WO1994027926A1 - Cement compositions and admixtures therefor - Google Patents

Cement compositions and admixtures therefor Download PDF

Info

Publication number
WO1994027926A1
WO1994027926A1 PCT/US1993/005313 US9305313W WO9427926A1 WO 1994027926 A1 WO1994027926 A1 WO 1994027926A1 US 9305313 W US9305313 W US 9305313W WO 9427926 A1 WO9427926 A1 WO 9427926A1
Authority
WO
WIPO (PCT)
Prior art keywords
admixture
alkali metal
weight
hydraulic binder
cement
Prior art date
Application number
PCT/US1993/005313
Other languages
French (fr)
Inventor
Sandra R. Sprouts
Original Assignee
Sandoz, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandoz, Ltd. filed Critical Sandoz, Ltd.
Priority to PCT/US1993/005313 priority Critical patent/WO1994027926A1/en
Priority to AU45983/93A priority patent/AU4598393A/en
Publication of WO1994027926A1 publication Critical patent/WO1994027926A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • This invention relates to cementitious compositions and to .admixtures for addition thereto.
  • an objective would be a cementitious composition which remains workable for an extended period (for example, when it must be pumped for a long distance before placement) and then hardens rapidly in place, ideally with the rapid development of good strength.
  • One approach to achieve has involved the utilization of both a traditional accelerator and a retarder in the cementitious composition, whereby, for example, a system is tailored to create a desirable "set time window".
  • the invention therefore provides an admixture for use in cementitious compositions, which admixture comprises, in a weight ratio of from 1:9-9:1, two components which are (a) an alkali metal carbonate, and (b) a material selected from the group consisting of hydroxy-bearing and non-hydroxy-bearing C mono and dicarboxylic acids and alkali metal salts thereof, and alkali metal salts of hydroxy-bearing tricarboxylic acids.
  • the invention further provides a hardenable cementitious composition which comprises a hydraulic binder, plus at least 1.02 by weight on hydraulic binder of an admixture as hereinabove described.
  • the invention further provides a process of providing a cementitious composition which comprises a hydraulic binder with long workability followed by rapid hardening and attainment of early strength, comprising adding to the composition at least 1.0Z by weight on hydraulic binder of an admixture as hereinabove described.
  • the invention further provides use as an admixture in a cementitious composition
  • a cementitious composition comprising a hydraulic binder for the purpose of conferring thereon long workability followed by rapid hardening and attainment of early strength, of a combination of alkali metal carbonate and a material selected from the group consisting of C, l-o mono- and dicarboxylic acids and salts thereof and alkali metal salts of hydroxy-bearing C tricarboxylic acids, in the weight ratio of from 1:9-9:1, the carbonate and the material together being present to the extent of at least 1.0Z by weight of the hydraulic binder.
  • hydroxycarboxylic acids for example, citric acid
  • retarders and carbonates act as accelerators.
  • Component (a) may be selected from any alkali metal carbonate known to the art. Bicarbonates may be used but monocarbonates are preferred. Sodium and potassium monocarbonates are the more preferred components (a) .
  • Component (b) may be selected from the carboxy-bearing materials indicated hereinabove. Particularly preferred materials are the hydroxycarboxylic acids falling within the definition of component (b), particularly gluconic, glucolic and malic acids and their alkali metal salts. Non-hydroxy-bearing acids include acetic and propionic acids and their salts, e.g. sodium acetate, as well as the dicarboxylic acids and their salts, for example, malonic acid and its salts.
  • the acid be employed in alkali metal salt form, e.g. sodium and/or potassium salt form.
  • the tricarboxylate is desirably a monohydroxy-bearing tricarboxylate, e.g. a citrate. It is an interesting (and not well understood) phenomenon that tricarboxylic acid alkali metal salts (such as trisodium or tripotassium citrate) will work in this invention, whereas the acids will not. Trisodium and tripotassium citrates are among the most preferred components (b).
  • the proportions of component (a) to component (b) are 1:9-9:1, more preferably from 1:4-4:1.
  • the more desired combination of properties are obtained at weight ratios of (a) to (b) of from 3:7-6:4, preferably from 55:45-40:60, more preferably 45:55-55:45.
  • the admixture should be. present to the extent of at least 11 , more preferably at least 21 , by weight of hydraulic binder.
  • at least 11 by weight of component (b) itself is used, e.g. at least 21 citrate, to provide desirable properties with a variety of cementitious compositions and binder systems.
  • the admixture is usually added to a cementitious composition at a rate of from 1-152, preferably from 2-122, most preferably from 3-102, particularly 4-102, by weight solids per cementitious material.
