WO1994029224A1 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
WO1994029224A1
WO1994029224A1 PCT/JP1994/000879 JP9400879W WO9429224A1 WO 1994029224 A1 WO1994029224 A1 WO 1994029224A1 JP 9400879 W JP9400879 W JP 9400879W WO 9429224 A1 WO9429224 A1 WO 9429224A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
water
water treatment
filter medium
assimilable
Prior art date
Application number
PCT/JP1994/000879
Other languages
French (fr)
Japanese (ja)
Inventor
Shinpei Yamamoto
Kazuhiro Takagi
Etutami Kiyotani
Iwane Kagimoto
Shinichi Kariya
Satoshi Matumoto
Original Assignee
Toyo Denka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5168349A external-priority patent/JP2619201B2/en
Application filed by Toyo Denka Kogyo Co., Ltd. filed Critical Toyo Denka Kogyo Co., Ltd.
Priority to DE1994625361 priority Critical patent/DE69425361T2/en
Priority to AT94916432T priority patent/ATE194972T1/en
Priority to EP19940916432 priority patent/EP0655420B1/en
Priority to CA 2142609 priority patent/CA2142609C/en
Priority to BR9404876A priority patent/BR9404876A/en
Publication of WO1994029224A1 publication Critical patent/WO1994029224A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment technique, and particularly to a water treatment technique suitable for performing advanced purification treatment of sewage having a relatively low pollution load.
  • LAS Liner Alkylbenzene Sulfonates; a surfactant used as a main component of synthetic detergents
  • activated sludge method that enables efficient water treatment of sewage with relatively high pollution loads such as sewage and industrial wastewater. It is well known that) can be effectively removed from water [for example, “Research on Water Pollution,” Vol. 5, No. 1, pp. 19-25 and Vol. 2, No.
  • LAS is removed by adsorption and biodegradation by microorganisms in the activated sludge method, but the mechanism of adsorption and biodegradation also works in the chitosan charcoal tank. I have. Regarding this adsorption and biodegradation, chitosan charcoal has the property of excellent bacterial colonization, and the bacteria can use the chitosan attached to its pores as a supplementary nutrient source or assimilable matter.
  • Co-metabolism action (Co-Metabol ism; the coexistence of other energy sources and nutrients that are cell-synthetic substances enables or accelerates the biodegradation of synthetic organic compounds such as LAS and pesticides for the first time.
  • Phenomena that can be used effectively, and that the bacterial activity is stable even when the load of organic pollutants as a nutrient source fluctuates quantitatively.
  • Tosan has a high hydrophobicity, which means it can be expected to have a high adsorption capacity due to hydrophobic adsorption.Also, by aerating the inside of the chitosan charcoal tank and supplying a sufficient amount of oxygen, a forced convection state is created in the water to be treated. Efficient LAS removal is achieved by the synergistic effect of efficient contact of the water to be treated and improvement of the adsorption opportunity.
  • chitosan charcoal was found to colonize bacteria at high density, but there were basically only two types of chitosan charcoal, indicating that chitosan charcoal has an extremely specific and selective microbial colonization function.
  • a combination of two conditions namely, the kind of a material called chitosan and the size of the pores of a charcoal base material as pores for microorganisms to settle, selectively fix specific microorganisms, and this selective settlement It has been demonstrated practically that a particular contaminant (LAS in this example) can be efficiently treated by these microorganisms.
  • the present invention is based on the above-described findings, and shows that the assimilable filter material represented by chitosan charcoal formed by attaching chitosan to charcoal, that is, the pore wall of the pores of the porous base material,
  • Pseudomonas fluorecens b iover 5 and Pseudomonas put ida biover A are selectively established on assimilable filter media such as chitosan charcoal, and LAS is removed by these two types of bacteria.
  • assimilable filter media such as chitosan charcoal
  • LAS is removed by these two types of bacteria.
  • the specific bacteria selectively fixed to the assimilating filter media are made to biodegrade and remove specific contaminant components with high efficiency.
  • the water to be treated is brought into contact with the filter medium while aerobically aerobically aerated, and a forced convection state is generated in the water to be treated when contacting the filter medium. ing.
  • the function of the assimilated material such as chitosan applied to the assimilable filter medium is to cover the spine structure on the surface of the pore wall of the base material to such an extent that it does not adversely affect microorganisms.
  • Pore The pores must be of a degree that can at least bury the spinous structures on the pore wall surface, such as to eliminate the polarity of the pore walls and to form a supplementary nutrient source for microorganisms that settle in the pores. If necessary, it can be considered that the required amount is satisfied.
  • the assimilable filter medium made of chitosan-treated charcoal exhibits preferable characteristics, but from the principle derived from this fact,
  • a material having a porous structure similar to that of charcoal for example, a porous mineral, or a sponge-like material that has been subjected to chitosan processing may be used as a base material, so that the same effect may be obtained.
  • polysaccharides such as chitosan are particularly preferred as the assimilation substances to be attached to the base material.
  • Such water treatment equipment is based on the properties of assimilable filter media such as chitosan charcoal.
  • the mechanism described above can effectively remove LAS and other synthetic organic compounds, but has the following additional features.
  • biodegradation can be used more effectively than a system that removes LAS or the like only by adsorption after the general treatment, for example, using activated carbon or the like.
  • the system since it can be performed together with the processing of the B ⁇ D component, the system can be simplified and the cost can be reduced.
  • the present invention also provides a water treatment device capable of performing the above-described efficient removal of synthetic organic compounds as well as advanced treatment of BOD components, etc., by filling a filter medium for removing suspended solids and the like.
  • a denitrification tank provided with a pre-treatment tank, an adsorbent layer filled with bacterial assimilates, and an adsorbent layer filled with an adsorbent capable of adsorbing ammonium nitrogen.
  • a water treatment apparatus including a chitosan charcoal tank filled with chitosan charcoal, a dephosphorization tank filled with an adsorbent capable of adsorbing phosphorus, and a finishing tank filled with charcoal.
  • the main treatment functions in each tank of this water treatment device are as follows. In addition to these main treatments, various treatment functions are mixed depending on the types of the filter media and the like which are additionally filled in each tank. Each of these processes is a biological process, and these processes are combined with ancillary processes to realize advanced processes.
  • BOD components organic substances
  • SS loose solids
  • nitrate nitrogen is converted to ammonia nitrogen and nitrogen gas (N 2 ) and removed by three types of processes in which nitrate nitrogen coexists under highly anaerobic conditions provided by the assimilate layer. More specifically, advanced anaerobic conditions are formed in the material layer by immersing the material in water and consuming oxygen by aerobic bacteria that temporarily breed using the material.
  • the conversion to ammonia nitrogen is based on the anaerobic conditions in the assimilation layer and the biological activity of bacteria that have nitrate reducing ability that breeds using assimilation, and the advanced anaerobic conditions in the assimilation layer, It proceeds by purifying chemicals with high reduction levels.
  • N 2 conversion to nitrogen gas (N 2) is done by denitrifying bacteria breeding by utilizing the anaerobic conditions contribute product in well assimilated Monoso, N 0 3 - + 5 H (hydrogen donor)-0.5 N 2 +2 H 2 O + OH—.
  • N 2 ammonium nitrogen generated in the assimilable material layer travels to the adsorbent layer as it travels on the water stream in which the amount of dissolved oxygen is reduced by passing through the assimilable material layer, and at the same time as the adsorbent layer. Is adsorbed without being redissolved in the adsorbent.
  • nitrogen gas is released into the atmosphere.
  • the synthetic organic compounds such as LAS described above are removed together with the decomposition of BOD components.
  • dephosphorization is performed by adsorption with an adsorbent, and in the finishing tank, decolorization and deodorization are performed.
  • final removal of SS and decomposition of B 0 D component are performed.
  • each tank in the water treatment apparatus As described above, from upstream to downstream, a pretreatment tank, a denitrification tank, a chitosan charcoal tank, a dedicated aeration tank, a deaeration tank Arranging in the order of the phosphorus tank and the finishing tank is a preferable example from the viewpoint of each treatment.
  • the dephosphorization in the water treatment apparatus as described above has a relatively low correlation with other treatments and the degree of freedom in the treatment order is high, the adsorbent for dephosphorization is overlapped with the filler in another tank.
  • the dephosphorization tank is integrated with other tanks, it is particularly structurally simple to integrate the dephosphorization tank with the chitosan charcoal tank. Above is preferred.
