B, hereinafter referred to as Solution B) was added, mixed well, and reacted at 10 ° C for 3 hours. Heat treatment was performed at 70 ° C for 10 minutes, and ethanol precipitation was performed in the presence of ammonium acetate.
  • the cDNA was introduced into a plasmid vector using a DNA ligation kit (Takara Shuzo).
  • Plasmid p EF—BOS Nucleic Acid Research (Nucl. Acids Res.), 18, 5322, 1990]
  • the large fragment was recovered by digestion with the restriction enzyme BstXI.
  • a DNA solution containing 100 ng of the vector prepared in this manner and about 20 ng of the linker-added double-stranded cDNA obtained in step 5 was added to 4.5 ⁇ L of a 36 zL reaction buffer (DNA buffer).
  • a solution kit A was added and mixed well.
  • 4.5 ⁇ L of the enzyme solution (solution B) was added, mixed well, and allowed to react at 16 ° C. overnight.
  • the plasmid was precipitated with ethanol in the presence of ammonium acetate and dissolved in 20 zL of TE solution.
  • DNA was introduced into E. coli using the electroporation method.
  • Elect opening Poreshiyon method de Wa one et al. [Nucleic Ashi' de research (Nu c l. Ac ids Re s.), L 6 , pp. 6127, 1988] off the real h according to the method of 0
  • E. coli MC1061ZP3 was inoculated from a single colony into 1 OmL of L-broth and cultured overnight.
  • the cells were collected by centrifugation at about 7000 X g for 15 minutes at 4 ° C. After removing the supernatant by decantation, the suspension was resuspended in 1 L of ice-cold sterilized water.
  • the solution in the 12 cryopreservation tubes was thawed on ice, and the DNA solution 1 prepared in step 6 was added per tube. After transferring the DNA-E. Coli mixture to a cuvette (distance between electrodes: 0.1 cm, manufactured by Bio-Rad), the conditions of electroporation (Gene Pulser, Bi0-Rad, Capacitance: 25
  • a DNA mixture consisting of 20 bases represented by the following formula [8] (SEQ ID NO: 9 in the sequence listing) as a DNA encoding a part of the N-terminal amino acid, and a DNA encoding a part of the amino acid at the C-terminal
  • a mixture of 20 bases of DNA represented by the following formula [9] SEQ ID NO: 10 in the sequence listing was prepared.
  • the poly (A) + RNA prepared in step 3 of Example 1 was subjected to an RT-PCR method using the ⁇ -form. That is, Super S cript TM Preamp lification
  • Single-stranded cDNA was synthesized using System (manufactured by Lifetech Oriental) according to the attached manual. Add oligo (dT), 10X synthesis buffer, dNTP mixture, DTT, and 6000 U reverse transcriptase to 3 g of poly (A) + RNA to make a total volume of 600 L, 42 ° C for 2 hours, then 90 ° C For 5 minutes. After quenching on ice, 60 U (30 L) of RNaseH was added, and the mixture was incubated at 37 ° C for 20 minutes.
  • System manufactured by Lifetech Oriental
  • DNA Th e rma l Cy cler TM is set to (Perkin Elmer one Cetus Instruments Inc. (P er ki ⁇ E l me r C etus I nstr ume nts)), 1 minute at 94, at 55 ° C The reaction for 2 minutes and 3 minutes at 72 ° C was repeated 30 times.
  • the reaction product was electrophoresed on a 10% polyacrylamide gel, and it was confirmed that a band appeared at around 59 bp.
  • the obtained amplification product DNA fragment of about 59 bp was extracted according to a conventional method, the ends were blunted using a conventional method using T4 DNA polymerase, and cloned into a small site of plasmid PUC118.
  • the nucleotide sequence of the DNA fragment was determined according to the sequencing method described later. The sequence is shown by the following formula [10] (SEQ ID NO: 11 in the sequence listing).
  • a 20-base DNA fragment having a base sequence from 11 to 30 of the base sequence shown in Formula [10] (Formula [11] (SEQ ID NO: 12 in the sequence listing) and a base sequence from 31 to 50) A DNA fragment of 20 bases that is complementary to It was synthesized in the same manner as described above, and was used as a primer for screening by the PCR method.
  • Example 1 The transformant obtained in Example 1 was divided so as to contain about 14,000 clones per pool, and 46 pools were prepared.Each of them was inoculated into 3 mL of LB medium containing 50 ⁇ g ZmL of ampicillin, and inoculated at 37 ° C. With shaking overnight. Plasmid DNA was extracted according to the method described in Molecular Cloning Laboratory Manual (Cold Spring Harbor Laboratory 1989).
  • 1.5 mL of the culture solution was centrifuged at 5000 rpm for 3 minutes in a micro high-speed centrifuge to remove the supernatant, and the precipitate was concentrated in 100 L of a suspension solution (5 OmM glucose, 10 mM EDTA, The cells were suspended in a 25 mM Tris-HCl buffer solution (pH 8.0) and left at room temperature for 5 minutes. Add 200 zL alkaline solution (containing 0.2N sodium hydroxide and 1% SDS) in ice, mix gently, and leave on ice for 5 minutes. Then add 150 L of ice-cold potassium acetate solution. Mix well and leave on ice for 5 minutes.
  • a suspension solution 5 OmM glucose, 10 mM EDTA
  • the cells were suspended in a 25 mM Tris-HCl buffer solution (pH 8.0) and left at room temperature for 5 minutes. Add 200 zL alkaline solution (containing 0.2N sodium hydroxide and 1% SDS) in ice, mix gently, and leave
  • the reaction solution containing the above DNA solution was prepared using Gene Amp PCR Reent Kit (manufactured by Perkin Elmer Cetus Instruments, Inc.). / L (1 OmM Tris-HCl buffer solution (pH 8.3), 50 mM potassium chloride, 1.5 mM magnesium chloride, 200 ⁇ M dNTP each, l OngZmL sense primer, 10 ngZmL antisense primer and 0.025 U / / L
  • the sample was prepared in a Gene Amp TM PCR System 9600 (Perkin Elmer Cetus Instruments, Inc.), and then set in Gene Gene TM PCR System 9600 (Perkin Elmer Cetus Instruments, Inc.).
  • the reaction was repeated 25 times for 30 seconds at 55 ° C, 30 seconds at 55 ° C and 1 minute at 72 ° C.
  • the reaction product was electrophoresed on a 10% polyacrylamide gel, and a band around 40 bp was detected as positive.
  • Escherichia coli DH5 was transformed with the plasmid DNA of one positive pool, and the obtained transformants were divided so as to contain about 1800 clones per pool, and 15 pools were prepared. A was prepared, and a band in which a band was detected around 40 bp by the PCR method was determined to be positive. Thereafter, this operation was repeated, and two positive clones were identified by a total of six screenings.
  • the nucleotide sequence was determined according to the method described in Lab Manual Genetic Engineering (Masami Muramatsu, edited by Maruzen 1988). That is, the plasmid DNA of the positive clone obtained in Example 2 was digested with the restriction enzyme XbaI, and the excised DNA fragment was mixed with pUC119 digested with the restriction enzyme XbaI, and the ligation was performed as described above. Ligation was performed using a kit. Plasmids obtained by this operation were named pM950 and pM951. After transforming Escherichia coli JMl09 with pM950 and pM951, single-stranded DNA was prepared according to a conventional method. Using a DNA sequencer (373A, manufactured by Applied Biosystems), the nucleotide sequence of each single-stranded DNA prepared in accordance with the attached manual was determined.
  • nucleotide sequences encoding the PGI 2 production stimulating factor of the present invention contained in plasmids PM950 and PM951, respectively, are shown in SEQ ID NOs: 7 and 14 in the sequence listing.
  • amino acid sequence deduced from the DNA sequence is shown in SEQ ID NO: 15 or 16 in the sequence listing.
  • the sphage cDNA library was prepared using a cDNA cloning system; Igt10 (manufactured by Amersham) according to the attached manual.
  • Step 1 Add EcoRI—BamHI—Kpnl—NcoI Adapter
  • a double-stranded cDNA was obtained in the same manner as in Step 4 of Example 1 using a random primer instead of the oligo (dT) primer. Double-stranded cDNA synthesized here 1.
  • HI-Kpnl-Ncol adapter was added to the synthesized double-stranded cDNA. After the reaction, gel filtration was performed using an NI P517 column, and fractions of 500 bp or more were collected. Next, 350 ⁇ L of cDNA, 40 L of LZK buffer and 10 ⁇ L of T4 polynucleotide kinase were added to this fraction, and reacted at 37 ° C. for 2 hours. EcoRI-BamHI-Knl-NcoI adapter added with ethanol The cDNA was precipitated, and finally about 150 ng of phosphorylated adapter-added cDNA was obtained.
  • cDNA cloning system 20 ng of double-stranded cDNA was added to 1 ⁇ g of ⁇ 10 digested with Ec0RI attached to Igt10 (manufactured by Amersham), and 1 ⁇ L of LZK buffer and 1 ⁇ L of After adding pure water and 1 / L T4 DNA ligase, the mixture was gently mixed. The total amount of the reaction solution was 10 L, and the mixture was allowed to react at 15 ° C. This was carried out for two reactions.
  • the recombinant phage DNA obtained in step 2 was packaged using an in vitro packaging kit (Stratagene) according to the attached manual. That is, 5 L each of the recombinant phage DNA solution prepared in Step 2 was added to 25 packaging extracts, and incubated at 22 ° C for 2 hours to obtain a phage particle mixed solution.
  • an in vitro packaging kit (Stratagene) according to the attached manual. That is, 5 L each of the recombinant phage DNA solution prepared in Step 2 was added to 25 packaging extracts, and incubated at 22 ° C for 2 hours to obtain a phage particle mixed solution.
  • the phage particle mixture obtained in Step 3 was diluted to 5 ⁇ 10 4 pfu / 200 / zL with SM buffer.
  • the obtained precipitate was suspended in 15 mL of a 1 OmM magnesium sulfate solution.
  • Labeled probes were prepared using a random primer DNA labeling kit (Takara Shuzo) according to the attached manual.
  • pM951 was treated with restriction enzymes Pvull and SmaI, and about 100 ng of the obtained 265 bp DNA was recovered and dissolved in 20 ⁇ L of TE. 8 L of this solution and 2 L of random primer were mixed, incubated at 95 ° C for 3 minutes, and cooled with ice for 5 minutes.
  • Step 2 Screening of sphage cDNA library
  • Screening of the ⁇ phage cDNA library was performed by a plaque hybridization method according to a conventional method.
  • a Hy bond N filter (manufactured by Amersham) was superimposed on one of the ⁇ phage cDNA libraries obtained in Example 4 to prepare a replica filter.
  • the resulting replica filter was subjected to alkaline denaturation treatment with 0.5 M sodium hydroxide containing 1.5 M sodium chloride for 5 minutes, and then treated with 1.5 M sodium chloride-containing 0.5 M tris-chloride buffer (pH 7.0). The mixture was neutralized twice for 2 minutes, washed with 2XSSC, and air-dried. This was irradiated with 0.72 J of UV using a UV irradiator (UV stratulin ker TM 2400, manufactured by Stratagene) to fix the DNA.
  • UV irradiator UV stratulin ker TM 2400, manufactured by Stratagene
  • the membrane was washed once with SC at room temperature for 10 minutes, and air-dried. At Autoradiography Radioactivity was detected, and 10 positive clones were detected. In order to isolate these 10 positive clones, secondary screening was performed in the same manner as in this step, and 8 positive clones were isolated.
  • the DNA of the clone having the longest cDNA was digested with the restriction enzyme BamHI.
  • the excised cDNA fragment was mixed with pUC118 digested with the restriction enzyme BamHI and ligated using the above-described ligation kit.
  • the nucleotide sequence of the obtained plasmid was determined in the same manner as in Example 3.
  • Expression vector ⁇ EF BOS [Nucleic Acid Research (Nucl. Acids Res.), 18, 5322, 1990] After digesting 2 g with BstXI, large fragments were recovered. One-half of the DNA and l ⁇ g of each of the synthetic DNAs of the following formulas [13] and [14] (SEQ ID NOS: 17 and 18 in the sequence listing) were ligated using a DNA ligation kit (manufactured by Takara Shuzo), and the expression vector pEF was obtained. I got BOS—KS.
  • Step 2 Introduction of expression vector pM953 into COS cells
  • the expression vector was introduced into COS cells by the method of Sompoyrac et al. [Proceding of the National Academy of Sciences of the United States of America. d. Sci. USA). 78, 7575, 1981].
  • a DNA-DEAE dextran mixture was prepared. That is, 10 TE solutions containing 0.5 g pM953, 20 mg ZmL DEAE dextran solution, 35 aL 1 M Tris-HCl solution (pH 7.4) and 648 / zL DME medium were mixed. Next, a mixture of DNA-DEAE dextran was gently overlaid on the COS cells, and cultured at 37 ° C for 4 hours in the presence of 5% carbon dioxide. After gently removing the DNA-DEAE dextran mixture with a Pittman, the cells were washed with DME medium, and DME medium was newly added. After culturing at 37 ° C for 96 hours in the presence of 5% carbon dioxide, measurement was performed by the EIA method described in Example 11, and PG I
  • dh f r (di hy d r fo l a t e r e d u c t a se) having an expression unit, and capable of controlling the expression of the foreign gene by the EF promoter, at a foreign gene insertion site of an expression vector,
  • Step 2 Introduction of expression vector pM954 into CHO cells
  • the electroporation method was used to introduce the expression vector into CHO cells. That is, using a Gene Pulser (B i 0- Rad Co.), in cuvette preparative (electrode distance 0. 4 cm), CHO cells 4. shoe containing 0 x 10 6 and p M 954 20 ⁇ G The phosphate buffer containing sucrose was subjected to an electric pulse with a voltage of 0.40 kVZm and a capacitance of 25 F. The resulting pM954ZCHO culture supernatant was measured by EIA method shown in real ⁇ 11 was sure the expression of PG I 2 Stimulating Factor. For the expressed strain, gene amplification was performed using methotrexate (manufactured by Nippon Redley Co., Ltd.), and a high expression strain was selected.
  • methotrexate manufactured by Nippon Redley Co., Ltd.
  • the culture supernatant of the PM953 ZC OS cells prepared according to step 1 is
  • OmM Tris monohydrochloride-Heparin -5PW manufactured by Tosoh Corporation equilibrated with 0.1 M sodium chloride buffer (pH 7.5)
  • elution was performed with a linear gradient of 0.1 to 1.0 M sodium chloride, and the elution profile was measured at an absorption wavelength of 280 nm.
  • concentration of the PG I 2 production stimulating factor was measured for each eluted fraction by the EIA method described in Example 11, and eluted when the concentration of sodium chloride was 0.3 to 0.6 M.
  • the eluted fraction obtained in step 2 was dialyzed against 50 mM Tris-HCl buffer (pH 7.5) and applied to an antibody column previously equilibrated with the same buffer.
  • Antibodies column is purified by antiserum base one force one bond
  • a Bx column PG I 2 production stimulators produced in Example 10 (di We one 'made tea Baie one force one company), formyl one Serurofa (Manufactured by Seikagaku Corporation).
  • the adsorbed protein was eluted with 4.5 M magnesium chloride Z5 OmM Tris-HCl buffer (pH 6.4).
  • Analysis of the adsorbed protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions confirmed that the PG I 2 production stimulating factor was almost uniformly purified ( ( Figure 3).
  • a total of 13 amino acids with a cysteine added to the N-terminal of the C-terminal 12 amino acids of the formula [7] were synthesized using an automatic peptide synthesizer (43 OA type Applied Biosystems).
  • An antigen for immunization was prepared by binding to the carrier protein KLH (keyhole lysate mosocyanin) via the N-terminal cysteine of the synthetic peptide.
  • the animals used were New Zealand White female egrets.
  • the immunization was carried out according to the method of MV Sofroniew et al. [Fresenius Zeissrift Fuyer Analytic Chemie. 290, 163, 1978]. That is, the antigen for immunization and complete Freund's adjuvant (FCA, manufactured by Difco Laboratories) or incomplete Freund's adjuvant (FIA, manufactured by Difco Laboratories) were sufficiently mixed and emulsified at 1: 1 (vZv). This was repeatedly administered to 20 or more sites in the back skin of the egret and immunized. After immunization five times every two weeks, the whole blood of the animal was collected to obtain antiserum. The obtained antiserum was stored at 140 ° C until use. (Example 11) Enzyme immunoassay (EIA)
  • a competitive inhibition system in which the reaction between the antigen immobilized on the plate and the labeled antibody was quantified by blocking the reaction with the antigen in the sample was used. That is, the culture supernatant of the transformant diluted 10-fold is added to a 96-well culture dish at 100 L / well, and reacted at 4 ° C for 1 minute or at 56 ° C for 30 minutes, and then washed to fix the antigen. Phased. To this, 0.5% BSA / PBS was added in 150 LZ holes at a time, and reacted at 25 ° C for 1.5 hours or more, washed, and blocked.
  • anti-PG I 2 -producing stimulating factor antibody 110; / L which had been labeled with 4 gZmL of horseradish peroxidase (HRPO) in advance, and 110 L of the sample were mixed, and pre-incubation was performed at 25 ° C. for 1 hour.
  • This solution was added in 100 zz LZ holes, and reacted at 25 ° C. for 2 hours.
  • 3 mg / mL of Orutofuwe two Renjiamin (OP.D) / 0. 027% H 2 0 2 Nomatsukiru base in buffer (pH 5. 0) to (MCB) was added in 100 z LZ holes and reacted for 10 minutes The color was developed, and 2N sulfuric acid was added in 100 LZ holes to stop the reaction. Color development was measured by absorbance at 490 nm.
  • Example 9 Using the PG I 2 production stimulating factor of the present invention obtained in Example 9, a toxicity test in mice was performed. That is, the PGI 2 production stimulating factor obtained in Example 9 was intravenously administered once a week for one week for 5 weeks each to male and female 6-week-old ICR mice. The general characteristics of each animal were observed throughout the administration period. In this study, no deaths were observed in any of the animals in the highest dose group, 1 Omg / kg group, and there was no change in general characteristics.
  • Example 10 Omg of the PG I2 production stimulating factor of the present invention obtained in Example 9 was dissolved in 10 OmL of a physiological saline solution containing 1 OmgZmL of hydrolyzed gelatin, and a filter having a pore size of 0.22im (Mirex GV Millipore The solution was sterilized by filtration using c ). Aseptically, 2 mL of this solution was dispensed into glass vials and sealed, to give a solution for injection. (Example 14) Preparation of freeze-dried preparation for injection
  • Example 10 Pmg of the PG I2 production stimulating factor of the present invention obtained in Example 9 was dissolved in 100 mL of 1 OmM PBS (pH 7.4) containing 10 OmgZ mL of human serum albumin, and the pore size was 0.22.
  • the solution was sterilized by filtration using a zm filter-1 (Mirex GV Millipore). This was aseptically dispensed into glass vials in 3 mL portions, freeze-dried and sealed to give a freeze-dried preparation for injection.
  • a culture supernatant was prepared by the following method, and a PG I 2 production stimulating factor was purified to obtain a PG I 2 production stimulating factor.
  • the measurement of PG I 2 production stimulating activity is performed by the method described later.
  • the culture solution was removed, and the cells were washed using a Dulbecco's monophosphate-free saline solution containing no Ca 2+ or Mg 2+ , and then 3 L of Dulbecco's modified Eagle's medium containing no norred was added.
  • the cells were cultured at 37 ° C for 2 days. After collecting the culture, the cells were filtered through a 2.5 / zm filter (CN cartridge, 30 inch, manufactured by Millipore) to remove cell debris.
  • DEAE-5PW manufactured by Tosoichi anion-exchange chromatography column in which the culture supernatant of normal human diploid fibroblasts prepared according to (1) was previously equilibrated with 20 mM Tris-HCl buffer (pH 7.8) And the components in the supernatant were adsorbed. 2 Adsorbed components are eluted with a linear gradient elution solution of 0 to 1.0 M sodium chloride prepared based on OmM Tris-HCl buffer (pH 7.8), and absorbance of each fraction is simultaneously measured at 280 nm. did.
  • the PG I 2 production stimulating activity of each eluted fraction was measured according to the method described below, and the fractions having PG I 2 production stimulating activity eluted with the eluate having a sodium chloride concentration of 50 to 15 OmM were pooled. ( Figure 4). .
  • Heparin (HE PAR IN) was eluted from the active fraction obtained in step 1 with 1 OmM phosphate buffer (pH 7.4) and equilibrated with 1 OmM phosphate buffer (pH 7.4).
  • 5PW manufactured by Tosoichi Co., Ltd.
  • the active ingredient is adsorbed on an affinity column, and 0 to 1.0 M of the eluate containing sodium chloride added based on 1 OmM phosphate buffer (pH 7.4) is used.
  • Elution was performed with a linear concentration gradient of sodium chloride, and the elution profile was measured by absorbance at 280 nm.
  • the PG I 2 production stimulating activity of each eluted fraction was measured, and the fractions having the PG I 2 production stimulating activity eluted when the concentration of sodium chloride was 450 to 500 mM were pooled (FIG. 5).
  • the active fraction obtained in step 2 was concentrated with Centricon-1 10 (Amicon). Two columns of PROTE IN-PAK 300 (Nippon Millipore Limited Waters Chromatography Division) pre-equilibrated with 1 OmM phosphate buffer (pH 7.4) were connected, and the concentrated fraction was subjected to gel filtration. The elution profile was simultaneously measured at an absorption wavelength of 280 nm. When the activity of stimulating PG I 2 production in each fraction after elution was measured, the activity was observed at a molecular weight of around 30 kDa (FIG. 6). The numbers in FIG. 6 represent the molecular weight (kDa), Vt represents the total volume of the filler, and Vo represents the elimination volume. Process 4
  • the active fraction obtained in step 3 was applied to an IGF-affinity column equilibrated with 1 OmM phosphate buffer (pH 7.4).
  • IGF-affinity column a pressure-resistant ram in which recombinant IGF-I was bound as a ligand to Affibrep 10 (manufactured by Nippon Bio-Rad Laboratories) was used in this experiment. After adsorbing the active components, the adsorbed components were eluted with 0.5M acetic acid. When the PGI 2 production stimulating activity of the adsorbed fraction and the non-adsorbed fraction was measured, the PGI 2 production stimulating activity was observed in the non-adsorbed fraction.
  • Step 0.1% The active fractions obtained in 4 Torifuruoro acetate containing 10% Asetonito C 4 reverse phase HPLC column equilibrated with Lil aqueous solution (manufactured by Waters Corporation) adsorbed to c columns subjected to the components 0.1% Elution was carried out with a linear gradient eluent of 10 to 60% acetonitrile in a trifluoroacetic acid noacetonitrile solution.
  • the PG I 2 production stimulating factor of the present invention eluted as a single peak.
  • the molecular weight of the PG I 2 production stimulating factor of the present invention obtained in Step 5 of Reference Example 1 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions. It was recognized as a single band at a molecular weight of about 33 kDa (Fig. 7).
  • FIG. 7 is a schematic diagram of a photograph showing the results after SDS-PAGE electrophoresis.
  • lines A and C are bands of a standard sample having a known molecular weight
  • line B is a band of the PG I 2 production stimulating factor of the present invention.
  • the numbers indicate the molecular weight (kDa) of the standard sample.
  • the PGI 2 production stimulating factor of the present invention obtained in Step 5 of Reference Example 1 was digested with trypsin to obtain a peptide fragment. Balancing these fragments at each 0.1% Torifuruoro aqueous acetic acid was C 8 reversed-phase H PLC column (Separeshiyon And eluted with a linear gradient elution solution of 0.08% trifluoroacetic acid / acetonitrile of 0 to 100% acetonitrile. The amino acid sequence of each peptide fragment was determined by Edman degradation using an automated gas phase sequencer (Applied Biosystems 477A-120A).
  • the PG I 2 production stimulators of the present invention reduced carboxymethylated and desalted by C 8 reversed-phase HP LC column (manufactured by Nippon Waters Co., Ltd.). Subsequently, peptide fragments were obtained by digesting with endoproteinase Glu-C (protease V8). These fragments were treated in the same manner as described above, and the amino acid sequence of each peptide fragment was determined.
  • Lys Ala lie Thr Gin Val Ser Lys Gly Thr Xaa Glu
  • Vascular endothelial cells were collected from the thoracic aorta intima by a detachment method. The obtained vascular endothelial cells were then passaged at 37 ° C in 5% carbon dioxide-95% air in Dulbecco's modified Eagle medium containing 10% OUZmL benicillin and 100 g / mL streptomycin containing 10% fetal calf serum. Cultured. The medium was changed twice a week and passaged for 5-10 passages. The vascular endothelial cells were treated with 0.05% trypsin to obtain a cell suspension.
  • vascular endothelial cells were transferred to a 24-well culture dish containing 1 mL of Dulbecco's modified Eagle's medium containing 10% fetal calf serum, and cultured to 5 ⁇ 10 4 cells / well.
  • Dulbecco's Modified Eagle Medium 50 containing 10% or less of various measurement samples was added, and incubated at 37 ° C for 60 minutes.
  • Keto PGF 1 alpha and anti-6-Keto PGF New England Nuclear one (N ew Eng l and Nuc lear ) manufactured 6 Keto PGF1 alpha measuring radio I Takeno assay I using 1 alpha antibody Using a kit, the concentration of 6-keto-PGF1 ⁇ was measured according to the attached manual. PG I 2 production level is 10 4 cells 6-keto produce per hour - was determined by PGF 1 alpha production quantity (p GZL 0 4 during the time of cell Z).
  • the present invention provides a novel DNA.
  • This DNA can be used to express the novel protein it encodes by genetic engineering techniques.
  • This new protein promotes the production of PG I 2 and the platelet aggregation of PG I 2 Inhibiting action, smooth Hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia, glucoseuria
  • It is an effective medicine for diseases such as heart disease, heart failure, angina pectoris, ischemic heart disease, depressive heart disease, choroidal circulation disorder, bronchial disease, gastric ulcer, and pregnancy eclampsia.
  • GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGC
  • Lys Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A novel DNA represented by SEQ ID NO. 3 or 4 in the Sequence Listing. A novel protein represented by the amino acid sequence of SEQ ID NO. 1 or 2 and coded for by this DNA can be prepared by means of a transformant obtained by using this DNA. This protein promotes PGI2 production and serves as medicines efficacious for diseases such as hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, peripheral embolism, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral infarction, hyperlipemia, diabetes, cardiac failure, angina pectoris, ischemic heart disease, congestive heart disease, choroidal circulatory disturbance, bronchial disease, gastric ulcer and eclampsia of pregnancy on the basis of the platelet aggregation inhibitor activity, smooth muscle relaxant activity and gastric secretion inhibitor activity of PGI2.

Description

DNAおよびそのコードする蛋白質  DNA and its encoded proteins
[技術分野]  [Technical field]
本発明は、 血管内皮細胞に作用し、 該細胞からのプロスタグランジン 12 (別 名;プロスタサイクリン (P r o s t a cy c l i n) 、 以下 PG I 2 と記す) 産生刺激活性を有する蛋白性生理活性物質 (以下 PG I 2 産生刺激因子と記す) をコードする DNA、 該 DNAを用いて PG I 2 産生刺激因子を製造する方法、 製造された PG I 2 産生刺激因子、 PG I 2 産生刺激因子を認識する抗体および その用途に関する。 The present invention acts on vascular endothelial cells, prostaglandin 1 2 from the cells (another name; prostacyclin (P Rosta cy clin), referred to as PG I 2 below) proteinaceous physiologically active substance having a production stimulating activity (Hereinafter referred to as PG I 2 production stimulating factor), a method for producing the PG I 2 production stimulating factor using the DNA, and the PG I 2 production stimulating factor produced and recognizing the PG I 2 production stimulating factor Antibodies and uses thereof.