  • the cementitious compositions of this invention comprise a hydraulic binder, that is, a calcium alumino-silicate-based substance which when mixed with water will set to form a hard product.
  • the more preferred binder is Portland cement but other types of cement such as high alumina cement and slag cement may also be used. When slag cement is employed, it generally represents no more than 502 by weight of the hydraulic binder.
  • the generally preferred binder consists essentially of Portland cement or high alumina cement, or mixtures thereof. Other materials which are not in themselves hydraulic but which can make a contribution to the setting of the final product may be used but are not counted as hydraulic binder. Such materials include the non-hydraulic natural and artificial pozzolans. However, cementitious compositions formed in accord with the invention will be essentially free of materials classed as fly ashes, and particularly Class C type fly ashes.
  • the components of the admixture may be added to a cementitious composition in any convenient manner. For example, they may be added individually or collectively as solids to a cementitious mix, or the components may be incorporated in the appropriate proportions into a dry cementitious composition which may be stored until needed. Alternatively, the two components may be added as aqueous solutions to a cementitious mix.
  • plasticizers and superplasticizers such as lignosulfonates, naphthalene sulfonate formaldehyde condensates, sulfonated melamine-formaldehyde condensates and glucoheptonates, may be added in art-recognized quantities.
  • compositions according to the invention are silica fume, rice hull ash, precipitated silica and the like. Fibers suitable for use in the construction industry may also be used. Further useful additives include water-soluble polymeric materials such as cellulosic ethers and gums, as well as lattices and similar materials.
  • compositions made possible by the present invention include those characterized by an excellent combination of workability time, rapid set, rapid initial strength development and excellent final strength, often exceeding performance levels hitherto known to the art.
  • Compositions having one or more such desired properties but with one or others more or less within normal range may be prepared with the broader teachings of this invention, including the following examples, by varying the amount of components (a) and (b) with increasing amounts of component (a) being used primarily to improve or extend workability time and late strength and component (b) being used to obtain early strength and early set times.
  • Increasing amounts of the combination e.g. 22 or more, improve flow and early strength characteristics. Moreover, this is achieved by the use of readily-available raw materials and straightforward procedures, making the invention easy to work.
  • a mixture of potassium citrate and sodium carbonate (citrate: carbonate ratio 55:45) is added to a concrete mixture consisting of 15.62 type 1 Portland cement and 84.42 aggregate at a rate of 42 citrate and carbonate by weight of the cement.
  • a concrete mixture consisting of 15.62 type 1 Portland cement and 84.42 aggregate at a rate of 42 citrate and carbonate by weight of the cement.
  • a ⁇ -naphthalene sulfonate-formadelhyde-based superplasticizer (“Rheobuild” (trademark) 1000 from Master Builders, Inc. is used).
  • a mortar composition consisting of type III Portland cement (302 by weight) and silica sand (702) is dosed with 62 by weight on cement of a 55/45 mixture of potassium citrate and sodium carbonate.
  • the water/cement ratio of the mix is 0.26. The mixture is subjected to the following tests:
  • ASTM C 230 - a test for flow. A mixture is added to a circular table and flow is determined with reference to how far the mixture spreads, optionally after the table has been raised and dropped a number of times.
  • the mortar is 312 type I Portland cement and 692 silica sand. It is dosed with an admixture according to the following table and water is added to give a water/cement ratio of 0.45. The results are shown in the following table:
  • the radius of the ASTM C 230 plate is 145mm. A measurement of 145 or greater represents very good flow.
  • An underwater mortar is prepared by blending the following ingredients: silica sand 28.125 parts pea gravel 39.500 "
  • Example 1 1.975 type III Portland cement 30.000
  • Water is added to give a water/cement ratio of 0.30 and the following properties are obtained under testing with specimens cut from underwater composite and tested for strength at indicated age:
  • a composition is prepared by blending 692 by weight of silica sand and 312 of Portland cement. To portions of this mix are added varying quantities of sodium carbonate, citric acid and potassium citrate based on weight of cement. Water is added to these portions at a cement/water ratio of 0.26 and the initial and final set times taken by the method of ASTM C 266. The results are as follows (times (in hours and minutes) without brackets are initial set times, times with brackets are final set times):

