WO1994028559A1 - Latching electromagnet - Google Patents

Latching electromagnet Download PDF

Info

Publication number
WO1994028559A1
WO1994028559A1 PCT/US1994/004372 US9404372W WO9428559A1 WO 1994028559 A1 WO1994028559 A1 WO 1994028559A1 US 9404372 W US9404372 W US 9404372W WO 9428559 A1 WO9428559 A1 WO 9428559A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
saturation region
coil
armature
electromagnet
Prior art date
Application number
PCT/US1994/004372
Other languages
French (fr)
Inventor
C. Nickolas Goloff
Rodney L. Rolffs
Original Assignee
Caterpillar Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc. filed Critical Caterpillar Inc.
Priority to DE69407387T priority Critical patent/DE69407387T2/en
Priority to EP94915843A priority patent/EP0653097B1/en
Priority to JP7500631A priority patent/JPH07509815A/en
Publication of WO1994028559A1 publication Critical patent/WO1994028559A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/13Electromagnets; Actuators including electromagnets with armatures characterised by pulling-force characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Definitions

  • This invention relates generally to a latching electromagnet and, more particularly, to a latching electromagnet that operates with a portion of the core in magnetic saturation.
  • Latching electromagnets are used in variety of applications.
  • a control circuit may require that an electromagnet "latch” a moveable member to a detent position. Further, the control circuit may also require that the moveable member be “de-latched” from the detent position by a mechanical device that has a predetermined force- However if the "latching" force of the electromagnet varies, then the mechanical device may not have sufficient force to overcome the electromagnetic force. Consequently the moveable member remains latched to the detent position, possibly causing the control system to malfunction.
  • an electromagnet may be provided to latch a control lever of an electro- hydraulic control at a detent position.
  • the control lever is latched at the detent position until; either the electromagnet de-energizes, or an operator manually de-latches the control lever from the energized electromagnet. If the later occurs, the operator must apply a force to the control lever that overcomes the electromagnetic force.
  • a prior electromagnet 100 is shown in Fig. 1.
  • the electromagnet 100 includes a core 105, a coil 110 and an armature 115.
  • the coil 110 Upon being energized, the coil 110 produces an electromagnetic force which "latches" the armature 115 to the core 105.
  • a spring 120 biases the armature to a neutral position.
  • Fig. 2 Shown in Fig. 2, is a Force vs. Current curve which illustrates the relationship between the electromagnetic force and the coil current (when the armature is latched to the core) .
  • the coil current fluctuates between a minimum and maximum value.
  • the current fluctuation is caused by changes in coil temperature and voltage. Due to the "steepness" of the curve, the resulting electromagnetic force may vary between a force that is too small - allowing for inadvertent de-latching of the control lever; to a force that is too large - yielding a force too great for the operator to overcome.
  • the armature 115 is designed to latch "flush" with the electromagnetic core.
  • the air gap length may vary, which in turn varies the electromagnetic force.
  • manufacturing tolerances, misalignment of the core/armature, and foreign materials that accumulate on the electromagnet parts (such as dust and rust particles) , all may significantly vary the length of air gap.
  • Significant variations in the air gap combined with coil current fluctuations make for difficult electromagnetic force controllability.
  • the present invention is directed to overcoming one or more of the problems as set forth above.
  • a latching electromagnet in one aspect of the present invention, includes a core having a pole face, a coil of windings, and an armature.
  • the core has a geometry that locally increases the magnetic flux density to saturation levels.
  • Fig. 1 shows a cross sectional view of a prior art electromagnet
  • Fig. 2 shows a graph of the electromagnetic force vs. coil current associated with the prior art electromagnet
  • Fig. 3 shows a cross sectional view of an electromagnet associated with one embodiment of the present invention