[背景技術]  [Background technology]
プロスタグランジン (p r 0 s t a g 1 a n d i n、 PG) は 1930年にク ルツロックら [プロシーデイング ォブ ザ ソサイエティ フォー. ェクスぺ リメンタル バイオロジー アンド メディスン (Pro c. So c. Exp. B i o l. Med. ) . 28巻、 268頁、 1930年] により、 精液中に存在 する子宮筋収縮活性物質として発見報告された。 その後プロスタグランジンに関 する基礎的研究は急速な発展をとげた。 プロスタグランジンはヒト、 動物の組織、 臓器に含まれるプロスタン酸を基本構造とする生理活性物質の総称であり、 細胞 内でァラキドン酸を出発物質としてァラキドン酸カスケ一ドと呼ばれる一連の化 学反応により化学構造の異なる数種のプロスタグランジンが生合成される。 それ らは内分泌系、 神経系、 免疫系その他生体の恒常性の維持に関与する重要な活性 物質として注目されており、 炎症反応、 血栓形成、 末梢循環、 動脈硬化、 老化な どの諸機構に広汎に関与する [臨床科学、 17巻、 958頁、 1981年] と考 えられている。 さらに、 プロスタグランジンは血管平滑筋に対する血管作動性物 質として重要な役割をはたしており [病態生理、 2卷、 792頁、 1983年] 、 血小板や血管壁由来の活性型プロスタノィ ドであるトロンボキサン A2 (TXA 2 ) [プロシーデイング ォブ ザ ナショナル アカデミー ォブ サイェン ス ォブ ザ ユナイテッ ド ステイツ ォブ アメリカ (P ro c. Na t l.Prostaglandins (pr 0 stag 1 andin, PG) were released in 1930 by Kurtzrock et al. [Proc. Soc. Exp. Biol. Med. 28, p. 268, 1930] and was reported as a uterine muscle contractile active substance present in semen. Since then, basic research on prostaglandins has developed rapidly. Prostaglandin is a collective term for biologically active substances based on prostanoic acid in human and animal tissues and organs, and a series of chemical reactions called arachidonic acid cascades starting from arachidonic acid in cells. Produces several kinds of prostaglandins having different chemical structures. They are attracting attention as important active substances involved in maintaining the homeostasis of the endocrine system, nervous system, immune system and other organisms, and are widely used in various mechanisms such as inflammatory response, thrombus formation, peripheral circulation, arteriosclerosis, and aging. [Clinical Science, 17, 958, 1981]. In addition, prostaglandin plays an important role as a vasoactive substance for vascular smooth muscle [Pathophysiology, Vol. 2, p. 792, 1983], and thromboxane is an active prostanoid derived from platelets and vascular wall. A 2 (TXA 2 ) [Proceding of the National Academy of Sien Sov the United States of America (Proc. Natl.
Ac ad. S c i . USA) . 72巻、 2994頁、 1975年] および PG IAc ad. Sci. USA). 72, 2994, 1975] and PG I
2 [ネイチヤー (Na t u r e)、 263巻、 663頁、 1976年] が、 血小 板と血管系の生理と病態における臨床的意義において注目されている。 これらプロスタグランジンの中で、 とりわけ PG I 2 は強力な血小板凝集抑制 作用と血管弛緩作用を呈し、 逆の作用を有する血小板由来の TXA2 と拮抗的に 作用し生体内の恒常性 (ホメォスターシス) の維持に関与している [プリティッ シュ ジャーナノレ オフ" ファーマコ口ジー (B r. J. Ph a rma c. ) 、 76巻、 3頁、 1982年] 。 正常血管内皮細胞は、 物理的、 化学的刺激が加わ ると、 主として PG I 2 を生成し、 血小板の活性化を抑制するのみならず自ら血 管壁緊張 (トーヌス) を調節して局所循環の恒常性を維持する機構を作動させる。 すなわち、 血栓症や動脈硬化症などの血管障害の発症には、 TXA2 および PG I 2 の産生不均衡、 とりわけ PG I 2 の産生低下が関与している [プリティッシュ ジャーナル ォブ ファーマコロジ— (B r. J. Pha rma c. ) 、 76 巻、 3頁、 1982年] ことが知られている。 1978年マックインタイヤーら [ネイチヤー (Na t u r e) 、 271巻、 549頁、 1978年] は流血中に 血管壁での PG I 2 産生を刺激する因子が存在することを認めており、 本因子は 熱に不安定な高分子物質であることを報告している。 その後レムッジらにより溶 血性尿毒症症候群で本因子の血中レベルが健常人と比較して低下していることが 報告されて以来 [ランセッ ト (L a n c e t) 、 2巻、 871頁、 1978年] 、 血栓性血小板減少性紫斑病 [ランセッ ト (Lanc e t) 、 2巻、 748頁、 1 979年] 、 鎌状赤血球性貧血 [プリティッシュ ジャーナル ォブ へマト口 ジー (B r. J. Ha ema t o l. ) 、 48巻、 545頁、 1981年] 、 急 性心筋梗塞 [コロナリー (Co r ona ry) 、 2巻、 49頁、 1985年] 、 糖尿病等の血栓性 ·動脈硬化性疾患で本因子の血中レベルの低下がその病因と密 接に関与していることが明らかにされている。 とくに、 糖尿病性血管障害の発症 · 進展については、 血小板由来 TXA2 の産生亢進 [トロンボシス リサーチ (T h r omb. Re s. ) 、 19巻、 211頁、 1980年、 ジャーナル ォブ ラボラトリー アンド クリニカル メディスン (J. Lab. C l i n. Me d. ) 、 97巻、 87頁、 1981年] に加え、 血管由来の PG I 2 産生低下が 血小板凝集の亢進をひきおこすことが糖尿病患者や実験糖尿病動物について報告 されている [ランセッ ト (Lanc e t:) 、 1巻、 325頁、 1979年、 ラン セット (L a n c e t ) 、 2巻、 1365頁、 1979年、 ザ 二ユウ イング ランド ジャーナル ォブ メディスン (N. En l. J. Me d. ) 300 巻、 366頁、 1979年およびライフ サイエンス (L i f e Sc i. ) 、 23巻、 351頁、 1978年] 。 しかも、 この PG I 2 産生低下は、 上述の血 中に存在する PG I 2 産生刺激活性の低下が一因である可能性が示唆されている [メタボリズム (Me t a b 01 i sm) . 38巻、 837頁、 1989年、 へ モス夕シス (H a emo s t a s i s) . 16巻、 447頁、 1986年および ダイアベティス リサーチ アンド クリニカル プラクティス (D i a b. R e s. C l i n. P r a c t. ) . 3巻、 243頁、 1987年] 。 上述のご とく PG I 2 は血小板凝集抑制作用を有するが、 それ以外にも血管および気管支 などの平滑筋弛緩作用、 胃酸分泌抑制作用等をも有する。 これらの生理作用に基 づき PG I 2 自体を医療用薬として開発することが考えられるが、 P.G I2 の半 減期は 37°C中性の水中で 5分と極めて短く、 化学的に不安定な物質であり、 実 用化に至っていない。 一方、 天然の PG I 2 様作用を保ちながら、 化学的に安定 な PG I 2 類縁体を血液凝固阻止剤、 血管拡張剤等の医薬品として開発しようと する試みがなされている。 2 [Nature, 263, 663, 1976] has received attention for its clinical significance in the physiology and pathology of platelets and vasculature. Among these prostaglandins, PG I 2 exhibits potent platelet aggregation inhibitory action and vasorelaxant action, and acts antagonistically with platelet-derived TXA 2 which has the opposite action, resulting in homeostasis in vivo. [Pretty Gian Nanoleoff] Pharmaco-Koji (Br. J. Pharmac.), 76, 3 pages, 1982.] Normal vascular endothelial cells are physically and chemically When the stimulus is applied, it mainly produces PG I 2 and activates a mechanism that not only suppresses platelet activation but also regulates vascular wall tone (Tonus) to maintain local circulation homeostasis. The development of vascular disorders such as thrombosis and arteriosclerosis involves an imbalance in the production of TXA 2 and PG I 2, especially a decrease in the production of PG I 2 [Pretish Journal of Pharmacology— (Br J. Pha rma c.) , 76, 3, 1982] Mac Inyer et al., 1978 [Nature, 271, 549, 1978] reported that PG I 2 Remudge et al. Have reported that the presence of a factor that stimulates the production of this factor is a heat-labile macromolecule. Have been reported to be lower compared to healthy individuals [Lancet, 2, 871 (1978)], thrombotic thrombocytopenic purpura [Lanc et], 2, 748, 1979], Sickle cell anemia [Brit. J. Haema to l., 48, 545, 1981], sudden Myocardial infarction [Coronary, Vol. 2, p. 49, 1985], thrombotic and atherosclerotic diseases such as diabetes It has been clarified that the decrease in medium level is closely related to the etiology of the disease, and especially regarding the onset and progression of diabetic vasculopathy, increased production of platelet-derived TXA 2 [Thrombosis Research (T hr omb) Res.), 19, 211, 1980, Journal of Laboratory and Clinical Medicine (J. Lab. Clin. Med.), 97, 87, 1981], and vascular origin It has been reported that reduced PG I 2 production in platelets causes an increase in platelet aggregation in diabetic patients and experimental diabetic animals [Lanc et: 1, 325, 1979, Lancet] , Volume 2, 1365 pages, 1979, The Two Wings Land Journal of Medicine (N. Enl. J. Med.) 300, 366, 1979 and Life Science (Life Sc i.), 23, 351, 1978]. Moreover, the PG I 2 production decreases, potential reduction of PG I 2 Stimulating activity present in the blood of above is partly has been suggested [Metabolism (Me tab 01 i sm). 38 , pp. 837, 1989, Ha emo stasis. Volume 16, 447, 1986 and Diabetis Research and Clinical Practice (Dia b. Res. Clin. Prac.) 3, 243, 1987]. As described above, PG I 2 has a platelet aggregation inhibitory action, but also has a smooth muscle relaxing action on blood vessels and bronchi, a gastric acid secretion inhibitory action, and the like. While developing these physiological effects based on Hazuki PG I 2 itself as a medical drug is considered, half-life of the PG I 2 is extremely short as 5 minutes in water at 37 ° C neutral, chemically non It is a stable substance and has not been put to practical use. On the other hand, attempts have been made to develop chemically stable PGI 2 analogs as pharmaceuticals such as anticoagulants and vasodilators while maintaining the natural PGI 2 -like action.
しかし、 生体にとっては、 PG I 2 が化学的に不安定で短寿命である方がむし ろ望ましい。 局所的に産生され、 かつ不要な血小板凝集抑制を防ぎながら、 作用 するのが PG I a本来の働きであるから、 化学的に安定な PG I 2 類縁体を多量 に与えると、 細胞の PG I 2 に対する応答性が低下し、 緊急の場合に PG I 2 に 反応しなくなる可能性もある。 実際、 プロスタグランジン (PGEi ) や安 定な PG I 2 類縁体で前処理を行うと、 ある種の細胞では PG I 2 によって当然 起こるべき c AMPの上昇がおこならくなつたという例が報告されている [プロ スタグランジンズ (P ro s t ag l and i n s. ) . 19巻、 2頁、 198 0年] 。 However, for living organisms, it is more desirable that PG I 2 be chemically unstable and have a short life. It is the natural function of PG Ia that it is locally produced and acts while preventing unnecessary inhibition of platelet aggregation.When a large amount of chemically stable PG I 2 analog is given, PG I Responsiveness to PGI 2 may be reduced, and it may not respond to PGI 2 in an emergency. In fact, pretreatment with prostaglandins (PGEi) and stable PG I 2 analogs has shown that in some cells, PG I 2 does not result in an increase in cAMP, which should occur naturally. Prostaglandins (Prostagl and ins.). 19, 2, 2980.
従って、 上述のような PG I 2 の作用を期待するのであれば、 化学的に安定な 類縁体を用いるよりも、 必要なときに必要な濃度の PG I 2 を必要な部位に産生 させてやることが生体にとってより好ましいと考えられる。 生体内での PG I 2 代謝は 2つの因子により制御されており、 その 1つは PG I 2 安定化因子で近年 アポリポプロテイン A— 1 (Ap o A- 1) であることが同定された [ザ ジャ —ナル ォブ クリニカル インべスティゲーシヨン ( J . C l i n. I nv e s t. )、 82巻、 803頁、 1988年] 。 他の 1つは PG I 2 産生刺激因子 (P r o s t a cy c l i n P r oduc t i on S t imu l a t i ng Fa c t o r. PSF) である。 上述のごとくすでに血中には P G I 2 産生剌 激活性 (P r o s t a cyc l i n S t imu l a t i ng Ac t i v i t y、 PSA) が存在することが報告されているが、 その活性本体である PG I 2 産生刺激因子は血管内皮細胞からの PG I 2 産生を増加させ、 血中の PG I 2 濃 度を高めることにより血小板凝集抑制作用、 平滑筋弛緩作用、 胃酸分泌抑制作用 等を発揮させる。 このような作用を持つ PG I 2 産生刺激因子は溶血性尿毒症症 候群、 血栓性血小板減少性紫斑病、 末梢動脈閉塞、 心虚血、 脳虚血、 動脈硬化、 脳閉塞、 高脂血症、 糖尿病、 心不全、 狭心症、 虚血性心疾患、 うつ血性心疾患、 脈絡膜循環障害、 気管支疾患、 胃潰瘍、 妊娠子癇等の治療に使用できると考えら さらに、 前述の疾患の発症、 進展に関して PG I 2 産生刺激因子の局所におけ る発現の増減ならびに血中および尿中等の濃度が変化することが期待され、 こう した PG I 2 産生刺激因子の濃度変化を検出することができれば、 その測定によ り上記疾患の診断が可能になると考えられる。 Therefore, if the above-mentioned effects of PGI 2 are expected, rather than using chemically stable analogs, the required concentration of PGI 2 will be produced at the required site when needed. Is considered to be more preferable for the living body. In vivo metabolism of PG I 2 is controlled by two factors, one of which is a stabilizing factor of PG I 2 , which was recently identified as apolipoprotein A-1 (Apo A-1) [ The ja —Naluob Clinical Investigation (J. Clin. Invest.), 82, 803, 1988]. The other is a PG I 2 production stimulating factor (Prosta cy clin P roduc ti on S t imu lati ng Fa cto r. PSF). Above PGI 2 Already in blood as the Sansei剌intense activity (P rosta cyc lin S t imu lati ng Ac tivity, PSA) but it has been reported to be present, PG I 2 Stimulating its active body Factors increase PG I 2 production from vascular endothelial cells and increase the PG I 2 concentration in blood to exert platelet aggregation inhibitory action, smooth muscle relaxing action, gastric acid secretion inhibitory action, and the like. The PG I 2 production stimulating factor having such an effect is hemolytic uremic syndrome group, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia It can be used for the treatment of diabetes, heart failure, angina pectoris, ischemic heart disease, depressive heart disease, choroidal circulatory disorder, bronchial disease, gastric ulcer, pregnancy and eclampsia. It is expected that the local expression of the I 2 production stimulating factor will increase and decrease, and the concentration in the blood and urine will change.If such a change in the concentration of the PG I 2 production stimulating factor can be detected, it will be possible to measure it. It is thought that the above-mentioned diseases can be diagnosed.
本発明者らは、 血中およびヒト由来培養細胞株の培養上清中に存在する PG I 2 産生刺激活性について鋭意研究を重ねた結果、 正常ヒトニ倍体線維芽細胞の培 養上清中に PG I 2 産生刺激活性を有する物質が高濃度に存在することを確認し、 次いで、 この培養上清より PG I 2 産生刺激因子を単離精製することに成功し、 アミノ酸配列の一部を決定した [PCTZJ P 93/00294] 。 しかしなが ら、 PG I2 産生刺激因子のような蛋白性生理活性物質を大量に入手するために は、 その遺伝子の単離 ·同定を行い、 組換え技術を用いた製造法を確立すること が望まれていた。 The present inventors have conducted intensive studies on the PG I 2 production stimulating activity present in the blood and in the culture supernatant of a human-derived cultured cell line, and found that the culture supernatant of normal human diploid fibroblasts After confirming that a substance having PG I 2 production stimulating activity was present at a high concentration, we succeeded in isolating and purifying PG I 2 production stimulating factor from this culture supernatant, and determined a part of the amino acid sequence. [PCTZJ P 93/00294]. However, in order to obtain the proteinaceous physiologically active substances such as PG I 2 Stimulating Factor in large quantities, that the make isolation and identification of genes, to establish a production method using recombinant techniques Was desired.
[発明の開示]  [Disclosure of the Invention]
本発明の目的は、 上述のような状況を鑑み、 血管内皮細胞を刺激して PG I 2 の産生を促進する PG I 2 産生刺激因子をコードする遺伝子を提供し、 遺伝子ェ 学的な PG I2 産生刺激因子の大量製造方法を提供することにある。 また、 本発 朋の他の目的は、 PG I 2 産生刺激因子の作用に基づいた上述の疾患に対する医 薬組成物を提供することにある。 さらに、 PG I 2 産生刺激因子に対する特異的 な抗体および該抗体を用いた上述の疾患に対する診断方法を提供することも目的 の一つである。 An object of the present invention is to provide a gene encoding a PG I 2 production stimulating factor which stimulates vascular endothelial cells to promote PG I 2 production in view of the above situation, (2) To provide a method for mass production of a production stimulating factor. In addition, Another object of Tomo is to provide a medical pharmaceutical composition for the aforementioned diseases, based on the action of PG I 2 Stimulating Factor. It is still another object to provide a specific antibody against the PGI 2 production stimulating factor and a method for diagnosing the above-mentioned diseases using the antibody.
本発明者らは上述の目的を達成するために、 さらに鋭意研究を重ねた結果、 The present inventors have conducted intensive research to achieve the above-mentioned object, and as a result,
PG I 2 産生刺激因子の一部のアミノ酸配列を手がかりとして、 正常ヒト二倍体 線維芽細胞の cDNAライブラリーを作成し PG I 2 産生刺激因子の cDNAを 入手し、 次いで、 PG I 2 産生刺激因子の塩基配列を明らかにし、 さらにその配 列から演繹されるアミノ酸配列を決定した。 A portion of the amino acid sequence of PG I 2 Stimulating Factor as a cue, to create a cDNA library of normal human diploid fibroblasts to obtain the cDNA of PG I 2 Stimulating Factor, then, PG I 2 Stimulating The nucleotide sequence of the factor was determined, and the amino acid sequence deduced from the sequence was determined.
すなわち、 本発明は、 下記式 [1] または [2] (配列表の配列番号 1または 2) で表されるアミノ酸配列をコードする塩基配列の一部または全部.を含有する 新規な DNAを提供する。  That is, the present invention provides a novel DNA containing a part or all of a base sequence encoding an amino acid sequence represented by the following formula [1] or [2] (SEQ ID NO: 1 or 2 in the sequence listing). I do.
式 [1]  Equation [1]
Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly
-25 -20 -15 -25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp
-10 -5 1 -10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro
5 10 15 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala80 85 90 Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala
95 100 105 95 100 105
Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin
110 115 120 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro
125 130 135 125 130 135
Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser
140 145 150 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys
155 160 165 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro
170 175 180 170 175 180
Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu
185 190 195 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys
200 205 210 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly
215 220 225 215 220 225
Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His
230 235 240 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256  245 250 255 256
Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly -25 -20 -15 Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly -25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp -10 -5 1  Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp -10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro 5 10 15 Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 80 85 90
Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala
95 100 105 95 100 105
Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin 110 115 120  Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro 125 130 135  Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro 125 130 135
Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150  Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys 155 160 165  Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro 170 175 180  Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro 170 175 180
Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu 185 190 195  Gly Asp Arg Asp Asn Leu Alalie Gin Thr Arg Gly Gly Pro Glu 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys 200 205 210  Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly
215 220 225 Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His 230 235 240 215 220 225 Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256 さらに、 下記式 [ 3 ] ないし [ 4 ] (配列表の配列番号 3または 4 ) で表され る塩基配列の一部または全部を含有する新規な D N Aを提供する。  245 250 255 256 Further, the present invention provides a novel DNA containing a part or all of the nucleotide sequence represented by the following formulas [3] to [4] (SEQ ID NO: 3 or 4 in the sequence listing).
式 [ 3 ] Expression [3]
GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180 CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240 TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300 GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360 CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420 GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480 GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540 TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600 GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660 GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720 GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTC 780 CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACG 840 AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900 TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960 ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020 ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 式 [ 4 ] GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180 CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240 TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300 GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360 CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420 GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480 GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540 TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600 GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660 GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720 GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTC 780 CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACG 840 AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900 TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960 ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020 ACACATCAAG ACTATCATAAATCAAAAGAAAAAATCAAAAGAA GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGC
CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240
TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300
GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360
CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420
GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480
GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540
TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600
GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660
GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720
GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTT 780GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTT 780
CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840
AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900
TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960
ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020
ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080
ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 さらに、 式 [ 1 ] または [ 2 ] で表される新規なアミノ酸配列をコードする D N Aと相捕的な塩基配列を有する D NA、 および式 [ 3 ] または [ 4 ] で表され る新規な D N Aと相補的な塩基配列を有する D N Aを提供する。 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 Further, a DNA having a base sequence complementary to DNA encoding the novel amino acid sequence represented by the formula [1] or [2], and a formula [3] or [4] Provided is a DNA having a nucleotide sequence complementary to the novel DNA represented.
さらに、 本発明は、 式 [ 1 ] または [ 2 ] で表されるアミノ酸配列をコードす る D N Aあるいは式 [ 3 ] または [ 4 ] で表される D N Aを導入して得られるベ クタ一および該ベクターで形質転換された形質転換体を提供する。 次いで、 この 形質転換体を用いて P G I 2 産生刺激因子を産生する方法ならびに該操作により 得られる P G I 2 産生刺激因子を提供する。 Furthermore, the present invention relates to a vector obtained by introducing a DNA encoding the amino acid sequence represented by the formula [1] or [2] or a DNA represented by the formula [3] or [4], and A transformant transformed with the vector is provided. Then, to provide a PGI 2 production-stimulating factor obtainable by the process as well as the manipulation to produce PGI 2 production-stimulating factor by using the transformant.
本発明の P G I 2 産生刺激因子のアミノ酸配列は、 式 [ 1 ] または [ 2 ] で表 されるアミノ酸配列の一部または全部を含有する蛋白質である。 好ましくは、 下 記式 [ 5 ] または [ 6 ] (配列表の配列番号 5または 6 ) で示されるアミノ酸配 列を有する。 The amino acid sequence of the PGI 2 production stimulating factor of the present invention is represented by the formula [1] or [2]. The protein contains a part or all of the amino acid sequence to be obtained. It preferably has the amino acid sequence represented by the following formula [5] or [6] (SEQ ID NO: 5 or 6 in the sequence listing).
式 [ 5 ] Expression [5]
Ser Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro 1 5 10 15 Ser Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro 1 5 10 15
Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala
20 25 30 20 25 30
Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Glu Pro Cys
35 40 45 35 40 45
Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu
50 55 60 50 55 60
Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala
65 70 75 65 70 75
Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg
80 85 90 80 85 90
Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys
95 100 105 95 100 105
Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys
110 115 120 110 115 120
Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser
125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin  125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin
140 145 150 140 145 150
Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu
155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr  155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr
170 175 180 170 175 180
Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg 185 190 195Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg 185 190 195
Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser
200 205 210 200 205 210
Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser
215 220 225 215 220 225
Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val
230 235 240 230 235 240
Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu
245 250 255 245 250 255
Leu Leu
256 256
Phe Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys ProPhe Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro
1 5 10 151 5 10 15
Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala
20 25 30 20 25 30
Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Pro CysCys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Glu Pro Cys
' 35 40 45'' 35 40 45
Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu
50 55 60 50 55 60
Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala
65 70 75 65 70 75
Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg
80 85 90 Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys  80 85 90 Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys
95 100 105 Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys  95 100 105 Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys
110 115 120 Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser110 115 120 Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser
125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin 125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin
140 145 150 140 145 150
Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu
155 160 165 155 160 165
He Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr He Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr
170 175 180 170 175 180
Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg
185 190 195 185 190 195
Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser
200 205 210 200 205 210
Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser
215 220 225 215 220 225
Asn Phe Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asn Phe Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val
230 235 240 230 235 240
Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu
245 250 255 245 250 255
Leu Leu
256 256
この蛋白質は、 血管内皮細胞を刺激して PG I 2 の産生を促進する活性を有す ることで特徴づけられる。 This protein is characterized by its ability to stimulate vascular endothelial cells to promote PGI 2 production.
さらに、 本発明の PG I2 産生刺激因子のアミノ酸配列の一部または全部を抗 原として得られた抗体およびその抗体を用いた免疫学的な PG I 2 産生刺激因子 の測定方法を提供する。 Furthermore, the present invention provides an antibody obtained by using a part or all of the amino acid sequence of the PG I 2 production stimulating factor of the present invention as an antigen, and a method for immunologically measuring the PG I 2 production stimulating factor using the antibody.
また、 本発明は上述の PG I 2 産生刺激因子を有効成分として含有することを 特徵とする、 下記疾患に対する予防または治療用医薬組成物を提供する。  The present invention also provides a pharmaceutical composition for preventing or treating the following diseases, which comprises the above-mentioned PG I 2 production stimulating factor as an active ingredient.
溶血性尿毒症症候群、 血栓性血小板減少性紫斑病、 末梢動脈閉塞、 心虚血、 脳 虚血、 動脈硬化、 脳閉塞、 高脂血症、 糖尿病、 心不全、 狭心症、 虚血性心疾患、 うつ血性心疾患、 脈絡膜循環障害、 気管支疾患、 胃潰瘍、 妊娠子癇。 図面の簡単な説明  Hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia, diabetes, heart failure, angina, ischemic heart disease, depression Hematologic heart disease, choroidal circulation disorder, bronchial disease, gastric ulcer, pregnancy eclampsia. BRIEF DESCRIPTION OF THE FIGURES
図 1は COS発現ベクター pM953を説明する模式図である。  FIG. 1 is a schematic diagram illustrating the COS expression vector pM953.
図 2は CHO発現ベクター pM954を説明する模式図である。  FIG. 2 is a schematic diagram illustrating the CHO expression vector pM954.
図 3はゲル電気泳動の結果を示す図面であって、 pM953 ZC OS細胞培 養上清精製サンプルの SDS— PAGEの結果を示す図である。  FIG. 3 is a drawing showing the results of gel electrophoresis, showing the results of SDS-PAGE of the purified sample of pM953 ZCOS cell culture supernatant.
図 4は DEAE— 5 PW陰イオン交換クロマトグラフィーによる溶出パター ンを示すグラフである。  Figure 4 is a graph showing the elution pattern by DEAE-5 PW anion exchange chromatography.
図 5はへパリン一 5PWァフィ二ティークロマトグラフィーによる溶出バタ ーンを示すグラフである。  FIG. 5 is a graph showing an elution pattern obtained by heparin-1 5PW affinity chromatography.
図 6はプロテイン一パックゲルろ過カラムクロマトグラフィーによる溶出パ ターンを示すグラフである。  FIG. 6 is a graph showing an elution pattern obtained by protein one-pack gel filtration column chromatography.
図 7は SDS— PAGEによる実験結果を示す模式図である。 以下本発明を詳細に説明する。  FIG. 7 is a schematic diagram showing the experimental results by SDS-PAGE. Hereinafter, the present invention will be described in detail.
すなわち、 本発明は、 下記式 [1] または [2] で表されるアミノ酸配列の一 部または全部を含有する蛋白質およびこれをコードする塩基配列の一部または全 部を含有する DNAである。  That is, the present invention is a protein containing a part or all of an amino acid sequence represented by the following formula [1] or [2] and a DNA containing a part or the whole of a nucleotide sequence encoding the protein.