  • one of the tanks was paired with L and two of them, and both tanks were provided with a common sludge pit, and the sludge was poured into one tank from above. If the water to be treated is allowed to flow into the other tank from below via a sludge pit, a forced downward flow and an upward flow can be generated in both tanks. It is more preferable because the contact efficiency can be increased.
  • a partition plate for partitioning the two tanks forming a pair is formed so as to protrude sufficiently high with respect to a normal water level state, and the filling material in the tanks is formed. It is more preferable that the water level in the upstream tank be higher than the water level in the downstream tank when the water permeability of the tank decreases.
  • the downflow pressure and the upflow pressure can be increased by the water level difference between the upstream side and the downstream side, so that the water flow resistance due to the sludge (biofilm and attached matter) accumulated on the surface of the packing material and the gaps between them Which can be countered by this It is also possible to prevent sludge degradation and to remove sludge appropriately by this high-pressure water flow, thus eliminating the need for periodic sludge removal work such as backwashing. .
  • FIG. 1 is a sectional view of a water treatment apparatus according to one embodiment of the present invention.
  • FIG. 2 is a plan view of the water treatment apparatus of FIG.
  • FIG. 3 is a sectional view taken along the arrow SA 3 —SA 3 in FIG.
  • Fig. 4 is a cross-sectional view of the denitrification tank.
  • FIG. 5 is a graph showing LAS data in the water treatment apparatus according to the embodiment of the present invention.
  • Water treatment apparatus in this embodiment is a sea urchin designed Example I with the capacity of about 5 O m 3 days on average, as shown in FIGS. 1 to 3, the total length of about 1 lm, a width of about 3. 5 m
  • the inside of a casing formed of concrete in a rectangular parallelepiped with a height of about 2.2 m is almost evenly divided by the main partition wall W into five first to fifth five blocks Ba to Be.
  • ⁇ Be has a structure in which necessary tanks are set.
  • the first block B a is entirely a sedimentation tank 1.
  • the sedimentation tank 1 is used to settle and remove relatively large suspended solids from the water to be treated, and has a flow straightening tube 2 at the upstream end and a flow straightening tube 3 at the downstream end. The others are empty.
  • the water to be treated that flows into the sedimentation tank 1 from the inflow path P is made to flow downward by the inflow rectifying tube 2, flows toward the bottom of the sedimentation tank 1, and moves gently in the tank. After that, it flows out from the outlet 3t of the outflow rectifier 3 to the second block Bb.
  • the residence time of the water to be treated in the sedimentation tank 1 during this period is about four hours, and during this residence, relatively large suspended matters are settled and removed.
  • a sludge pit Db having a predetermined depth is formed in the second block Bb: a perforated bottom plate 4b is provided so as to float above the bottom of the casing, and is erected in the center of the perforated bottom plate 4b.
  • a pretreatment tank 6 and a denitrification tank 7 are formed by being partitioned by a partition plate 5b. Therefore, both tanks 6 and 7 are in communication via sludge pit Db, and the water to be treated is After flowing down in the treatment tank 6, it flows into the denitrification tank ⁇ through the sludge pit Db as an ascending flow.
  • the pretreatment tank 6 is filled with a porous filter medium (not shown) made of plastic.
  • the filter medium filters the SS and decomposes and removes the B0D component by microorganisms settled on the filter medium. .
  • the denitrification tank 7 is for removing nitrogen dissolved in the water to be treated in the form of nitric acid, and as shown in FIG. 4, a material layer 8 and an adsorbent layer 9 are provided in a stacked state.
  • the assimilable material layer 8 is formed by filling a dead body of a plant, which serves as a nutrient source for the bacteria and provides a favorable place for the bacteria, with a density that allows appropriate water permeability.
  • the core layer is made by shredding the core of a traditional tatami mat, a dead branch or a firewood of shiitake mushrooms into an appropriate size between the skin layers 8 s using straw as a straw-like structure. It is formed by filling as 8 c.
  • the assimilate layer 8 is highly anaerobic by being immersed in the water to be treated as described above, and under these anaerobic conditions, the three types of coexisting processes described above cause the nitrate-containing ammonia gas and nitrogen gas to flow.
  • the nitrogen gas is adsorbed and removed by the adsorbent layer 9, while the nitrogen gas is released into the air.
  • the adsorbent layer 9 is formed by filling a gravel-like adsorbent of a mineral substance such as zeolite (zeolites) or bamicularite, which has a high ability to adsorb ammonia nitrogen. It has a two-layer structure with a large L, a layer 9 m made of an adsorbent, and a small L of size 9 n made of an adsorbent.
  • zeolite zeolites
  • bamicularite which has a high ability to adsorb ammonia nitrogen. It has a two-layer structure with a large L, a layer 9 m made of an adsorbent, and a small L of size 9 n made of an adsorbent.
  • the third block Bc is the first chitosan charcoal tank 10 for the decomposition of B0D components by aerobic biological treatment, and forms a sludge pit Dc at the bottom.
  • a chitosan-treated charcoal (not shown) treated with chitosan on the perforated bottom plate 4c is laminated and the chitosan charcoal layer is treated in the tank by air supply means 11c.
  • the air rate is set to be strong enough to cause forced convection in the water. Since chitosan charcoal easily floats on water, an adsorbent for ammonia nitrogen adsorption is placed on it as a weight.
  • Chitosan charcoal obtained by the following treatment is used.
  • the charcoal used was a mixed charcoal of hardwood and conifer at a ratio of 8: 2, which was crushed in the size of 5 to 1 Omm.
  • Chitosan is a pale yellow-white powder having a deacetylation degree of 70% or more [Koyo Chemical Sanko SK-400 (trademark) by Koyo Chemical Co., Ltd.:! It was used.
  • chitosan charcoal itself has excellent adsorption power to LAS, but such excellent adsorption power may cause various characteristics of chitosan charcoal and forced convection as described above. It is thought that excellent LAS removal ability will be realized by cooperation of aeration conditions.
  • the fourth block Bd is almost equally divided by a partition plate 5d erected from the bottom of the casing, and the upstream side is a second chitosan charcoal tank 12 and the downstream side is a tank 13 for aeration.
  • the second chitosan charcoal tank 12 is basically the same as the first chitosan charcoal tank 10 except that its size power is about half.
  • the dedicated aeration tank 13 is for supplying oxygen to the water to be treated, and is similarly empty as the sedimentation tank 1, and the air supplied by the air supply means 1 1d diffuses into the water to be treated. It is made easy.
  • the fifth block Be has the same structure as the second block Bb, and is provided with a dephosphorization tank 14 and a finishing tank 15.
  • the dephosphorization tank 14 has a main purpose of adsorbing and removing phosphorus, and also serves to supplementarily adsorb and remove ammonia nitrogen.
  • An adsorbent (not shown) for adsorbing phosphorus and an adsorbent for adsorbing ammonia nitrogen are used.
  • Adsorbent (not shown) filled in layers Have been.
  • the finishing tank 15 is filled with ordinary charcoal (not shown), and the charcoal is used for decolorization and deodorization, while filtering fine SS and performing final biological treatment. You.
  • each of the partition plates 5b, 5d, and 5e in the second block Bb, the fourth block Bd, and the fifth block Be is more than the normal water level state (the state in FIG. 1). It is formed so as to protrude higher. This is intended to raise the water level of the upstream tanks higher than the water level of the downstream tanks in response to the increase in water flow resistance caused by the accumulation of sludge on the filter media and chitosan charcoal in each tank. As a result, a reduction in water permeability can be prevented and a constant backwashing effect can be achieved.
  • a sludge collection pipe 16 is provided along the casing, and the sludge is collected from the sludge collection pipe 16 at any time via branch pipes facing each block. I can do it.
  • each block is entirely covered with a lid to prevent rainwater intrusion and sunlight irradiation.
  • Figure 5 shows the data of LAS in the above-mentioned combined water treatment system.
  • a large variation in the amount of LAS was observed in the first chitosan charcoal tank 10, and the excellent LAS removal ability of the first chitosan charcoal tank 10 can be known.
  • the present invention makes it possible to selectively use specific microorganisms by effectively utilizing the characteristics of assimilable filter media. It can efficiently remove synthetic organic pollutants such as LAS, and can greatly contribute to the conservation of water quality in the basin.
  • the water treatment apparatus of the present invention is composed of a denitrification tank and a chitosan charcoal tank with high treatment efficiency as a core, and a pretreatment tank, a dephosphorization tank, and a finishing tank are combined in a complex manner.
  • Advanced water treatment combined with phosphorus can all be performed more efficiently by biological treatment. Therefore, this can be used, for example, for purification treatment of small rivers where municipal wastewater is drained as it is, to preserve the water quality environment in harmony with nature. Can greatly contribute to c