  • Fig. 4 shows a graph of the magnetic flux density vs. magnetic flux intensity of the electromagnet associated with the present invention
  • Fig. 5 shows a graph of the electromagnetic force vs. coil current of the electromagnet associated with the present invention
  • Fig. 6 shows a cross sectional view of an electromagnet associated with another embodiment of the present invention
  • Fig. 7 shows a cross sectional view of an exemplary control mechanism associated with the present invention
  • Fig. 8, 9, 10, and 11 show cross sectional views of securing mechanism for an electromagnet associated with the present invention.
  • Fig. 12 shows a cross sectional view of an electromagnet associated with yet another embodiment of the present invention.
  • FIG. 3 illustrates a cross section of a cylindrical latching electromagnet 300.
  • the electromagnet 300 includes a core 305 having a pole face, and inner and outer portions 310,315 that are separated by a channel 320.
  • a coil 325 of windings is disposed in the channel 320. Upon energization of the coil 325, the coil 325 produces an electromagnetic force that causes an armature 330 to latch to the pole face.
  • the electromagnet 300 is designed with a geometrical configuration formed at the core to locally increase the flux density to saturation levels.
  • Shown in Fig. 4 is a typical B-H curve associated with the electromagnets of this type.
  • the y-axis represents the magnetic flux density, B, while the x-axis represents the magnetic flux intensity or field strength, H.
  • the portion of the curve that is above (Bsat) represents the saturated magnetic flux density region.
  • the magnetic saturation region corresponds to a B-H relationship that naturally occurs in air.
  • One type of a geometrical configuration is shown in the embodiment of Fig. 3, where the core 305 defines a saturation region 335 on the inner portion 315 to provide for a saturated magnetic flux density. More particularly, the core 305 defines a bore 333 at the inner portion 315.
  • the saturation region 335 has a predetermined cross sectional area, A, that is calculated in accordance with the following relationships :
  • magnetic flux
  • R electromagnetic reluctance
  • N number of coil windings
  • i coil current
  • the predetermined area of the saturation region 335 provides for little variation in magnetic flux density and electromagnetic force - even with changes in coil current and temperature.
  • the present invention is not limited to the geometrical configuration shown in Fig. 3 and described above.
  • the resulting Force vs. Current curve is described in Fig. 5.
  • the desired electromagnetic force operates about a predetermined operating point. As shown, the part of the curve corresponding to the predetermined operating point is relatively "flat" as compared to the operating point associated with prior art electromagnets. Thus, coil current fluctuations produce only small changes in electromagnetic force, as compared to the prior art electromagnets.
  • the outer portion 315 is greater in length than the inner portion 310 to create a predetermined working air gap length, L g , between the inner portion 310 and the armature 330 (when the armature 330 is latched to the pole face) .
  • the predetermined air gap length, L g is substantially greater than the relative increase of the air gap length due to poor alignment, wear, foreign material, etc.
  • the predetermined air gap length, L g provides for small changes in the electromagnetic force due to changes in the air gap length caused by armature/core misalignment.
  • the present invention may be used in a variety of applications, one such application in Fig. 7.
  • the present invention is used to "latch" a control lever of a control mechanism at a detent position.
  • the control mechanism 700 includes a housing 705 and a control lever 710 disposed in the housing 705.
  • the control lever 710 has bi-directional, pivotal movement between a neutral and a predetermined position (on either side of neutral) .
  • the control lever 710 defines two bifurcated arms 715.
  • An electromagnet armature 330 is rigidly mounted to each lever arm 715.
  • a centering spring 720 is attached to the bifurcation to bias the control lever 710 to the neutral position. The operation of the present invention in relation to the control mechanism 700 will be discussed infra.