式 [1] Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala GlyEquation [1] Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly
-25 -20 -15 -25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp
-10 -5 1 -10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro
5 10 15 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 80 85 90
Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala
95 100 105 95 100 105
Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin 110 115 120  Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro 125 130 135  Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro 125 130 135
Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150  Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys 155 160 165  Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro 170 175 180  Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro 170 175 180
Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu 185 190 195 Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys
200 205 210 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly
215 220 225 215 220 225
Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His
230 235 240 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256  245 250 255 256
Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala GlyMet Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly
-25 -20 -15 -25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp
-10 -5 1 -10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro
5 10 15 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 80 85 90
Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala
95 100 105 Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin95 100 105 Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin
110 115 120 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro
125 130 135 125 130 135
Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser
140 145 150 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys
155 160 165 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro
170 175 180 170 175 180
Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu
185 190 195 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys
200 205 210 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly
215 220 225 215 220 225
Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His
230 235 240 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256 また、 下記式 [ 3 ] または [ 4 ] で表される塩基配列の一部または全部を含有 する D N Aである。  245 250 255 256 DNA containing a part or all of the base sequence represented by the following formula [3] or [4].
式 [ 3 ] Expression [3]
GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60
CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120
CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180
CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240
TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300 GCTGGTATCT CCTCTAAGC CCCTA AGGAAGGCGGGAAAT GGGCATGATAATTTAT TATAT TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300 GCTGGTATCT CCTCTAAGC CCCTA AGGAAGGCGGGAAAT GGGCATGATAATTTAT TATAT
GGACAACCTG GCCATTCA CCGGGGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAATGGTT GGACAACCTG GCCATTCA CCGGGGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAATGGTT
GACAGGAATA AAAAGGGGCCGGTC ACTTGGAGT TCAGGC GCTCCTGC CTGGTAAAAAAAAGACAGGAATA AAAAGGGGCCGGTC ACTTGGAGT TCAGGC GCTCCTGC CTGGTAAAAAAAA
TGGGCCTCAG GTGTACCCGTTGA GCGTGGGT CCGGAATC CCGCACCTG TCCTATTTAATATGGGCCTCAG GTGTACCCGTTGA GCGTGGGT CCGGAATC CCGCACCTG TCCTATTTAATA
GGGCCACTGC GAGC GGCACAAGGTC CCCATGT GACGCCCCCC AAGGACATCTGAATTTTA GGGCCACTGC GAGC GGCACAAGGTC CCCATGT GACGCCCCCC AAGGACATCTGAATTTTA
o o
GCGCGCCGCC AGCCCCAGAGGG CCGGGCCG CGGGGAGG GCCCCCC AGGTAGAAAAAAATAGCGCGCCGCC AGCCCCAGAGGG CCGGGCCG CGGGGAGG GCCCCCC AGGTAGAAAAAAATA
CAGAGCACGCCGC TACCCGGCGC CCCCCCCCGCG GCGCATTGT GCGGAGAGGAA TACGATCAGAGCACGCCGC TACCCGGCGC CCCCCCCCGCG GCGCATTGT GCGGAGAGGAA TACGAT
GCGGAAGGGT AAAGCCCC ¾GGCGGGCGTGTGGGGG CAGAGCCGG CGGTCGGGTAACG TTGCGGAAGGGT AAAGCCCC ¾GGCGGGCGTGTGGGGG CAGAGCCGG CGGTCGGGTAACG TT
C TGGGGCGCC GCGGGCAGGCGGCGGG GCGCAAAGGGT ACTGCGCGCC GGGATGA TGTAAA C TGGGGCGCC GCGGGCAGGCGGCGGG GCGCAAAGGGT ACTGCGCGCC GGGATGA TGTAAA
CCGCGACGCGGGG TGCGGCCCGCC GGGCGAGC CGTGCGGTGCT GCCCTATGTG CGCGGAGCCGCGACGCGGGG TGCGGCCCGCC GGGCGAGC CGTGCGGTGCT GCCCTATGTG CGCGGAG
CCCCCTGGAG CCCGCGGGCGAGACGGCCTCC GCCCGCCCC GCCCCCGCTG GGCTGCT TTTCCCCCTGGAG CCCGCGGGCGAGACGGCCTCC GCCCGCCCC GCCCCCGCTG GGCTGCT TTT
CGCTGGGCG CCCCGCGGTTGCTCCGCCCGCCCC CCCCTTCCCCTCTTCGG AATT TTTTT TCGCTGGGCG CCCCGCGGTTGCTCCGCCCGCCCC CCCCTTCCCCTCTTCGG AATT TTTTT T
GCCGCGCGCCTCA CCGCCCCC CCGCCCTGC TCCTCGGACCG CCATGGAGCG GCCGTGTGG GCCGCGCGCCTCA CCGCCCCC CCGCCCTGC TCCTCGGACCG CCATGGAGCG GCCGTGTGG
ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA CC AAATCAGCG CATGCATATCA ATATCTAC AAATTATATTTAC AGAAGAAAAAATTATT A C ATCACTCGAA ACTTGCACAA AATAAAATCTATTA TATTACTGG TTTT AGAAATATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA CC AAATCAGCG CATGCATATCA ATATCTAC AAATTATATTTAC AGAAGAAAAAATTATT A C ATCACTCGAA ACTTGCACAA AATAAAATCTATTA TATTACTGG TTTT AGAAAT
TAAAAGT CCCAGTATGGTC TTTTAATAATAAC TACATTACC GTCTTGCCT AATAAGTTTTTAAAAGT CCCAGTATGGTC TTTTAATAATAAC TACATTACC GTCTTGCCT AATAAGTTTT
n ^ O CO D OO - I -^3  n ^ O CO D OO-I-^ 3
o C CD oo t σ¾ <=> CO ts3 OO CsD OOo C CD oo t σ¾ <=> CO ts3 OO CsD OO
CD CD CD CD C AGTGAAAAAA GGTGGGCTGCATGGTAAGTG CCGAGCCCTCCAG ATATTATTA TTATA AAAD CD CD CD CD CD CD C AGTGAAAAAA GGTGGGCTGCATGGTAAGTG CCGAGCCCTCCAG ATATTATTA TTATA AAAD CD CD
CCAGGAACAG GCGATCCTTCAGC CGCCG GGCCTTAC ATAAAATAAAAAAT TAAGTGTTATCCAGGAACAG GCGATCCTTCAGC CGCCG GGCCTTAC ATAAAATAAAAAAT TAAGTGTTAT
GCTGGTATC CTCTCGCCG CATCCAATTCTAAGTA AGGAAGTGCGGAGAATAT GAGTATA TGCTGGTATC CTCTCGCCG CATCCAATTCTAAGTA AGGAAGTGCGGAGAATAT GAGTATA T
GGACACACTG GCC¾ CGGCGGGATTCAG CCCGGGG CCCGAG CGAAAATTTATGGAAAAAT GGACACACTG GCC¾ CGGCGGGATTCAG CCCGGGG CCCGAG CGAAAATTTATGGAAAAAT
GAACAGGATA AAGGCCGC CTGGTGACCGAAGGTC ACTAGGGCAAAGGACA GAACTTTAT T GAACAGGATA AAGGCCGC CTGGTGACCGAAGGTC ACTAGGGCAAAGGACA GAACTTTAT T
TG¾GCCCAG GGCCCGCCTCATCTGTTATTGA GCTGTGGG CTCGGAAC CCGACAT TATAT TG¾GCCCAG GGCCCGCCTCATCTGTTATTGA GCTGTGGG CTCGGAAC CCGACAT TATAT
GGGCACCGC G GGGCCTAGCAAGGC CCCCGCCCCCCGGACATCTAATTATTTATAGT GA AA GGGCACCGC G GGGCCTAGCAAGGC CCCCGCCCCCCGGACATCTAATTATTTATAGT GA AA
GCGCGCCGCCGCCCCGGTCAGCAA AGAGG CCGAGAGCCG CGGGGAGAG GCCATA AAGCGCGCCGCCGCCCCGGTCAGCAA AGAGG CCGAGAGCCG CGGGGAGAG GCCATA AA
CAAGGCACGC TACCCGCGGCG GCTGCCAGCGTGT GCGGCAGCG CGGCACCACC TACCATA CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840 AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900 TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960 ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020 ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 本発明の蛋白質である PG I 2 産生刺激因子の cDN Aを得るためには、 一般 的な遺伝子工学的手法が用いられる。 すなわち、 本発明の PG I 2 産生刺激因子 のアミノ酸配列を明らかにし、 それを基に DNAプローブを作製し、 適当な cD NAライブラリ一、 好ましくは正常ヒトニ倍体線維芽細胞より得られた mRNA から作製された c DNAライブラリーをスクリ一二ングすることにより本発明の PG I 2 産生刺激因子の cDNAを得ることができる。 また、 精製された PG ICAAGGCACGC TACCCGCGGCG GCTGCCAGCGTGT GCGGCAGCG CGGCACCACC TACCATA CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840 AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900 TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960 ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020 ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA PG I 2 is a protein of AAAA 1124 present invention In order to obtain the production stimulating factor cDNA, a general genetic engineering technique is used. That is, the amino acid sequence of the PG I 2 production stimulating factor of the present invention is clarified, a DNA probe is prepared based on the amino acid sequence, and an appropriate cDNA library, preferably from mRNA obtained from normal human diploid fibroblasts, is prepared. The cDNA of the PG I 2 production stimulating factor of the present invention can be obtained by screening the prepared cDNA library. Also, purified PG I
2 産生刺激因子を用いて、 あるいはアミノ酸配列解析または遺伝子配列解析によ り決定されたアミノ酸配列の一部を合成べプチドとして合成しこれを用いてゥサ ギ、 マウス等を免疫し抗体を得た後、 この抗体を用いて cDN Aライブラリーを スクリーニングすることも可能である。 2 A part of the amino acid sequence determined by using a production stimulating factor or by amino acid sequence analysis or gene sequence analysis is synthesized as a synthetic peptide, which is used to immunize egrets and mice to obtain antibodies. Thereafter, the cDNA library can be screened using this antibody.
好ましくは下記の方法により本発明の PG I 2 産生刺激因子をコードする cD NAを取得することができる。 正常ヒトニ倍体線維芽細胞から全 RNAを調製し、 ポリ (A) + RNA (mRNA) を調製する。 例えば、 全 RN Aの調製は、 一般 的なグァニジンチオシァネート法、 AG PC法または熱フヱノール法により可能 である。 また mRNAは、 全 RNAをオリゴ (dT) セルロースやポリ U—セファ ロース等を用いたァフィ二ティークロマトグラフィーをカラム法やバッチ法で実 施することにより調製できる。 次いで、 逆転写酵素を用いて 1本鎖 cDNAを合 成し、 次いで DNAポリメラーゼを用いて 2本鎖 cDNAとした後、 各種プラス ミ ドベクタ一、 例えばプラスミ ド pUCベクター、 プラスミ ド pEF— BOS [ヌクレイック ァシッ ド リサーチ (Nuc l. Ac i d s Re s. ) 、 1 Preferably, cDNA encoding the PG I 2 production stimulating factor of the present invention can be obtained by the following method. Prepare total RNA from normal human diploid fibroblasts and prepare poly (A) + RNA (mRNA). For example, preparation of total RNA is possible by a general guanidine thiosinate method, an AGPC method or a hot phenol method. MRNA can be prepared by subjecting total RNA to affinity chromatography using oligo (dT) cellulose, poly-U-sepharose, or the like by a column method or a batch method. Next, a single-stranded cDNA is synthesized using reverse transcriptase, and then converted into a double-stranded cDNA using DNA polymerase. Acid Research (Nucl. Ac ids Res.), 1
8巻、 5322頁、 1990年] 等に導入し、 大腸菌を形質転換する。 あるいは クローニング用ファージベクター; I g t 10、 λ g t 11等に導入し、 インビト 口パッケージングして大腸菌に感染させる。 こうして cDNAライブラリ一を作 製する。 cDNAは、 グブラーとホフマンの方法 [ジーン (Gen e)、 25巻、 263頁、 1983年] 等に従って合成することができる。 市販されている c D NA合成キッ ト (アマシャム社製、 ベーリンガー社製、 インヴィ トロジヱン社製) を用いてもよい。 上述の cDNAは、 リンカ一を付加すること等によってプラス ミ ドベクターもしくはファージベクタ一^、導入できる。 使用するリンカ一は、 特 に限定されるものではないが、 プラスミ ド p EF— BOSを用いる場合には B s t X Iリンカーが好ましい。 リンカーの付加、 プラスミ ドおよびファージベクタ 一への cDNAの導入は、 市販のライゲーシヨンキッ ト (宝酒造社製) を用いて も可能である。 形質転換する大腸菌は通常用いられる株であれば特に限定される ものではないが、 HB101、 DH5および MC1061/P3が好ましい。 λ g t 10をファージベクターとして用いた場合は、 NM514が特に好ましい。 cDN Aを導入したプラスミ ド DNAは、 エレク ト口ポレーシヨン法または塩化 カルシウム法等により大腸菌へ導入することができる。 インビトロパッケージン グは市販のインビトロパッケージングキッ ト (ストラタジーン社製、 アマシャム 社製) を用いて行うこともできる。 8, 5322, 1990] etc. to transform E. coli. Alternatively, a phage vector for cloning: introduced into Igt10, λgt11, etc. Mouth packaging and infect E. coli. Thus, a cDNA library is prepared. cDNA can be synthesized according to the method of Gubler and Hoffman [Gene, 25, 263, 1983]. A commercially available cDNA synthesis kit (manufactured by Amersham, Boehringer, Invitrodin) may be used. The above-mentioned cDNA can be introduced into a plasmid vector or a phage vector by adding a linker or the like. The linker used is not particularly limited, but when using plasmid pEF-BOS, a BstXI linker is preferred. Addition of a linker and introduction of cDNA into plasmid and phage vector can also be performed using a commercially available ligation kit (Takara Shuzo). The Escherichia coli to be transformed is not particularly limited as long as it is a commonly used strain, but HB101, DH5 and MC1061 / P3 are preferred. When λgt10 is used as a phage vector, NM514 is particularly preferred. Plasmid DNA into which cDNA has been introduced can be introduced into Escherichia coli by the electroporation method or the calcium chloride method. In vitro packaging can also be performed using a commercially available in vitro packaging kit (Stratagene, Amersham).
本発明の PGI2 産生刺激因子をコードする c DNAは、 一般的な cDNAス クリーニング法を組み合わせることにより単離可能である。 例えば、 得られた部 分アミノ酸配列 [PCTZJ P93Z00294] に基づいて DNAプローブを 作製し直接 c DNAライブラリーをスクリーニングするか、 PCRプライマーを 作製し P C R法で増幅した D N A断片を有するクローンを選択する方法等が考え られる。 また cDNAを発現させることのできるライブラリ一、 例えば λ g t 1 1ファージベクターを用いて作製したライブラリーを用いる場合には上述の方法 で得た抗体を用いて目的のクローンを選択することができる。 C 0 S細胞を宿主 としてプラスミ ドベクター pEF— BOS等を用いて作製したライブラリーを用 いる場合は、 培養上清中に検出される PG I 2 産生刺激活性を指標として目的の クローンを選択することができる。 CDNA encoding the PGI 2 production stimulating factor of the present invention can be isolated by a combination of general cDNA screening methods. For example, a method of preparing a DNA probe based on the obtained partial amino acid sequence [PCTZJ P93Z00294] and directly screening a cDNA library, or preparing a PCR primer and selecting a clone having a DNA fragment amplified by the PCR method And so on. When using a library capable of expressing cDNA, for example, a library prepared using a λgt11 phage vector, a target clone can be selected using the antibody obtained by the above-described method. When using a library prepared using plasmid vector pEF-BOS, etc., with C S cells as the host, select the desired clone using the PGI 2 production stimulating activity detected in the culture supernatant as an index. be able to.
得られた目的のクローン中に含まれる c DNAの塩基配列はジデォキシターミ ネーシヨン法により決定できる。 決定される DNA配列の好適な例は下記式 [3] または [ 4 ] で示される。 The nucleotide sequence of cDNA contained in the obtained target clone can be determined by the dideoxy termination method. A preferred example of the determined DNA sequence is the following formula [3] Or [4].
式 [ 3 ] Expression [3]
GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180 GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGC
CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240
TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300
GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360
CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420
GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480
GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540
TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600
GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660
GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720
GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTC 780GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTC 780
CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840
AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900
TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960
ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020
ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080
ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124
式 [ 4 ] Expression [4]
GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60
CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120
CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180
CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240
TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300
GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360 CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360 CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420
GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480
GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540
TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600
GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660
GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720
GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTT 780GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTT 780
CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840
AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900
TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960
ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020
ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080
ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 本発明の DNA配列は、 本発明の PG I 2 産生刺激因子をコ一ドするもので、 式 [3] または [4] で表される DNA配列の一部であっても良いし全部であつ てもよい。 また、 式 [3] または [4] で表される DNA配列を一部に含むもの であってもよい。 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 The DNA sequence of the present invention encodes the PG I 2 production stimulating factor of the present invention, and is a part of the DNA sequence represented by the formula [3] or [4]. Or all. Further, it may include a part of the DNA sequence represented by the formula [3] or [4].
本発明の DNA配列は、 RNAを铸型として合成しても良いし、 有機化学的に 合成してもよい。 また、 PCR法で増幅させて得てもよい。  The DNA sequence of the present invention may be synthesized using RNA as type III or may be synthesized organically. Moreover, you may obtain by amplifying by a PCR method.
一般に、 遺伝子組換え技術分野では、 遺伝暗号が縮重しているため、 その遺伝 子の DN A配列で規定される少なくとも一つの塩基を他の塩基に置換することが できる。 この場合、 遺伝子から産生される蛋白質のアミノ酸配列は変わらない。 従って、 本発明の DNA配列は、 また、 遺伝暗号の縮重に起因する一部塩基の変 化した塩基配列をも含んでいる。 この場合、 置換により得られた DNA配列のコ ードするアミノ酸配列は、 式 [1] または [2] で示すアミノ酸配列である。 本発明では、 式 [1] または [2] で表されるアミノ酸配列をコードする DN Aと相補的な DNA配列および式 [3] または [4] の DNA配列と相捕的な D In general, in the field of genetic recombination, since the genetic code is degenerate, at least one base defined by the DNA sequence of the gene can be replaced with another base. In this case, the amino acid sequence of the protein produced from the gene does not change. Therefore, the DNA sequence of the present invention also includes a partially modified base sequence due to the degeneracy of the genetic code. In this case, the amino acid sequence encoding the DNA sequence obtained by the substitution is the amino acid sequence represented by the formula [1] or [2]. In the present invention, a DNA sequence complementary to DNA encoding the amino acid sequence represented by the formula [1] or [2] and a DNA sequence complementary to the DNA sequence of the formula [3] or [4]
N A配列を提供することも可能であり、 この場合、 相補的な DNA配列は、 これ らの DNA配列全体と相補的なものであっても良いし、 一部と相補的なものであ. てもよい。 また、 相補的 DNA配列を一部に含むものであってもよい。 また、 本 発明の DN Aはそれと相補的な DN Aと結合して 2本鎖 DN Aを形成しても良い し、 互いに相補的な 1本鎖 DNA単独であってもよい。 It is also possible to provide an NA sequence, in which case the complementary DNA sequence It may be complementary to the entire DNA sequence or may be complementary to a part thereof. Further, it may include a complementary DNA sequence as a part. The DNA of the present invention may be combined with a DNA complementary thereto to form a double-stranded DNA, or may be single-stranded DNAs complementary to each other.
本発明は、 式 [3] または [4] で表される DNA配列より導かれるアミノ酸 配列、 式 [1] または [2] で示される新規な蛋白質を提供する。  The present invention provides an amino acid sequence derived from the DNA sequence represented by the formula [3] or [4], and a novel protein represented by the formula [1] or [2].
式 [1] Equation [1]
Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly
-25 -20 -15 -25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp
-10 -5 1 -10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro
5 10 15 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 80 85 90
Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala
95 100 105 95 100 105
Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin
110 115 120 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro
125 130 135 Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser125 130 135 Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser
140 145 150 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys
155 160 165 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro
170 175 180 170 175 180
Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu
185 190 195 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys
200 205 210 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly
215 220 225 215 220 225
Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His
230 235 240 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256 245 250 255 256
式 [ 2 ] Expression [2]
Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly
-25 -20 -15-25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser AspLeu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp
-10 -5 1-10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro ProThr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro
5 10 15 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 80 85 90
Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala
95 100 105 95 100 105
Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin 110 115 120  Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro 125 130 135  Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro 125 130 135
Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150  Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys 155 160 165  Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro
170 175 180 Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu170 175 180 Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu
185 190 195 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys
200 205 210 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly
215 220 225 215 220 225
Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His
230 235 240 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256 また、 本発明の蛋白質は、 式 [1] または [2] の一部であってもよいし、 全 部であってもよい。 また式 [1] または [2] で表されるアミノ酸配列を一部に 含むものであってもよい。 特に式 [1] または [2] で表されるアミノ酸配列か らシグナルペプチドを除いた成熟蛋白質を表す式 [5] または [6] で表される アミノ酸配列の一部を含むものであっても良いし、 全部を含むものであっても良 い。  245 250 255 256 The protein of the present invention may be a part of the formula [1] or [2], or may be the whole. It may also include a part of the amino acid sequence represented by the formula [1] or [2]. In particular, it may include a part of the amino acid sequence represented by the formula [5] or [6], which represents the mature protein obtained by removing the signal peptide from the amino acid sequence represented by the formula [1] or [2]. It is good, or it may be all.
式 [5]  Equation [5]
Ser Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro 1 5 10 15 Ser Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro 1 5 10 15
Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala
20 25 30 20 25 30
Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Glu Pro Cys
35 40 45 35 40 45
Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu
50 55 60 50 55 60
Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala
65 70 75 65 70 75
Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg 80 85 90Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg 80 85 90
Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys
95 100 105 95 100 105
Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys
110 115 120 110 115 120
Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser
125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin  125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin
140 145 150 140 145 150
Val Tyr Leu Ser Cys Glu Val He Gly He Pro Thr Pro Val Leu Val Tyr Leu Ser Cys Glu Val He Gly He Pro Thr Pro Val Leu
155 160 . 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr  155 160 .165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr
170 175 180 170 175 180
Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg
185 190 195 185 190 195
Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser
200 205 210 200 205 210
Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser
215 220 225 215 220 225
Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys He Thr Val Val Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys He Thr Val Val
230 235 240 230 235 240
Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu
245 250 255 245 250 255
Leu Leu
256 256
Phe Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys ProPhe Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro
1 5 10 15 Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala 20 25 301 5 10 15 Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala 20 25 30
Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Glu Pro Cys
35 40 45 35 40 45
Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu
50 55 60 50 55 60
Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala
65 70 75 65 70 75
Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg
80 85 90 80 85 90
Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys
95 100 105 95 100 105
Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys
110 115 120 110 115 120
Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser
125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin  125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin
140 145 150 140 145 150
Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu
155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr  155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr
170 175 180 170 175 180
Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg
185 190 195 185 190 195
Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser
200 205 210 200 205 210
Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser
215 220 225 215 220 225
Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val 230 235 240Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val 230 235 240
Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu
245 250 255 245 250 255
Leu Leu
256 本発明の蛋白質は、 PG I 2 産生刺激活性を有することで特徴づけられるが、 この活性の測定方法は、 以下の方法により実施できる。 256 The protein of the present invention is characterized by having a PG I 2 production stimulating activity, and the activity can be measured by the following method.
すなわち、 ゥシ胸部大動脈内膜より剥離法にて採取した血管内皮細胞を 10% ゥシ胎児血清含有ダルベッコ改変イーグル培地で継代培養し、 飽和細胞密度に達 するまで培養した後、 測定試料を添加し 60分間インキュベーション後、 上清中 の PG I 2 の安定代謝産物である、 In other words, vascular endothelial cells collected from the thoracic aorta intima by the detachment method were subcultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum, and cultured until they reached a saturated cell density. After adding and incubating for 60 minutes, it is a stable metabolite of PGI 2 in the supernatant.
6—ケト— PGF  6—Keto—PGF
(以下、 6—ケトー PGF 1 αと記す) を測定することにより PG I 2 産生量 を求めることができる。 この測定には市販の 6—ケトー PGF 1 α測定用キット を用いてもよい。 (Hereinafter referred to as 6-keto PGF 1α), the amount of PGI 2 produced can be determined. For this measurement, a commercially available 6-keto PGF1α measurement kit may be used.
一般的にポリペプチドは自然の変異により、 または人工的変異により、 その本 来の機能を変化させることなく、 アミノ酸配列またはポリべプチドの構造の一部 を変異せしめることが可能である。 従って、 本発明の PG I 2 産生刺激因子は、 前述のすべてのァミノ酸配列の相同変異体に相当する構造の配列を含有すること も可能である。 In general, polypeptides can mutate a portion of the amino acid sequence or the structure of the polypeptide by natural or artificial mutation without altering its intrinsic function. Thus, PG I 2 production stimulators of the present invention may also contain an array of structures corresponding to homologous mutants of all Amino acid sequence described above.
本発明の PG I 2 産生刺激因子をコードする配列表の配列番号 3の DNAを含 むプラスミ ド (pM953、 pM954) で形質転換された大腸菌 [DH5 (p M953) および DH5 (pM954) ] は、 それぞれ工業技術院生命工学工業 技術研究所に [寄託番号: FEEM P-13672 (寄託曰 平成 5年 6月 3日) ] 、 [寄 託番号: FERM P- 13673 (寄託日 平成 5年 6月 3曰) ] として寄託され、 平成 6 年 5月 3 1日にそれぞれ、 [FERM BP-4684]. [FEEM BP- 4685] として国際寄託に 移管されている。  Escherichia coli [DH5 (pM953) and DH5 (pM954)] transformed with a plasmid (pM953, pM954) containing the DNA of SEQ ID NO: 3 in the sequence listing encoding the PGI 2 production stimulating factor of the present invention are: [Deposit No .: FEEM P-13672 (Deposit: June 3, 1993)], [Deposit No .: FERM P-13673 (Deposit date: June 3, 1993) [FEM BP-4684] and [FEEM BP-4685], respectively, on May 31, 1994.
本発明の PG I 2 産生刺激因子を遺伝子工学的に得るには、 一般的に使用され ている宿主一べクタ一系を用いることができる。 例えば宿主として大腸菌を用い る場合は、 プロモーターとして L a c UV 5、 トリプトファンプロモータ一や; I P L プロモーター等を含有する発現ベクターが使用可能である。 また、 スファー ジ系のベクタ一である λ g t 11を用いて、 S—ガラク トシダーゼとの融合蛋白 質として得ることもできる。 さらに、 哺乳動物培養細胞を宿主として使用するこ ともでき、 サル由来 COS細胞、 チャイニーズハムスター由来 CHO細胞、 マウ ス由来 3 T 3細胞あるいはヒ ト由来線維芽細胞等が好適である。 これらを宿主と する場合には、 プロモーターとして、 S V40初期プロモーター、 アデノウィル ス主要後期プロモーターあるいは /5—ァクチンプロモーターやポリべプチド鎖伸 長因子プロモーター等を含有する発現ベクターが使用できる。 In order to obtain the PG I 2 production stimulating factor of the present invention by genetic engineering, it is generally used. A host-vector system can be used. For example, when Escherichia coli is used as a host, an expression vector containing Lac UV5, a tryptophan promoter, an IPL promoter, or the like can be used as a promoter. Alternatively, it can be obtained as a fusion protein with S-galactosidase using λ gt11 which is one of the sperm vectors. Furthermore, cultured mammalian cells can be used as a host, and monkey-derived COS cells, Chinese hamster-derived CHO cells, mouse-derived 3T3 cells, and human-derived fibroblasts are suitable. When these are used as hosts, expression vectors containing the SV40 early promoter, the adenovirus major late promoter, the / 5-actin promoter, the polypeptide chain growth factor promoter and the like can be used.