Abstract

This invention aims at providing water treatment techniques capable of carrying out a high-performance water purifying treatment by efficiently removing a synthetic organic compound, such as a surface active agent for a detergent and components of agricultural chemicals from contaminated water having a comparatively low load of, for example, BOD. To achieve this object, a utilizable filter medium formed by depositing a substrate having a specific utilizability by the target microorganisms on a porous base material, such as charcoal, is used as the filter medium, with which contaminated water to be treated is brought into contact under aerobic conditions. Using the utilizable filter medium in this manner enables specified microorganisms having a high efficiency of removing synthetic organic contaminants to be selectively utilized, and synthetic organic compounds to be efficiently removed.

Description

明 細 書  Specification
水処理方法及び水処理装置  Water treatment method and water treatment device
〔技術分野〕  〔Technical field〕
本発明は、 水処理の技術に関し、 特に比較的汚染負荷が低い汚水について高度 な浄化処理を行なうのに好適な水処理技術に関する。  The present invention relates to a water treatment technique, and particularly to a water treatment technique suitable for performing advanced purification treatment of sewage having a relatively low pollution load.
〔発明の背景〕  [Background of the Invention]
下水や工場排水のように汚染負荷の比較的高い汚水に対して効率的な水処理を 可能とする活性汚泥法により L A S (Liner Alkylbenzene Sulfonates ;合成洗 剤の主要成分として用いられている界面活性剤) を水中から有効に除去できるこ とはよく知られている 〔例えば、 「水質汚濁研究」 第 5巻第 1号第 1 9〜2 5頁 及び同誌同巻第 2号第 6 3 ~ 7 2頁の 「活性汚泥による直鎖アルキルベンゼンス ルホン酸ナトリウム (L A S ) の生分解に関する研究(I) 、 (I I) ; 1 9 8 2年〕 。 しかし L A Sや農薬などの合成有機化合物の環境への供給ルー卜として大きな 比重を占めると考えられる流域河川、 特に生活雑排水や農薬汚染水の流入する河 川水の処理には、 そこにおける汚染負荷が小さ過ぎたり負荷の日変動が大きいた めに活性汚泥法の適用は困難である。  LAS (Liner Alkylbenzene Sulfonates; a surfactant used as a main component of synthetic detergents) by the activated sludge method that enables efficient water treatment of sewage with relatively high pollution loads such as sewage and industrial wastewater. It is well known that) can be effectively removed from water [for example, “Research on Water Pollution,” Vol. 5, No. 1, pp. 19-25 and Vol. 2, No. 63-72 “Study on Biodegradation of Linear Alkylbenzene Sodium Sulfonate (LAS) by Activated Sludge (I), (II); 1982] However, supply of synthetic organic compounds such as LAS and pesticides to the environment Active in the treatment of river basin rivers, which are considered to have a large specific gravity as a root, especially river water into which domestic wastewater or pesticide contaminated water flows in, because the pollution load there is too small or the daily fluctuation of the load is large. The application of the sludge method is difficult.
またこのような河川水の処理を意図した水処理技術についても既に多くの例が 知られている力 これら既存の技術は、 L A Sの除去については多くの効果を期 待できな L、のが実情であり、 またそれに用いるろ材の目詰まりや飽和などによる 性能低下などの点で、 何れも高度な浄化処理の安定的持続性に問題を残している。 さらに木炭や活性炭を用いた L A Sの吸着除去についても多くの報告があるが、 木炭は L A Sの除去を効果的に行えるだけの吸着力を持っていないし、一方活性 炭は高い吸着力を持つものの飽和の問題ゃランニングコス卜の問題を抱えている。 つまり L A Sのような有害な合成有機汚染物の環境への主要な排出ルートであ りこれらの除去が強く要望されるところの河) 11水の処理にっ 、ては、 合成有機汚 染物を実用レベルで効果的に除去できる手法は未だないのが現状である。  In addition, many examples of water treatment technologies intended for the treatment of river water are already known. These existing technologies cannot expect much effect in removing LAS. In addition, both have problems in the stable sustainability of advanced purification treatments in terms of performance degradation due to clogging and saturation of the filter media used for them. There are also many reports on the removal of LAS by adsorption using charcoal or activated carbon.However, charcoal does not have sufficient adsorption power to effectively remove LAS, whereas activated carbon has a high adsorption power but is saturated. The problem is running costs. (In other words, rivers, which are the main routes of release of harmful synthetic organic pollutants such as LAS to the environment and their removal is strongly demanded.) 11 In the treatment of water, synthetic organic pollutants are practically used. At present, there is no method that can be effectively removed at the level.
ところで本願発明者らは、微生物の定着性に優れており、 これを "ろ材" とし て用いることにより、 生物学的水処理の効率向上を期待できる木炭製のマイク口 ハビ夕ットを先に開発し (日本国特許出願第 4一 5 9 1 7 7号) 、 また水中の硝 酸態窒素を脱窒菌により窒素ガスとして除去するだけの従来の方法とは異なり、 被吸着性の小さい硝酸態窒素を被吸着性の高いアンモニア態窒素に変換し、 この ァンモニァ態窒素を吸着材により吸着して除去するプロセスを取り入れた方法で あり、併存する複数種類の生物学的処理を同時進行的に利用できる結果、 比較的 簡単な設備構造で高い脱窒処理を可能とする脱窒方法も先に開発した (日本国特 許出願第 4一 2 9 6 5 3 3号) 。 し力、し、 これらの技術は何れも新規な技術で、 これらを有効に活用して高度な水処理を総合的に行う水処理システムの開発が課 題として残されていた。 そこで本願発明者らは、上記各技術を活用した新たな水 処理システムの開発を進め、 後述する水処理装置を得た。 By the way, the inventors of the present application have proposed a charcoal-made microphone mouth Habi-Yu-Yat, which is excellent in microbial colonization and can be expected to improve the efficiency of biological water treatment by using it as a "filter medium". Developed (Japanese Patent Application No. 4-159177), and underwater nitrate Unlike the conventional method, which simply removes oxygen nitrogen as nitrogen gas by denitrifying bacteria, nitrate nitrogen, which is less adsorbable, is converted into highly adsorbable ammonia nitrogen, and this ammonia nitrogen is adsorbed by the adsorbent. This is a method that incorporates a process of adsorption and removal.As a result of the simultaneous use of multiple types of coexisting biological treatments, there is also a denitrification method that enables high denitrification treatment with a relatively simple facility structure. Developed earlier (Japanese Patent Application No. 4-1926533). Each of these technologies is a new technology, and the development of a water treatment system that comprehensively performs advanced water treatment by effectively utilizing these technologies remains as an issue. Therefore, the inventors of the present application proceeded with the development of a new water treatment system utilizing each of the above technologies, and obtained a water treatment apparatus described later.
そしてこの水処理装置について先ずモデル実験を行なって意図する処理レベル を十分に達成できることを確認し、 それから実際規模における性能の確認のため に、 試験装置を実際の河川に設置して性能データの集積等の試験を進めた。 この試験にあつて上記のような問題意識のもとに L A Sにつ t、ての分析を行つ たところ、 流入水中で約 0. 4 m g リットルであつた高濃度の L A S力く最終の放 流水中では 0. 04m g Zリツ卜ル程度になつており、極めて優良な L A S除去性能 を有することを見出した。  First, model experiments were performed on this water treatment equipment to confirm that the intended treatment level could be sufficiently achieved, and then, in order to confirm the performance at the actual scale, the test equipment was installed on an actual river to accumulate performance data. And other tests. Analysis of the LAS in this test with the above awareness of the problems revealed that the final release of the high concentration LAS was about 0.4 mg liter in the influent water. Under running water, it was about 0.04 mg Z liter, and it was found that it had extremely good LAS removal performance.
そこでさらに後述の水処理装置における各槽の何れが L A Sの除去に働いてい るかについて分析を進めたところ、 キトサン木炭槽カ <最も大きく働いていること が分かって来た。 またさらにキトサン木炭槽が L A Sの除去に有効に働くメカ二 ズムにつ 、て解析したところ、以下のようなメカ二ズムが推測された。  Therefore, further analysis was conducted on which of the tanks in the water treatment system described below worked to remove LAS, and it was found that the chitosan charcoal tank had the greatest effect. Furthermore, when the mechanism of the chitosan charcoal tank effectively working for the removal of LAS was analyzed, the following mechanism was estimated.