  • the present invention additionally provides for a self-aligning, mounting feature to compensate for the manufacturing tolerances or for poor alignment of the outer pole face with the armature.
  • the electromagnet 300 is shown mounted to a mounting plate 800.
  • a bolt 805 is used to fasten the electromagnet core 305 to the mounting plate 800.
  • Two O-rings 810a,b composed of flexible material are also provided.
  • One O-ring 810a is disposed between a washer 815 and the mounting plate 800, while the other O-ring 810b is disposed between the mounting plate 800 and the electromagnet core 305.
  • the illustrated configuration provides a certain degree of flexibility to the mounting of the electromagnet. For example as shown in Fig.
  • the alignment of the armature 330 is "skewed" in relation to the x-axis and would not "mate” properly with a rigidly mounted electromagnet core.
  • the mounting is flexible which allows for the armature 330 to properly mate with the electromagnet core 305 irrespective of the armature orientation.
  • Fig. 10 Another type of a self aligning feature is shown in Fig. 10.
  • the electromagnetic core 330 includes a flange 820
  • the mounting plate 800 includes a mechanical joint 825 for griping the flange 820 to secure the electromagnetic core 330 to the mounting plate 800.
  • this feature also provides for mounting flexibility. For example as shown in Fig. 11, the misaligned armature 330 is properly mated with the electromagnet core 305.
  • the core 305 defines a saturation region 335 on the outer portion 315 to provide for a saturated magnetic flux density. More particularly, the core 305 defines an annular groove 337 on the outer core surface.
  • the saturation region 335 has a cross sectional area, A, with the following relationship:
  • D 0 represents the outer diameter of the saturation region and D ⁇ represents the inner diameter of the saturation region.
  • This geometrical configuration provides for several advantages. Because the pole faces are not modified to create the saturation region, the surface areas of the pole faces may be relatively large to yield a relatively high latching force. Moreover, this configuration produces negligible variations in magnetic flux density and electromagnetic force.
  • the operation of the present invention may be used in an implement control system of a work vehicle. Although an implement control system is described, it will be apparent to those skilled in the art that the present invention may be used in a variety of applications where "latching" is desired.
  • the present invention may provide for "automatic" control of a work implement of the vehicle.
  • the electromagnet 330 "latches” the control lever 710 at a predetermined lever position, which represents a predetermined position of the work implement, e.g. a predetermined bucket "lift” or "angle".
  • the vehicle operator pivots the control lever 710 to a predetermined position.
  • a driving circuit 725 delivers an energization signal to the electromagnet 300 which responsively energizes and "latches" the control lever 705 at the predetermined lever position.
  • an electrohydraulic system positions the work implement to a predetermined position. Once the work implement reaches the predetermined position, the implement control system may then de-energize the electromagnet 300 to cause the control lever 710 to de-latch from the electromagnet 300.
  • the spring 720 then biases the control lever 710 to the neutral position.
  • the present invention provides for a predetermined electromagnetic force that is large enough to overcome the spring force of the spring 720 but small enough to be overcome by the force applied by the vehicle operator. Further, the present invention provides that the predetermined electromagnetic force to remain substantially constant (even when driven with a fluctuating coil current) .
  • the electromagnetic force remains within a predetermined force range to provide a substantially constant force level that prevents inadvertent de-latching caused by the electromagnetic force falling below the spring force, and also prevents the electromagnetic force from becoming too large to be manually exceeded by an operator. This feature enables the electromagnet to be used in a variety of control systems wherein a constant electromagnetic force is desired.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)