これらの宿主一ベクター系を用いた場合、 各々の宿主が好適に増殖し得る条件 下で培養し、 かつ、 各々のプロモーターが機能するような条件を与えることによつ て、 本発明の PG I 2 産生刺激因子を得ることができる。 PG I 2 産生刺激因子 の発現は、 後述の酵素免疫測定法 (E IA) にて発現を確認することができる。 上述のようにして得られた本発明の PG I 2 産生刺激因子を下記の方法により 精製することができる。 すなわち、 本発明の PG I 2 産生刺激因子を含む培養液 をァフィ二ティーク口マトグラフィー、 例えばへパリン (HEPARIN) -5 PWまたは PG I 2 産生刺激因子に対する抗体を結合させたカラム等に吸着させ、 塩化ナトリウムの直線濃度勾配法にて溶出することにより単離することが可能で ある。 When such a host-vector system is used, the PGPI of the present invention can be obtained by culturing each host under conditions that allow it to grow suitably, and by giving conditions that allow each promoter to function. 2 Production stimulating factor can be obtained. The expression of the PG I 2 production stimulating factor can be confirmed by the enzyme immunoassay (EIA) described below. The PGI 2 production stimulating factor of the present invention obtained as described above can be purified by the following method. That is, the culture solution containing the PG I 2 production stimulating factor of the present invention is adsorbed to affinity mouth chromatography, for example, to a column or the like to which an antibody against heparin (HEPARIN) -5PW or PG I 2 production stimulating factor is bound. It can be isolated by elution with a linear concentration gradient method of sodium chloride.
本発明の PG I 2 産生刺激因子を認識する抗体は、 適切な抗原で適切な動物を 免疫することにより作製することができる。 抗原としては、 式 [5] または [6] で示される蛋白質であってもよいし、 そのペプチド断片であってもよい。 また、 免疫に用いる動物は、 マウス、 ゥサギ、 ャギ、 ヒッジ、. ゥマ等が好ましく、 さら にマウスを用いると単クローン性抗体を得ることも可能である。 抗体の用途とし ては、 ァフィ二ティークロマトグラフィー、 c DNAライブラリーのスクリー二 ング、 免疫学的診断法等があげられる。 さらに、 免疫学的診断法においては、 ィ ムノブロッ ト法、 放射免疫測定法、 酵素免疫測定法、 蛍光あるいは発光測定法よ り適宜選択ができる。 本発明は、 さらに P G I 2 が血小板凝集抑制作用、 平滑筋弛緩作用、 胃酸分泌 抑制作用等を有することから、 下述の各種疾患の予防および治療に対して有効な、 本発明の P G I 2 産生刺激因子を少なくとも 1つの有効成分として含有する医薬 組成物を提供することができる。 Antibodies that recognize the PG I 2 production stimulating factor of the present invention can be prepared by immunizing a suitable animal with a suitable antigen. The antigen may be a protein represented by the formula [5] or [6] or a peptide fragment thereof. The animal used for immunization is preferably a mouse, a heron, a goat, a sheep, a poma, and the like. Furthermore, a mouse can be used to obtain a monoclonal antibody. Uses of the antibody include affinity chromatography, screening of cDNA libraries, immunological diagnostic methods, and the like. Further, in the immunological diagnosis method, an appropriate method can be selected from an immunoblot method, a radioimmunoassay method, an enzyme immunoassay method, and a fluorescence or luminescence measurement method. The present invention further provides a PGI 2 production stimulator of the present invention, which is effective for the prevention and treatment of the various diseases described below, since PGI 2 has a platelet aggregation inhibitory action, a smooth muscle relaxing action, a gastric acid secretion inhibitory action, and the like. It is possible to provide a pharmaceutical composition containing the factor as at least one active ingredient.
溶血性尿毒症症候群、 血栓性血小板減少性紫斑病、 末梢動脈閉塞、 心虚血、 脳 虚血、 動脈硬化、 脳閉塞、 高脂血症、 糖尿病、 心不全、 狭心症、 虚血性心疾患、 うつ血性心疾患、 脈絡膜循環障害、 気管支疾患、 胃潰瘍、 妊娠子癇。  Hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia, diabetes, heart failure, angina, ischemic heart disease, depression Hematologic heart disease, choroidal circulation disorder, bronchial disease, gastric ulcer, pregnancy eclampsia.
本発明の P G I 2 産生刺激因子の投与量は、 患者の性別、 年齢、 体重、 疾患の 種類やその病態あるいは投与剤型により適宜変動するが、 有効投与量は 1日当り 1 11 2〜2 111 8 2、 好ましくは1 0 11 8〜2 0 0 8 / 1^ 8でぁる。  The dosage of the PGI 2 production stimulating factor of the present invention varies depending on the sex, age, body weight, type of disease, disease state and dosage form of the patient, but the effective dosage is 111 2 to 2111 8 per day. 2, preferably in the range of 110 118 to 200 8/1 ^ 8.
本発明の医薬組成物の剤型は、 その疾患の病巣に有効量を供給でき.るものであ ればいかなるものでもよく、 例えば、 錠剤、 粉末剤、 散剤、 カプセル剤、 軟膏剤、 噴霧剤あるいは注射剤等が挙げられる。 また、 本発明の医薬組成物は、 その薬理 学的特性を損なわない限り、 一般的に使用される製剤学的混合物である賦型剤、 安定化剤あるいは溶解補助剤等を含有していてもよい。 賦型剤等の具体例として は、 リンガー液、 リン酸緩衝液、 ヒト血清アルブミン、 水解ゼラチン、 ショ糖、 デキストラン、 ポリエチレングリコール等があり、 剤型により、 適宜選択使用さ れる。  The dosage form of the pharmaceutical composition of the present invention may be any dosage form capable of supplying an effective amount to the lesion of the disease, such as tablets, powders, powders, capsules, ointments, and sprays. Alternatively, injections and the like can be mentioned. In addition, the pharmaceutical composition of the present invention may contain a commonly used pharmaceutical mixture such as a excipient, a stabilizing agent, or a solubilizing agent, as long as the pharmacological properties are not impaired. Good. Specific examples of the excipient include Ringer's solution, phosphate buffer, human serum albumin, hydrolyzed gelatin, sucrose, dextran, polyethylene glycol, and the like, which are appropriately selected and used depending on the dosage form.
以下に本発明を実施例をもってより具体的に示すが、 これは本発明の実施態 様の—つの例示であり、 本発明はこれに限定されるものではない。 なお、 実施例 中の学術用語、 略号等は特に断らない限り当該技術分野で一般的に使用されてい るものに従った。 また、 遺伝子操作に関わる基本的操作は、 マニアテイスら " モレキュラークローニング ァ ラボラトリーマニュアル" コールド スプリン グ ハーバー ラボラトリー 1 9 8 9年、 村松正實編 " ラボマニュアル遺伝 子工学" 丸善 1 9 8 8年等を参考にして実施した。 さらに、 蛋白質精製に関わ る基本的操作は、 曰本生化学会編 " 新生化学実験講座第 1巻 蛋白質 I 分離 精製 ·性質" 東京化学同人 1 9 9 0年を参考にして実施した。 各種機器、 試 薬等の使用方法は各々附属の使用説明書に従った。 (実施例 1) cDNAライブラリ一の作製 Hereinafter, the present invention will be described more specifically with reference to Examples, but these are only examples of the embodiments of the present invention, and the present invention is not limited thereto. Unless otherwise noted, the scientific terms, abbreviations, and the like in the examples were in accordance with those generally used in the technical field. For basic operations related to gene manipulation, refer to Mania Teis et al., "Molecular Cloning Laboratory Manual" Cold Spring Harbor Laboratory, 1989, Masanori Muramatsu, "Lab Manual Genetic Engineering" Maruzen 1988, etc. Was carried out. Furthermore, the basic operations related to protein purification were carried out with reference to “Biological Chemistry Experiment Course, Vol. 1, Protein I Separation, Purification, and Properties”, edited by the Biochemical Society of Japan, Tokyo Chemistry, 1990. The usage of various devices and reagents was in accordance with the attached instruction manual. (Example 1) Preparation of cDNA library
工程 1 正常ヒ ト二倍体線維芽細胞の調製 Step 1 Preparation of normal human diploid fibroblasts
正常ヒ トニ倍体線維芽細胞を 15%ゥシ胎児血清含有ダルベッコ改変イーグル 培地にて 4. 8 X 104 細胞 ZmLに調製した。 この細胞懸濁液 3 Lを回転培養 容器に植え込み、 5%炭酸ガス一 95%空気下、 37 °Cにて培養した。 細胞植え 込み 3曰後に培養液を新鮮な 15%ゥシ胎児血清含有ダルベッコ改変イーグル培 地 3 Lに交換し、 さらに培養を 2日間継続した。 次いで、 培養液を除去し、 Ca 2+、 Mg2+不含ダルベッコ一リン酸生理食塩溶液を用いて細胞を洗浄した後、 フエ ノールレッ ド不含のダルベッコ改変イーグル培地 3 Lを添加し、 37°C、 24時 間培養を継続した。 次いで、 培養液を除去し、 Ca2+、 Mg2+不含生理的リン酸 緩衝液 (PBS (—) ) を用いて細胞を洗浄し、 7本の回転培養容器から 8 X 1 09 個の細胞を得た。 Normal human tetraploid fibroblasts were prepared in 4.8 × 10 4 cells ZmL in Dulbecco's modified Eagle's medium containing 15% fetal serum. 3 L of this cell suspension was inoculated in a rotary culture vessel, and cultured at 37 ° C under 5% carbon dioxide and 95% air. After the cell implantation 3, the culture was replaced with 3 L of Dulbecco's modified Eagle's medium containing fresh 15% fetal calf serum, and the culture was continued for 2 days. Then, the medium was removed, Ca 2+, the cells were washed with Mg 2+ free Dulbecco's monophosphate saline solution was added Hue Norure' de-free Dulbecco's modified Eagle's medium 3 L, 37 The culture was continued for 24 hours at ° C. Then, the medium was removed, Ca 2+, Mg 2+ free physiological phosphate buffer (PBS (-)) washing the cells with, 8 X 1 0 9 pieces from seven rotating culture vessels Cells were obtained.
工程 2 全 RNAの調製 Step 2 Preparation of total RNA
正常ヒト二倍体線維芽細胞より、 コムシズンスキ (Chomczynski, P ) ら [アナ リティカル バイオケミストリ (Ana l. B i o chem. ) 162巻、 1 56頁、 1987年] の AGPC (Ac i d G u a n i d i n i u m Th i o cyana t e— Pheno l—Ch l o r o f o rm) 法に従い、 RNAを 調製した。 すなわち、 工程 1で得られた約 1 x 109 個の細胞に 6 OmLの 4M グァニジンチオシァネート溶液 (25mMクェン酸ナトリウム (pH7. 0)、 0. 5%ザルコシルおよび 0. 1M 2—メルカプトエタノール含有) を添加し、 強く振とうした。 さらに、 1 10容の 2M酢酸ナトリウム (pH4. 0)、 6 OmLの水飽和フヱノール、 1 5容のクロ口ホルム一イソアミルアルコール混 液 (49 : 1) を順時添加混合し、 さらに 10秒間強く振った後、 15分間氷中 に放置した。 4°Cで約 7000 xg、 20分間遠心後、 水層を新しいチューブに 移した。 得られた水層と等量の 100%イソプロパノールを添加し、 一 20°Cで 終夜放置した。 4 で約7000 、 30分間遠心後、 得られたペレッ トを約From normal human diploid fibroblasts, AGPC (Acid Guanidinium Thioio) from Chomczynski, P. et al. [Analytical Biochemistry (Anal. Biochem.) 162, 156, 1987] was used. RNA was prepared according to the cyanate-Phenol-Chloroform method. That is, about 1 × 10 9 cells obtained in step 1 were added to 6 OmL of a 4 M guanidine thiocynate solution (25 mM sodium citrate (pH 7.0), 0.5% sarkosyl and 0.1 M 2-mercapto (Containing ethanol) and shaken vigorously. In addition, add 110 volumes of 2M sodium acetate (pH 4.0), 6 OmL of water-saturated phenol, and 15 volumes of a mixture of formaldehyde and isoamyl alcohol (49: 1) in a sequential order, and mix vigorously for another 10 seconds. After shaking, it was left on ice for 15 minutes. After centrifugation at 7000 xg for 20 minutes at 4 ° C, the aqueous layer was transferred to a new tube. An equal amount of 100% isopropanol as the obtained aqueous layer was added, and the mixture was left overnight at 120 ° C. 4 After centrifugation at 7,000 for 30 minutes, pellet obtained
5 OmLの 4Mグァニジンチオシァネート溶液 (25mMクェン酸ナトリウム5 OmL of a 4M guanidine thiocyanate solution (25 mM sodium citrate
(pH7. 0)、 0. 5%ザルコシルおよび 0. 1M 2—メルカプトエタノー ル含有) で溶解し、 約 5 OmLのイソプロパノールを添加した。 一 20°Cで 1時 間放置後、 4°C、 約 7000x gで 30分間遠心した。 ペレツ トを約 30 m Lの 0. 5mM EDTAに溶解後、 常法に従って塩化ナトリウム存在下でエタノー ルを添加して R N Aを沈澱させ、 約 9 m gの全 R N Aを得た。 (pH 7.0), containing 0.5% sarkosyl and 0.1 M 2-mercaptoethanol), and about 5 OmL of isopropanol was added. 1 o'clock at 20 ° C After standing for a while, the mixture was centrifuged at 4 ° C and about 7,000 xg for 30 minutes. The pellet was dissolved in about 30 mL of 0.5 mM EDTA, and ethanol was added thereto in the presence of sodium chloride to precipitate RNA, thereby obtaining about 9 mg of total RNA.
工程 3 ポリ (A) + RNAの調製 Step 3 Preparation of poly (A) + RNA
オリゴ (dT) セルロースカラムを用い、 全 RNAよりポリ (A) + RNAを 分離した。 すなわち、 オリゴ (dT) セルロース樹脂 50 Omgを 20 OmMト リス一塩酸緩衝溶液 (pH 7. 5. 2 OmM E D T A、 400 mM塩化ナトリ ゥムおよび 0. 1%SDS含有) に懸濁し、 約 2mL容量のカラムを作製した。 工程 2で得られた全 RNAを 3. 5mLの 0. 5mM、 EDTAに溶解し、 65 °Cで 5分間熱処理した後、 急冷し、 等量の 40 OmMトリスー塩酸緩衝溶液 (p H7. 5、 4 OmM EDTA. 800 mM塩化ナトリウムおよび 0、 2%SD S含有) を加えた。 上述の 20 OmMトリス—塩酸緩衝溶液 (pH7. 5、 20 mM EDTA、 40 OmM塩化ナトリウムおよび 0. 1%SDS含有) で平衡 化したオリゴ (dT) セルロースカラムにこの溶液をアプライし、 RNAを吸着 させた。 1 OmLの 10 OmMトリス—塩酸緩衝溶液 (pH7. 5、 1 OmM EDTA. 20 OmM塩化ナトリウムおよび 0. 1 %S D S含有) でこのカラム を洗浄した。 次いで、 1 OmLの滅菌蒸留水でポリ (A) + RNAを溶出後、 常 法に従い塩化ナトリウム存在下でエタノールを加えポリ (A) + RNAを沈澱さ せた。 ポリ (A) + RNA (mRNA) 約 270 gを得た。 Poly (A) + RNA was separated from total RNA using an oligo (dT) cellulose column. Specifically, 50 Omg of oligo (dT) cellulose resin was suspended in 20 OmM tris-hydrochloric acid buffer solution (containing pH 7.5.2 OmM EDTA, 400 mM sodium chloride and 0.1% SDS), and the volume was about 2 mL. Was prepared. Dissolve the total RNA obtained in step 2 in 3.5 mL of 0.5 mM EDTA, heat treat it at 65 ° C for 5 minutes, quench, and equilibrate an equal volume of 40 OmM Tris-HCl buffer solution (pH 7.5, pH 7.5 4 OmM EDTA. 800 mM sodium chloride and 0, 2% SDS) were added. Apply this solution to an oligo (dT) cellulose column equilibrated with the above 20 OmM Tris-HCl buffer solution (pH 7.5, containing 20 mM EDTA, 40 OmM sodium chloride and 0.1% SDS), and adsorb RNA I let it. The column was washed with 1 OmL of 10 OmM Tris-HCl buffer solution (pH 7.5, 1 OmM EDTA. 20 OmM sodium chloride and 0.1% SDS). Next, poly (A) + RNA was eluted with 1 OmL of sterilized distilled water, and ethanol was added thereto in the presence of sodium chloride to precipitate poly (A) + RNA according to a conventional method. About 270 g of poly (A) + RNA (mRNA) was obtained.
工程 4 2本鎖 cDNAの合成 Step 4 Synthesis of double-stranded cDNA
グブラーとホフマンの方法 [ジーン (Ge n e) 、 25巻、 263頁、 198 3年] を改良したシステムに基づいて構成されている cDNA合成システムキッ ト (アマシャム社製) を用いて 2本鎖 cDNAを合成した。  Double-stranded cDNA using a cDNA synthesis system kit (Amersham) constructed based on an improved version of the method of Gubler and Hoffman [Gene, 25, 263, 1983]. Was synthesized.
この c DN A合成システムキッ トに添付の 5 X 1本鎖 c DNA合成反応用バッ ファー、 ピロリン酸ナトリウム溶液、 ヒト胎盤リボヌクレア一ゼインヒビター、 デォキシヌクレオシド三リン酸混液、 925KB Qの [ 32 P] dCTP溶液、 オリゴ (dT) プライマーを順々に混合した。 この溶液に、 工程 3で得られた 1 O ^gのポリ (A) + RN A溶液を加えて静かに混和後、 200Uの逆転写酵素 を添加した。 反応溶液は 100 Lとした。 静かに混和後、 42 °Cで 40分間ィ ンキュペートした。 A buffer for 5X single-stranded cDNA synthesis reaction attached to the cDNA synthesis system kit, sodium pyrophosphate solution, human placental ribonuclease inhibitor, mixed solution of deoxynucleoside triphosphate, 925KB Q [ 32 P] dCTP solution and oligo (dT) primer were mixed in order. To this solution, the 1 O ^ g poly (A) + RNA solution obtained in step 3 was added and gently mixed, and then 200 U of reverse transcriptase was added. The reaction solution was 100 L. Mix gently and stir at 42 ° C for 40 minutes. It was cupped.
上述の c D N A合成システムキッ トに添付の 2本鎖 c D N A合成反応用バッファ 一、 8 Uの大腸菌リボヌクレア一ゼ11、 230Uの大腸菌 DNAポリメラ一ゼ I、 3. 7MBqの [ 32 P] d C T P溶液を順々に添加し、 滅菌水で総量 500 / Lに調製し静かに混和した。 このチューブを 12°Cで 60分間、 次いで 22°Cで 60分間反応させた後、 さらに 70°Cで 10分間ィンキュベートした。 Buffer for double-stranded cDNA synthesis reaction attached to the above-mentioned cDNA synthesis system kit, 8 U E. coli ribonuclease 11, 230 U E. coli DNA polymerase I, 3.7 MBq [ 32 P] d CTP The solutions were added sequentially, adjusted to a total volume of 500 / L with sterile water, and gently mixed. The tube was reacted at 12 ° C for 60 minutes and then at 22 ° C for 60 minutes, and then incubated at 70 ° C for 10 minutes.
反応液を氷浴中に戻して 20Uの T4DNAポリメラーゼを添加し静かに混和 後、 37°Cで 10分間反応させた。 反応液に 20 /Lの 0. 25M EDTA (pH8. 0) を加えて反応を停止させ、 常法に従ってフユノール クロロホル ム抽出後、 酢酸アンモニゥム存在下で cDNAをエタノール沈澱させ、 この結果 2. の 2本鎖 cDNAを得た。  The reaction solution was returned to an ice bath, 20 U of T4 DNA polymerase was added, and the mixture was gently mixed, followed by reaction at 37 ° C for 10 minutes. The reaction was quenched by adding 20 / L 0.25M EDTA (pH 8.0) to the reaction solution, extracted with funor chloroform, and precipitated with ethanol in the presence of ammonium acetate. A single-stranded cDNA was obtained.
工程 5 Bs tXIリンカ一の付加 Process 5 Addition of Bs tXI linker
インヴィ トロジヱン社製 Bs tXIリンカ一を 2本鎖 c DNAに付加した。 方 法は DNAライゲーシヨンキッ ト (宝酒造社製) を用い、 添付マニュアルに従つ て実施した。  BstXI linker manufactured by Invitrodin was added to the double-stranded cDNA. The method was carried out using a DNA ligation kit (Takara Shuzo) according to the attached manual.
すなわち、 工程 4で合成した 2本鎖 cDNA約 500 n gに約 500 n gの B s t X Iリンカ一を加えた溶液 15 L (lOOmMトリス—塩酸緩衝溶液 (p H7. 6)、 5mM塩化マグネシウム、 300 mM塩化ナトリウム含有) を用意 した。 次に、 15 Lの酵素溶液 (DNAライゲーシヨンキッ ト B液、 以後、 B 液と称する) を加えよく混合し、 10°Cで 3時間反応させた。 70°Cで 10分間 熱処理し、 酢酸アンモニゥム存在下でエタノール沈澱させた。 次に、 低融点ァガ ロースゲルで電気泳動を実施し、 500 bp以上の画分を集め、 65°Cで熱処理 することによりゲルを溶解後、 フエノール Zクロ口ホルム抽出後塩化ナトリウム 存在下でエタノール沈澱させた。 最終的に約 100 n gのリンカー付加 c DNA を回収した。  That is, 15 L of a solution obtained by adding about 500 ng of BstXI linker to about 500 ng of the double-stranded cDNA synthesized in Step 4 (100 mM Tris-HCl buffer (pH 7.6), 5 mM magnesium chloride, 300 mM (Containing sodium chloride). Next, 15 L of an enzyme solution (DNA Ligation Kit Solution B, hereinafter referred to as Solution B) was added, mixed well, and reacted at 10 ° C for 3 hours. Heat treatment was performed at 70 ° C for 10 minutes, and ethanol precipitation was performed in the presence of ammonium acetate. Next, electrophoresis was performed on a low-melting-point agarose gel, fractions of 500 bp or more were collected, heat-treated at 65 ° C to dissolve the gel, and then extracted with phenol Z-cloth form.After that, ethanol was added in the presence of sodium chloride. Settled. Finally, about 100 ng of linker-added cDNA was recovered.
工程 6 cDNAのべクタ一^ ^の導入 Step 6 Introduction of cDNA vector ^ ^
cDNAは、 DN Aライゲーシヨンキッ ト (宝酒造社製) を用いてプラスミ ド ベクタ一^導入した。  The cDNA was introduced into a plasmid vector using a DNA ligation kit (Takara Shuzo).
すなわち、 プラスミ ド p E F— BOS [ヌクレイック アシッ ド リサーチ (Nu c l. Ac i d s Re s. )、 18巻、 5322頁、 1990年] を 制限酵素 B s t X Iで消化し、 ラージフラグメントを回収した。 この様にして調 製した 100 n gのベクターと工程 5で得られたリンカ一付加 2本鎖 c DN A約 20 n gを含む DNA溶液 4. 5〃 Lに 36 z Lの反応用バッファー (DNAラ ィゲーシヨンキッ ト A液) を加えよく混合した。 次いで、 4. 5〃Lの酵素溶液 (B液) を加えよく混合し、 16°Cで一晩反応させた。 酢酸アンモニゥム存在下 でプラスミ ドをエタノール沈澱させ、 20 zLの TE溶液に溶解した。 That is, Plasmid p EF—BOS [Nucleic Acid Research (Nucl. Acids Res.), 18, 5322, 1990], and the large fragment was recovered by digestion with the restriction enzyme BstXI. A DNA solution containing 100 ng of the vector prepared in this manner and about 20 ng of the linker-added double-stranded cDNA obtained in step 5 was added to 4.5 μL of a 36 zL reaction buffer (DNA buffer). (A solution kit A) was added and mixed well. Next, 4.5 μL of the enzyme solution (solution B) was added, mixed well, and allowed to react at 16 ° C. overnight. The plasmid was precipitated with ethanol in the presence of ammonium acetate and dissolved in 20 zL of TE solution.
工程 7 cDN Aライブラリーの作製 Step 7 Preparation of cDNA library
DNAは、 エレク トロポレーシヨン法を用いて大腸菌へ導入した。 エレク ト口 ポレーシヨン法は、 ドヮ一ら [ヌクレイック アシッ ド リサーチ (Nu c l. Ac i d s Re s. ) 、 l 6巻、 6127頁、 1988年] の方法に従って実hしフ 0 DNA was introduced into E. coli using the electroporation method. Elect opening Poreshiyon method, de Wa one et al. [Nucleic Ashi' de research (Nu c l. Ac ids Re s.), L 6 , pp. 6127, 1988] off the real h according to the method of 0
大腸菌 MC 1061ZP 3をシングルコロニーから 1 OmLの L一ブロスに植 菌し、 終夜培養した。 1 OmLの終夜培養液を 1 Lの L—ブロスに植菌し、 OD βοοηπ, =約 0. 5になるまで 37°Cで培養した。 培養液を氷冷した後、 約 700 0 X gにて 4 °C15分間遠心し集菌した。 上清をデカンテーシヨンにて除去した 後、 1 Lの氷冷滅菌水に再懸濁した。 約 7000 X gにて 4°C15分間遠心した 後、 上清を除去し、 さらに 50 OmLの氷冷滅菌水に懸濁し、 約 7000 xgに て 4°C15分間遠心後上清を除去した。 2 OmLの氷冷 10%グリセロールに再 懸濁し、 約 3500xgにて 4°C15分間遠心後上清を除去した。 2mLの氷冷 10%グリセロールに細胞を再懸濁し 40〜50 ずつ 1. 5mLチューブに 分注した。 大腸菌を含む 10%グリセロール溶液をドライアイス入りエタノール で急冷凍結し、 一 70 °C前後で凍結保存した。  E. coli MC1061ZP3 was inoculated from a single colony into 1 OmL of L-broth and cultured overnight. One OmL of the overnight culture was inoculated into 1 L of L-broth and cultured at 37 ° C until OD βοοηπ, = about 0.5. After the culture solution was ice-cooled, the cells were collected by centrifugation at about 7000 X g for 15 minutes at 4 ° C. After removing the supernatant by decantation, the suspension was resuspended in 1 L of ice-cold sterilized water. After centrifugation at about 7000 X g at 4 ° C for 15 minutes, the supernatant was removed, and the cells were suspended in 50 OmL of ice-cold sterilized water, centrifuged at about 7000 xg for 15 minutes at 4 ° C, and the supernatant was removed. The suspension was resuspended in 2 OmL of ice-cold 10% glycerol, centrifuged at about 3500 xg for 15 minutes at 4 ° C, and the supernatant was removed. The cells were resuspended in 2 mL of ice-cold 10% glycerol and dispensed in 40 to 50 portions into 1.5 mL tubes. A 10% glycerol solution containing Escherichia coli was rapidly frozen and frozen in ethanol containing dry ice, and stored frozen at about 170 ° C.