即ち、 上記の文献にも見られるように、 活性汚泥法においては吸着と微生物に よる生分解により L A Sの除去がなされるが、 この吸着と生分解のメ力二ズムが キトサン木炭槽でも働いている。 そして、 この吸着と生分解に関して、 キトサン 木炭が細菌の定着性に優れるという特性の他に、 その細孔に付着しているキトサ ンを細菌が捕助的な栄養源つまり資化物として利用できるので、 コメタボリズム 作用 (Co-Metabol ism;他にエネルギー源ゃ菌体合成物質となる栄養源が共存す ることにより L A Sや農薬のような合成有機化合物の生分解が初めて可能になつ たり促進されたりする現象) を有効に活用でき、 また栄養源となる有機汚染物負 荷の量的変動があつても細菌の活動力が安定的であるという特性があること、 キ トサンは疎水性力《高いため疎水吸着による高い吸着能を期待できること、 及びキ トサン木炭槽内を曝気して十分な酸素の供給と共に処理対象水に強制対流状態を 生じさせることにより、 キトサン木炭への処理対象水の効率的な接触が図られて 吸着機会が向上させられていることなどがさらに相乗的に作用することにより、 効率的な L A S除去がなされる。 That is, as can be seen in the above-mentioned literature, LAS is removed by adsorption and biodegradation by microorganisms in the activated sludge method, but the mechanism of adsorption and biodegradation also works in the chitosan charcoal tank. I have. Regarding this adsorption and biodegradation, chitosan charcoal has the property of excellent bacterial colonization, and the bacteria can use the chitosan attached to its pores as a supplementary nutrient source or assimilable matter. Co-metabolism action (Co-Metabol ism; the coexistence of other energy sources and nutrients that are cell-synthetic substances enables or accelerates the biodegradation of synthetic organic compounds such as LAS and pesticides for the first time. Phenomena that can be used effectively, and that the bacterial activity is stable even when the load of organic pollutants as a nutrient source fluctuates quantitatively. Tosan has a high hydrophobicity, which means it can be expected to have a high adsorption capacity due to hydrophobic adsorption.Also, by aerating the inside of the chitosan charcoal tank and supplying a sufficient amount of oxygen, a forced convection state is created in the water to be treated. Efficient LAS removal is achieved by the synergistic effect of efficient contact of the water to be treated and improvement of the adsorption opportunity.
また L A Sの除去に実際に働いている微生物の分析を進めて来たところ、以下 のような事実も明らかになった。 先ず、 キトサン木炭には高密度で細菌の定着が 見られたが、 その種類は基本的に 2種類しかなく、 キトサン木炭が極めて微生物 の特定的な選択定着機能を有すると言うことが明らかになった。 つまり、 キトサ ンという資化物の種類と微生物が住み着くための細孔として木炭という基材が持 つ細孔のサイズという二つの条件付けの組み合わせにより、 特定の微生物を選択 的に定着させ、 この選択定着の微生物により特定の汚染成分 (この例では L A S ) を効率的に処理させ得るということを実際的に証明できた。 また、 標準的な 同定法で同定したところ、 この 2種類の細菌は、 何れも既に知られており入手が 容易であるシュ一ドモナス属の細菌で、一- 3は Pseudomonas f luorecens biover 5と同定でき、 他は Pseudomonas put ida bioverAと同定できた。  In addition, as we proceeded with the analysis of microorganisms that actually work in LAS removal, the following facts became clear. First, chitosan charcoal was found to colonize bacteria at high density, but there were basically only two types of chitosan charcoal, indicating that chitosan charcoal has an extremely specific and selective microbial colonization function. Was. In other words, a combination of two conditions, namely, the kind of a material called chitosan and the size of the pores of a charcoal base material as pores for microorganisms to settle, selectively fix specific microorganisms, and this selective settlement It has been demonstrated practically that a particular contaminant (LAS in this example) can be efficiently treated by these microorganisms. When identified by standard identification methods, these two types of bacteria are already known and readily available, and are identified as Pseudomonas florecens biover 5, and 1-3 are identified as Pseudomonas florecens biover 5. Others could be identified as Pseudomonas put ida bioverA.
〔発明の開示〕  [Disclosure of the Invention]
本発明は、 以上のような知見に基づいており、 木炭にキトサンを付着させて形 成したキトサン木炭に代表される資化性ろ材、 つまり多孔性の基材が有する細孔 の孔壁に、 少なくとも微生物が住みつくに必要な深さ範囲について目的の微生物 に対し特異的な資化性を持つ資化物を付着させてなる資化性ろ材が持つ上記のよ うな特性を有効に利用することにより、 合成有機化合物の効率的除去を行なうも のである。 より具体的には、 キトサン木炭のような資化性ろ材にシユードモナス 属の Pseudomonas f luorecens b iover 5及び Pseudomonas put ida biover Aを選 択的に定着させ、 この 2種類の細菌により L A Sの除去を行なわせる例のように、 資化性ろ材に選択的に定着させた特定の細菌に特定の汚染成分の生分解除去を高 、効率で行なわせるようにしている。 そしてそのために資ィ匕性ろ材に対し曝気し て好気的条件としつつ処理対象水を接触させるようにし、 また資化性ろ材への接 触に際して処理対象水に強制対流状態を生じさせるようにしている。 これに用いる資化性ろ材に施すキ卜サンのような資化物の機能は、基材の細孔 孔壁の表面の棘状構造を微生物への悪影響力く生じない程度に覆うこと、 また細孔 孔壁の極性を解消すること、 さらに細孔内に定着する微生物の補助栄養源を形成 することなどにあるカ^ 少なくとも孔壁表面の棘状構造を埋もれさせることので きる程度のものであれば、 必要量を満たすとみなせる。 The present invention is based on the above-described findings, and shows that the assimilable filter material represented by chitosan charcoal formed by attaching chitosan to charcoal, that is, the pore wall of the pores of the porous base material, By effectively utilizing the above-mentioned properties of the assimilable filter medium attached with assimilable materials having specific assimilation properties to the target microorganisms, at least for the depth range necessary for the microorganisms to settle in, It efficiently removes synthetic organic compounds. More specifically, Pseudomonas fluorecens b iover 5 and Pseudomonas put ida biover A are selectively established on assimilable filter media such as chitosan charcoal, and LAS is removed by these two types of bacteria. As shown in the example, the specific bacteria selectively fixed to the assimilating filter media are made to biodegrade and remove specific contaminant components with high efficiency. In order to achieve this, the water to be treated is brought into contact with the filter medium while aerobically aerobically aerated, and a forced convection state is generated in the water to be treated when contacting the filter medium. ing. The function of the assimilated material such as chitosan applied to the assimilable filter medium is to cover the spine structure on the surface of the pore wall of the base material to such an extent that it does not adversely affect microorganisms. Pore The pores must be of a degree that can at least bury the spinous structures on the pore wall surface, such as to eliminate the polarity of the pore walls and to form a supplementary nutrient source for microorganisms that settle in the pores. If necessary, it can be considered that the required amount is satisfied.
資化物を基材の細孔孔壁に付着させる手法としては種々のものが考えられるが、 最も確実な方法としては、 例えばキトサンの場合であれば、 キトサン溶液に基材 を一定時間浸漬させる方法である。 より簡易な方法としては、 基材にキトサン溶 液を散布乃至噴霧する方法力《可能で、 この場合には細孔の深部までの均一な付着 は必ずしも生じな L、場合があり得るが、 微生物の定着にはこれでも十分である。 つまり、微生物が "住居" とし得る範囲についてキトサンが前記の如く付着して いれば、 必要な条件を満たし得ると言うことである。  There are various methods for attaching the assimilates to the pore walls of the substrate, but the most reliable method is to immerse the substrate in a chitosan solution for a certain time, for example, in the case of chitosan. It is. As a simpler method, a method of spraying or spraying a chitosan solution on a base material is possible (in this case, uniform adhesion to the deep part of the pores may not necessarily occur, but there may be cases where microorganisms are used. This is enough for fixing. In other words, the necessary condition can be satisfied if the chitosan adheres as described above in a range where the microorganisms can be considered as “dwelling”.
本発明において機能する前述のようなメカニズムについては、 キトサン加工し た木炭による資化性ろ材が好ましい特性を発揮することは実際的に知りえた事実 であるが、 この事実から導かれる原理からして当然に、 木炭と同様な多孔性構造 を有する素材、 例えば多孔性の鉱物、 あるいはスポンジ状の素材などにキトサン 加工を施したものを基材として用いても同様に働くと考えられる。 また、 基材に 付着させる資化物についても、 キトサンに代表されるような多糖類が特に好まし いが、 その他でも前述の要件、 つまり特定の微生物に対し特異性があること、前 述のコメタボリズム作用などのために機能する捕助的な栄養源としての特性を持 つこと、 疎水性があることなどの要件を満足させることのできるものであれば十 分利用可能である。 し力、も、 資化物の種類による定着特異性の他に多孔性基材に おける細孔の形状やサイズも定着特異性に寄与させることができるので、 資化物 の種類と基材の種類の組み合わせを適宜に選択することにより、 微生物の選択的 定着性をさらに高めることができる。 従って、 処理対象の汚染物についても L A Sだけでなく、 L A Sと同様に合成有機化合物である例えば農薬成分などについ ても、 これらを効率的に分解する特定の微生物を選択的に定着させることで、 同 様な除去メ力二ズムを有効に発揮させることができると考えられる。  Regarding the mechanism described above that functions in the present invention, it is a fact that it was actually known that the assimilable filter medium made of chitosan-treated charcoal exhibits preferable characteristics, but from the principle derived from this fact, Naturally, a material having a porous structure similar to that of charcoal, for example, a porous mineral, or a sponge-like material that has been subjected to chitosan processing may be used as a base material, so that the same effect may be obtained. In addition, polysaccharides such as chitosan are particularly preferred as the assimilation substances to be attached to the base material. Anything that can satisfy the requirements of having a function as a supplementary nutrient source that functions for metabolism, etc., and having hydrophobicity can be used sufficiently. Since the shape and size of the pores in the porous substrate can also contribute to the fixing specificity, in addition to the fixing specificity depending on the type of the material, the type of the material and the type of the substrate By appropriately selecting the combination, the selective fixation of microorganisms can be further enhanced. Therefore, not only LAS, but also synthetic organic compounds such as pesticide components, which are the same as LAS, can be selectively fixed to specific microorganisms that efficiently decompose them. It is thought that a similar removal mechanism can be effectively exerted.