Abstract

Cement admixtures contain an alkali metal carbonate as component (a) and a mono- or di-carboxylic acid or alkali metal salt thereof or an alkali metal salt of a tricarboxylic acid as component (b).

Description

CEMENT COMPOSITIONS AND ADMIXTURES THEREFOR
Field of the Invention
This invention relates to cementitious compositions and to .admixtures for addition thereto.
Background of the Invention
It is desirable to have admixture systems which allow for variations in the properties of workability, initial and final set times and early and final compressive strengths. For example, an objective would be a cementitious composition which remains workable for an extended period (for example, when it must be pumped for a long distance before placement) and then hardens rapidly in place, ideally with the rapid development of good strength. One approach to achieve has involved the utilization of both a traditional accelerator and a retarder in the cementitious composition, whereby, for example, a system is tailored to create a desirable "set time window". However, the achievement of these apparently conflicting requirements along with other desired properties has remained elusive.
Description of the Invention
It has now been found that it is possible to give to cementitious compositions various desired properties as above indicated, including for example extended workability followed by rapid hardening with rapid acquisition of early strength and an end-product with high ultimate strength. The invention therefore provides an admixture for use in cementitious compositions, which admixture comprises, in a weight ratio of from 1:9-9:1, two components which are (a) an alkali metal carbonate, and (b) a material selected from the group consisting of hydroxy-bearing and non-hydroxy-bearing C mono and dicarboxylic acids and alkali metal salts thereof, and alkali metal salts of hydroxy-bearing tricarboxylic acids. The invention further provides a hardenable cementitious composition which comprises a hydraulic binder, plus at least 1.02 by weight on hydraulic binder of an admixture as hereinabove described.
The invention further provides a process of providing a cementitious composition which comprises a hydraulic binder with long workability followed by rapid hardening and attainment of early strength, comprising adding to the composition at least 1.0Z by weight on hydraulic binder of an admixture as hereinabove described.
The invention further provides use as an admixture in a cementitious composition comprising a hydraulic binder for the purpose of conferring thereon long workability followed by rapid hardening and attainment of early strength, of a combination of alkali metal carbonate and a material selected from the group consisting of C, l-o mono- and dicarboxylic acids and salts thereof and alkali metal salts of hydroxy-bearing C tricarboxylic acids, in the weight ratio of from 1:9-9:1, the carbonate and the material together being present to the extent of at least 1.0Z by weight of the hydraulic binder.
Detailed Description of the Invention
The benefits of this invention are especially surprising in the light of the fact that both components of the admixture are known and have been used individually for some time as admixtures in cementitious compositions. For example, hydroxycarboxylic acids (for example, citric acid) are known retarders and carbonates act as accelerators.
Component (a) may be selected from any alkali metal carbonate known to the art. Bicarbonates may be used but monocarbonates are preferred. Sodium and potassium monocarbonates are the more preferred components (a) . Component (b) may be selected from the carboxy-bearing materials indicated hereinabove. Particularly preferred materials are the hydroxycarboxylic acids falling within the definition of component (b), particularly gluconic, glucolic and malic acids and their alkali metal salts. Non-hydroxy-bearing acids include acetic and propionic acids and their salts, e.g. sodium acetate, as well as the dicarboxylic acids and their salts, for example, malonic acid and its salts. In general, it is particularly preferred that the acid be employed in alkali metal salt form, e.g. sodium and/or potassium salt form. The tricarboxylate is desirably a monohydroxy-bearing tricarboxylate, e.g. a citrate. It is an interesting (and not well understood) phenomenon that tricarboxylic acid alkali metal salts (such as trisodium or tripotassium citrate) will work in this invention, whereas the acids will not. Trisodium and tripotassium citrates are among the most preferred components (b).
The reason for the achievement of desirable results by the invention (often superior to anything hitherto available to the art) is not understood but there appears to be a synergism between the two components in the compositions of this invention when used in the appropriate proportions. It appears, without restricting the invention in any way, that the two components of the admixture do not behave in the normal, expected manner - component (b), which includes many materials normally considered as retarders, appears to act as an accelerator, and the carbonate, normally regarded as an accelerator, appears to act as a retarder at least as regards component (b) .