上記の凍結保存チューブ 12本中の溶液を氷上で融解後、 チューブ 1本当たり、 工程 6で作製した DNA溶液 1 を添加した。 DNA—大腸菌混合液をキュべッ ト (電極間距離 0. 1 cm、 B i o— Ra d社製) に移した後、 エレク トロポレ ーションの条件 (ジーンパルサ一、 B i 0— R a d社製、 キャパシタンス: 25 The solution in the 12 cryopreservation tubes was thawed on ice, and the DNA solution 1 prepared in step 6 was added per tube. After transferring the DNA-E. Coli mixture to a cuvette (distance between electrodes: 0.1 cm, manufactured by Bio-Rad), the conditions of electroporation (Gene Pulser, Bi0-Rad, Capacitance: 25
、 電圧: 1. 8kV、 パルスコントローラー: 200Ω) を設定し、 パルス を 1回かけ、 lmLの SOC培地をキュベッ ト内に加え大腸菌を懸濁した。 懸濁 液を培養チューブに移し 1時間培養後、 50〃 gZmLのアンピシリ ン含有 LB プレートに適量まき、 37°Cで 1晚培養した。 上記操作により形質転換体約 60 万クローンを得た。 , Voltage: 1.8 kV, pulse controller: 200Ω), a pulse was applied once, and 1 mL of SOC medium was added to the cuvette to suspend E. coli. Suspension The solution was transferred to a culture tube and cultured for 1 hour. Then, an appropriate amount was spread on an LB plate containing 50 μg ZmL of ampicillin, and cultured at 37 ° C. for 1 hour. By the above operation, about 600,000 clones of the transformant were obtained.
(実施例 2) PG I 2 産生刺激因子をコードする cDNAの取得 (Example 2) Acquisition of cDNA encoding PG I 2 production stimulating factor
工程 1 プライマーの作製 Step 1 Preparation of primer
参考例 2で決定した部分ァミノ酸配列のうち式 [ 7 ] (配列表の配列番号 8 ) で示される 20アミノ酸配列の N端および C端のアミノ酸配列をコードする DN A配列を、 394DNAZRNA合成機 (アプライドバイオシステムズ社製) を 用いてホスホアミダイド法にて合成した。 すなわち、 N端の一部分のアミノ酸を コードする DNAとして下記式 [8] (配列表の配列番号 9) で示される 20塩 基からなる DNAの混合物を、 また C端の一部分のァミノ酸をコードする DNA の相補鎖配列として下記式 [9] (配列表の配列番号 10) で示される 20塩基 からなる D N Aの混合物を作製した。  Among the partial amino acid sequences determined in Reference Example 2, the DNA sequence encoding the N-terminal and C-terminal amino acid sequences of the 20 amino acid sequence represented by Formula [7] (SEQ ID NO: 8 in the sequence listing) was converted to a 394 DNAZRNA synthesizer. (Applied Biosystems) using the phosphoramidite method. That is, a DNA mixture consisting of 20 bases represented by the following formula [8] (SEQ ID NO: 9 in the sequence listing) as a DNA encoding a part of the N-terminal amino acid, and a DNA encoding a part of the amino acid at the C-terminal As a complementary strand sequence of DNA, a mixture of 20 bases of DNA represented by the following formula [9] (SEQ ID NO: 10 in the sequence listing) was prepared.
式 [ 7 ] lie Thr Val Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly  Formula [7] lie Thr Val Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly
1 5 10 15 1 5 10 15
Glu Gly Ala Glu Leu Glu Gly Ala Glu Leu
20  20
式 [ 8 ] 5' -ATA ACA GTA GTA GAC GCA CT-3'  Formula [8] 5'-ATA ACA GTA GTA GAC GCA CT-3 '
C G G G T G T T C C C C T T T T  C G G G T G T T C C C C T T T T
式 [ 9 ] 5, -AA CTC AGC ACC CTC ACC CTT-3'  Formula [9] 5, -AA CTC AGC ACC CTC ACC CTT-3 '
G T G G T G T C C C T T T 上記 DNA混合物をプライマーとして実施例 1の工程 3で調製したポリ(A) + RNAを铸型に RT— P CR法を実施した。 すなわち、 S up e r S c r i p t™ P r e amp l i f i c a t i o nGTGGTGTCCCTTT Using the above DNA mixture as a primer, the poly (A) + RNA prepared in step 3 of Example 1 was subjected to an RT-PCR method using the 铸 -form. That is, Super S cript ™ Preamp lification
S y s t em (ライフテックオリエンタル社製) を用い、 添付マニュアルに従つ て、 1本鎖 cDNAを合成した。 ポリ (A) + RNA 3 gにオリゴ (dT)、 10X合成バッファー、 dNTP混合液、 DTT、 6000Uの逆転写酵素を加 え、 全量を 600 Lとし、 42°Cで 2時間、 次いで 90°Cで 5分間インキュべ ―トした。 氷上で急冷し、 60U (30 L) の RNa s eHを添加し、 37°C で 20分間ィンキュペートした。 Single-stranded cDNA was synthesized using System (manufactured by Lifetech Oriental) according to the attached manual. Add oligo (dT), 10X synthesis buffer, dNTP mixture, DTT, and 6000 U reverse transcriptase to 3 g of poly (A) + RNA to make a total volume of 600 L, 42 ° C for 2 hours, then 90 ° C For 5 minutes. After quenching on ice, 60 U (30 L) of RNaseH was added, and the mixture was incubated at 37 ° C for 20 minutes.
20 Lの反応終了液に 1〃 gのセンスプライマー、 1 gのアンチセンスプ ライマ一、 8〃Lの 1 OxPCRバッファー (1 O OmMトリス—塩酸緩衝溶液 (pH8. 3) 、 5 O OmM塩化カリウム、 15mM塩化マグネシウム、 0. 0 1% (WZV) ゼラチン) 、 2. 5Uの Amp l i Ta q DNA.ポリメラー ゼを添加し、 全量を 100 とした。 DNA Th e rma l Cy c l e r TM (パーキン エルマ一 シータス インスツルメント社製 (P e r k i η E l me r C e t u s I n s t r ume n t s) ) にセッ トし、 94でで 1分、 55°Cで 2分および 72°Cで 3分の反応を 30回繰り返した。 次に反応産物を 1 0%ポリアクリルアミ ドゲルで電気泳動し、 59 b p付近にバンドが出現するこ とを確認した。 次いで得られた 59 b p付近の増幅産物 DNA断片を常法に従い 抽出し、 T4DNAポリメラーゼを用いて常法に従い末端を平滑化し、 プラスミ ド PUC 118の Sma lサイ トにクローニングした。 DN A断片の塩基配列は 後述のシークェンシング法に従い決定した。 その配列を下記式 [10] (配列表 の配列番号 11 ) に示す。 Add 1 Lg sense primer, 1 g antisense primer, 8 〃L 1 OxPCR buffer (1 O OmM Tris-HCl buffer (pH 8.3), 5 O OmM potassium chloride, 15 mM magnesium chloride, 0.01% (WZV) gelatin) and 2.5 U of Ampli Taq DNA. Polymerase were added to make the total amount 100. DNA Th e rma l Cy cler TM is set to (Perkin Elmer one Cetus Instruments Inc. (P er ki η E l me r C etus I nstr ume nts)), 1 minute at 94, at 55 ° C The reaction for 2 minutes and 3 minutes at 72 ° C was repeated 30 times. Next, the reaction product was electrophoresed on a 10% polyacrylamide gel, and it was confirmed that a band appeared at around 59 bp. Next, the obtained amplification product DNA fragment of about 59 bp was extracted according to a conventional method, the ends were blunted using a conventional method using T4 DNA polymerase, and cloned into a small site of plasmid PUC118. The nucleotide sequence of the DNA fragment was determined according to the sequencing method described later. The sequence is shown by the following formula [10] (SEQ ID NO: 11 in the sequence listing).
式 [ 10 ] 5' -ATTACGGTGG TTGATGCGTT ACATGAAATA CCAGTGAAAA  Formula [10] 5'-ATTACGGTGG TTGATGCGTT ACATGAAATA CCAGTGAAAA
10 20 30 40  10 20 30 40
AAGGCGAAGG CGCCGAATT-3'  AAGGCGAAGG CGCCGAATT-3 '
50 59 式 [10] で示された塩基配列のうち 11〜30までの塩基配列をもつ 20塩 基の DNA断片 (式 [11] (配列表の配列番号 12) と 31〜50までの塩基 配列に相補的な 20塩基の DNA断片 (式 [12] (配列表の配列番号 13) を 上述の方法と同様の方法で合成し、 以下 P C R法によるスクリーニング用プライ マーとして使用した。 50 59 A 20-base DNA fragment having a base sequence from 11 to 30 of the base sequence shown in Formula [10] (Formula [11] (SEQ ID NO: 12 in the sequence listing) and a base sequence from 31 to 50) A DNA fragment of 20 bases that is complementary to It was synthesized in the same manner as described above, and was used as a primer for screening by the PCR method.
式 [ 11 ] 5' -TTGATGCGTTACATGAAATA-3'  Formula [11] 5 '-TTGATGCGTTACATGAAATA-3'
式 [ 12 ] 5, -CCTTCGCCTTTTTTCACTGG-3' 工程 2 P C R法による正常ヒト二倍体線維芽細胞の cDNAライブラリーのス クリ一二ング  Formula [12] 5, -CCTTCGCCTTTTTTCACTGG-3 'Step 2 Screening of cDNA library of normal human diploid fibroblasts by PCR method
実施例 1で得られた形質転換体を 1プールあたり約 14000クローンを含む ように分割し、 これを 46プール作製し、 各々をアンピシリン 50〃gZmL含 有 LB培地 3mLに植菌し、 37°Cで終夜振とう培養した。 プラスミ ド DNAの 抽出はモレキュラークローニング ァ ラボラトリーマニュアル (コールド ス プリング ハーバー ラボラトリー 1989年) の方法に従って実施した。 す なわち、 1. 5mLの培養液を微量高速遠心機にて 5000 r pmで 3分間遠心 し上清を除去した後、 沈澱を 100〃Lの懸濁溶液 (5 OmMグルコース、 10 mM EDTA、 25 mMトリスー塩酸緩衝溶液 (pH8. 0)含有) に懸濁し、 室温で 5分間放置した。 氷中で 200 zLアルカリ溶液 (0. 2N 水酸化ナト リウムおよび 1%SDS含有) を加え、 穏やかに混合し、 氷中に 5分間放置した c 次に、 150 Lの氷冷酢酸カリウム溶液を加え、 良く混合し、 氷中に 5分間放 置した。 微量高速遠心機にて 4 °C、 12000 r pmで 5分間遠心後、 上清を他 のチューブに移し、 400〃Lフヱノールークロロホルム溶液を加え、 良く撹拌 した後、 微量高速遠心機にて 12000 r pmで 5分間遠心した。 水層に 2容量 (約 800 /L) のエタノールを加え、 混合した後、 室温で 2分間放置した。 1 2000 r pmで 5分間遠心後、 上清を完全に除去し、 沈澱を 70%エタノール で洗浄後、 乾燥させ、 20 zg/mL RNa s eAを含む 50/ Lの TE溶液 に溶解した。 得られたプラスミ ド DNA溶液 2. 5〃 を制限酵素 & Iで 3 7°C、 1時間処理し、 切断した。  The transformant obtained in Example 1 was divided so as to contain about 14,000 clones per pool, and 46 pools were prepared.Each of them was inoculated into 3 mL of LB medium containing 50 μg ZmL of ampicillin, and inoculated at 37 ° C. With shaking overnight. Plasmid DNA was extracted according to the method described in Molecular Cloning Laboratory Manual (Cold Spring Harbor Laboratory 1989). That is, 1.5 mL of the culture solution was centrifuged at 5000 rpm for 3 minutes in a micro high-speed centrifuge to remove the supernatant, and the precipitate was concentrated in 100 L of a suspension solution (5 OmM glucose, 10 mM EDTA, The cells were suspended in a 25 mM Tris-HCl buffer solution (pH 8.0) and left at room temperature for 5 minutes. Add 200 zL alkaline solution (containing 0.2N sodium hydroxide and 1% SDS) in ice, mix gently, and leave on ice for 5 minutes. Then add 150 L of ice-cold potassium acetate solution. Mix well and leave on ice for 5 minutes. After centrifugation at 12000 rpm for 5 minutes at 4 ° C in a micro high-speed centrifuge, transfer the supernatant to another tube, add 400 μL phenol-chloroform solution, mix well, and transfer to a micro high-speed centrifuge. And centrifuged at 12000 rpm for 5 minutes. Two volumes (about 800 / L) of ethanol were added to the aqueous layer, mixed, and allowed to stand at room temperature for 2 minutes. After centrifugation at 12000 rpm for 5 minutes, the supernatant was completely removed, and the precipitate was washed with 70% ethanol, dried, and dissolved in a 50 / L TE solution containing 20 zg / mL RNaseA. 2.5 〃 of the obtained plasmid DNA solution was treated with the restriction enzyme & I at 37 ° C for 1 hour and cut.
次いで Gene Amp PCR Re a en t Ki t (パーキン エル マ一 シータス インスツルメント社製 (P e r k i n E lme r C e t u s I n s t rumen t s) ) を用いて、 上記 D N A溶液を含む反応溶液 20 / L (1 OmMトリス—塩酸緩衝溶液 (pH8. 3)、 50mM塩化カリウム、 1. 5mM塩化マグネシウム、 各 200〃M dNTP、 l OngZmLセンス プライマー、 10 n gZmLアンチセンスプライマーおよび 0. 025U/ /L の Amp l i TaQ DNA ポリメラーゼ) を調製し、 G e n e Amp™ P CRシステム 9600 (パーキン エルマ一 シータス インスツルメント社 製 (Pe rk i n E lme r Ce t u s I n s t rumen t s) ) にセッ 卜し、 94°Cで 30秒、 55°Cで 30秒および 72°Cで 1分の反応を 25回繰り 返した。 次に反応産物を 10 %ポリアクリルアミ ドゲルで電気泳動し、 40 b p 付近にバンドが検出されたものを陽性と判断した。 1つの陽性プールのプラスミ ド DNAで大腸菌 DH5を形質転換し、 得られた形質転換体を 1プールあたり約 1800クローンを含むように分割し、 これを 15プール作製し、 前述の方法と 同様に DN Aを調製し、 P CR法により 40 b p付近にバンドが検出されるもの を陽性と判断した。 以下本操作を繰り返し、 計 6回のスクリーニングで 2つの陽 性クローンを同定した。 Next, the reaction solution containing the above DNA solution was prepared using Gene Amp PCR Reent Kit (manufactured by Perkin Elmer Cetus Instruments, Inc.). / L (1 OmM Tris-HCl buffer solution (pH 8.3), 50 mM potassium chloride, 1.5 mM magnesium chloride, 200〃M dNTP each, l OngZmL sense primer, 10 ngZmL antisense primer and 0.025 U / / L The sample was prepared in a Gene Amp ™ PCR System 9600 (Perkin Elmer Cetus Instruments, Inc.), and then set in Gene Gene ™ PCR System 9600 (Perkin Elmer Cetus Instruments, Inc.). The reaction was repeated 25 times for 30 seconds at 55 ° C, 30 seconds at 55 ° C and 1 minute at 72 ° C. Next, the reaction product was electrophoresed on a 10% polyacrylamide gel, and a band around 40 bp was detected as positive. Escherichia coli DH5 was transformed with the plasmid DNA of one positive pool, and the obtained transformants were divided so as to contain about 1800 clones per pool, and 15 pools were prepared. A was prepared, and a band in which a band was detected around 40 bp by the PCR method was determined to be positive. Thereafter, this operation was repeated, and two positive clones were identified by a total of six screenings.
(実施例 3) 塩基配列の決定 (Example 3) Determination of base sequence
塩基配列の決定は、 ラボマニュアル遺伝子工学 (村松正實編、 丸善 1988 年) に記載された方法に従って実施した。 すなわち、 実施例 2で得られた陽性ク ローンのプラスミ ド DNAを制限酵素 Xb a Iで消化し、 切り出された DNA断 片を制限酵素 Xb a Iで消化した pUC 119と混合し、 前述のライゲーシヨン キッ トを用いてライゲーシヨンした。 この操作により得られたプラスミ ドを pM 950と pM951と命名した。 大腸菌 J Ml 09を pM950および pM95 1で形質転換した後、 常法に従い 1本鎖 DNAを調製した。 DNAシーケンサー (373A、 アプライ ドバイオシステムズ社製) を用い、 添付マニュアルに従つ て調製された 1本鎖 DN A各々の塩基配列を決定した。  The nucleotide sequence was determined according to the method described in Lab Manual Genetic Engineering (Masami Muramatsu, edited by Maruzen 1988). That is, the plasmid DNA of the positive clone obtained in Example 2 was digested with the restriction enzyme XbaI, and the excised DNA fragment was mixed with pUC119 digested with the restriction enzyme XbaI, and the ligation was performed as described above. Ligation was performed using a kit. Plasmids obtained by this operation were named pM950 and pM951. After transforming Escherichia coli JMl09 with pM950 and pM951, single-stranded DNA was prepared according to a conventional method. Using a DNA sequencer (373A, manufactured by Applied Biosystems), the nucleotide sequence of each single-stranded DNA prepared in accordance with the attached manual was determined.
その結果、 プラスミ ド PM950と PM951にそれぞれ含まれる本発明の P G I 2 産生刺激因子をコードする塩基配列を配列表の配列番号 7と 14とに示し た。 またその DNA配列より演繹されるアミノ酸配列を配列表の配列番号 15ま たは 16に示した。  As a result, the nucleotide sequences encoding the PGI 2 production stimulating factor of the present invention contained in plasmids PM950 and PM951, respectively, are shown in SEQ ID NOs: 7 and 14 in the sequence listing. The amino acid sequence deduced from the DNA sequence is shown in SEQ ID NO: 15 or 16 in the sequence listing.
(実施例 4) スファージ cDNAライブラリーの作製 (Example 4) Preparation of sphage cDNA library
スファージ cDNAライブラリーの作製は、 c DNAクローニングシステム; I g t 10 (アマシャム社製) を用い、 添付マニュアルに従って実施した。  The sphage cDNA library was prepared using a cDNA cloning system; Igt10 (manufactured by Amersham) according to the attached manual.
工程 1 Ec oRI— BamHI— Kpn l— Nc o Iアダプターの付加 Step 1 Add EcoRI—BamHI—Kpnl—NcoI Adapter
実施例 1の工程 4と同様な方法でオリゴ (dT) プライマーのかわりにランダ ムプライマ一を用いて 2本鎖 c DN Aを得た。 ここで合成した 2本鎖 c DNA 1. A double-stranded cDNA was obtained in the same manner as in Step 4 of Example 1 using a random primer instead of the oligo (dT) primer. Double-stranded cDNA synthesized here 1.
2 gを 27 Lの滅菌純水に溶かし、 の L/K緩衝液、 5 Lの Ec oDissolve 2 g in 27 L of sterile pure water, add L / K buffer, 5 L Eco
RI— BamHI— Kpn l— Nco lアダプタ一および 4 Lの T 4 D N Aリ ガーゼを添加した。 静かに混和し、 15 °Cでー晚反応させ、 EcoRI— BamRI—BamHI—Kpnl—Ncol adapter and 4 L of T4DNA ligase were added. Mix gently and allow to react at 15 ° C. EcoRI—Bam
HI— Kpn l—Nc o lアダプターを合成した 2本鎖 c DNAに付加した。 反 応後、 N I P517カラムでゲル濾過を行い、 500 bp以上の画分を集めた。 次に、 350〃Lの cDNA、 40 Lの LZK緩衝液および 10 α Lの T 4ポ リヌクレオチドキナーゼをこの画分に添加し、 37°Cで 2時間反応させた。 エタ ノールで E c oRI-BamHI -K n l -Nc o Iアダプターの付加された c DNAを沈澱させ、 最終的に約 150 n gのリン酸化アダプター付加 c D N A を得た。 An HI-Kpnl-Ncol adapter was added to the synthesized double-stranded cDNA. After the reaction, gel filtration was performed using an NI P517 column, and fractions of 500 bp or more were collected. Next, 350 μL of cDNA, 40 L of LZK buffer and 10 αL of T4 polynucleotide kinase were added to this fraction, and reacted at 37 ° C. for 2 hours. EcoRI-BamHI-Knl-NcoI adapter added with ethanol The cDNA was precipitated, and finally about 150 ng of phosphorylated adapter-added cDNA was obtained.
工程 2 cDNAのべクタ一^ ^の導入 Step 2 Introduction of cDNA vector ^ ^
cDNAクローニングシステム; I g t 10 (アマシャム社製) に添付の E c 0 RI消化した λ ΐ 10の l〃gに、 2本鎖 cDNA20 n gを加え、 1〃Lの LZK緩衝液、 1〃Lの純水および 1 /Lの T4DNAリガーゼを添加後、 静か に混和した。 反応溶液総量は 10 Lとし、 15°Cで一晚反応させた。 これを 2 反応実施した。  cDNA cloning system; 20 ng of double-stranded cDNA was added to 1 〃g of λΐ10 digested with Ec0RI attached to Igt10 (manufactured by Amersham), and 1 〃L of LZK buffer and 1 〃L of After adding pure water and 1 / L T4 DNA ligase, the mixture was gently mixed. The total amount of the reaction solution was 10 L, and the mixture was allowed to react at 15 ° C. This was carried out for two reactions.
工程 3 i n v i t r o パッケージング Process 3 inv i tr o packaging
工程 2で得られた組換えファージ DNAをインビトロパッケージングキッ ト (ストラタジーン社製) を用いて、 添付マニュアルに従いパッケージ.ングした。 すなわち、 工程 2で調製した組換えファージ DN A溶液各 5〃 Lを、 25 の パッケージングエキストラク トに加え、 22°C、 2時間インキュベートし、 ファ 一ジ粒子混合液を得た。  The recombinant phage DNA obtained in step 2 was packaged using an in vitro packaging kit (Stratagene) according to the attached manual. That is, 5 L each of the recombinant phage DNA solution prepared in Step 2 was added to 25 packaging extracts, and incubated at 22 ° C for 2 hours to obtain a phage particle mixed solution.
工程 4 cDNAライブラリーの作製 Step 4 Preparation of cDNA library
工程 3で得られたファージ粒子混合液を SM緩衝液で 5 X 104 p f u/20 0 /zLに希釈した。 0. 4%マルトースを含む L培地で OD 600nra =0. 5まで 培養した 5 OmLの大腸菌 NM514培養液を 4°Cで 900 x gで遠心した。 得 られた沈澱を 15mLの 1 OmM硫酸マグネシウム溶液に懸濁した。 この NM5 14懸濁液 200 Lと前述のファージ希釈液 200 Lとを混合し、 37°C1 5分間インキュベート後、 ソフトァガロース (0. 7%ァガロース ZL培地) 1 OmLと混合し、 15 cm径の Lプレート上に重層した。 これを 37°Cで 10時 間インキュベートした。 すなわち、 1プレート当たり 5万クローン、 計 12プレ ートで 60万クローンからなる; Iファージ cDNAライブラリ一を得た。 The phage particle mixture obtained in Step 3 was diluted to 5 × 10 4 pfu / 200 / zL with SM buffer. 5 OmL of E. coli NM514 culture cultured in L medium containing 0.4 % maltose until OD 600nra = 0.5 was centrifuged at 900 xg at 4 ° C. The obtained precipitate was suspended in 15 mL of a 1 OmM magnesium sulfate solution. Mix 200 L of this NM5 14 suspension with 200 L of the phage dilution described above, incubate at 37 ° C for 15 minutes, mix with 1 OmL of soft agarose (0.7% agarose ZL medium), and mix It was overlaid on the L plate of diameter. This was incubated at 37 ° C for 10 hours. That is, 50,000 clones per plate, consisting of 600,000 clones in a total of 12 plates; a phage I cDNA library was obtained.
(実施例 5) スファージ cDNAライブラリーのスクリーニング (Example 5) Screening of sphage cDNA library
工程 1 標識プローブの作製 Step 1 Preparation of labeled probe
標識プローブの作製はランダムプライマー DNAラベリングキッ ト (宝酒造社 製) を用い、 添付マニュアルに従って実施した。 pM951を制限酵素 P v ullおよび Sma Iで処理し、 得られた 265 b p の DNA約 100 n gを回収し、 20〃 Lの TEに溶解した。 この溶液 8〃Lと 2〃 Lのランダムプライマーとを混合し、 95°Cで 3分間ィンキュベートした後、 5分間氷冷した。 その溶液に 2. 5 zLの 10 X反応緩衝液、 2. の dN TP混合液、 1. 85MBQの [ 32 P] dCTP溶液、 4〃Lの滅菌純水およ び 1 /Lの K 1 e n owフラグメントを加え、 37 °Cで 2時間ィンキュベ一トし た。 その後 65°Cで 5分間インキュベートした後、 反応液をニックカラム G— 5 0 (フアルマシア社製) でゲルろ過して分画し、 各画分の放射活性を測定した。 工程 2 スファージ c DNAライブラリーのスクリーニング Labeled probes were prepared using a random primer DNA labeling kit (Takara Shuzo) according to the attached manual. pM951 was treated with restriction enzymes Pvull and SmaI, and about 100 ng of the obtained 265 bp DNA was recovered and dissolved in 20 μL of TE. 8 L of this solution and 2 L of random primer were mixed, incubated at 95 ° C for 3 minutes, and cooled with ice for 5 minutes. Add 2.5 zL of 10X reaction buffer, 2. dNTP mixture, 1. 85 MBQ [ 32 P] dCTP solution, 4 μL of sterile pure water and 1 / L of K 1 en The ow fragment was added and incubated at 37 ° C for 2 hours. Thereafter, the mixture was incubated at 65 ° C. for 5 minutes, and the reaction solution was gel-filtered through a nick column G-50 (manufactured by Pharmacia) to fractionate, and the radioactivity of each fraction was measured. Step 2 Screening of sphage cDNA library
λファージ cDNAライブラリーのスクリーニングは、 常法に従い、 プラーク ハイブリダィゼーシヨン法により行った。  Screening of the λ phage cDNA library was performed by a plaque hybridization method according to a conventional method.
実施例 4で得られた λッファージ c D N Aライブラリ一の上に H y bond Nフィルター (アマシャム社製) を重ね、 レプリカフィルターを作製した。 得ら れたレプリカフィルターを 1. 5M塩化ナトリウム含有 0. 5 M水酸化ナトリウ ムで 5分間アルカリ変性処理し、 1. 5M塩化ナトリウム含有 0. 5Mトリス塩 酸緩衝液 (pH7. 0) で 2分間の中和処理を 2回行い、 2XSSCで洗い、 風 乾した。 これに、 UV照射機 (UV s t r a t a l i nke r TM2400、 ス トラタジーン社製) にて 0. 72 Jの UVを照射し、 DNAを固定した。 A Hy bond N filter (manufactured by Amersham) was superimposed on one of the λ phage cDNA libraries obtained in Example 4 to prepare a replica filter. The resulting replica filter was subjected to alkaline denaturation treatment with 0.5 M sodium hydroxide containing 1.5 M sodium chloride for 5 minutes, and then treated with 1.5 M sodium chloride-containing 0.5 M tris-chloride buffer (pH 7.0). The mixture was neutralized twice for 2 minutes, washed with 2XSSC, and air-dried. This was irradiated with 0.72 J of UV using a UV irradiator (UV stratulin ker 2400, manufactured by Stratagene) to fix the DNA.