Abstract

A latching electromagnet is provided. The electromagnet (300) includes a core (305) having a pole face, a coil of windings (325), and an armature (330). Advantageously, the core has a geometry that locally increases the magnetic flux density to saturation levels.

Description

Description
LATCHING ELECTROMAGNET
Technical Field
This invention relates generally to a latching electromagnet and, more particularly, to a latching electromagnet that operates with a portion of the core in magnetic saturation.
Background Art
Latching electromagnets are used in variety of applications. In one application, a control circuit may require that an electromagnet "latch" a moveable member to a detent position. Further, the control circuit may also require that the moveable member be "de-latched" from the detent position by a mechanical device that has a predetermined force- However if the "latching" force of the electromagnet varies, then the mechanical device may not have sufficient force to overcome the electromagnetic force. Consequently the moveable member remains latched to the detent position, possibly causing the control system to malfunction. In another application, an electromagnet may be provided to latch a control lever of an electro- hydraulic control at a detent position. The control lever is latched at the detent position until; either the electromagnet de-energizes, or an operator manually de-latches the control lever from the energized electromagnet. If the later occurs, the operator must apply a force to the control lever that overcomes the electromagnetic force.
Unfortunately, prior electromagnet designs do not produce a substantially constant electromagnetic force. For example, a prior electromagnet 100 is shown in Fig. 1. The electromagnet 100 includes a core 105, a coil 110 and an armature 115. Upon being energized, the coil 110 produces an electromagnetic force which "latches" the armature 115 to the core 105. Upon deenergization of the coil 110, a spring 120 biases the armature to a neutral position.
Shown in Fig. 2, is a Force vs. Current curve which illustrates the relationship between the electromagnetic force and the coil current (when the armature is latched to the core) . During operation, the coil current fluctuates between a minimum and maximum value. The current fluctuation is caused by changes in coil temperature and voltage. Due to the "steepness" of the curve, the resulting electromagnetic force may vary between a force that is too small - allowing for inadvertent de-latching of the control lever; to a force that is too large - yielding a force too great for the operator to overcome.
Another undesirable feature of the prior electromagnet design pertains to a varying air gap length. For example as shown in Fig. 1, the armature 115 is designed to latch "flush" with the electromagnetic core. However the air gap length may vary, which in turn varies the electromagnetic force. For example manufacturing tolerances, misalignment of the core/armature, and foreign materials that accumulate on the electromagnet parts (such as dust and rust particles) , all may significantly vary the length of air gap. Significant variations in the air gap combined with coil current fluctuations make for difficult electromagnetic force controllability. The present invention is directed to overcoming one or more of the problems as set forth above.
Disclosure of the Invention
In one aspect of the present invention, a latching electromagnet is provided. The electromagnet includes a core having a pole face, a coil of windings, and an armature. Advantageously, the core has a geometry that locally increases the magnetic flux density to saturation levels.
Brief Description of the Drawings
For a better understanding of the present invention, reference may be made to the accompanying drawings in which:
Fig. 1 shows a cross sectional view of a prior art electromagnet;
Fig. 2 shows a graph of the electromagnetic force vs. coil current associated with the prior art electromagnet;
Fig. 3 shows a cross sectional view of an electromagnet associated with one embodiment of the present invention; Fig. 4 shows a graph of the magnetic flux density vs. magnetic flux intensity of the electromagnet associated with the present invention;
Fig. 5 shows a graph of the electromagnetic force vs. coil current of the electromagnet associated with the present invention;
Fig. 6 shows a cross sectional view of an electromagnet associated with another embodiment of the present invention; Fig. 7 shows a cross sectional view of an exemplary control mechanism associated with the present invention;
Fig. 8, 9, 10, and 11 show cross sectional views of securing mechanism for an electromagnet associated with the present invention; and
Fig. 12 shows a cross sectional view of an electromagnet associated with yet another embodiment of the present invention.
Best Mode for Carrying Out the Invention
Referring now to Fig. 3 an embodiment of the present invention is shown. Fig. 3 illustrates a cross section of a cylindrical latching electromagnet 300. The electromagnet 300 includes a core 305 having a pole face, and inner and outer portions 310,315 that are separated by a channel 320. A coil 325 of windings is disposed in the channel 320. Upon energization of the coil 325, the coil 325 produces an electromagnetic force that causes an armature 330 to latch to the pole face.
To overcome the problems set forth in the background art section, supra, the electromagnet 300 is designed with a geometrical configuration formed at the core to locally increase the flux density to saturation levels. Shown in Fig. 4, is a typical B-H curve associated with the electromagnets of this type. The y-axis represents the magnetic flux density, B, while the x-axis represents the magnetic flux intensity or field strength, H. The portion of the curve that is above (Bsat) represents the saturated magnetic flux density region. The magnetic saturation region corresponds to a B-H relationship that naturally occurs in air. One type of a geometrical configuration is shown in the embodiment of Fig. 3, where the core 305 defines a saturation region 335 on the inner portion 315 to provide for a saturated magnetic flux density. More particularly, the core 305 defines a bore 333 at the inner portion 315. The saturation region 335 has a predetermined cross sectional area, A, that is calculated in accordance with the following relationships :
Bsat = (φ / A) = (Ni / RA) [1]
solving for A in eq. 1,
A = (Ni / (R) (Bsat ) ) [2]
A = Ni = TT . 2 π2 >
(RC1+RC2+RC3+RA1+RA2 ) x (Bsat ) 4 X l o υ± '
where, φ = magnetic flux; R = electromagnetic reluctance;
N = number of coil windings; i = coil current;
D0 = outer diameter of the saturation region; and D± = inner diameter of the saturation region.
The predetermined area of the saturation region 335 provides for little variation in magnetic flux density and electromagnetic force - even with changes in coil current and temperature.
Although one type of geometrical configuration is discussed above, it will be apparent to those skilled in the art that several other geometrical configurations may readily be implemented. Accordingly, the present invention is not limited to the geometrical configuration shown in Fig. 3 and described above. The resulting Force vs. Current curve is described in Fig. 5. The desired electromagnetic force operates about a predetermined operating point. As shown, the part of the curve corresponding to the predetermined operating point is relatively "flat" as compared to the operating point associated with prior art electromagnets. Thus, coil current fluctuations produce only small changes in electromagnetic force, as compared to the prior art electromagnets.
Another embodiment of the present invention is shown in Fig. 6. Here, the outer portion 315 is greater in length than the inner portion 310 to create a predetermined working air gap length, Lg, between the inner portion 310 and the armature 330 (when the armature 330 is latched to the pole face) . Preferably, the predetermined air gap length, Lg, is substantially greater than the relative increase of the air gap length due to poor alignment, wear, foreign material, etc. Thus, the predetermined air gap length, Lg, provides for small changes in the electromagnetic force due to changes in the air gap length caused by armature/core misalignment.
Although the present invention may be used in a variety of applications, one such application in Fig. 7. Here, the present invention is used to "latch" a control lever of a control mechanism at a detent position. As shown, the control mechanism 700 includes a housing 705 and a control lever 710 disposed in the housing 705. The control lever 710 has bi-directional, pivotal movement between a neutral and a predetermined position (on either side of neutral) . As shown the control lever 710 defines two bifurcated arms 715. An electromagnet armature 330 is rigidly mounted to each lever arm 715. A centering spring 720 is attached to the bifurcation to bias the control lever 710 to the neutral position. The operation of the present invention in relation to the control mechanism 700 will be discussed infra.
Although the present invention is shown in relation to the control mechanism 700 of Fig. 7, it will be apparent to those skilled in the art that the present invention may be used in a variety of other applications that includes electronic, hydraulic, or pneumatic type devices.