The proportions of component (a) to component (b) are 1:9-9:1, more preferably from 1:4-4:1. The more desired combination of properties are obtained at weight ratios of (a) to (b) of from 3:7-6:4, preferably from 55:45-40:60, more preferably 45:55-55:45. In addition, the admixture should be. present to the extent of at least 11 , more preferably at least 21 , by weight of hydraulic binder. Desirably, at least 11 by weight of component (b) itself is used, e.g. at least 21 citrate, to provide desirable properties with a variety of cementitious compositions and binder systems.
The admixture is usually added to a cementitious composition at a rate of from 1-152, preferably from 2-122, most preferably from 3-102, particularly 4-102, by weight solids per cementitious material.
The cementitious compositions of this invention comprise a hydraulic binder, that is, a calcium alumino-silicate-based substance which when mixed with water will set to form a hard product. The more preferred binder is Portland cement but other types of cement such as high alumina cement and slag cement may also be used. When slag cement is employed, it generally represents no more than 502 by weight of the hydraulic binder. The generally preferred binder consists essentially of Portland cement or high alumina cement, or mixtures thereof. Other materials which are not in themselves hydraulic but which can make a contribution to the setting of the final product may be used but are not counted as hydraulic binder. Such materials include the non-hydraulic natural and artificial pozzolans. However, cementitious compositions formed in accord with the invention will be essentially free of materials classed as fly ashes, and particularly Class C type fly ashes.
The components of the admixture may be added to a cementitious composition in any convenient manner. For example, they may be added individually or collectively as solids to a cementitious mix, or the components may be incorporated in the appropriate proportions into a dry cementitious composition which may be stored until needed. Alternatively, the two components may be added as aqueous solutions to a cementitious mix.
In addition to the essential ingredients as hereinabove described, there may also be used other art-recognized ingredients. The most common of these is aggregate, chosen for specific applications (little or no aggregate for grouts, fine aggregate such as sand for mortars, both fine and coarse aggregates for concretes). Most practical cementitious compositions will comprise aggregate, typically to the extent of about 50-902 by weight of the total composition. Known admixtures (as defined in ASTM C 125), for example, plasticizers and superplasticizers such as lignosulfonates, naphthalene sulfonate formaldehyde condensates, sulfonated melamine-formaldehyde condensates and glucoheptonates, may be added in art-recognized quantities.
Other materials which may usefully be added to some compositions according to the invention are silica fume, rice hull ash, precipitated silica and the like. Fibers suitable for use in the construction industry may also be used. Further useful additives include water-soluble polymeric materials such as cellulosic ethers and gums, as well as lattices and similar materials.
The compositions made possible by the present invention include those characterized by an excellent combination of workability time, rapid set, rapid initial strength development and excellent final strength, often exceeding performance levels hitherto known to the art. Compositions having one or more such desired properties but with one or others more or less within normal range may be prepared with the broader teachings of this invention, including the following examples, by varying the amount of components (a) and (b) with increasing amounts of component (a) being used primarily to improve or extend workability time and late strength and component (b) being used to obtain early strength and early set times. Increasing amounts of the combination, e.g. 22 or more, improve flow and early strength characteristics. Moreover, this is achieved by the use of readily-available raw materials and straightforward procedures, making the invention easy to work.
The invention is further described with reference to the following non-limiting examples. Example 1
A mixture of potassium citrate and sodium carbonate (citrate: carbonate ratio 55:45) is added to a concrete mixture consisting of 15.62 type 1 Portland cement and 84.42 aggregate at a rate of 42 citrate and carbonate by weight of the cement. To an identical concrete mixture is added 0.492 by weight of a ^-naphthalene sulfonate-formadelhyde-based superplasticizer ("Rheobuild" (trademark) 1000 from Master Builders, Inc. is used). Sufficient water is added to the two mixtures such that the total water is the same in each case, the mixtures are mixed, and they are tested for slump by the slump test of ASTM C 143, for initial set by the Penetration Resistance Test of ASTM C 403 and for final compressive strength by the method of ASTM C 39. The results are as follows -
Superplasticized Mixture according
Mixture to the invention
Slump (in.) at 8 min. 8.50 8.75 n 28 " 6.00 9.75 π 48 " 5.00 9.25 n n 68 " 3.75 9.50
Initial set
(hr.min. ) 4:52 4:30
Compressive Strength (PSI)
(3 days) 6485 6040
(24 hours) 5030 4430
(6 hours ) 170 1090
It may be seen that, in the case of the superplasticized mixture, there is a gradual decrease in slump (that is, a gradual decrease in fluidity and consequently of workability). On the other hand, the slump of the mixture according to the invention remains remarkably constant, allowing a much longer working time. Example 2
To illustrate the effect of using hydroxycarboxylate salt and carbonate together, a number of Portland Type I cement pastes are made with the amount (given as by weight on cement) of potassium citrate and sodium carbonate varied as shown in the following table. The figures in the body of the table without brackets are the initial set times and those in the brackets are final set times. The set times are measured in hours and minutes according to the method of ASTM C 266.
32 citrate 42 citrate 52 citrate
Na_ CO 170 (a) (a) (0:27) (b) (0:15)
2.0 (a) (1:10) 0:20 (0.38) 0:15 (0:30)
3.0 1:05 (1:25) 0:35 (0:50) 0:25 (0:30)
6.0 1:10 (1:30) 0:50 (1:05) 0:45 (1:00)
5.0 1:10 (1:25) 1:00 (1:20) 0:47 (1:05)
(a) Not measured.
It can clearly be seen that, in each case, times are generally longer with increasing carbonate content and static citrate content, and that times are shorter with increasing citrate content and static carbonate content. This indicates clearly that the citrate is acting as an accelerator and the carbonate is acting as a retarder, a reversal of the normal situation.
Example 3
Illustration of the rapid strength development of the compositions of the present invention. A mortar composition consisting of type III Portland cement (302 by weight) and silica sand (702) is dosed with 62 by weight on cement of a 55/45 mixture of potassium citrate and sodium carbonate. The water/cement ratio of the mix is 0.26. The mixture is subjected to the following tests:
ASTM C 230 - a test for flow. A mixture is added to a circular table and flow is determined with reference to how far the mixture spreads, optionally after the table has been raised and dropped a number of times.
ASTM C 266 - setting time by Gillmore needles.
ASTM C 109 - compressive strength.
The results are as follows:
2 Flow after 5 drops: initial 90
: after 30 min. 60
Setting tijne : initial 34 min. final 39 min.
Compressive strength: 3 hr. 3606
1 day 10100 7 days 14125
These results indicate a composition which flows well and which maintains this flow (and therefore workability) for an appreciable time, which sets up quickly and which develops good early and final strengths. »
Example 4
Demonstration of flow retention and early strength development in a mortar. The mortar is 312 type I Portland cement and 692 silica sand. It is dosed with an admixture according to the following table and water is added to give a water/cement ratio of 0.45. The results are shown in the following table:
2 Admixture 11 13
(by wt. on cement)
2 Na2 C03 in 55 40 55 40 55 admixture
2 potassium citrate 45 60 45 60 45 in admixture
2 flow at 0 drops initial* 81.5 145+ 145+ 130 145+
30 min.* 60.5 95.0 120.5 145+ 145+
Setting time (hr.min.) initial 3:00 2:14 0:55 0:54 0:40 final 4:00 3:05 1:08 1:07 0:57
Compressive strength (psi)
4 hr. 245 565 1368 585 1000 1 day 1326 2721 4056 2635 4266 28 days 9356 10006 8506 7381 8706
* the radius of the ASTM C 230 plate is 145mm. A measurement of 145 or greater represents very good flow.
EXAMPLE 5
An underwater mortar is prepared by blending the following ingredients: silica sand 28.125 parts pea gravel 39.500 "
BNS superplasticizer 0.250 " defoamer 0.100 anti-washout* 0.075 admixture from
Example 1 1.975 type III Portland cement 30.000
* PS-802 of Master Builders is used.
Water is added to give a water/cement ratio of 0.30 and the following properties are obtained under testing with specimens cut from underwater composite and tested for strength at indicated age:
2 flow at 5 drops 138 (ASTM C 230) working time 30 min. set time initial 45 min. final 55 min. compressive st .rength
(ASTM C 109)
2 hours 1,859 psi
1 day 7,364 n
28 days 13,337 π
underwater
2 hours 934
1 day 4,000
28 days 8,658 EXAMPLE 6
An illustration of the difference between citric acid and potassium citrate.
A composition is prepared by blending 692 by weight of silica sand and 312 of Portland cement. To portions of this mix are added varying quantities of sodium carbonate, citric acid and potassium citrate based on weight of cement. Water is added to these portions at a cement/water ratio of 0.26 and the initial and final set times taken by the method of ASTM C 266. The results are as follows (times (in hours and minutes) without brackets are initial set times, times with brackets are final set times):
2 Na CO 52 citric acid 52 potassium citrate
1.0 7:18 (11:48) 0:05 (0:08)
5.0 0:10 (0:15) 0:22 (0:32)
The difference can be clearly seen; in the case of the citric acid, an increase in sodium carbonate produces a notable acceleration of hardening, whereas, in the case of the potassium citrate, an identical increase produces a retardation of hardening.
EXAMPLE 7
A) Use of sodium acetate paste (100 parts portland cement to 35 parts water) added: 2.75 parts sodium acetate and 2.25 parts sodium carbonate initial set: 24 min. final set : 30 min.
B) Use of potassium glycolate paste as above added: 2.75 parts glycolic acid and 2.25 parts sodium carbonate initial set: 158 min. final set : 248 min. The above formulations develop good early and late strength properties.

Claims

1. An admixture for use in cementitious compositions, which admixture comprises, in a weight ratio of from 1:9-9*:1, two components which are (a) an alkali metal carbonate, and (b) one or more materials selected from the group consisting of Cl-6 mono and dicarboxylic acids and alkali metal salts thereof, and alkali metal salts of Cl-6 tricarboxylic acids.
2. An admixture according to claim 1, wherein the mono- and dicarboxylic acids and salts thereof are hydroxycarboxylic acids and salts thereof.
3. An admixture according to claim 2, wherein the weight ratio of component (a) to component (b) is in the range of 3:7 to 6:4.
4. An admixture according to claim 2, wherein the weight ratio of component (a) to component (b) is in the range of 55:45 to 40:60.
5. An admixture according to claim 1, wherein the alkali metal salt of a tricarboxylic acid is trisodium or tripotassium citrate, or mixture thereof.
6. An admixture according to claim 1, wherein the alkali metal carbonate is sodium or potassium carbonate.
7. A hardenable cementitious composition which comprises a hydraulic binder, plus at least 12 by weight on hydraulic binder of an admixture according to any one of claims 1-6.
8. A process of providing a cementitious composition comprising hydraulic binder with long workability followed by rapid hardening and attainment of early strength, comprising adding to the composition at least 12 by weight on hydraulic binder of an admixture according to any one of claims 1-6.
9. Use as an admixture in a cementitious composition comprising a hydraulic binder, for the purpose of conferring thereon long workability followed by rapid hardening and attainment of early strength, of a combination of alkali metal carbonate and a material selected from the group consisting of Cl-6 mono- and dicarboxylic acids and salts thereof and alkali metal salts of Cl-6 tricarboxylic acids, in the weight ratio of from 1:9-9:1, the carbonate and the material together being present to the extent of at least 12 by weight of the hydraulic binder.
10. A composition according to claim 7 in which the hydraulic binder is selected from the group consisting of Portland cement, high alumina cement, mixtures with each other and mixtures thereof with up to 502 by weight of slag cement.
11. A composition according to claim 7 in which the hydraulic binder is essentially Portland cement or high alumina cement, or mixture thereof, and the admixture is present in an amount of 3-102 by weight of the binder.
PCT/US1993/005313 1993-06-02 1993-06-02 Cement compositions and admixtures therefor WO1994027926A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US1993/005313 WO1994027926A1 (en) 1993-06-02 1993-06-02 Cement compositions and admixtures therefor
AU45983/93A AU4598393A (en) 1993-06-02 1993-06-02 Cement compositions and admixtures therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1993/005313 WO1994027926A1 (en) 1993-06-02 1993-06-02 Cement compositions and admixtures therefor

Publications (1)

Publication Number Publication Date
WO1994027926A1 true WO1994027926A1 (en) 1994-12-08

Family

ID=22236666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/005313 WO1994027926A1 (en) 1993-06-02 1993-06-02 Cement compositions and admixtures therefor

Country Status (2)

Country Link
AU (1) AU4598393A (en)
WO (1) WO1994027926A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2293378B (en) * 1994-09-20 1998-01-21 Sandoz Ltd Rapid-setting cementitious composition
EP3699159A1 (en) * 2019-02-21 2020-08-26 Construction Research & Technology GmbH Adhesive composition with long processing period

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150433A (en) * 1978-05-19 1979-11-26 Denki Kagaku Kogyo Kk High refractory* high strength alumina cement in alkaline environment
JPS54150432A (en) * 1978-05-19 1979-11-26 Denki Kagaku Kogyo Kk Alumina cement
GB2033367A (en) * 1978-11-07 1980-05-21 Coal Industry Patents Ltd Quick Setting Cements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150433A (en) * 1978-05-19 1979-11-26 Denki Kagaku Kogyo Kk High refractory* high strength alumina cement in alkaline environment
JPS54150432A (en) * 1978-05-19 1979-11-26 Denki Kagaku Kogyo Kk Alumina cement
GB2033367A (en) * 1978-11-07 1980-05-21 Coal Industry Patents Ltd Quick Setting Cements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2293378B (en) * 1994-09-20 1998-01-21 Sandoz Ltd Rapid-setting cementitious composition
EP3699159A1 (en) * 2019-02-21 2020-08-26 Construction Research & Technology GmbH Adhesive composition with long processing period

Also Published As

Publication number Publication date
AU4598393A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
KR840001611B1 (en) Strength enhacing admixture for concrete composition
US4997484A (en) Hydraulic cement and composition employing the same
CA1199743A (en) Multicomponent concrete superplasticizer
US4494990A (en) Cementitious composition
US5792252A (en) Cement compositions and admixtures thereof
CA2625836C (en) Slump retention in cementitious compositions
US5085708A (en) Lignosulfonates, oxycarboxylates, polycarboxylates, and polyoxalklene, alkylaryl and alkyl ethers admixtures for ultra-dry mix concrete
AU668701B2 (en) Hydraulic cement set-accelerating admixtures incorporating glycols
AU584105B2 (en) Organic compounds for cement mixes
EP0077129A1 (en) Additive for hydraulic cement mixes
CA2023830C (en) Corrosion inhibiting hydraulic cement additives and compositions containing same
GB2291084A (en) Hydraulic composite
US4606770A (en) Additive for hydraulic cement mixes
EP0159322B1 (en) Additive for hydraulic cement mixes
JPH1179822A (en) Hydraulic composition and mortar or concrete using the same
US4623682A (en) Cement mixes and admixtures thereof
US20030010254A1 (en) Admixtures for mineral binders based on (oxidised) sugar and hydrogenated sugar, admixture-containing mineral binders, and a process for the preparation thereof
US4746367A (en) Superplasticizer composition for use with hydraulic cements
AU656440B2 (en) Cementitious compositions
CA1078415A (en) Admixtures and method for accelerating the setting of portland cement compositions
US20030233961A1 (en) Retarder for calcium sulfoaluminate cements
US6648964B2 (en) Admixtures for mineral binders based on hydrogenated disaccharide, admixture-containing mineral binders, and a process for the preparation thereof
WO1994027926A1 (en) Cement compositions and admixtures therefor
US3951674A (en) Concrete additive
JPS6339906A (en) Cement additive

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 960880

Date of ref document: 19971030

Kind code of ref document: A

Format of ref document f/p: F