この方法で作成したレプリカフィルター 12枚を 5 OmLのプレハイブリダィ ゼーシヨン溶液 (6xSSPE、 5xDe nha r d t' s、 50%ホルムアミ ド、 0. 1%SDS、 250^gZmLサケ精子 DNA) に浸し、 42°Cで一晚 インキュベートした。 その後、 このフィルターを 5 OmLのハイブリダィゼーショ ン溶液 (6xSSPE、 lxDenha rd t' s、 50%ホルムァミ ド、 0. 1%SDS、 10%硫酸デキストラン、 100 ノ11 1^サケ精子0 八とェ程 1で得られた放射活性 5 X 107 c pm標識のプローブを加えたもの) に浸し、Twelve replica filters prepared by this method are immersed in 5 OmL of a prehybridization solution (6xSSPE, 5xDenhardt's, 50% formamide, 0.1% SDS, 250 ^ gZmL salmon sperm DNA) at 42 ° C. The incubation was continued. The filter was then combined with 5 OmL of hybridization solution (6xSSPE, lxDenhardt's, 50% formamide, 0.1% SDS, 10% dextran sulfate, 100-111 1 ^ salmon sperm). 5 X 10 7 cpm labeled probe obtained in step 1)
42 °Cで一晚インキュベートした。 ハイブリダィゼーシヨン終了後、 2XSSCThe mixture was incubated at 42 ° C. After hybridization, 2XSSC
/0. 1%SDSを用いて室温で 20分間 3回洗浄した。 次いで 0. lxSSC/ 0. Washed three times with 1% SDS at room temperature for 20 minutes. Then 0.lxSSC
/0. 1%SDSを用いて 44°Cで 30分間 2回洗浄した。 さらに、 0. lxS/ 0. Washed twice with 1% SDS at 44 ° C for 30 minutes. In addition, 0.lxS
SCを用い室温で 10分間 1回洗浄し、 風乾した。 オートラジオグラフィ一にて 放射活性の検出を行い、 10個の陽性クローンが検出された。 この 10個の陽性 クローンを単離するため、 2次スクリーニングを本工程と同様の方法で実施し、 8個の陽性クローンを単離した。 The membrane was washed once with SC at room temperature for 10 minutes, and air-dried. At Autoradiography Radioactivity was detected, and 10 positive clones were detected. In order to isolate these 10 positive clones, secondary screening was performed in the same manner as in this step, and 8 positive clones were isolated.
(実施例 6) 塩基配列の決定 (Example 6) Determination of base sequence
実施例 5の工程 2で得られた 8個の陽性ファージクローンの内、 最長の c DN Aを有するクローンの DNAを制限酵素 B amH Iで消化した。 切り出された c DNA断片を制限酵素 B a mH Iで消化した pUC l 18と混合し、 前述のライ ゲーシヨンキッ トを用いてライゲーシヨンした。 得られたプラスミ ドの塩基配列 の決定は、 実施例 3と同様の方法で実施した。  Of the eight positive phage clones obtained in step 2 of Example 5, the DNA of the clone having the longest cDNA was digested with the restriction enzyme BamHI. The excised cDNA fragment was mixed with pUC118 digested with the restriction enzyme BamHI and ligated using the above-described ligation kit. The nucleotide sequence of the obtained plasmid was determined in the same manner as in Example 3.
本発明の PG I 2 産生刺激因子をコードする DNA配列を配列表の配列番号 3 および 4に示し、 また、 その DNA配列より演繹されるアミノ酸配列を配列表の 配列番号 1および 2に示した。 Shows the DNA sequence encoding the PG I 2 production stimulators of the present invention in SEQ ID NO: 3 and 4 in Sequence Listing, The amino acid sequence deduced from the DNA sequence in SEQ ID NO: 1 and 2 in Sequence Listing.
配列表の配列番号 3に示す D N Aを含むブラスミ ドを p M 952と命名した。 (実施例 7) COS細胞での発現  The plasmid containing DNA shown in SEQ ID NO: 3 in the sequence listing was named pM952. (Example 7) Expression in COS cells
工程 1 発現ベクターの構築 Step 1 Construction of expression vector
発現べクタ一 ρ EF— BOS [ヌクレイック アシッ ド リサーチ (Nu c l. Ac d s Re s. ) 、 18巻、 5322頁、 1990年] 2〃 gを B s t X I で消化後、 ラージフラグメントを回収し、 その半量と下記式 [13] および [1 4] (配列表の配列番号 17および 18) の合成 DNA各 l〃gを DNAライゲ ーシヨンキッ ト (宝酒造社製) を用いてライゲーシヨンし、 発現ベクター pEF 一 BOS— KSを得た。  Expression vector ρEF—BOS [Nucleic Acid Research (Nucl. Acids Res.), 18, 5322, 1990] After digesting 2 g with BstXI, large fragments were recovered. One-half of the DNA and l と g of each of the synthetic DNAs of the following formulas [13] and [14] (SEQ ID NOS: 17 and 18 in the sequence listing) were ligated using a DNA ligation kit (manufactured by Takara Shuzo), and the expression vector pEF was obtained. I got BOS—KS.
式 [ 13 ] 5'- CTGGTCGACGGATCCCGGGTACCAGCACA-3' Formula [13] 5'-CTGGTCGACGGATCCCGGGTACCAGCACA-3 '
式 [ 14 ] 3' -ACACGACCAGCTGCCTAGGGCCCATGGTC - 5, 次に、 pM952を制限酵素 Nc o Iで消化後、 約 1. l kb pの DNA断片 を回収し、 得られた DNA断片を DNAブランチングキッ ト (宝酒造社製) を用 いて平滑化した。 発現べクタ一 pEF— BOS— KSを制限酵素 S m a Iで消化 後、 ラージ DNA断片を回収した。 平滑化した DNA断片と DNAライゲーショ ンキッ ト (宝酒造社製) を用いてライゲーシヨンを行い、 発現べクタ一 pM95 3を得た (図 1) 。 Formula [14] 3′-ACACGACCAGCTGCCTAGGGCCCATGGTC-5 Then, after digesting pM952 with the restriction enzyme NcoI, a DNA fragment of about 1. 1 kbp is recovered, and the obtained DNA fragment is subjected to DNA branching kit ( (Takara Shuzo Co., Ltd.). After digestion of the expression vector pEF-BOS-KS with the restriction enzyme SmaI, a large DNA fragment was recovered. DNA ligation with blunted DNA fragments Ligation was performed using a kit (Takara Shuzo Co., Ltd.) to obtain the expression vector pM953 (Fig. 1).
工程 2 発現ベクター pM953の COS細胞への導入 Step 2 Introduction of expression vector pM953 into COS cells
発現ベクターの COS細胞への導入は、 ソムボイラック (S omp o y r a c) らの方法 [プロシーデイング ォブ ザ ナショナル アカデミー ォブ サイ エンス ォブ ザ ユナイテッ ド ステイツ ォブ アメリカ (P r o c. a t 1. Ac a d. S c i . USA) . 78巻、 7575頁、 1981年] を参考 にして実施した。  The expression vector was introduced into COS cells by the method of Sompoyrac et al. [Proceding of the National Academy of Sciences of the United States of America. d. Sci. USA). 78, 7575, 1981].
10%ゥシ胎児血清を含む DME培地 2mLに 3 X 105 の COS細胞が含ま れるように調製し、 3. 5 cm シャーレに撒き、 5%炭酸ガス存在下、 37°C で 20〜24時間培養した。 培地をァスピレーターを用いて除去し、 .DME培地 により細胞を 3回洗浄した。 Prepare 3 x 10 5 COS cells in 2 mL of DME medium containing 10% fetal bovine serum, seed in a 3.5 cm petri dish, and in the presence of 5% carbon dioxide at 37 ° C for 20 to 24 hours Cultured. The medium was removed using an aspirator, and the cells were washed three times with .DME medium.
次に、 DNA— DEAEデキストラン混合液を調製した。 すなわち、 0. 5 gの pM953を含有する 10 の TE溶液、 の 20mgZmL DE AEデキストラン溶液、 35 aLの 1Mトリスー塩酸溶液 (pH7. 4) および 648 /zLの DME培地を混合した。 次に、 DN A— D E A Eデキストラン混合 液を COS細胞の上に静かに重層し、 5%炭酸ガス存在下、 37°Cで 4時間培養 した。 DNA— DEAEデキストラン混合液を静かにピぺットマンにて除去した 後、 DME培地にて細胞を洗浄し、 新たに DME培地を添加した。 5%炭酸ガス 存在下、 37°Cで 96時間培養後、 実施例 11に示す E I A法で測定し、 PG I Next, a DNA-DEAE dextran mixture was prepared. That is, 10 TE solutions containing 0.5 g pM953, 20 mg ZmL DEAE dextran solution, 35 aL 1 M Tris-HCl solution (pH 7.4) and 648 / zL DME medium were mixed. Next, a mixture of DNA-DEAE dextran was gently overlaid on the COS cells, and cultured at 37 ° C for 4 hours in the presence of 5% carbon dioxide. After gently removing the DNA-DEAE dextran mixture with a Pittman, the cells were washed with DME medium, and DME medium was newly added. After culturing at 37 ° C for 96 hours in the presence of 5% carbon dioxide, measurement was performed by the EIA method described in Example 11, and PG I
2 産生刺激因子の発現を確認した。 2 The expression of production stimulating factor was confirmed.
(実施例 8) CHO細胞での発現 (Example 8) Expression in CHO cells
工程 1 発現ベクターの構築 Step 1 Construction of expression vector
実施例 7の工程 1で構築した発現ベクター PM953を制限酵素 Xb a Iと N o t Iで消化後、 約 1. 2Kbの DNA断片を回収した。 dh f r (d i hy d r o f o l a t e r e d u c t a s e) 発現単位を有し、 かつ E Fプロモータ 一によつて外来遺伝子の発現を制御できる発現べクタ一の外来遺伝子挿入部位に、 After digesting the expression vector PM953 constructed in Step 1 of Example 7 with restriction enzymes XbaI and NotI, a DNA fragment of about 1.2 Kb was recovered. dh f r (di hy d r fo l a t e r e d u c t a se) having an expression unit, and capable of controlling the expression of the foreign gene by the EF promoter, at a foreign gene insertion site of an expression vector,
DNAライゲーシヨンキッ ト (宝酒造社製) を用いてこのフラグメントをライゲ ーシヨンし、 目的の発現ベクター pM954を得た (図 2)。 This fragment was ligated using a DNA ligation kit (Takara Shuzo). Then, the desired expression vector pM954 was obtained (FIG. 2).
工程 2 発現ベクター pM954の CHO細胞への導入 Step 2 Introduction of expression vector pM954 into CHO cells
発現ベクターの CHO細胞への導入は、 エレク トロポレーシヨン法を用いた。 すなわち、 ジーンパルサー (B i 0— Rad社製) を用い、 キュべッ ト (電極間 距離 0. 4 cm) 中で、 CHO細胞 4. 0 x 106 および p M 954 20〃g を含むシュクロース含有リン酸緩衝液に、 電圧 0. 40kVZm、 キャパシタン ス 25 Fの、 電気パルスを与えた。 得られた pM954ZCHO培養上清を実 施例 11に示す E I A法で測定し、 PG I 2 産生刺激因子の発現を確 した。 発 現株については、 メソトレキセート (日本レダリー社製) によって遺伝子増幅を 行い、 高発現株を選択した。 The electroporation method was used to introduce the expression vector into CHO cells. That is, using a Gene Pulser (B i 0- Rad Co.), in cuvette preparative (electrode distance 0. 4 cm), CHO cells 4. shoe containing 0 x 10 6 and p M 954 20〃G The phosphate buffer containing sucrose was subjected to an electric pulse with a voltage of 0.40 kVZm and a capacitance of 25 F. The resulting pM954ZCHO culture supernatant was measured by EIA method shown in real施例11 was sure the expression of PG I 2 Stimulating Factor. For the expressed strain, gene amplification was performed using methotrexate (manufactured by Nippon Redley Co., Ltd.), and a high expression strain was selected.
(実施例 9 ) PG I 2 産生刺激因子の精製 (Example 9) Purification of PG I 2 production stimulating factor
工程 1 Process 1
実施例 7の工程 2に準じて作製した pM953ZCOS細胞の培養上清 600 mLを限外ろ過膜 YM10 (分画分子量 10 kD a) をセッ 卜した限外ろ過装置 An ultrafiltration apparatus in which 600 mL of the culture supernatant of pM953ZCOS cells prepared according to step 2 of Example 7 was set with an ultrafiltration membrane YM10 (fraction molecular weight: 10 kDa)
(ダイアフロ一、 グレース · ジャパン社製) を用いて濃縮した。 20mLまで濃 縮した時点で遠心分離し、 2 OmMトリスー塩酸緩衝液 (pH7. 5) に対して 透析した。 その後、 0. 22〃mフィルター (マイレクス GV、 日本ミ リポア社 製) にてろ過した。 (Diaflow, manufactured by Grace Japan Co., Ltd.). When the solution was concentrated to 20 mL, it was centrifuged and dialyzed against 2 OmM Tris-HCl buffer (pH 7.5). Thereafter, the mixture was filtered through a 0.22 m filter (Mirex GV, manufactured by Nippon Millipore).
工程 2 Process 2
工程 1に従って作製した PM953 ZC OS細胞の培養上清を、 あらかじめ 2 The culture supernatant of the PM953 ZC OS cells prepared according to step 1 is
OmMトリス一塩酸一 0. 1M塩化ナトリウム緩衝液 (pH7. 5) で平衡化し たへパリン (HEPARIN) -5PW (東ソ一社製) ァフィ二ティーカラムに 吸着させた後、 20mMトリス—塩酸 (pH7. 5 ) をベースに塩化ナトリウム を添加した溶出液において 0. 1〜1. 0Mの塩化ナトリウムの直線濃度勾配を つけて溶出させ、 吸光波長 280 nmで溶出プロファイルを測定した。 溶出した 各フラクションについて実施例 11に示す E I A法にて PG I 2 産生刺激因子の 濃度を測定し、 0. 3〜0. 6 Mの塩化ナトリウム匂配濃度のときに溶出されたOmM Tris monohydrochloride-Heparin -5PW (manufactured by Tosoh Corporation) equilibrated with 0.1 M sodium chloride buffer (pH 7.5) In the eluate to which sodium chloride was added based on pH 7.5), elution was performed with a linear gradient of 0.1 to 1.0 M sodium chloride, and the elution profile was measured at an absorption wavelength of 280 nm. The concentration of the PG I 2 production stimulating factor was measured for each eluted fraction by the EIA method described in Example 11, and eluted when the concentration of sodium chloride was 0.3 to 0.6 M.
PG I 2 産生刺激因子を有する画分をプールした。 工程 3 Fractions containing PG I 2 production stimulating factors were pooled. Process 3
工程 2で得られた溶出画分を 50 mMトリスー塩酸緩衝液 (pH7. 5) に対 して透析し、 あらかじめ同緩衝液にて平衡化した抗体カラムにかけた。 抗体カラ ムは、 実施例 10で作製した PG I 2 産生刺激因子の抗血清をべ一力一ボンド A Bxカラム (ジヱ一'ティー ·ベ一力一社製) で精製し、 ホルミル一セルロファ イン (生化学工業株式会社製) に結合させて作製した。 溶出画分中のタンパクを 吸着させた後、 4. 5M塩化マグネシウム Z5 OmMトリスー塩酸緩衝液 (pH 6. 4) にて吸着タンパクを溶出した。 吸着タンパクを非還元条件下におけるド デシル硫酸ナトリウム一ポリアクリルアミ ドゲル電気泳動 (SDS— PAGE) で分析した結果、 PG I 2 産生刺激因子がほぼ単一に精製されていることが確認 された (図 3)。 The eluted fraction obtained in step 2 was dialyzed against 50 mM Tris-HCl buffer (pH 7.5) and applied to an antibody column previously equilibrated with the same buffer. Antibodies column is purified by antiserum base one force one bond A Bx column PG I 2 production stimulators produced in Example 10 (di We one 'made tea Baie one force one company), formyl one Serurofa (Manufactured by Seikagaku Corporation). After adsorbing the protein in the eluted fraction, the adsorbed protein was eluted with 4.5 M magnesium chloride Z5 OmM Tris-HCl buffer (pH 6.4). Analysis of the adsorbed protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions confirmed that the PG I 2 production stimulating factor was almost uniformly purified ( (Figure 3).
(実施例 10) 抗体の作製方法 (Example 10) Method for producing antibody
式 [7] の C末端 12アミノ酸の N端にシスティンを付加した計 13アミノ酸 をペプチド自動合成機 (43 OA型 アプライ ドバイオシステム社製) を用いて 合成した。 合成べプチドの N末端のシスティンを介してキヤリア一タンパクであ る KLH (キーホールリンぺッ 卜へモシァニン) に結合させ、 免疫用抗原を作製 し o  A total of 13 amino acids with a cysteine added to the N-terminal of the C-terminal 12 amino acids of the formula [7] were synthesized using an automatic peptide synthesizer (43 OA type Applied Biosystems). An antigen for immunization was prepared by binding to the carrier protein KLH (keyhole lysate mosocyanin) via the N-terminal cysteine of the synthetic peptide.
動物はニュージーランドホワイト種雌ゥサギを用いた。  The animals used were New Zealand White female egrets.
免疫方法は、 ソフロニェゥ (M. V. Sofroniew ) らの方法 [フレセニウス ゼィ ッスリフト フユア アナリティ ケミィ (Fr e s en i us Z. Ana l. Ch em. ) . 290巻、 163頁、 1978年] に準じて行った。 すなわち、 免疫用抗原と完全フロイントアジュバント (FCA、 ディフコ ラボラトリー社 製) または不完全フロイントアジュバント (F I A、 ディフコ ラボラトリ一社 製) を 1 : 1 (vZv) で十分に混合し乳化させた。 これをゥサギの背部皮内 2 0ケ所以上に反復投与し、 免疫した。 2週間おきに 5回免疫した後に動物の全血 液を採血し、 抗血清を得た。 なお、 得られた抗血清は使用時まで一 40°Cで保管 した。 (実施例 11 ) 酵素免疫測定法 (E I A) The immunization was carried out according to the method of MV Sofroniew et al. [Fresenius Zeissrift Fuyer Analytic Chemie. 290, 163, 1978]. That is, the antigen for immunization and complete Freund's adjuvant (FCA, manufactured by Difco Laboratories) or incomplete Freund's adjuvant (FIA, manufactured by Difco Laboratories) were sufficiently mixed and emulsified at 1: 1 (vZv). This was repeatedly administered to 20 or more sites in the back skin of the egret and immunized. After immunization five times every two weeks, the whole blood of the animal was collected to obtain antiserum. The obtained antiserum was stored at 140 ° C until use. (Example 11) Enzyme immunoassay (EIA)
反応系としては、 プレートに固相化した抗原と標識抗体との反応をサンプル中 の抗原により阻止することによって定量する拮抗阻害系を用いた。 すなわち、 1 0倍希釈の形質転換体培養上清を 96穴培養皿に 100 L /穴ずつ添加し、 4 °Cで 1晚または 56°Cで 30分間反応させ、 その後洗浄して抗原を固相化した。 これに 0. 5%BSA/PBSを 150^LZ穴ずつ添加し、 25°Cで 1. 5時 間以上反応させ、 洗浄してブロッキングをした。 次にあらかじめ 4 gZmLの ホースラディッシュペルォキシダーゼ (HRPO) で標識した抗 PG I 2 産生剌 激因子抗体 110;/Lとサンプル 110 Lとを混合し、 25°Cで 1時間プレイ ンキュベーシヨンした。 この溶液を 100 zzLZ穴ずつ添加し、 25°Cで 2時間 反応させた。 さらに 3 m g/mLのオルトフヱ二レンジァミン (OP.D) /0. 027%H2 02 ノマツキルべイン緩衝液 (pH5. 0) (MCB) を 100 z LZ穴ずつ添加し、 10分間反応させて発色させ、 2N硫酸を 100 LZ穴ず つ添加し、 反応を停止させた。 発色は 490 nmの吸光度で測定した。 As a reaction system, a competitive inhibition system in which the reaction between the antigen immobilized on the plate and the labeled antibody was quantified by blocking the reaction with the antigen in the sample was used. That is, the culture supernatant of the transformant diluted 10-fold is added to a 96-well culture dish at 100 L / well, and reacted at 4 ° C for 1 minute or at 56 ° C for 30 minutes, and then washed to fix the antigen. Phased. To this, 0.5% BSA / PBS was added in 150 LZ holes at a time, and reacted at 25 ° C for 1.5 hours or more, washed, and blocked. Next, anti-PG I 2 -producing stimulating factor antibody 110; / L, which had been labeled with 4 gZmL of horseradish peroxidase (HRPO) in advance, and 110 L of the sample were mixed, and pre-incubation was performed at 25 ° C. for 1 hour. This solution was added in 100 zz LZ holes, and reacted at 25 ° C. for 2 hours. Further 3 mg / mL of Orutofuwe two Renjiamin (OP.D) / 0. 027% H 2 0 2 Nomatsukiru base in buffer (pH 5. 0) to (MCB) was added in 100 z LZ holes and reacted for 10 minutes The color was developed, and 2N sulfuric acid was added in 100 LZ holes to stop the reaction. Color development was measured by absorbance at 490 nm.
(実施例 12) 毒性試験 (Example 12) Toxicity test
実施例 9で得られた本発明の PG I 2 産生刺激因子を用いてマウスにおける毒 性試験を実施した。 すなわち、 6週齢の I CRマウス雌雄各々 5匹に対して実施 例 9で得られた PGI2 産生刺激因子を、 1曰 1回 1週間連日静脈内投与した。 投与期間中を通して各動物個体の一般性状を観察した。 本試験では最高投与量群 である 1 Omg/k g群でもいずれの動物においても死亡例は観察されず、 一般 性状においても変化はみられなかった。 Using the PG I 2 production stimulating factor of the present invention obtained in Example 9, a toxicity test in mice was performed. That is, the PGI 2 production stimulating factor obtained in Example 9 was intravenously administered once a week for one week for 5 weeks each to male and female 6-week-old ICR mice. The general characteristics of each animal were observed throughout the administration period. In this study, no deaths were observed in any of the animals in the highest dose group, 1 Omg / kg group, and there was no change in general characteristics.
(実施例 13 ) 注射用溶液製剤の調製 (Example 13) Preparation of solution formulation for injection
実施例 9で得られた本発明の PG I 2 産生刺激因子 10 Omgを 1 OmgZm Lの水解ゼラチンを含有する生理食塩液 10 OmLに溶解し、 ポアサイズ 0. 2 2iimのフィルタ一 (マイレックス GV ミリポア社製) を用いてろ過滅菌した c これを無菌的に 2 m Lずつガラスパイアルに分注後密栓し、 注射用溶液製剤とし (実施例 14) 注射用凍結乾燥製剤の調製 10 Omg of the PG I2 production stimulating factor of the present invention obtained in Example 9 was dissolved in 10 OmL of a physiological saline solution containing 1 OmgZmL of hydrolyzed gelatin, and a filter having a pore size of 0.22im (Mirex GV Millipore The solution was sterilized by filtration using c ). Aseptically, 2 mL of this solution was dispensed into glass vials and sealed, to give a solution for injection. (Example 14) Preparation of freeze-dried preparation for injection
実施例 9で得られた本発明の PG I 2 産生刺激因子 10 Omgを 10 OmgZ mLのヒ ト血清アルブミンを含有する 1 OmM PBS (p H 7. 4) 100m Lに溶解し、 ポアサイズ 0. 22 zmのフィルタ一 (マイレックス GV ミリポ ァ社製) を用いてろ過滅菌した。 これを無菌的に 3mLずつガラスバイアルに分 注し、 凍結乾燥後に密栓して、 注射用凍結乾燥製剤とした。  10 Pmg of the PG I2 production stimulating factor of the present invention obtained in Example 9 was dissolved in 100 mL of 1 OmM PBS (pH 7.4) containing 10 OmgZ mL of human serum albumin, and the pore size was 0.22. The solution was sterilized by filtration using a zm filter-1 (Mirex GV Millipore). This was aseptically dispensed into glass vials in 3 mL portions, freeze-dried and sealed to give a freeze-dried preparation for injection.
(参考例 1 ) (Reference example 1)
下記の方法で、 培養上清を作製し、 PG I 2 産生刺激因子の精製を行い、 PG I 2 産生刺激因子を得た。 なお、 PG I 2 産生刺激活性の測定は後述.の方法で行つ A culture supernatant was prepared by the following method, and a PG I 2 production stimulating factor was purified to obtain a PG I 2 production stimulating factor. The measurement of PG I 2 production stimulating activity is performed by the method described later.
(1) 正常ヒトニ倍体線維芽細胞の培養上清の作製 (1) Preparation of culture supernatant of normal human diploid fibroblasts
正常ヒトニ倍体線維芽細胞を 15%ゥシ胎児血清含有ダルベッコ改変イーグル 培地にて 4. 8xl04 細胞 ZmLに調製した。 この細胞懸濁液 3 Lを回転培養 容器に植え込み、 5%炭酸ガス一 95%空気下、 37 °Cにて培養した。 細胞植え 込み 3曰後に培養液を新鮮な 15%ゥシ胎児血清含有ダルベッコ改変イーグル培 地 3 Lに交換し、 さらに培養を 2日間継続した。 次いで、 培養液を除去し、 Ca 2+、 Mg2+不含ダルベッコ一リン酸生理食塩溶液を用いて細胞を洗浄した後、 フ. ノールレッ ド不含のダルベッコ改変イーグル培地 3 Lを添加し、 37°C、 2日間 培養した。 培養液を回収後、 2. 5/zmのフィルター (CNカートリッジ 30 インチ、 ミリポア社製) にてろ過し細胞片を除去した。 次いでホロ一ファイバー モジュール (モルセップファイバー FS— 10 6 kD a カッ トオフ、 ダイセ ル化学工業社製) 、 分画分子量 1 OkD aの限外ろ過カセット (オメガミニセッ ト、 富士フィルター工業社製) による 2段階の濃縮操作にて濃縮した。 この濃縮 液を分画分子量 3. 5 kD aの透析チューブ (スぺクトラム社製) を用いて、 2 OmMトリスー塩酸緩衝液 (pH 7. 8) に対して 4°Cで 1晚透析した。 同じ組 成の新たな緩衝液に対してさらに 4°Cで 8時間透析し、 1. フィルター4. Normal Hitoni fold body fibroblasts at 15% © shea fetal serum-containing Dulbecco's modified Eagle's medium was prepared in 8Xl0 4 cells ZML. 3 L of this cell suspension was inoculated in a rotary culture vessel, and cultured at 37 ° C under 5% carbon dioxide and 95% air. After the cell implantation 3, the culture was replaced with 3 L of Dulbecco's modified Eagle's medium containing fresh 15% fetal calf serum, and the culture was continued for 2 days. Next, the culture solution was removed, and the cells were washed using a Dulbecco's monophosphate-free saline solution containing no Ca 2+ or Mg 2+ , and then 3 L of Dulbecco's modified Eagle's medium containing no norred was added. The cells were cultured at 37 ° C for 2 days. After collecting the culture, the cells were filtered through a 2.5 / zm filter (CN cartridge, 30 inch, manufactured by Millipore) to remove cell debris. Next, a two-stage process using a hollow fiber module (Molsep fiber FS-106 kDa cut-off, manufactured by Daicel Chemical Industries) and an ultrafiltration cassette (Omega mini-set, manufactured by Fuji Filter Industries, Ltd.) with a cut-off molecular weight of 1 OkDa And concentrated. The concentrated solution was dialyzed against 2 OmM Tris-HCl buffer (pH 7.8) at 4 ° C for 1 ° C using a dialysis tube having a molecular weight cutoff of 3.5 kDa (manufactured by Spectrum). Dialyze against fresh buffer of the same composition for another 8 hours at 4 ° C. 1. Filter
(ディエフエイ アセンブリ、 日本ポール社製) 、 0. 22 mフィルターシス テム (コ一二ング社製) で順次ろ過した。 (DF Assembly, manufactured by Nippon Pall Corporation), 0.22 m filter system Filtration was performed successively through a system (manufactured by Koningu Co., Ltd.).