The present invention additionally provides for a self-aligning, mounting feature to compensate for the manufacturing tolerances or for poor alignment of the outer pole face with the armature. For example in Fig. 8, the electromagnet 300 is shown mounted to a mounting plate 800. A bolt 805 is used to fasten the electromagnet core 305 to the mounting plate 800. Two O-rings 810a,b composed of flexible material are also provided. One O-ring 810a is disposed between a washer 815 and the mounting plate 800, while the other O-ring 810b is disposed between the mounting plate 800 and the electromagnet core 305. The illustrated configuration provides a certain degree of flexibility to the mounting of the electromagnet. For example as shown in Fig. 9, the alignment of the armature 330 is "skewed" in relation to the x-axis and would not "mate" properly with a rigidly mounted electromagnet core. Here, however, the mounting is flexible which allows for the armature 330 to properly mate with the electromagnet core 305 irrespective of the armature orientation. Another type of a self aligning feature is shown in Fig. 10. Here the electromagnetic core 330 includes a flange 820, and the mounting plate 800 includes a mechanical joint 825 for griping the flange 820 to secure the electromagnetic core 330 to the mounting plate 800. Similarly this feature also provides for mounting flexibility. For example as shown in Fig. 11, the misaligned armature 330 is properly mated with the electromagnet core 305. Another type of geometrical configuration is shown in the embodiment of Fig. 12. Here, the core 305 defines a saturation region 335 on the outer portion 315 to provide for a saturated magnetic flux density. More particularly, the core 305 defines an annular groove 337 on the outer core surface. The saturation region 335 has a cross sectional area, A, with the following relationship:
Figure imgf000010_0001
where D0 represents the outer diameter of the saturation region and D± represents the inner diameter of the saturation region.
This geometrical configuration provides for several advantages. Because the pole faces are not modified to create the saturation region, the surface areas of the pole faces may be relatively large to yield a relatively high latching force. Moreover, this configuration produces negligible variations in magnetic flux density and electromagnetic force.
Industrial Applicability
The operation of the present invention may be used in an implement control system of a work vehicle. Although an implement control system is described, it will be apparent to those skilled in the art that the present invention may be used in a variety of applications where "latching" is desired. The present invention may provide for "automatic" control of a work implement of the vehicle. For example, the electromagnet 330 "latches" the control lever 710 at a predetermined lever position, which represents a predetermined position of the work implement, e.g. a predetermined bucket "lift" or "angle".
In operation, the vehicle operator pivots the control lever 710 to a predetermined position. A driving circuit 725 delivers an energization signal to the electromagnet 300 which responsively energizes and "latches" the control lever 705 at the predetermined lever position. Accordingly, an electrohydraulic system positions the work implement to a predetermined position. Once the work implement reaches the predetermined position, the implement control system may then de-energize the electromagnet 300 to cause the control lever 710 to de-latch from the electromagnet 300. The spring 720 then biases the control lever 710 to the neutral position.
It may, however, be desirable for the vehicle operator to "manually" de-latch the control level 710 from the predetermined position.
Advantageously, the present invention provides for a predetermined electromagnetic force that is large enough to overcome the spring force of the spring 720 but small enough to be overcome by the force applied by the vehicle operator. Further, the present invention provides that the predetermined electromagnetic force to remain substantially constant (even when driven with a fluctuating coil current) . Thus, the electromagnetic force remains within a predetermined force range to provide a substantially constant force level that prevents inadvertent de-latching caused by the electromagnetic force falling below the spring force, and also prevents the electromagnetic force from becoming too large to be manually exceeded by an operator. This feature enables the electromagnet to be used in a variety of control systems wherein a constant electromagnetic force is desired.
Other aspects, objects and advantages of the present invention can be obtained from a study of the drawings, the disclosure and the appended claims.

Claims

Claims
1. A latching electromagnet (300), comprising: a core (305) defining a pole face; a coil of windings (325) disposed in the core (305) ; an armature (330) ; and wherein the core defines an annular groove (337) located on the outer surface of the core to provide for a saturated magnetic flux density.
2. An electromagnet (300), as set forth in claim 1, wherein the core (305) has a circular shape and defines an inner and outer portion (310,315) that is separated by an annular channel (320) , the annular groove (337) defining a saturation region (335) on the outer portion (315) , the saturation region having a cross sectional area, A, with the following relationship:
Figure imgf000013_0001
where D0 represents the outer diameter of the saturation region and D± represents the inner diameter of the saturation region.
3. An electromagnet (300), as set forth in claim 2, wherein the energized coil (325) produces a substantially constant electromagnetic force.
4. An electromagnet (300), as set forth in claim 3, wherein the length of the outer portion (315) is greater than the length of the inner portion (310) to create a predetermined air gap length between the inner portion (310) and the armature (330) in response to the armature (330) being latched to the pole face.
5. A control mechanism, comprising: a housing (705) ; a latching electromagnet (300) being secured to the housing (705) and including: a core (305) defining a pole face; a coil of windings (325) disposed in the core (305) ; an armature (330) ; and wherein the core defines a saturation region (335) to provide for a saturated magnetic flux density, the saturation region having a cross sectional area, A, with the following relationship:
Figure imgf000014_0001
where D0 represents the outer diameter of the saturation region and Di represents the inner diameter of the saturation region; means for positioning the armature (330) adjacent the core (305) ; and means (725) for supplying electrical energy to the coil (325) in response to the armature (330) being positioned adjacent the pole face, the coil (325) responsively energizing and producing an electromagnetic force that causes the armature (330) to latch to the pole face.
6. A control mechanism, as set forth in claim 5, wherein the core (305) has a circular shape and defines an inner and outer portion (310,315) that is separated by an annular channel (320) , the core (305) further defining an annular groove (337) that is located on the outer surface of the core to provide a saturated magnetic flux density, the saturation region (335) being disposed between the annular groove (337) and annular channel (320) .
7. A control mechanism, as set forth in claim 6, wherein the energized coil (320) produces a substantially constant electromagnetic force.
8. A control mechanism (700), comprising: a housing (705) ; a lever (710) being disposed in the housing (705) and having pivotal movement between a neutral and a predetermined position, the lever (710) defining an arm (715) ; a latching electromagnet (300) being secured to the housing (705) and including: a core (305) defining a pole face; a coil of windings (325) disposed in the core (305) an armature (330) being rigidly attached to the arm (715) ; and wherein the core defines a saturation region (335) to provide for a saturated magnetic flux density, the saturation region having a cross sectional area, A, with the following relationship:
A = J X (D2 - D2) where D0 represents the outer diameter of the saturation region and Di represents the inner diameter of the saturation region; and means (725) for supplying electrical energy to the coil (325) in response to the lever (715) being positioned at a predetermined position, the coil (325) responsively energizing and producing an electromagnetic force that causes the lever (715) to latch at the predetermined position.
-
9. A control mechanism (700), as set forth in claim 8, wherein the core (305) has a circular shape and defines an inner and outer portion (310,315) that is separated by an annular channel (320) , the core (305) further defining an annular groove (337) that is located on the outer surface of the core to provide a saturated magnetic flux density, the saturation region (335) being disposed between the annular groove (337) and annular channel (320) .
10. A control mechanism (700), as set forth in claim 9, wherein the energized coil (325) produces a substantially constant electromagnetic force.
11. A control mechanism (700), as set forth in claim 10, including a centering spring (720) connected to the lever arm (715) , the centering spring (720) biasing the lever (715) to the neutral position in response to the coil (325) being deenergized.
12. A latching electromagnet (300), comprising: a core (305) defining a pole face; a coil of windings (325) disposed in the core (305) ; an armature (330) ; and wherein the core defines a saturation region (335) to provide for a saturated magnetic flux density, the saturation region having a cross sectional area, A, with the following relationship:
Figure imgf000017_0001
where D0 represents the outer diameter of the saturation region and D± represents the inner diameter of the saturation region.
PCT/US1994/004372 1993-06-01 1994-04-20 Latching electromagnet WO1994028559A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69407387T DE69407387T2 (en) 1993-06-01 1994-04-20 Control mechanism with locking magnet
EP94915843A EP0653097B1 (en) 1993-06-01 1994-04-20 Control mechanism comprising a latching electromagnet
JP7500631A JPH07509815A (en) 1993-06-01 1994-04-20 Electromagnet for latch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6979793A 1993-06-01 1993-06-01
US08/069,797 1993-06-01

Publications (1)

Publication Number Publication Date
WO1994028559A1 true WO1994028559A1 (en) 1994-12-08

Family

ID=22091271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/004372 WO1994028559A1 (en) 1993-06-01 1994-04-20 Latching electromagnet

Country Status (4)

Country Link
EP (1) EP0653097B1 (en)
JP (1) JPH07509815A (en)
DE (1) DE69407387T2 (en)
WO (1) WO1994028559A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201665B2 (en) 2007-03-23 2012-06-19 Otis Elevator Company Magnetic door coupling device for an elevator system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2280803T5 (en) * 2008-04-22 2019-09-30 Tecnomagnete S.P.A. Monolithic magnetic apparatus and process for making said monolithic magnetic apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1135704A (en) * 1966-07-14 1968-12-04 Bell Aerospace Corp Electromagnetic force motor having linear output characteristics
US3571769A (en) * 1969-05-08 1971-03-23 Bell Aerospace Corp Electromagnetic force motor having adjustable magnetic saturation
US3644932A (en) * 1969-10-08 1972-02-22 Synergistics Inc High-speed indenting recorder
US3861643A (en) * 1973-10-05 1975-01-21 United Aircraft Corp Saturating magnetic control valve
US3921111A (en) * 1974-09-25 1975-11-18 Marotta Scientific Controls Solenoid actuator for high pressure valve
US3993972A (en) * 1974-08-14 1976-11-23 Lucas Industries, Limited Electro-magnetic devices
US4346319A (en) * 1980-04-15 1982-08-24 Brother Kogyo Kabushiki Kaisha Rotary electromagnetic actuator
EP0085535A1 (en) * 1982-01-28 1983-08-10 Deere & Company Solenoid
EP0296983A1 (en) * 1987-06-26 1988-12-28 Lucas Ledex, Inc. Three-dimensional double air gap high speed solenoid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1135704A (en) * 1966-07-14 1968-12-04 Bell Aerospace Corp Electromagnetic force motor having linear output characteristics
US3571769A (en) * 1969-05-08 1971-03-23 Bell Aerospace Corp Electromagnetic force motor having adjustable magnetic saturation
US3644932A (en) * 1969-10-08 1972-02-22 Synergistics Inc High-speed indenting recorder
US3861643A (en) * 1973-10-05 1975-01-21 United Aircraft Corp Saturating magnetic control valve
US3993972A (en) * 1974-08-14 1976-11-23 Lucas Industries, Limited Electro-magnetic devices
US3921111A (en) * 1974-09-25 1975-11-18 Marotta Scientific Controls Solenoid actuator for high pressure valve
US4346319A (en) * 1980-04-15 1982-08-24 Brother Kogyo Kabushiki Kaisha Rotary electromagnetic actuator
EP0085535A1 (en) * 1982-01-28 1983-08-10 Deere & Company Solenoid
EP0296983A1 (en) * 1987-06-26 1988-12-28 Lucas Ledex, Inc. Three-dimensional double air gap high speed solenoid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201665B2 (en) 2007-03-23 2012-06-19 Otis Elevator Company Magnetic door coupling device for an elevator system

Also Published As

Publication number Publication date
JPH07509815A (en) 1995-10-26
DE69407387T2 (en) 1998-07-16
EP0653097A1 (en) 1995-05-17
EP0653097B1 (en) 1997-12-17
DE69407387D1 (en) 1998-01-29

Similar Documents

Publication Publication Date Title
US4463332A (en) Adjustable, rectilinear motion proportional solenoid
US5434549A (en) Moving magnet-type actuator
US6206343B1 (en) Solenoid valve
US5781090A (en) Latching electromagnet
US4940958A (en) Polarized electromagnetic apparatus
US4763091A (en) Air gap setting device for electromagnets
US4835503A (en) Linear proportional solenoid
US4959567A (en) Magnetodistortive actuator with adjustable magnetic bias
EP0653097B1 (en) Control mechanism comprising a latching electromagnet
US7710225B2 (en) Actuator
CA2922819C (en) Control solenoid with improved magnetic circuit
US5473298A (en) Torque motor
US20020053965A1 (en) Dc electromagnet
CN1586032B (en) Linear voice coil actuator with a latching feature
US4801910A (en) Magnetic actuating mechanism
JP2000277327A (en) Linear solenoid and solenoid valve using the same
EP3039691B1 (en) Control solenoid with improved magnetic circuit
GB2116369A (en) Electro-magnetic actuating deivce
KR100346969B1 (en) Electric hydraulic pressure regulating device for vehicle brakes with sliding control function
EP0191549B1 (en) Wire dot-printing head
JP2002340218A (en) High strength pull type solenoid
EP0701744A1 (en) Electromagnetic actuator with rotary core
US7328498B2 (en) Method for producing the surface geometry of solenoids
US2834846A (en) Relay switch
JPS60223458A (en) Electromagnetic linear movement apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994915843

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994915843

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994915843

Country of ref document: EP