このような水処理装置は、 キトサン木炭のような資化性ろ材の特性などに基づ く前述のメカニズムで L A Sやその他の合成有機化合物の除去を効果的になせる ものであるが、 これに加えて以下のような特徴もある。 即ち、 一般的な処理の後 に例えば活性炭などを用 L、て吸着だけで L A Sなどの除去を行うシステムに較べ、 生分解を有効に活用できるので飽和の問題が少なくてメンテナンスが容易である、 また B〇 D成分などの処理と併せて行えるのでシステムの簡略化を図れる、 さら に低コスト化も可能である。 Such water treatment equipment is based on the properties of assimilable filter media such as chitosan charcoal. The mechanism described above can effectively remove LAS and other synthetic organic compounds, but has the following additional features. In other words, biodegradation can be used more effectively than a system that removes LAS or the like only by adsorption after the general treatment, for example, using activated carbon or the like. In addition, since it can be performed together with the processing of the B〇D component, the system can be simplified and the cost can be reduced.
本発明はまた、 以上のような合成有機ィヒ合物の効率的な除去と共に B O D成分 などについても併せて高度な処理を行なえる水処理装置として、 浮遊固形物等除 去用のろ材を充填した予備処理槽、 細菌の資化物を充填した資化物層を設けると 共にァンモニァ態窒素の吸着が可能な吸着材を充塡した吸着材層を資化物層に連 続状態で設けた脱窒槽、 キトサン木炭を充塡したキトサン木炭槽、 燐の吸着が可 能な吸着材を充填した脱燐槽、 及び木炭を充塡した仕上げ槽を備えてなる水処理 装置を提供する。  The present invention also provides a water treatment device capable of performing the above-described efficient removal of synthetic organic compounds as well as advanced treatment of BOD components, etc., by filling a filter medium for removing suspended solids and the like. A denitrification tank provided with a pre-treatment tank, an adsorbent layer filled with bacterial assimilates, and an adsorbent layer filled with an adsorbent capable of adsorbing ammonium nitrogen. Provided is a water treatment apparatus including a chitosan charcoal tank filled with chitosan charcoal, a dephosphorization tank filled with an adsorbent capable of adsorbing phosphorus, and a finishing tank filled with charcoal.
この水処理装置の各槽における主要な処理機能は以下の通りで、 これらの主要 処理の他にも付随的にそれぞれに充塡されるろ材などの種類に応じて各種の処理 機能が混在する。 そしてし、 これら各処理は何れも生物学的処理であり、 これら の主要処理と付随的処理 ', 合されて高度な処理を実現している。  The main treatment functions in each tank of this water treatment device are as follows. In addition to these main treatments, various treatment functions are mixed depending on the types of the filter media and the like which are additionally filled in each tank. Each of these processes is a biological process, and these processes are combined with ancillary processes to realize advanced processes.
予備処理槽においては、 遊固形物 ( S S ) の除去と共に B O D成分 (有機 物) の分解がなされる。  In the pretreatment tank, BOD components (organic substances) are decomposed together with the removal of loose solids (SS).
脱窒槽においては、 資化物層が与える高度な嫌気条件下において硝酸態窒素が 併存する 3種類の過程によりアンモニア態窒素及び窒素ガス (N 2 ) に変換され て除去される。 具体的には、 資化物の水中への浸漬、 さらにはこの資化物を利用 して一時的に繁殖する好気性菌による酸素の消費などにより、 資化物層に高度な 嫌気条件が形成される。 そしてアンモニア態窒素への変換は、 資化物層でその嫌 気条件と資化物を利用して繁殖する硝酸還元能を有する細菌の生物活動に基づく 還元、 及び資化物層における高度な無酸素条件つまり高い還元レベルによる純化 学的な還元により進行する。 これらの還元過程は N 03 ― →N 02 ― →N 2 0→ N H 4 ― として示される。 一方、 窒素ガス (N 2 )への変換は、 同じく資化物層 でその嫌気条件と資化物を利用して繁殖する脱窒菌によりなされ、 N 03 ― + 5 H (水素供与体) - 0. 5 N2 + 2 H2 O + O H— として示される。 以上のように して資化物層において生じたァンモニァ態窒素は、 資化物層を通過することによ り溶存酸素量が低下している水流に乗ってそのまま吸着材層に移動すると同時に 吸着材層の吸着材に再溶解することのない状態で吸着される。 一方、 窒素ガスは 大気中に放出する。 In the denitrification tank, nitrate nitrogen is converted to ammonia nitrogen and nitrogen gas (N 2 ) and removed by three types of processes in which nitrate nitrogen coexists under highly anaerobic conditions provided by the assimilate layer. More specifically, advanced anaerobic conditions are formed in the material layer by immersing the material in water and consuming oxygen by aerobic bacteria that temporarily breed using the material. The conversion to ammonia nitrogen is based on the anaerobic conditions in the assimilation layer and the biological activity of bacteria that have nitrate reducing ability that breeds using assimilation, and the advanced anaerobic conditions in the assimilation layer, It proceeds by purifying chemicals with high reduction levels. These reducing processes N 0 3 - → N 0 2 - → N 2 0 → NH 4 - shown as. On the other hand, conversion to nitrogen gas (N 2) is done by denitrifying bacteria breeding by utilizing the anaerobic conditions contribute product in well assimilated Monoso, N 0 3 - + 5 H (hydrogen donor)-0.5 N 2 +2 H 2 O + OH—. As described above, the ammonium nitrogen generated in the assimilable material layer travels to the adsorbent layer as it travels on the water stream in which the amount of dissolved oxygen is reduced by passing through the assimilable material layer, and at the same time as the adsorbent layer. Is adsorbed without being redissolved in the adsorbent. On the other hand, nitrogen gas is released into the atmosphere.
キトサン木炭槽においては、 B O D成分の分解などと共に上記した L A Sなど の合成有機化合物の除去がなされ、脱燐槽においては、 吸着材による吸着で脱燐 がなされ、 さらに仕上げ槽においては、 脱色や脱臭と共に仕上げ的な S Sの除去 や B 0 D成分の分解がなされる。  In the chitosan charcoal tank, the synthetic organic compounds such as LAS described above are removed together with the decomposition of BOD components.In the dephosphorization tank, dephosphorization is performed by adsorption with an adsorbent, and in the finishing tank, decolorization and deodorization are performed. At the same time, final removal of SS and decomposition of B 0 D component are performed.
上記のような水処理装置における各槽の配列順序には種々の組合せが可能であ る力 例えば上流側から下流側に向けて、 予備処理槽、 脱窒槽、 キトサン木炭槽、 曝気専用槽、 脱燐槽、仕上げ槽の順番で配列するのが各処理の関係から好ましい 一例である。  Various arrangements are possible for the arrangement order of each tank in the water treatment apparatus as described above. For example, from upstream to downstream, a pretreatment tank, a denitrification tank, a chitosan charcoal tank, a dedicated aeration tank, a deaeration tank Arranging in the order of the phosphorus tank and the finishing tank is a preferable example from the viewpoint of each treatment.
また上記のような水処理装置における脱燐は比較的他の処理との相関性が低く、 その処理順序に自由度が高いので、 脱燐用の吸着材を他の槽の充塡材と重ねて設 けること力可能で、 このように脱燐槽を他の槽と一体ィ匕させる場合には特にキト サン木炭槽と一体化させるのが構造的にも簡易であり、 全体の処理効率の上で好 ましい。  In addition, since the dephosphorization in the water treatment apparatus as described above has a relatively low correlation with other treatments and the degree of freedom in the treatment order is high, the adsorbent for dephosphorization is overlapped with the filler in another tank. When the dephosphorization tank is integrated with other tanks, it is particularly structurally simple to integrate the dephosphorization tank with the chitosan charcoal tank. Above is preferred.
また上記のような水処理装置については、 何れかの槽につ L、て二つを対とする と共に、 この両槽について汚泥ピッ卜を共通に設け、 一方の槽に上方から流入さ せた処理対象水を他方の槽に汚泥ピッ卜を介して下方から流入させるようにする と、 両槽において強制的な下降流と上昇流を生じさせることができるので充塡材 への処理対象水の接触効率を上げることができるのでさらに好ましい。  In addition, in the water treatment apparatus as described above, one of the tanks was paired with L and two of them, and both tanks were provided with a common sludge pit, and the sludge was poured into one tank from above. If the water to be treated is allowed to flow into the other tank from below via a sludge pit, a forced downward flow and an upward flow can be generated in both tanks. It is more preferable because the contact efficiency can be increased.
またこのように下降流と上昇流を生じさせる場合には、対となる二つの槽を仕 切る仕切り板を通常の水位状態に対し十分に高く突出するように形成し、槽内の 充塡物の通水性が低下した際に上流側の槽の水位が下流側の槽の水位より高くな るようにするとさらに好ましい。 即ち、 上流側と下流側の水位差により下降流圧 及び上昇流圧を大きくすることができるので、 充塡物の表面やその隙間に溜まつ た汚泥 (生物膜や付着物) による通水抵抗に対抗することができ、 この結果通水 性の低下を防止でき、 しかもこの高圧の通水により汚泥を適度に剝離して除去す ることもできるので、 例えば逆洗等による定期的な汚泥の除去作業を不要化する ことも可能となる。 When a downward flow and an upward flow are generated in this way, a partition plate for partitioning the two tanks forming a pair is formed so as to protrude sufficiently high with respect to a normal water level state, and the filling material in the tanks is formed. It is more preferable that the water level in the upstream tank be higher than the water level in the downstream tank when the water permeability of the tank decreases. In other words, the downflow pressure and the upflow pressure can be increased by the water level difference between the upstream side and the downstream side, so that the water flow resistance due to the sludge (biofilm and attached matter) accumulated on the surface of the packing material and the gaps between them Which can be countered by this It is also possible to prevent sludge degradation and to remove sludge appropriately by this high-pressure water flow, thus eliminating the need for periodic sludge removal work such as backwashing. .
〔図面の簡単な説明〕  [Brief description of drawings]
第 1図は、 本発明の一実施例による水処理装置の断面図。  FIG. 1 is a sectional view of a water treatment apparatus according to one embodiment of the present invention.
第 2図は、 第 1図の水処理装置の平面図。  FIG. 2 is a plan view of the water treatment apparatus of FIG.
第 3図は、 第 2図中の矢示 S A3 — S A 3 に沿う断面図。 FIG. 3 is a sectional view taken along the arrow SA 3 —SA 3 in FIG.
第 4図は、 脱窒槽の断面図。  Fig. 4 is a cross-sectional view of the denitrification tank.
第 5図は、 本発明の実施例による水処理装置における L A Sについてのデータ を示すグラフ図。  FIG. 5 is a graph showing LAS data in the water treatment apparatus according to the embodiment of the present invention.
〔発明を実施するための形態〕  [Mode for Carrying Out the Invention]
以下、 本発明の実施例を説明する。  Hereinafter, examples of the present invention will be described.
この実施例における水処理装置は、 平均で約 5 O m3 日の処理能力を持つよ うに設計された例で、 図 1〜図 3に示すように、 全長約 1 l m、 幅約 3 . 5m、 高 さ約 2 . 2mの直方体状にコンクリートで形成したケーシングの内部をほぼ均等に 主仕切り壁 Wで第 1〜第 5の 5つのブロック B a〜 B eに仕切り、 この各ブロッ ク B a〜B eに必要な槽を設定した構造とされている。 Water treatment apparatus in this embodiment is a sea urchin designed Example I with the capacity of about 5 O m 3 days on average, as shown in FIGS. 1 to 3, the total length of about 1 lm, a width of about 3. 5 m The inside of a casing formed of concrete in a rectangular parallelepiped with a height of about 2.2 m is almost evenly divided by the main partition wall W into five first to fifth five blocks Ba to Be. ~ Be has a structure in which necessary tanks are set.
第 1ブロック B aは全体が沈殿槽 1とされている。 この沈殿槽 1は、 処理対象 水から比較的大きめの浮遊物の沈降除去を行うためのもので、上流側端に流入用 整流筒 2を有し、下流側端に流出用整流筒 3を有する他はがらんどうとされてい る。 つまり、 この沈殿槽 1に流入路 Pから流入して来る処理対象水は、 流入用整 流筒 2により下降流とされて沈殿槽 1の底に向けて流れ込んで槽内を緩やかに移 動した後、 流出用整流筒 3の流出口 3 tから第 2ブロック B bに流出して行く。 そして、 この間での処理対象水の沈殿槽 1における滞留時間は約 4時間程度で、 この滞留中に比較的大きめの浮遊物の沈降除去がなされる。  The first block B a is entirely a sedimentation tank 1. The sedimentation tank 1 is used to settle and remove relatively large suspended solids from the water to be treated, and has a flow straightening tube 2 at the upstream end and a flow straightening tube 3 at the downstream end. The others are empty. In other words, the water to be treated that flows into the sedimentation tank 1 from the inflow path P is made to flow downward by the inflow rectifying tube 2, flows toward the bottom of the sedimentation tank 1, and moves gently in the tank. After that, it flows out from the outlet 3t of the outflow rectifier 3 to the second block Bb. The residence time of the water to be treated in the sedimentation tank 1 during this period is about four hours, and during this residence, relatively large suspended matters are settled and removed.
第 2ブロック B bには所定深さの汚泥ピット D bを形成 :ように有孔底板 4 bがケ一シングの底より浮かして設けられると共に、 この有孔底板 4 bの中央に 立設した仕切り板 5 bにて仕切つて予備処理槽 6と脱窒槽 7が形成されている。 従って、 両槽 6、 7は汚泥ピット D bを介して連通しており、 処理対象水は予備 処理槽 6内を流下した後に汚泥ピット D bを通つて脱窒槽 Ίに上昇流となつて流 入することになる。 A sludge pit Db having a predetermined depth is formed in the second block Bb: a perforated bottom plate 4b is provided so as to float above the bottom of the casing, and is erected in the center of the perforated bottom plate 4b. A pretreatment tank 6 and a denitrification tank 7 are formed by being partitioned by a partition plate 5b. Therefore, both tanks 6 and 7 are in communication via sludge pit Db, and the water to be treated is After flowing down in the treatment tank 6, it flows into the denitrification tank Ί through the sludge pit Db as an ascending flow.
予備処理槽 6は、 プラスチック製の多孔性ろ材 (図示せず) が充填されており、 このろ材により S Sのろ過がなされると共に、 ろ材に定着した微生物による B 0 D成分の分解除去がなされる。  The pretreatment tank 6 is filled with a porous filter medium (not shown) made of plastic. The filter medium filters the SS and decomposes and removes the B0D component by microorganisms settled on the filter medium. .
脱窒槽 7は、 処理対象水に硝酸態で溶存している窒素を除去するためのもので、 図 4に示すように、 資化物層 8と吸着材層 9が積層状態で設けられている。  The denitrification tank 7 is for removing nitrogen dissolved in the water to be treated in the form of nitric acid, and as shown in FIG. 4, a material layer 8 and an adsorbent layer 9 are provided in a stacked state.
資化物層 8は、 細菌の栄養源となると共に、 細菌にとって好ましい住処を与え るものである植物の枯死体を適度の通水性が得られる密度に充塡して形成されて いる。 具体的には、 例えば藁を筵のような構造として用いた表皮層 8 sの間に古 畳の芯ゃ枯枝あるいは椎茸のほた木等を適度な大きさに碎ぃたものをコア層 8 c として充填して形成してある。 この資化物層 8は、前述のように処理対象水に浸 漬することにより高度に嫌気化し、 この嫌気性条件下において上述した併存する 3種類の過程により硝酸態窒素のァンモニァ態窒素及び窒素ガスへの変換を生じ、 了ンモニァ態窒素は吸着材層 9で吸着除去され、 一方窒素ガスは空中に放出され る。  The assimilable material layer 8 is formed by filling a dead body of a plant, which serves as a nutrient source for the bacteria and provides a favorable place for the bacteria, with a density that allows appropriate water permeability. Specifically, for example, the core layer is made by shredding the core of a traditional tatami mat, a dead branch or a firewood of shiitake mushrooms into an appropriate size between the skin layers 8 s using straw as a straw-like structure. It is formed by filling as 8 c. The assimilate layer 8 is highly anaerobic by being immersed in the water to be treated as described above, and under these anaerobic conditions, the three types of coexisting processes described above cause the nitrate-containing ammonia gas and nitrogen gas to flow. The nitrogen gas is adsorbed and removed by the adsorbent layer 9, while the nitrogen gas is released into the air.
吸着材層 9は、 アンモニア態窒素の吸着能が高い例えばゼォライト (沸石) や バ一ミユキュライ卜のような鉱物性のものを礫状にした吸着材を充塡して形成さ れており、 サイズの大き L、吸着材による層 9 mとサイズの小さ L、吸着材による層 9 nとの二層構造とされている。  The adsorbent layer 9 is formed by filling a gravel-like adsorbent of a mineral substance such as zeolite (zeolites) or bamicularite, which has a high ability to adsorb ammonia nitrogen. It has a two-layer structure with a large L, a layer 9 m made of an adsorbent, and a small L of size 9 n made of an adsorbent.
第 3ブロック B cは、 全体が好気的な生物学的処理による B 0 D成分の分解処 理のための第 1キトサン木炭槽 1 0とされ、 その底部に同じく汚泥ピット D cを 形成するための有孔底板 4。カ設けられ、 この有孔底板 4 c上にキトサン処理を 施した砕片状のキトサン木炭(図示せず) 力《積層され、 さらにこのキトサン木炭 層に給気手段 1 1 cにより槽内の処理対象水に攪拌的に強制対流状態を生じさせ る程度の強さでエアレ一シヨンをなせるようにされている。 尚、 キトサン木炭は 水に浮き易いため、 その上にアンモニア態窒素吸着用の吸着材が重しとして載せ てある。  The third block Bc is the first chitosan charcoal tank 10 for the decomposition of B0D components by aerobic biological treatment, and forms a sludge pit Dc at the bottom. Perforated bottom plate for 4. A chitosan-treated charcoal (not shown) treated with chitosan on the perforated bottom plate 4c is laminated and the chitosan charcoal layer is treated in the tank by air supply means 11c. The air rate is set to be strong enough to cause forced convection in the water. Since chitosan charcoal easily floats on water, an adsorbent for ammonia nitrogen adsorption is placed on it as a weight.
キトサン木炭には以下の処理により得られたものを用いている。 素材の木炭は、 広葉樹と針葉樹が 8 : 2の割合の混合炭で、 5〜1 Ommサイ ズの砕片状としたものを用いた。 Chitosan charcoal obtained by the following treatment is used. The charcoal used was a mixed charcoal of hardwood and conifer at a ratio of 8: 2, which was crushed in the size of 5 to 1 Omm.
キトサンは、 脱ァセチル化度 70%以上の淡黄白色粉末のもの 〔甲陽ケミカル 株式会社のコ一ョーキ卜サン SK— 400 (商標) :! を使用した。  Chitosan is a pale yellow-white powder having a deacetylation degree of 70% or more [Koyo Chemical Sanko SK-400 (trademark) by Koyo Chemical Co., Ltd.:! It was used.
付着には、 下記の条件による浸漬法を用いた。  For the adhesion, an immersion method under the following conditions was used.
キトサン溶液; 5%の酢酸溶液に 1%のキトサンを溶解させる  Chitosan solution; dissolve 1% chitosan in 5% acetic acid solution
浸漬条件;常温、常圧  Immersion conditions: normal temperature, normal pressure
浸漬時間; 24時間  Immersion time: 24 hours
乾燥条件; 50 ~ 60 °Cで 8〜 16時間  Drying conditions: 50 to 60 ° C for 8 to 16 hours
このキトサン木炭の LASに対する吸着力について一般の木炭(樫炭、 赤松 炭)及び活性炭と比較試験をしてみた。 その結果、 それぞれの吸着力の関係は、 LAS 10及び LAS 1 1については、 活性炭〉キトサン木炭 >赤松炭 >樫炭で あり、 LAS 12-LAS 14については、 活性炭〉キトサン木炭 >樫炭〉赤松 炭であった。 また、 相対的に量の多い LAS 10-LAS 12ほどそれぞれにお ける吸着力の差は大きいが、特に一般の木炭に対しキトサン木炭は数倍の吸着力 を持っていた。 このようにキトサン木炭はそれ自体としても LASに対する優れ た吸着力を持っているものであるが、 この優れた吸着力に前述のようなキトサン 木炭の種々の特性や強制対流状態を生じさせるようなエアレーション条件が協働 することにより、 優れた LAS除去能が実現されると考えられる。  A comparison test was conducted on the adsorption power of this chitosan charcoal to LAS with ordinary charcoal (oak charcoal, Akamatsu charcoal) and activated carbon. As a result, the relationship between the adsorption powers is as follows: activated carbon> chitosan charcoal> Akamatsu charcoal> oak charcoal for LAS 10 and LAS 11, and activated carbon> chitosan charcoal> oak charcoal> Akamatsu for LAS 12-LAS14 It was charcoal. The difference in adsorption power between LAS 10 and LAS 12 is relatively large, and chitosan charcoal has several times higher adsorption power than ordinary charcoal. As described above, chitosan charcoal itself has excellent adsorption power to LAS, but such excellent adsorption power may cause various characteristics of chitosan charcoal and forced convection as described above. It is thought that excellent LAS removal ability will be realized by cooperation of aeration conditions.
第 4ブロック B dはケーシングの底から立設した仕切り板 5 dによりほぼ等分 され、上流側が第 2キトサン木炭槽 12、下流側が曝気専用槽 13とされている。 第 2キトサン木炭槽 12は、 そのサイズ力《半分程度である他は第 1キトサン木炭 槽 10と基本的に同じとされている。 一方、 曝気専用槽 13は、処理対象水中に 酸素を供給するためのもので、 沈殿槽 1と同様にがらんどうとされ、 給気手段 1 1 dにて供給された空気が処理対象水中に拡散し易いようにされている。  The fourth block Bd is almost equally divided by a partition plate 5d erected from the bottom of the casing, and the upstream side is a second chitosan charcoal tank 12 and the downstream side is a tank 13 for aeration. The second chitosan charcoal tank 12 is basically the same as the first chitosan charcoal tank 10 except that its size power is about half. On the other hand, the dedicated aeration tank 13 is for supplying oxygen to the water to be treated, and is similarly empty as the sedimentation tank 1, and the air supplied by the air supply means 1 1d diffuses into the water to be treated. It is made easy.
第 5ブロック B eには第 2ブロック B bと同様の構造にして脱燐槽 14と仕上 げ槽 15力《設けられている。 脱燐槽 14は、 燐の吸着除去を主たる目的とし、補 助的にアンモニア態窒素の吸着除去も行うためのもので、 燐吸着用の吸着材(図 示せず) とアンモニア態窒素吸着用の吸着材(図示せず) が層状に重ねて充塡さ れている。 一方、 仕上げ槽 1 5は、 通常の木炭 (図示せず) が充塡されており、 この木炭により脱色や脱臭などがなされると共に、 微細な S Sのろ過や最終的な 生物学的処理がなされる。 The fifth block Be has the same structure as the second block Bb, and is provided with a dephosphorization tank 14 and a finishing tank 15. The dephosphorization tank 14 has a main purpose of adsorbing and removing phosphorus, and also serves to supplementarily adsorb and remove ammonia nitrogen. An adsorbent (not shown) for adsorbing phosphorus and an adsorbent for adsorbing ammonia nitrogen are used. Adsorbent (not shown) filled in layers Have been. On the other hand, the finishing tank 15 is filled with ordinary charcoal (not shown), and the charcoal is used for decolorization and deodorization, while filtering fine SS and performing final biological treatment. You.
ここで、 この第 2ブロック B b、 第 4ブロック B d、及び第 5ブロック B eに おける各仕切り板 5 b、 5 d、 5 eは、 通常の水位状態 (図 1の状態) に対し十 分に高く突出するように形成されている。 これは、 それぞれの槽におけるろ材ゃ キトサン木炭等に汚泥が蓄積することにより生じる通水抵抗の上昇に応じて上流 側の槽の水位を下流側の槽の水位より高くできるように意図したもので、 この結 果、通水性の低下防止や恒常的な逆洗効果を図れる。  Here, each of the partition plates 5b, 5d, and 5e in the second block Bb, the fourth block Bd, and the fifth block Be is more than the normal water level state (the state in FIG. 1). It is formed so as to protrude higher. This is intended to raise the water level of the upstream tanks higher than the water level of the downstream tanks in response to the increase in water flow resistance caused by the accumulation of sludge on the filter media and chitosan charcoal in each tank. As a result, a reduction in water permeability can be prevented and a constant backwashing effect can be achieved.
尚、 図 2に示すように、 ケ一シングに沿って汚泥回収管 1 6を配管しており、 この汚泥回収管 1 6から各プロックに臨まされた分岐管を介して汚泥の回収を随 時行えるようにしている。 また、 図示は省略されているが各ブロックは雨水の侵 入や日光の照射を防止するために全体的に蓋で覆われることになる。  As shown in Fig. 2, a sludge collection pipe 16 is provided along the casing, and the sludge is collected from the sludge collection pipe 16 at any time via branch pipes facing each block. I can do it. Although not shown, each block is entirely covered with a lid to prevent rainwater intrusion and sunlight irradiation.
以上の複合的水処理装置における L A Sにつ 、てのデー夕を図 5に示す。 これ 力、ら分かるように第 1キトサン木炭槽 1 0において L A S量の大きな変動がみら れ、 第 1キトサン木炭槽 1 0による優れた L A S除去能を知ることができる。 特 に、 予備処理槽 6や仕上げ槽 1 5でも相当程度の生物学的処理が生じている力、 これらの槽における L A S量の変化と比較することにより、 キトサン木炭槽にお ける L A S除去能の優秀性を理解できる。  Figure 5 shows the data of LAS in the above-mentioned combined water treatment system. As can be seen from the figure, a large variation in the amount of LAS was observed in the first chitosan charcoal tank 10, and the excellent LAS removal ability of the first chitosan charcoal tank 10 can be known. In particular, comparing the LAS removal capacity in the chitosan charcoal tank by comparing the force with which a considerable amount of biological treatment occurs in the pretreatment tank 6 and the finishing tank 15 and the change in LAS amount in these tanks. Understand the excellence.
〔産業上の利用可能性〕  [Industrial applicability]
以上のように、 本発明は、 資化性ろ材が持つ特性を有効に利用して特定の微生 物を選択的に利用できるようにしているので、例えば汚染負荷が比較的小さい河 川水における L A Sなどの合成有機汚染物の効率的な除去を行なえ、 流域の水質 保全に大きく寄与できる。  As described above, the present invention makes it possible to selectively use specific microorganisms by effectively utilizing the characteristics of assimilable filter media. It can efficiently remove synthetic organic pollutants such as LAS, and can greatly contribute to the conservation of water quality in the basin.
また本発明の水処理装置は、処理効率の高い脱窒槽とキトサン木炭槽を核にし て予備処理槽ゃ脱燐槽、 さらに仕上げ槽等を複合的に組み合わせてなるものなの で、 脱窒ゃ脱燐を合わせた高度な水処理を全て生物学的な処理により効率的に行 うことができる。 従って、 これを例えば生活雑排水等がそのまま排水される流域 小河川の浄化処理に用いることにより、 自然と調和した状態での水質環境の保全 に大きく寄与できる c In addition, the water treatment apparatus of the present invention is composed of a denitrification tank and a chitosan charcoal tank with high treatment efficiency as a core, and a pretreatment tank, a dephosphorization tank, and a finishing tank are combined in a complex manner. Advanced water treatment combined with phosphorus can all be performed more efficiently by biological treatment. Therefore, this can be used, for example, for purification treatment of small rivers where municipal wastewater is drained as it is, to preserve the water quality environment in harmony with nature. Can greatly contribute to c

Claims

請求の範囲 The scope of the claims
(1) . 微生物を定着させたろ材に処理対象水を接触させて浄化処理を行なう水処理 方法において、 ろ材として、多孔性の基材カ洧する細孔の孔壁に、 少なくとも微 生物が住みつくに必要な深さ範囲について目的の微生物に対し特異的な資化性を 持つ資化物を付着させてなる資化性ろ材を用い、 この資化性ろ材に好気的条件で 処理対象水を接触させるようにしたことを特徴とする水処理方法。 (1). In a water treatment method in which a treatment target water is brought into contact with a filter medium on which microorganisms have been fixed to perform a purification treatment, at least micro-organisms inhabit at least as pores of pores covered by a porous base material as a filter medium. Using the assimilable filter medium attached with assimilable material having specific assimilation properties to the target microorganisms in the depth range necessary for the process, and contacting the assimilable filter medium with the water to be treated under aerobic conditions A water treatment method characterized in that the water treatment is performed.
(2) . 多孔性の基材として木炭を用いるようにした請求の範囲 1に記載の水処理方 法。  (2) The water treatment method according to claim 1, wherein charcoal is used as the porous substrate.
(3) . 資化物がキ卜サンである請求の範囲 1又は請求の範囲 2に記載の水処理方法。  (3). The water treatment method according to claim 1 or claim 2, wherein the assimilable substance is chitosan.
(4) . 資化性ろ材との接触に際して処理対象水に強制対流状態を生じさせるように した請求の範囲 1〜請求の範囲 3何れか 1項に記載の水処理方法。  (4) The water treatment method according to any one of claims 1 to 3, wherein a forced convection state is generated in the water to be treated upon contact with the assimilable filter medium.
(5) . 資化性ろ材に定着させる微生物がシュ一ドモナス属の細菌である請求の範囲 1〜請求の範囲 4何れか 1項に記載の水処理方法。  (5). The water treatment method according to any one of claims 1 to 4, wherein the microorganisms that settle on the assimilable filter medium are bacteria belonging to the genus Pseudomonas.
(6) . シユードモナス属の細菌は、 Pseudomonas f luorecens biover 5又は/及び Pseudomonas put ida biover Aである請求の範囲 5に記載の水処理方法。  (6). The water treatment method according to claim 5, wherein the bacterium belonging to the genus Pseudomonas is Pseudomonas fluorecens biover 5 and / or Pseudomonas put ida biover A.
(7) . 請求の範囲 1に記載の水処理方法に用いる水処理装置であって、 多孔性の基 材が有する細孔の孔壁に、 少なくとも微生物が住みつくに必要な深さ範囲につい て目的の微生物に対し特異的な資化物となる資化物を付着させてなる資化性ろ材 を用い、 且つこの資化性ろ材を充塡した処理槽内に処理対象水を曝気しつつ通水 させるようにした処理ゾーンを備えてなる水処理装置。  (7) A water treatment apparatus for use in the water treatment method according to claim 1, wherein at least a depth range necessary for microorganisms to inhabit the pore walls of the pores of the porous base material. Use an assimilable filter medium to which an assimilable material as a specific assimilant is attached to the microorganisms, and let the water to be treated pass through the treatment tank filled with this assimilable material while aerating it. A water treatment apparatus comprising a treatment zone.
(8) . 処理ゾーン中にあつて処理対象水に強制対流状態を生じさせるようにした請 求の範囲 7に記載の水処理装置。  (8). The water treatment apparatus according to claim 7, wherein a forced convection state is generated in the water to be treated in the treatment zone.
(9) . 資化性ろ材にシュ一ドモナス属の細菌を定着させた請求の範囲 7又は請求の 範囲 8に記載の水処理装置。  (9). The water treatment apparatus according to claim 7 or claim 8, wherein bacteria of the genus Pseudomonas are established on the assimilable filter medium.
(10) . シユードモナス属の細菌は、 Pseudomonas f luorecens biover 5又は 及び Pseudomonas put ida b iover Aである請求の範囲 9に記載の水処理装置。  (10). The water treatment apparatus according to claim 9, wherein the bacterium belonging to the genus Pseudomonas is Pseudomonas fluorecens biover 5 or Pseudomonas put ida bioover A.
Q1). 浮遊固形物等除去用のろ材を充填した予備処理槽、細菌の資化物を充填した 資化物層を設けると共にアンモニア態窒素の吸着が可能な吸着材を充填した吸着 材層を資化物層に連続状態で設けた脱窒槽、 キ卜サン処理を施した木炭を充填し たキトサン木炭槽、燐の吸着が可能な吸着材を充塡した脱燐槽、 及び木炭を充塡 した仕上げ槽を備えてなる水処理装置。 Q1). Adsorption filled with an adsorbent capable of adsorbing ammonia nitrogen while providing a pretreatment tank filled with a filter medium for removing suspended solids etc. A denitrification tank in which the material layer is continuously provided on the material layer, a chitosan charcoal tank filled with chitosan-treated charcoal, a dephosphorization tank filled with an adsorbent capable of adsorbing phosphorus, and a charcoal tank. A water treatment device equipped with a filled finishing tank.
(12) . 上流側から下流側に向けて、 予備処理槽、 脱窒槽、 キトサン木炭槽、 脱燐槽、 仕上げ槽の順番で配列させた請求の範囲 1 1に記載の水処理装置。  (12). The water treatment apparatus according to claim 11, which is arranged in the order of a pretreatment tank, a denitrification tank, a chitosan charcoal tank, a dephosphorization tank, and a finishing tank from the upstream side to the downstream side.
(13) . 何れかの槽について二つを対とすると共に、 この両槽について汚泥ピットを 共通に設け、 一方の槽に上方から流入させた処理対象水を他方の槽に汚泥ピット を介して下方から流入させるようにした請求の範囲 1 1又は請求の範囲 1 2の何 れか 1項に記載の水処理装置。  (13). Two tanks are paired for any one tank, and a sludge pit is provided in common for both tanks, and the water to be treated that has flowed into one tank from above is inserted into the other tank via the sludge pit. The water treatment device according to any one of claims 11 and 12, wherein the water is supplied from below.
Q ). 対となる二つの槽を仕切る仕切り板を通常の水位状態に対し十分に高く突出 するように形成し、 槽内の充塡物の通水性が低下した際に上流側の槽の水位が下 流側の槽の水位より高くなるようにした請求の範囲 1 3に記載の水処理装置。  Q). A partition plate that separates the two tanks that make a pair is formed so as to protrude sufficiently higher than normal water level, and the water level of the upstream tank when the water permeability of the packing material in the tank decreases. 14. The water treatment apparatus according to claim 13, wherein the water level is higher than a water level in a downstream tank.
PCT/JP1994/000879 1993-06-16 1994-05-31 Water treatment method and water treatment apparatus WO1994029224A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE1994625361 DE69425361T2 (en) 1993-06-16 1994-05-31 METHOD AND DEVICE FOR TREATING WATER
AT94916432T ATE194972T1 (en) 1993-06-16 1994-05-31 METHOD AND APPARATUS FOR TREATING WATER
EP19940916432 EP0655420B1 (en) 1993-06-16 1994-05-31 Water treatment method and water treatment apparatus
CA 2142609 CA2142609C (en) 1993-06-16 1994-05-31 Water treatment process and water treatment apparatus
BR9404876A BR9404876A (en) 1993-06-16 1994-05-31 Water treatment process and apparatus for carrying out the same and water treatment apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP5/168349 1993-06-16
JP5168349A JP2619201B2 (en) 1993-06-16 1993-06-16 Water treatment equipment
JP24211593 1993-09-03
JP5/242115 1993-09-03
JP4604894 1994-03-16
JP6/46048 1994-03-16

Publications (1)

Publication Number Publication Date
WO1994029224A1 true WO1994029224A1 (en) 1994-12-22

Family

ID=27292493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000879 WO1994029224A1 (en) 1993-06-16 1994-05-31 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
WO (1) WO1994029224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709585B1 (en) 1999-02-03 2004-03-23 Tecnidex, Tecnicas De Desinfeccion, S.A. Purification system for wastewater coming from fruit and vegetable processing plants and phytosanitary treatments in the field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891860A (en) * 1972-03-06 1973-11-29
JPS57140698A (en) * 1981-11-30 1982-08-31 Iseki & Co Ltd Preparation of bacteria-embedded coal
JPS63175693A (en) * 1987-01-17 1988-07-20 Nkk Corp Biological sewage treating apparatus
JPH03254895A (en) * 1990-03-01 1991-11-13 Nishihara Environ Sanit Res Corp Gel-reinforced self-granulated sludge
JPH04322796A (en) * 1991-04-23 1992-11-12 Kobayashi Kankyo Kagaku Kenkyusho:Kk Method for removing crude oil flowing out into sea
JPH0550094A (en) * 1991-08-21 1993-03-02 Unitika Ltd Water treating medium and water treating device for denitrification

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891860A (en) * 1972-03-06 1973-11-29
JPS57140698A (en) * 1981-11-30 1982-08-31 Iseki & Co Ltd Preparation of bacteria-embedded coal
JPS63175693A (en) * 1987-01-17 1988-07-20 Nkk Corp Biological sewage treating apparatus
JPH03254895A (en) * 1990-03-01 1991-11-13 Nishihara Environ Sanit Res Corp Gel-reinforced self-granulated sludge
JPH04322796A (en) * 1991-04-23 1992-11-12 Kobayashi Kankyo Kagaku Kenkyusho:Kk Method for removing crude oil flowing out into sea
JPH0550094A (en) * 1991-08-21 1993-03-02 Unitika Ltd Water treating medium and water treating device for denitrification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0655420A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709585B1 (en) 1999-02-03 2004-03-23 Tecnidex, Tecnicas De Desinfeccion, S.A. Purification system for wastewater coming from fruit and vegetable processing plants and phytosanitary treatments in the field

Similar Documents

Publication Publication Date Title
Burgess et al. Developments in odour control and waste gas treatment biotechnology: a review
Hasan et al. Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system
KR100497810B1 (en) System of circulated sequencing batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
CN1931750B (en) Petrochemical effluent treating and reusing process
KR100422569B1 (en) Water treatment apparatus
Barbosa et al. Activated sludge biotreatment of sulphurous waste emissions
US5766465A (en) Water treatment apparatus
US6331249B1 (en) Apparatus and method for wastewater nutrient recovery
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
KR100343257B1 (en) Combination purifier tank
Furukawa et al. Nitrification of polluted Urban river waters using zeolite‐coated nonwovens
WO1994029224A1 (en) Water treatment method and water treatment apparatus
CN112591999A (en) Method and system for synchronously removing organic matters and ammonia nitrogen in wastewater
JPH07116682A (en) Water treatment method and water treatment apparatus
CN206494823U (en) A kind of sewage disposal device
Kandasamy et al. Adsorption and biological filtration in wastewater treatment
JPH0966293A (en) Low load sewage treatment apparatus
JP2619201B2 (en) Water treatment equipment
KR930004189B1 (en) Waste water treating method and apparatus using porous media
KR20040085542A (en) Removal measure of Circulated Sequencing Batch Reactor with media containing zeolite for organic matters, nitrogen and phosphorus removal in sewage and waste waters
KR200188804Y1 (en) Upflow column-type reactor with packed bed for purifying wastewater
Hamidi et al. Performance of pozzolan in trickling filter for secondary treatment of urban wastewater in Tlemcen, Algeria
JP2804708B2 (en) Water treatment method using bark
JP2002066583A (en) Filter medium, water treating apparatus using the filter medium, and water treatment method
Govind Sustainable Treatment and Reuse of Water Using Decentralized Systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994916432

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 374800

Date of ref document: 19950215

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: CA

Ref document number: 2142609

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2142609

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994916432

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994916432

Country of ref document: EP