(2) PG I 2 産生刺激因子の精製  (2) Purification of PG I 2 production stimulating factor
工程 1  Process 1
(1) に従って作製した正常ヒトニ倍体線維芽細胞の培養上清を、 予め 20m Mトリスー塩酸緩衝液 (pH7. 8) で平衡化した DEAE— 5PW (東ソ一社 製) 陰イオン交換クロマトカラムにアプライして上清中の成分を吸着させた。 2 OmMトリス—塩酸緩衝液 (pH7. 8) をベースとして作製した 0〜1. 0M の塩化ナトリウムの直線濃度勾配溶出液にて吸着成分を溶出させ、 280 nmで 各画分の吸光度を同時に測定した。 溶出した各画分の PG I 2 産生刺激活性を後 述の方法に従って測定し、 50〜15 OmMの塩化ナトリウム濃度の溶出液で溶 出された PG I 2 産生刺激活性を有する画分をプールした (図 4)。 .  DEAE-5PW (manufactured by Tosoichi) anion-exchange chromatography column in which the culture supernatant of normal human diploid fibroblasts prepared according to (1) was previously equilibrated with 20 mM Tris-HCl buffer (pH 7.8) And the components in the supernatant were adsorbed. 2 Adsorbed components are eluted with a linear gradient elution solution of 0 to 1.0 M sodium chloride prepared based on OmM Tris-HCl buffer (pH 7.8), and absorbance of each fraction is simultaneously measured at 280 nm. did. The PG I 2 production stimulating activity of each eluted fraction was measured according to the method described below, and the fractions having PG I 2 production stimulating activity eluted with the eluate having a sodium chloride concentration of 50 to 15 OmM were pooled. (Figure 4). .
工程 2  Process 2
工程 1で得られた活性画分を 1 OmMリン酸緩衝液 (pH7. 4) に対して透 析し、 1 OmMリン酸緩衝液 (pH7. 4) で平衡化したへパリン (HE PAR IN) — 5PW (東ソ一社製) ァフィ二ティーカラムに活性成分を吸着させ、 1 OmMリン酸緩衝液 (pH7. 4) をベースとして塩化ナトリウムを添加した溶 出液において 0〜 1. 0 Mの塩化ナトリゥムの直線濃度勾配をつけて溶出させ、 溶出プロファイルを 280 nmの吸光度で測定した。 溶出した各画分の PG I 2 産生刺激活性を測定し、 450〜 500 mMの塩化ナトリゥム匂配濃度のときに 溶出された PG I 2 産生刺激活性を有する画分をプールした (図 5)。 Heparin (HE PAR IN) was eluted from the active fraction obtained in step 1 with 1 OmM phosphate buffer (pH 7.4) and equilibrated with 1 OmM phosphate buffer (pH 7.4). — 5PW (manufactured by Tosoichi Co., Ltd.) The active ingredient is adsorbed on an affinity column, and 0 to 1.0 M of the eluate containing sodium chloride added based on 1 OmM phosphate buffer (pH 7.4) is used. Elution was performed with a linear concentration gradient of sodium chloride, and the elution profile was measured by absorbance at 280 nm. The PG I 2 production stimulating activity of each eluted fraction was measured, and the fractions having the PG I 2 production stimulating activity eluted when the concentration of sodium chloride was 450 to 500 mM were pooled (FIG. 5).
工程 3  Process 3
工程 2で得られた活性画分をセントリコン一 10 (アミコン社製) にて濃縮し た。 予め 1 OmMリン酸緩衝液 (pH7. 4) で平衡化したプロテイン一パック (PROTE I N— PAK) 300 (日本ミリポア リミテッド ウォーターズ クロマトグラフィー事業部) のカラム 2本を連結し、 濃縮画分をゲルろ過し、 吸 光波長 280 nmで溶出プロファイルを同時に測定した。 溶出後の各画分の PG I 2 産生刺激活性を測定したところ、 活性は分子量 30 kD a付近に認められた (図 6)。 図 6中の数字は分子量 (kDa) 、 Vtは充填剤の総体積、 V oは排 除体積を表す。 工程 4 The active fraction obtained in step 2 was concentrated with Centricon-1 10 (Amicon). Two columns of PROTE IN-PAK 300 (Nippon Millipore Limited Waters Chromatography Division) pre-equilibrated with 1 OmM phosphate buffer (pH 7.4) were connected, and the concentrated fraction was subjected to gel filtration. The elution profile was simultaneously measured at an absorption wavelength of 280 nm. When the activity of stimulating PG I 2 production in each fraction after elution was measured, the activity was observed at a molecular weight of around 30 kDa (FIG. 6). The numbers in FIG. 6 represent the molecular weight (kDa), Vt represents the total volume of the filler, and Vo represents the elimination volume. Process 4
工程 3で得られた活性画分を 1 OmMリン酸緩衝液 (pH 7. 4) で平衡化し た I GF—ァフィ二ティーカラムにかけた。 I GF—ァフィ二ティーカラムとし ては、 ァフイブレップ 10 (日本バイオラッドラボラトリース社製) に組換え I GF— Iをリガンドとして結合させた耐圧力ラムを作製し、 本実験に用いた。 活 性成分を吸着させた後、 吸着成分を 0. 5M酢酸で溶出した。 吸着画分と非吸着 画分の PG I 2 産生刺激活性を測定したところ、 PG I 2 産生刺激活性は、 非吸 着画分に認められた。 The active fraction obtained in step 3 was applied to an IGF-affinity column equilibrated with 1 OmM phosphate buffer (pH 7.4). As an IGF-affinity column, a pressure-resistant ram in which recombinant IGF-I was bound as a ligand to Affibrep 10 (manufactured by Nippon Bio-Rad Laboratories) was used in this experiment. After adsorbing the active components, the adsorbed components were eluted with 0.5M acetic acid. When the PGI 2 production stimulating activity of the adsorbed fraction and the non-adsorbed fraction was measured, the PGI 2 production stimulating activity was observed in the non-adsorbed fraction.
工程 5  Process 5
工程 4で得られた活性画分を 0. 1%トリフルォロ酢酸含有 10%ァセトニト リル水溶液で平衡化した C4 逆相 HPLCカラム (ウォーターズ社製) にかけた c カラムに吸着した成分は 0. 1%トリフルォロ酢酸ノアセトニトリル溶液の 10 〜60%ァセトニトリルの直線濃度勾配溶出液にて溶出した。 本発明の PG I 2 産生刺激因子は単一なピークとして溶出された。 (参考例 2) 正常ヒトニ倍体線維芽細胞由来の PG I 2 産生刺激因子の物性の 測定 Step 0.1% The active fractions obtained in 4 Torifuruoro acetate containing 10% Asetonito C 4 reverse phase HPLC column equilibrated with Lil aqueous solution (manufactured by Waters Corporation) adsorbed to c columns subjected to the components 0.1% Elution was carried out with a linear gradient eluent of 10 to 60% acetonitrile in a trifluoroacetic acid noacetonitrile solution. The PG I 2 production stimulating factor of the present invention eluted as a single peak. (Reference Example 2) Measurement of physical properties of PG I 2 production stimulating factor derived from normal human diploid fibroblasts
①分子量の測定  ① Measurement of molecular weight
参考例 1の工程 5で得られた本発明の PG I 2 産生刺激因子の分子量を、 非還 元条件下におけるドデシル硫酸ナトリウムーポリアクリルァミ ドゲル電気泳動 (SDS-PAGE) で求めたところ、 分子量約 33 kD aに単一のバンドとし て認められた (図 7) 。 図 7は SDS— PAGEの泳動後の結果を示す写真の模 式図である。 図 7中、 ライン Aおよび Cは既知分子量を持つ標準試料のバンドで あり、 ライン Bは本発明の PG I 2 産生刺激因子のバンドである。 また、 数字は 標準試料の分子量 (kDa) を表す。 The molecular weight of the PG I 2 production stimulating factor of the present invention obtained in Step 5 of Reference Example 1 was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions. It was recognized as a single band at a molecular weight of about 33 kDa (Fig. 7). FIG. 7 is a schematic diagram of a photograph showing the results after SDS-PAGE electrophoresis. In FIG. 7, lines A and C are bands of a standard sample having a known molecular weight, and line B is a band of the PG I 2 production stimulating factor of the present invention. The numbers indicate the molecular weight (kDa) of the standard sample.
②アミノ酸配列の解析 ②Analysis of amino acid sequence
参考例 1の工程 5で得られた本発明の PG I 2 産生刺激因子を、 トリプシンで 消化して、 ペプチドフラグメントとした。 これらのフラグメントを各々 0. 1% トリフルォロ酢酸水溶液で平衡化した C 8 逆相 H PLCカラム (セパレーシヨン ズグループ社製) にかけ、 0. 08%トリフルォロ酢酸/ァセトニトリル溶液の 0〜100%ァセトニトリルの直線濃度勾配溶出液にて溶出させた。 自動気相シ —クェンサ一 (アプライ ドバイオシステムズ 477 A— 120 A) を用い、 ェド マン分解により各々のべプチドフラグメントのァミノ酸配列を決定した。 The PGI 2 production stimulating factor of the present invention obtained in Step 5 of Reference Example 1 was digested with trypsin to obtain a peptide fragment. Balancing these fragments at each 0.1% Torifuruoro aqueous acetic acid was C 8 reversed-phase H PLC column (Separeshiyon And eluted with a linear gradient elution solution of 0.08% trifluoroacetic acid / acetonitrile of 0 to 100% acetonitrile. The amino acid sequence of each peptide fragment was determined by Edman degradation using an automated gas phase sequencer (Applied Biosystems 477A-120A).
次いで、 本発明の PG I 2 産生刺激因子を還元カルボキシメチル化し、 C8 逆 相 HP LCカラム (日本ウォーターズ社製) で脱塩した。 次いでエンドプロティ ナーゼ G l u— C (プロテアーゼ V 8) で消化してペプチドフラグメントとした c これらのフラグメントを上記の方法と同様に処理し、 各々のぺプチドフラグメン 卜のアミノ酸配列を決定した。 Then, the PG I 2 production stimulators of the present invention reduced carboxymethylated and desalted by C 8 reversed-phase HP LC column (manufactured by Nippon Waters Co., Ltd.). Subsequently, peptide fragments were obtained by digesting with endoproteinase Glu-C (protease V8). These fragments were treated in the same manner as described above, and the amino acid sequence of each peptide fragment was determined.
得られたアミノ酸配列を下記式 [7] および [15:] 〜 [25] (配列表の配 列番号 8および 19〜29) に示す。  The obtained amino acid sequences are shown in the following formulas [7] and [15:] to [25] (SEQ ID NOS: 8 and 19 to 29 in the sequence listing).
式 [7] Equation [7]
lie Thr Val Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly  lie Thr Val Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly
1 5 10 15  1 5 10 15
Glu Gly Ala Glu Leu  Glu Gly Ala Glu Leu
20  20
式 [15] Equation [15]
Ser Xaa Xaa Asp Thr Xaa Gly Pro  Ser Xaa Xaa Asp Thr Xaa Gly Pro
1 5 8  1 5 8
式 [16] Equation [16]
Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Val Lys 1 5 10 15  Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Val Lys 1 5 10 15
Arg Gly His Tyr Gly Val Gin Arg Thr Glu  Arg Gly His Tyr Gly Val Gin Arg Thr Glu
20 25  20 25
式 [17] Expression [17]
Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly 1 5 10 15  Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly 1 5 10 15
Gly Pro Glu  Gly Pro Glu
式 [18] Cys His Ala Ser Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys 1 5 10 15 lie Thr Val Val Equation [18] Cys His Ala Ser Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys 1 5 10 15 lie Thr Val Val
19  19
式 [19] Equation [19]
Ala He Thr Gin Val Ser Lys  Ala He Thr Gin Val Ser Lys
1 5  1 5
式 C20] Equation C20]
Gly His Tyr Gly Val Gin Arg  Gly His Tyr Gly Val Gin Arg
1 5  1 5
式 [21] Equation [21]
Thr Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr 1 5 10 15 Thr Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr 1 5 10 15
Arg Arg
16  16
式 [22] Equation [22]
Gly Ala Glu Leu  Gly Ala Glu Leu
1 4  14
式 [23] Equation [23]
Lys Ala lie Thr Gin Val Ser Lys Gly Thr Xaa Glu  Lys Ala lie Thr Gin Val Ser Lys Gly Thr Xaa Glu
1 5 10 12  1 5 10 12
式 [24] Equation [24]
Xaa Glu Pro Xaa Gly Gly Gly Gly Ala Gly Arg Gly Tyr Xaa Ala 1 5 10 15 Xaa Glu Pro Xaa Gly Gly Gly Gly Ala Gly Arg Gly Tyr Xaa Ala 1 5 10 15
Pro Gly Pro Gly
17  17
式 [25] Equation [25]
Gin Gly Pro Ser lie Val Thr Pro Xaa Lys Asp lie  Gin Gly Pro Ser lie Val Thr Pro Xaa Lys Asp lie
1 5 10 12 (参考例 3 ) PG I 2 産生刺激活性の測定 1 5 10 12 (Reference Example 3) Measurement of PG I 2 production stimulating activity
血管内皮細胞はゥシ胸部大動脈内膜より剥離法にて採取した。 次いで得られた 血管内皮細胞を 10%ゥシ胎児血清を含む 10 OUZmLベニシリンおよび 10 0 g/mLストレプトマイシン含有ダルベッコ改変イーグル培地中、 5%炭酸 ガス一 95%空気下、 37°Cにて継代培養した。 培地は週 2回交換し、 5〜10 代継代した。 血管内皮細胞を 0. 05%トリプシン処理し、 細胞浮遊液を得た。 次いで、 10%ゥシ胎児血清含有ダルベッコ改変イーグル培地 lmLの入った 24穴培養皿に血管内皮細胞を移し、 5x 104 細胞/穴まで培養した。 10% 以下の各種の測定試料を含むダルベッコ改変イーグル培地 50 を添加し、 37 °Cで 60分間インキュベーションした。 Vascular endothelial cells were collected from the thoracic aorta intima by a detachment method. The obtained vascular endothelial cells were then passaged at 37 ° C in 5% carbon dioxide-95% air in Dulbecco's modified Eagle medium containing 10% OUZmL benicillin and 100 g / mL streptomycin containing 10% fetal calf serum. Cultured. The medium was changed twice a week and passaged for 5-10 passages. The vascular endothelial cells were treated with 0.05% trypsin to obtain a cell suspension. Next, the vascular endothelial cells were transferred to a 24-well culture dish containing 1 mL of Dulbecco's modified Eagle's medium containing 10% fetal calf serum, and cultured to 5 × 10 4 cells / well. Dulbecco's Modified Eagle Medium 50 containing 10% or less of various measurement samples was added, and incubated at 37 ° C for 60 minutes.
培養上清からの 6—ケトー PGF 1 αの抽出と精製はジャッフヱらの方法 [ザ ジャーナル ォブ クリニカル インべスティゲーシヨン (J. C l i n. I n V e s t. ) . 52巻、 398頁、 1973年] を改良して行った。 培養上清 lmLに 0. 1N塩酸 1. 5mLを加え、 5 mL酢酸ェチルで 2度抽出した。 窒 素ガス下で酢酸ェチルを蒸発させ、 残渣をエタノールに再溶解しアツセィ試料と した。 アツセィに使用するまでこの試料は一 20°Cで保存した。 40°Cでェタノ ールを蒸発させ、 残渣を 0. 1Mリン酸緩衝液 (pH7. 2、 1M塩化ナトリウ ム、 1%ゼラチン含有) に溶解した。  Extraction and purification of 6-keto PGF 1α from the culture supernatant was performed according to the method of Jaff et al. [The Journal of Clinical Investigation (J. Clin. In Vest.). 52, 398 Page, 1973]. 1.5 mL of 0.1N hydrochloric acid was added to 1 mL of the culture supernatant, and extracted twice with 5 mL of ethyl acetate. Ethyl acetate was evaporated under nitrogen gas, and the residue was redissolved in ethanol to obtain an Atsushi sample. This sample was stored at 120 ° C until used for Atsushi. Ethanol was evaporated at 40 ° C, and the residue was dissolved in 0.1 M phosphate buffer (pH 7.2, 1 M sodium chloride, containing 1% gelatin).
6- [ 3H] ケトー PGF 1 αと抗 6—ケトー PGF 1 α抗体を用いたニュー イングランドヌクレア一 (N ew Eng l and Nuc l e a r)社製の 6 ーケトー PGF1 α測定用ラジオィムノアッセィキッ トを用い、 添付マニュアル に従い 6—ケト— PGF 1 αの濃度を測定した。 PG I2 産生量は、 104 細胞 が 1時間当たりに産生する 6—ケト— PGF 1 α産生量 (p gZl 04 細胞 Z時 間) により求めた。 6- [3 H] Keto PGF 1 alpha and anti-6-Keto PGF New England Nuclear one (N ew Eng l and Nuc lear ) manufactured 6 Keto PGF1 alpha measuring radio I Takeno assay I using 1 alpha antibody Using a kit, the concentration of 6-keto-PGF1α was measured according to the attached manual. PG I 2 production level is 10 4 cells 6-keto produce per hour - was determined by PGF 1 alpha production quantity (p GZL 0 4 during the time of cell Z).
[発明の効果]  [The invention's effect]
本発明は新規な DNAを提供する。 この DNAは、 それを用いて、 それがコー ドする新規な蛋白質を遺伝子工学的手法により発現させることができ、 この新規 な蛋白質は PG I 2 の産生を促進し、 PG I 2 の持つ血小板凝集抑制作用、 平滑 筋弛緩作用、 胃酸分泌抑制作用に基づいて溶血性尿毒症症候群、 血栓性血小板減 少性紫斑病、 末梢動脈閉塞、 心虚血、 脳虚血、 動脈硬化、 脳閉塞、 高脂血症、 糖 尿病、 心不全、 狭心症、 虚血性心疾患、 うつ血性心疾患、 脈絡膜循環障害、 気管 支疾患、 胃潰瘍、 妊娠子癇等の疾患に対する有効な医薬品となる。 The present invention provides a novel DNA. This DNA can be used to express the novel protein it encodes by genetic engineering techniques.This new protein promotes the production of PG I 2 and the platelet aggregation of PG I 2 Inhibiting action, smooth Hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, cerebral ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia, glucoseuria It is an effective medicine for diseases such as heart disease, heart failure, angina pectoris, ischemic heart disease, depressive heart disease, choroidal circulation disorder, bronchial disease, gastric ulcer, and pregnancy eclampsia.
【配列表】 [Sequence list]
配列番号 Sequence number
配列の長さ 2 8 2 Array length 2 8 2
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly
- 25 -20 -15 -25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp
-10 -5 1 -10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro
5 10 15 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 80 85 90
Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala 95 100 105 Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala 95 100 105
Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin
110 115 120 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro
125 130 135 125 130 135
Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser
140 145 150 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys
155 160 165 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro
170 175 180 170 175 180
Gly Asp Arg Asp Asn Leu Ala He Gin Thr Arg Gly Gly Pro Glu Gly Asp Arg Asp Asn Leu Ala He Gin Thr Arg Gly Gly Pro Glu
185 190 195 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys
200 205 210 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Ser Gin Gly
215 220 225 215 220 225
Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His
230 235 240 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256 245 250 255 256
配列番号 2 SEQ ID NO: 2
配列の長さ 2 8 2 Array length 2 8 2
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly Met Glu Arg Pro Ser Leu Arg Ala Leu Leu Leu Gly Ala Ala Gly
-25 -20 -15-25 -20 -15
Leu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser AspLeu Leu Leu Leu Leu Leu Pro Leu Ser Ser Ser Ser Ser Ser Asp
-10 -5 1-10 -5 1
Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro ProThr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Pro Leu Pro Pro
5 10 15 5 10 15
Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Cys Gly Cys Cys
20 25 30 20 25 30
Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Gly Gly Gly Gly Gly
35 40 45 35 40 45
Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Cys Val Lys Ser
50 55 60 50 55 60
Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Ala Gly Gly Pro
65 70 75 65 70 75
Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Tyr Pro Val Cys
80 85 90 80 85 90
Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Gin Leu Arg Ala
95 100 105 95 100 105
Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Ala lie Thr Gin
110 115 120 110 115 120
Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser lie Val Thr Pro
125 130 135 125 130 135
Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150 Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin Val Tyr Leu Ser 140 145 150
Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Cys Glu Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys
155 160 165 155 160 165
Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro
170 175 180 170 175 180
Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu
185 190 195 185 190 195
Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Lys His Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys
200 205 210 200 205 210
Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly
215 220 225 215 220 225
Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His
230 235 240 230 235 240
Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
245 250 255 256 配列番号 : 3  245 250 255 256 SEQ ID NO: 3
配列の長さ : 1124 Array length: 1124
配列の型 :核酸 Sequence type: Nucleic acid
鎖の数 :二本鎖 Number of chains: double strand
トポロジー:直鎖状  Topology: linear
配列の種類: c DNA o mRNA Sequence type: cDNA o mRNA
起源: Origin:
配列の特徴 Array features
特徴を表す記号: C D S  Characteristic symbol: CDS
存在位置: 23. . 868  Location: 23. .868
特徴を決定した方法: S  How the features were determined: S
特徵を表す記号: s i g ep d e  Symbol indicating special features: s i g ep d e
存在位置: 23. . 100 特徴を決定した方法: s Location: 23..100 How the features were determined: s
特徴を表す記号: m a t p e p t i d e  Characteristic symbol: m a t p e p t i d e
存在位置: 1 0 1 . . 8 6 8  Location: 10 1.. 8 6 8
特徴を決定した方法: S  How the features were determined: S
配列 Array
GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180 GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGC
CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240
TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300
GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360
CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420
GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480
GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540
TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600
GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660
GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720
GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTC 780GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTC 780
CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840
AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900
TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960
ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020
ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080
ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 配列番号 4 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAAAAA 1124 SEQ ID NO: 4
配列の長さ 1 1 2 4 Array length 1 1 2 4
配列の型 核酸 Sequence type Nucleic acid
鎖の数 二本鎖 トポロジー:直鎖状 Number of chains Double strand Topology: linear
配列の種類: cDNA t o mRNA Sequence type: cDNA t o mRNA
起源: Origin:
配列の特徴 Array features
特徴を表す記号: C D S  Characteristic symbol: CDS
存在位置: 23. . 868  Location: 23. .868
特徴を決定した方法: S  How the features were determined: S
特徴を表す記号: s i g ep t i de  Characteristic symbol: s i g ep t i de
存在位置: 23. . 100  Location: 23..100
特徴を決定した方法: S  How the features were determined: S
特徴を表す記号: ma t p ep t i de  Characteristic symbol: ma t p ep t i de
存在位置: 101. . 868  Location: 101..868
特徴を決定した方法: S  How the features were determined: S
配列 Array
GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180 CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240 TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300 GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360 CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420 GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480 GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540 TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600 GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660 GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720 GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTT 780 CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840 GCCGCTGCCA CCGCACCCCG CCATGGAGCG GCCGTCGCTG CGCGCCCTGC TCCTCGGCGC 60 CGCTGGGCTG CTGCTCCTGC TCCTGCCCCT CTCCTCTTCC TCCTCTTCGG ACACCTGCGG 120 CCCCTGCGAG CCGGCCTCCT GCCCGCCCCT GCCCCCGCTG GGCTGCCTGC TGGGCGAGAC 180 CCGCGACGCG TGCGGCTGCT GCCCTATGTG CGCCCGCGGC GAGGGCGAGC CGTGCGGGGG 240 TGGCGGCGCC GGCAGGGGGT ACTGCGCGCC GGGCATGGAG TGCGTGAAGA GCCGCAAGAG 300 GCGGAAGGGT AAAGCCGGGG CAGCAGCCGG CGGTCCGGGT GTAAGCGGCG TGTGCGTGTG 360 CAAGAGCCGC TACCCGGTGT GCGGCAGCGA CGGCACCACC TACCCGAGCG GCTGCCAGCT 420 GCGCGCCGCC AGCCAGAGGG CCGAGAGCCG CGGGGAGAAG GCCATCACCC AGGTCAGCAA 480 GGGCACCTGC GAGCAAGGTC CTTCCATAGT GACGCCCCCC AAGGACATCT GGAATGTCAC 540 TGGTGCCCAG GTGTACTTGA GCTGTGAGGT CATCGGAATC CCGACACCTG TCCTCATCTG 600 GAACAAGGTA AAAAGGGGTC ACTATGGAGT TCAAAGGACA GAACTCCTGC CTGGTGACCG 660 GGACAACCTG GCCATTCAGA CCCGGGGTGG CCCAGAAAAG CATGAAGTAA CTGGCTGGGT 720 GCTGGTATCT CCTCTAAGTA AGGAAGATGC TGGAGAATAT GAGTGCCATG CATCCAATTT 780 CCAAGGACAG GCTTCAGCAT CAGCAAAAAT TACAGTGGTT GATGCCTTAC ATGAAATACC 840
AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900 TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960 ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020 ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC 1080 ATTAAACAAA TAAAATACTT TTTATCACAA AAAAAAAAAA AAAA 1124 配列番号 5 AGTGAAAAAA GGTGAAGGTG CCGAGCTATA AACCTCCAGA ATATTATTAG TCTGCATGGT 900 TAAAAGTAGT CATGGATAAC TACATTACCT GTTCTTGCCT AATAAGTTTC TTTTAATCCA 960 ATCCACTAAC ACTTTAGTTA TATTCACTGG TTTTACACAG AGAAATACAA AATAAAGATC 1020 ACACATCAAG ACTATCTACA AAAATTTATT ATATATTTAC AGAAGAAAAG CATGCATATC AAA ATAAAAAAAAAA
配列の長さ 2 5 6 Array length 2 5 6
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Ser Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro 1 5 10 15 Ser Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro 1 5 10 15
Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala
20 25 30 20 25 30
Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Glu Pro Cys
35 40 45 35 40 45
Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu
50 55 60 50 55 60
Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala
65 70 75 65 70 75
Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg
80 85 90 80 85 90
Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys
95 100 105 95 100 105
Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys
110 115 120 110 115 120
Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser
125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin 140 145 150125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin 140 145 150
Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu
155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr  155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr
170 175 180 170 175 180
Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg
185 190 . 195 185 190 .195
Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser
200 205 210 200 205 210
Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser
215 220 225 215 220 225
Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val
230 235 240 230 235 240
Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu
245 250 255 245 250 255
Leu Leu
256 配列番号 : 6  256 SEQ ID NO: 6
配列の長さ : 2 5 6 Array length: 2 5 6
配列の型 :アミノ酸 Sequence type: Amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Phe Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro Phe Ser Ser Asp Thr Cys Gly Pro Cys Glu Pro Ala Ser Cys Pro
1 5 10 151 5 10 15
Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala Pro Leu Pro Pro Leu Gly Cys Leu Leu Gly Glu Thr Arg Asp Ala
20 25 30 Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Pro Cys20 25 30 Cys Gly Cys Cys Pro Met Cys Ala Arg Gly Glu Gly Glu Glu Pro Cys
35 40 45 Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu 35 40 45 Gly Gly Gly Gly Ala Gly Arg Gly Tyr Cys Ala Pro Gly Met Glu
50 55 60 50 55 60
Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala Cys Val Lys Ser Arg Lys Arg Arg Lys Gly Lys Ala Gly Ala Ala
65 70 75 65 70 75
Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser Arg
80 85 90 80 85 90
Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Cys
95 100 105 95 100 105
Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Lys
110 115 120 110 115 120
Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Ser
125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin  125 130 135 lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala Gin
140 145 150 140 145 150
Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Leu
155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr  155 160 165 lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Thr
170 175 180 170 175 180
Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg
185 190 195 185 190 195
Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Ser
200 205 210 200 205 210
Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser
215 220 225 215 220 225
Asn Phe Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val Asn Phe Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Val
230 235 240 230 235 240
Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu 245 250 255Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Glu 245 250 255
Leu Leu
256  256
配列番号 7 SEQ ID NO: 7
配列の長さ 5 5 7 Array Length 5 5 7
配列の型 核酸 Sequence type Nucleic acid
鎖の数 二本鎖 Number of chains Double strand
トポロジー 直鎖状  Topology linear
配列の種類 c D N A t o mR N A Sequence type c D N A t o mR N A
配列 Array
GGTCATCGGA ATCCCGACAC CTGTCCTCAT CTGGAACAAG GTAAAAAGGG GTCACTATGG 60 AGTTCAAAGG ACAGAACTCC TGCCTGGTGA CCGGGACAAC CTGGCCATTC AGACCCGGGG 120 TGGCCCAGAA AAGCATGAAG TAACTGGCTG GGTGCTGGTA TCTCCTCTAA GTAAGGAAGA 180 TGCTGGAGAA TATGAGTGCC ATGCATCCAA TTTCCAAGGA CAGGCTTCAG CATCAGCAAA 240 AATTACAGTG GTTGATGCCT TACATGAAAT ACCAGTGAAA AAAGGTGAAG GTGCCGAGCT 300 ATAAACCTCC AGAATATTAT TAGTCTGCAT GGTTAAAAGT AGTCATGGAT AACTACATTA 360 CCTGTTCTTG CCTAATAAGT TTCTTTTAAT CCAATCCACT AACACTTTAG TTATATTCAC 420 TGGTTTTACA CAGAGAAATA CAAAATAAAG ATCACACATC AAGACTATCT ACAAAAATTT 480 ATTATATATT TACAGAAGAA AAGCATGCAT ATCATTAAAC AAATAAAATA CTTTTTATCA 540 CAAAAAAAAA 557 配列番号 8  GGTCATCGGA ATCCCGACAC CTGTCCTCAT CTGGAACAAG GTAAAAAGGG GTCACTATGG 60 AGTTCAAAGG ACAGAACTCC TGCCTGGTGA CCGGGACAAC CTGGCCATTC AGACCCGGGG 120 TGGCCCAGAA AAGCATGAAG TAACTGGCTG GGTGCTGGTA TCTCCTCTAA GTAAGGAAGA 180 TGCTGGAGAA TATGAGTGCC ATGCATCCAA TTTCCAAGGA CAGGCTTCAG CATCAGCAAA 240 AATTACAGTG GTTGATGCCT TACATGAAAT ACCAGTGAAA AAAGGTGAAG GTGCCGAGCT 300 ATAAACCTCC AGAATATTAT TAGTCTGCAT GGTTAAAAGT AGTCATGGAT AACTACATTA 360 CCTGTTCTTG CCTAATAAGT TTCTTTTAAT CCAATCCACT AACACTTTAG TTATATTCAC 420 TGGTTTTACA CAGAGAAATA CAAAATAAAG ATCACACATC AAGACTATCT ACAAAAATTT 480 ATTATATATT TACAGAAGAA AAGCATGCAT ATCATTAAAC AAATAAAATA CTTTTTATATCA 540 CAAAAAAAAA 557 SEQ ID NO: 8
配列の長さ 2 0 Array length 2 0
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
lie Thr Val Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly 1 5 10 15 Glu Gly Ala Glu Leu lie Thr Val Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly 1 5 10 15 Glu Gly Ala Glu Leu
20 配列番号 : 9  20 SEQ ID NO: 9
配列の長さ : 2 0 Array length: 20
配列の型 :核酸 Sequence type: Nucleic acid
鎖の数 :一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類 :合成 D NA Sequence type: Synthetic DNA
配列 Array
5' -ATA ACA GTA GTA GAC GCA CT-3'  5 '-ATA ACA GTA GTA GAC GCA CT-3'
C G G G T G T T C C C C T T T T 配列番号 : 1 0  C G G G T G T T C C C C T T T T SEQ ID NO: 10
配列の長さ : 2 0 Array length: 20
配列の型 :核酸 Sequence type: Nucleic acid
鎖の数 :一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類 :合成 D N A Sequence type: Synthetic DNA
配列 Array
5' -AA CTC AGC ACC CTC ACC CTT-3'  5 '-AA CTC AGC ACC CTC ACC CTT-3'
G G T G G G T G
C C CC C C
T T T 配列番号 配列の長さ : 59 TTT SEQ ID NO Array length: 59
配列の型 :核酸 Sequence type: Nucleic acid
鎖の数 :二本鎖 Number of chains: double strand
トポロジー:直鎖状  Topology: linear
配列の種類: PCR産物 Sequence type: PCR product
配列 Array
5' -ATTACGGTGG TTGATGCGTT ACATGAAATA CCAGTGAAAA  5 '-ATTACGGTGG TTGATGCGTT ACATGAAATA CCAGTGAAAA
10 20 30 40 10 20 30 40
AAGGCGAAGG CGCCGAATT-3' AAGGCGAAGG CGCCGAATT-3 '
50 59 配列番号 : 12  50 59 SEQ ID NO: 12
配列の長さ : 20 Array length: 20
配列の型 •核酸 Sequence type • Nucleic acid
鎖の数 一本鎖 Number of chains Single strand
トポロジー 直鎖状  Topology linear
配列の種類 合成 DNA Sequence type Synthetic DNA
配列 Array
5' -TTGATGCGTTACATGAAATA-3' 配列番号 : 13  5'-TTGATGCGTTACATGAAATA-3 'SEQ ID NO: 13
配列の長さ : 20 Array length: 20
配列の型 :核酸 Sequence type: Nucleic acid
鎖の数 Number of chains
トポロジー .直鎖状  Topology .linear
配列の種類 合成 DNA Sequence type Synthetic DNA
配列 Array
5' -CCTTCGCCTTTTTTCACTGG-3' 配列番号 1 4 5 '-CCTTCGCCTTTTTTCACTGG-3' SEQ ID NO: 1 4
配列の長さ 8 0 2 Array length 8 0 2
配列の型 核酸 Sequence type Nucleic acid
鎖の数 二本鎖 Number of chains Double strand
トポロジー 直鎖状  Topology linear
配列の種類 c D NA o mR N A Sequence type c D NA o mR N A
配列 Array
GCAGCCGGCG GTCCGGGTGT AAGCGGCGTG TGCGTGTGCA AGAGCCGCTA CCCGGTGTGC 60 GGCAGCGACG GCACCACCTA CCCGAGCGGC TGCCAGCTGC GCGCCGCCAG CCAGAGGGCC 120 GAGAGCCGCG GGGAGAAGGC CATCACCCAG GTCAGCAAGG GCACCTGCGA GCAAGGTCCT 180 TCCATAGTGA CGCCCCCCAA GGACATCTGG AATGTCACTG GTGCCCAGGT GTACTTGAGC 240 TGTGAGGTCA TCGGAATCCC GACACCTGTC CTCATCTGGA ACAAGGTAAA AAGGGGTCAC 300 TATGGAGTTC AAAGGACAGA ACTCCTGCCT GGTGACCGGG ACAACCTGGC CATTCAGACC 360 CGGGGTGGCC CAGAAAAGCA TGAAGTAACT GGCTGGGTGC TGGTATCTCC TCTAAGTAAG 420 GAAGATGCTG GAGAATATGA GTGCCATGCA TCCAATTCCC AAGGACAGGC TTCAGCATCA 480 GCAAAAATTA CAGTGGTTGA TGCCTTACAT GAAATACCAG TGAAAAAAGG TGAAGGTGCC 540 GAGCTATAAA CCTCCAGAAT ATTATTAGTC TGCATGGTTA AAAGTAGTCA TGGATAACTA 600 CATTACCTGT TCTTGCCTAA TAAGTTTCTT TTAATCCAAT CCACTAACAC TTTAGTTATA 660 TTCACTGGTT TTACACAGAG AAATACAAAA TAAAGATCAC ACATCAAGAC TATCTACAAA 720 AATTTATTAT ATATTTACAG AAGAAAAGCA TGCATATCAT TAAACAAATA AAATACTTTT 780 TATCACAAAA AAAAAAAAAA AA 802  GCAGCCGGCG GTCCGGGTGT AAGCGGCGTG TGCGTGTGCA AGAGCCGCTA CCCGGTGTGC 60 GGCAGCGACG GCACCACCTA CCCGAGCGGC TGCCAGCTGC GCGCCGCCAG CCAGAGGGCC 120 GAGAGCCGCG GGGAGAAGGC CATCACCCAG GTCAGCAAGG GCACCTGCGA GCAAGGTCCT 180 TCCATAGTGA CGCCCCCCAA GGACATCTGG AATGTCACTG GTGCCCAGGT GTACTTGAGC 240 TGTGAGGTCA TCGGAATCCC GACACCTGTC CTCATCTGGA ACAAGGTAAA AAGGGGTCAC 300 TATGGAGTTC AAAGGACAGA ACTCCTGCCT GGTGACCGGG ACAACCTGGC CATTCAGACC 360 CGGGGTGGCC CAGAAAAGCA TGAAGTAACT GGCTGGGTGC TGGTATCTCC TCTAAGTAAG 420 GAAGATGCTG GAGAATATGA GTGCCATGCA TCCAATTCCC AAGGACAGGC TTCAGCATCA 480 GCAAAAATTA CAGTGGTTGA TGCCTTACAT GAAATACCAG TGAAAAAAGG TGAAGGTGCC 540 GAGCTATAAA CCTCCAGAAT ATTATTAGTC TGCATGGTTA AAAGTAGTCA TGGATAACTA 600 CATTACCTGT TCTTGCCTAA TAAGTTTCTT TTAATCCAAT CCACTAACAC TTTAGTTATA 660 TTCACTGGTT TTACACAGAG AAATACAAAA TAAAGATCAC ACATCAAGAC TATCTACAAA 720 AATTTATTAT ATATTTACAG AAGAAAAGCA TGCATATCAT TAAACAAATA AAATACTTTT 780 TATCACAAAA AAAAAAAAAA AA 802
配列番号 1 5 SEQ ID NO: 15
配列の長さ 1 0 0 Array length 1 0 0
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Val Lys 1 5 10 15Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Val Lys 1 5 10 15
Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Gly Asp Arg Gly His Tyr Gly Val Gin Arg Thr Glu Leu Leu Pro Gly Asp
20 25 30 20 25 30
Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu Lys His Arg Asp Asn Leu Ala lie Gin Thr Arg Gly Gly Pro Glu Lys His
35 40 45 35 40 45
Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Glu Asp Glu Val Thr Gly Trp Val Leu Val Ser Pro Leu Ser Lys Glu Asp
50 55 60 50 55 60
Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly Gin Ala Ala Gly Glu Tyr Glu Cys His Ala Ser Asn Phe Gin Gly Gin Ala
65 70 75 65 70 75
Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Glu lie Ser Ala Ser Ala Lys lie Thr Val Val Asp Ala Leu His Glu lie
80 85 . 90 Pro Val Lys Lys Gly Glu Gly Ala Glu Leu  80 85. 90 Pro Val Lys Lys Gly Glu Gly Ala Glu Leu
95 100 配列番号 : 1 6  95 100 SEQ ID NO: 1 6
配列の長さ : 1 8 2 Array length: 1 8 2
配列の型 :アミノ酸 Sequence type: Amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Ala Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser 1 5 10 15 Ala Ala Gly Gly Pro Gly Val Ser Gly Val Cys Val Cys Lys Ser 1 5 10 15
Arg Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly Arg Tyr Pro Val Cys Gly Ser Asp Gly Thr Thr Tyr Pro Ser Gly
20 25 30 20 25 30
Cys Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu Cys Gin Leu Arg Ala Ala Ser Gin Arg Ala Glu Ser Arg Gly Glu
35 40 45 35 40 45
Lys Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro Lys Ala lie Thr Gin Val Ser Lys Gly Thr Cys Glu Gin Gly Pro
50 55 60 50 55 60
Ser lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala 65 70 75Ser lie Val Thr Pro Pro Lys Asp lie Trp Asn Val Thr Gly Ala 65 70 75
Gin Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val Gin Val Tyr Leu Ser Cys Glu Val lie Gly lie Pro Thr Pro Val
80 85 90 80 85 90
Leu lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg Leu lie Trp Asn Lys Val Lys Arg Gly His Tyr Gly Val Gin Arg
95 100 105 95 100 105
Thr Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Thr Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr
110 115 120 110 115 120
Arg Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val Arg Gly Gly Pro Glu Lys His Glu Val Thr Gly Trp Val Leu Val
125 130 135 125 130 135
Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala Ser Pro Leu Ser Lys Glu Asp Ala Gly Glu Tyr Glu Cys His Ala
140 145 . 150 140 145. 150
Ser Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val Ser Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys lie Thr Val
155 160 165 155 160 165
Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala Val Asp Ala Leu His Glu lie Pro Val Lys Lys Gly Glu Gly Ala
170 175 180 170 175 180
Glu Leu 配列番号 : 1 7 Glu Leu SEQ ID NO: 1 7
配列の長さ : 2 9 Array length: 2 9
配列の型 .核酸 Sequence type .Nucleic acid
鎖の数 :一本鎖 Number of chains: single strand
トポロジー 直鎖状  Topology linear
配列の種類 合成 D N A Sequence type Synthetic D N A
配列 Array
5' -CTGGTCGACGGATCCCGGGTACCAGCACA-3' 配列番号 1 8  5'-CTGGTCGACGGATCCCGGGTACCAGCACA-3'SEQ ID NO: 18
配列の長さ 2 9 Array length 2 9
配列の型 核酸 鎖の数 :一本鎖 Sequence type Nucleic acid Number of chains: single strand
トポロジー:直鎖状  Topology: linear
配列の種類:合成 DNA Sequence type: synthetic DNA
配列 Array
(5' -CTGGTACCCGGGATCCGTCGACCAGCACA-3' ) (5'-CTGGTACCCGGGATCCGTCGACCAGCACA-3 ')
配列番号 : 1 9 SEQ ID NO: 1 9
配列の長さ : 8 Array length: 8
配列の型 :アミノ酸 Sequence type: Amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Ser Xaa Aaa Asp Thr Xaa Gly Pro  Ser Xaa Aaa Asp Thr Xaa Gly Pro
1 5 8 配列番号 : 2 0  1 5 8 SEQ ID NO: 20
配列の長さ : 2 5 Array length: 2 5
配列の型 :アミノ酸 Sequence type: Amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Val Lys 1 5 10 15 Val lie Gly lie Pro Thr Pro Val Leu lie Trp Asn Lys Val Lys 1 5 10 15
Arg Gly His Tyr Gly Val Gin Arg Thr Glu Arg Gly His Tyr Gly Val Gin Arg Thr Glu
20 25 配列番号 : 2 1  20 25 SEQ ID NO: 2 1
配列の長さ : 1 8 Array length: 1 8
配列の型 :アミノ酸 Sequence type: Amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly 1 5 10 15 Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Arg Gly 1 5 10 15
Gly Pro Glu 配列番号 : 2 2 Gly Pro Glu SEQ ID NO: 2 2
配列の長さ : 1 9 Array length: 1 9
配列の型 : アミノ酸 Sequence type: amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Cys His Ala Ser Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys 1 5 10 15 lie Thr Val Val  Cys His Ala Ser Asn Ser Gin Gly Gin Ala Ser Ala Ser Ala Lys 1 5 10 15 lie Thr Val Val
19 配列番号 • 2 3  19 SEQ ID No. • 2 3
配列の長さ 7 Array length 7
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Ala lie Thr Gin Val Ser Lys  Ala lie Thr Gin Val Ser Lys
1 5 配列番号 : 2 4  1 5 SEQ ID NO: 2 4
配列の長さ 7 Array length 7
配列の型 .アミノ酸 Sequence type .Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Gly His Tyr Gly Val Gin Arg  Gly His Tyr Gly Val Gin Arg
1 5 配列番号 : 2 5 1 5 SEQ ID NO: 25
配列の長さ : 1 6 Array length: 1 6
配列の型 :アミノ酸 Sequence type: Amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Thr Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr Thr Glu Leu Leu Pro Gly Asp Arg Asp Asn Leu Ala lie Gin Thr
1 5 10 151 5 10 15
Arg 配列番号 2 6 Arg SEQ ID NO: 26
配列の長さ 4 Array length 4
配列の型 アミノ酸 Sequence type Amino acid
トポロジー  Topology
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Gly Ala Glu Leu  Gly Ala Glu Leu
1 4 配列番号 • 2 7  1 4 SEQ ID No. • 2 7
配列の長さ ' 1 2 Array length '1 2
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Lys Ala lie Thr Gin Val Ser Lys Gly Thr Xaa Glu  Lys Ala lie Thr Gin Val Ser Lys Gly Thr Xaa Glu
1 5 10 配列番号 : 2 8 1 5 10 SEQ ID NO: 2 8
配列の長さ : 1 7 Array length: 1 7
配列の型 :アミノ酸 Sequence type: Amino acid
トポロジー:直鎖状  Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Xaa Glu Pro Xaa Gly Gly Gly Gly Ala Gly Arg Gly Tyr Xaa Ala 1 5 10 _ 15 Xaa Glu Pro Xaa Gly Gly Gly Gly Ala Gly Arg Gly Tyr Xaa Ala 1 5 10 _ 15
Pro Gly Pro Gly
配列番号 : 2 9 SEQ ID NO: 2 9
配列の長さ 1 2 Array length 1 2
配列の型 アミノ酸 Sequence type Amino acid
トポロジー 直鎖状  Topology linear
配列の種類 ぺプチド Sequence type Peptide
配列 Array
Gin Gly Pro Ser lie Val Thr Pro Xaa Lys Asp lie  Gin Gly Pro Ser lie Val Thr Pro Xaa Lys Asp lie
1 5 10  1 5 10

Claims

請求の範囲 The scope of the claims
1 . 配列表の配列番号 1または 2記載のァミノ酸配列をコ一ドする塩基配列の 一部または全部を含有する D NA。 1. A DNA containing a part or all of a nucleotide sequence encoding the amino acid sequence described in SEQ ID NO: 1 or 2 in the sequence listing.
2. 配列表の配列番号 3または 4記載の塩基配列の一部または全部を含有する D N A。  2. A DNA containing a part or all of the nucleotide sequence of SEQ ID NO: 3 or 4 in the sequence listing.
3. 請求項 1または 2のいずれかに記載の D N Aと相補的な塩基配列を有す る D N A。  3. A DNA having a nucleotide sequence complementary to the DNA according to claim 1 or 2.
4. 請求項 1ないし 3のいずれかに記載の D N Aを含有するベクター。  4. A vector containing the DNA according to any one of claims 1 to 3.
5. 請求項 1ないし 3の 、ずれかに記載の D N Aを含有する形質転換体。  5. A transformant containing the DNA according to any one of claims 1 to 3.
6. 請求項 4に記載のベクターで形質転換された形質転換体。 6. A transformant transformed with the vector according to claim 4.
7. 宿主細胞が、 C O S細胞である請求項 5記載の形質転換体。  7. The transformant according to claim 5, wherein the host cell is a COS cell.
8. 宿主細胞が、 C H O細胞である請求項 5記載の形質転換体。  8. The transformant according to claim 5, wherein the host cell is a CHO cell.
9. 配列表の配列番号 1または 2記載のアミノ酸配列の一部または全部を含有 する蛋白質。  9. A protein containing a part or all of the amino acid sequence of SEQ ID NO: 1 or 2 in the sequence listing.
1 0. 前記ァミノ酸配列の一部を含有する蛋白質が成熟蛋白質である請求項 9 記載の蛋白質。 10. The protein according to claim 9, wherein the protein containing a part of the amino acid sequence is a mature protein.
1 1 . 血管内皮細胞に作用し、 該細胞からのプロスタグランジン I 2 ( P G I 2 ) の産生を刺激する活性を有する請求項 9または 1 0に記載の蛋白質。 11. The protein according to claim 9 or 10, which acts on vascular endothelial cells and has an activity of stimulating the production of prostaglandin I 2 (PGI 2) from the cells.
1 2. 請求項 5ないし 8の L、ずれかに記載の形質転換体を培養することからな る請求項 9ないし 1 1のいずれかに記載の蛋白質の製造方法。  1 2. The method for producing a protein according to any one of claims 9 to 11, comprising culturing the transformant according to any one of claims 5 to 8 L.
1 3. 請求項 9ないし 1 1のいずれかに記載の蛋白質の一部または全部を抗原 として得られる抗体。  1 3. An antibody obtained by using a part or all of the protein according to any one of claims 9 to 11 as an antigen.
1 4. 請求項 1 3に記載の抗体を用いる請求項 9ないし 1 1のいずれかに記載 の蛋白質の免疫学的測定方法。  14. The method for immunologically measuring a protein according to any one of claims 9 to 11, wherein the antibody according to claim 13 is used.
1 5. 請求項 9ないし 1 1のいずれかに記載の蛋白質を有効成分として含有す ることを特徴とする、 下記疾患のいずれか少なくとも 1つの疾患に対する治療用 医薬組成物。 15. A pharmaceutical composition for treating at least one of the following diseases, comprising the protein according to any one of claims 9 to 11 as an active ingredient.
溶血性尿毒症症候群、 血栓性血小板減少性紫斑病、 末梢動脈閉塞、 心虚血、 脳 虚血、 動脈硬化、 脳閉塞、 高脂血症、 糖尿病、 心不全、 狭心症、 虚血性心疾患、 うつ血性心疾患、 脈絡膜循環障害、 気管支疾患、 胃潰瘍、 妊娠子癇。 Hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, peripheral arterial occlusion, cardiac ischemia, brain Ischemia, arteriosclerosis, cerebral obstruction, hyperlipidemia, diabetes, heart failure, angina, ischemic heart disease, congestive heart disease, choroidal circulatory disorder, bronchial disease, gastric ulcer, pregnancy eclampsia.
PCT/JP1994/000946 1993-06-11 1994-06-10 Dna and protein coded for thereby WO1994029448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5166155A JPH07132095A (en) 1993-06-11 1993-06-11 Dna and protein coded thereby
JP5/166155 1993-06-11

Publications (1)

Publication Number Publication Date
WO1994029448A1 true WO1994029448A1 (en) 1994-12-22

Family

ID=15826091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000946 WO1994029448A1 (en) 1993-06-11 1994-06-10 Dna and protein coded for thereby

Country Status (2)

Country Link
JP (1) JPH07132095A (en)
WO (1) WO1994029448A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035473A3 (en) * 1998-12-18 2000-11-09 Scios Inc Methods for detection and use of differentially expressed genes in disease states
WO2001073022A1 (en) * 2000-03-29 2001-10-04 Kyowa Hakko Kogyo Co., Ltd. Proliferative glomerular nephritis-associated gene
WO2002081515A1 (en) * 2001-04-03 2002-10-17 Kyowa Hakko Kogyo Co., Ltd. Insulin-like growth factor-binding protein
US6709855B1 (en) 1998-12-18 2004-03-23 Scios, Inc. Methods for detection and use of differentially expressed genes in disease states
EP1524524A1 (en) * 1998-12-18 2005-04-20 Scios Inc. Methods for detection and use of differentially expressed OSF-2 in diagnosis of cardiac hypertrophy
US7109030B2 (en) 2000-03-31 2006-09-19 Nuvelo, Inc. Methods of therapy and diagnosis using insulin-like growth factor binding protein-like polypeptides and polynucleotides
EP2498095A2 (en) 2007-01-25 2012-09-12 Roche Diagniostics GmbH Use of IGFBP-7 in the assessment of heart failure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045533A (en) * 1983-08-11 1985-03-12 Kureha Chem Ind Co Ltd Prostaglandin adjustor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045533A (en) * 1983-08-11 1985-03-12 Kureha Chem Ind Co Ltd Prostaglandin adjustor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035473A3 (en) * 1998-12-18 2000-11-09 Scios Inc Methods for detection and use of differentially expressed genes in disease states
US6709855B1 (en) 1998-12-18 2004-03-23 Scios, Inc. Methods for detection and use of differentially expressed genes in disease states
EP1524524A1 (en) * 1998-12-18 2005-04-20 Scios Inc. Methods for detection and use of differentially expressed OSF-2 in diagnosis of cardiac hypertrophy
WO2001073022A1 (en) * 2000-03-29 2001-10-04 Kyowa Hakko Kogyo Co., Ltd. Proliferative glomerular nephritis-associated gene
EP1275717A1 (en) * 2000-03-29 2003-01-15 Kyowa Hakko Kogyo Co., Ltd. Proliferative glomerular nephritis-associated gene
EP1275717A4 (en) * 2000-03-29 2004-10-06 Kyowa Hakko Kogyo Kk Proliferative glomerular nephritis-associated gene
US7109030B2 (en) 2000-03-31 2006-09-19 Nuvelo, Inc. Methods of therapy and diagnosis using insulin-like growth factor binding protein-like polypeptides and polynucleotides
WO2002081515A1 (en) * 2001-04-03 2002-10-17 Kyowa Hakko Kogyo Co., Ltd. Insulin-like growth factor-binding protein
EP2498095A2 (en) 2007-01-25 2012-09-12 Roche Diagniostics GmbH Use of IGFBP-7 in the assessment of heart failure
US10488422B2 (en) 2007-01-25 2019-11-26 Roche Diagnostics Operations, Inc. Use of IGFBP-7 in the assessment of heart failure
US10996229B2 (en) 2007-01-25 2021-05-04 Roche Diagnostics Operations, Inc. Use of IGFBP-7 in the assessment of heart failure

Also Published As

Publication number Publication date
JPH07132095A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
US5723318A (en) DNA coding for megakaryocyte potentiator
JP2002518010A (en) 94 human secreted proteins
KR20010015711A (en) POLYPEPTIDE, cDNA ENCODING THE POLYPEPTIDE, AND USE OF THE BOTH
JPH04503352A (en) Recombinant DNA molecules, hosts, methods and human somatomedin carrier protein-like polypeptides
JP4742345B2 (en) Polypeptide derived from Gramostra spatula that blocks calcium channel and gene thereof
CA2017466A1 (en) Bone calcification factor
JPH025869A (en) Dna sequence, recombinant dna molecule and lipocortins iii, iv, v, vi
EP0279459A2 (en) DNA coding an anticoagulant polypeptide
JPH08507205A (en) How to promote cartilage foundation formation
JPH11511972A (en) Antisecretory factor peptide modulates changes in pathological permeability
WO1994029448A1 (en) Dna and protein coded for thereby
KR100270348B1 (en) Transcription factor aprf
JP2003521215A (en) 83 human secreted proteins
Newsome et al. Molecular cloning of a cDNA encoding the glycoprotein of hen oviduct microsomal signal peptidase
JPH0751065A (en) Glycoprotein 39 gene
US20050069557A1 (en) Vertebrate globin
KR100692226B1 (en) NOVEL POLYPEPTIDES, cDNAS ENCODING THE SAME AND UTILIZATION THEREOF
US7749758B2 (en) Human and mammalian stem cell-derived neuron survival factors
US7544485B2 (en) Baldness related gene and the polypeptide encoded thereby, and uses
JPH06100589A (en) New proteinic physiologically active substance and its dna
WO2001038371A1 (en) A NOVEL POLYPEPTIDE-HUMAN GLUTAMATE tRNA SYNTHETASE 58 AND THE POLYNUCLEOTIDE ENCODING SAID POLYPEPTIDE
JP2002238589A (en) NEW sMAD3 SPLICE VARIANT AS TARGET OF CHRONIC RENAL FAILURE, ATHEROSCLEROSIS AND FIBROSIS
US5661003A (en) Water channel
JPH06205677A (en) Glycoprotein 10 gene
US7273724B1 (en) Polypeptide-human actin-binding protein 54 and a polynucleotide encoding the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA