WO1994021782A2 - Dna isolation method - Google Patents

Dna isolation method Download PDF

Info

Publication number
WO1994021782A2
WO1994021782A2 PCT/US1994/003010 US9403010W WO9421782A2 WO 1994021782 A2 WO1994021782 A2 WO 1994021782A2 US 9403010 W US9403010 W US 9403010W WO 9421782 A2 WO9421782 A2 WO 9421782A2
Authority
WO
WIPO (PCT)
Prior art keywords
dna
compounds
tissue
isolation
cells
Prior art date
Application number
PCT/US1994/003010
Other languages
French (fr)
Other versions
WO1994021782A3 (en
Inventor
Anil K. Jhingan
Original Assignee
Pioneer Hi-Bred International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi-Bred International, Inc. filed Critical Pioneer Hi-Bred International, Inc.
Priority to EP94912813A priority Critical patent/EP0647269A1/en
Publication of WO1994021782A2 publication Critical patent/WO1994021782A2/en
Publication of WO1994021782A3 publication Critical patent/WO1994021782A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor

Definitions

  • This invention relates to the isolation of DNA from whole plants and plant cells, tissues and parts, from yeasts and bacteria, and from animal cells and tissues.
  • HMW DNA high molecular weight DNA
  • RFLP restriction fragment length polymorphism
  • Polyhydric alcohols including cellulose have been solubilized in the past by conversion to metal xanthates. This method was discovered by Zeise in 1815 and it has been widely employed in the textile industry. Xanthates find extensive application in the separation and quantitative determination of numerous metal ions by taking advantage of the low and differential solubilities of metal xanthates under controlled pH conditions. It has now been determined that the replacement of existing reagents for DNA extraction by xanthate-forming compounds is feasible and highly advantageous. It was postulated that these compounds would dissolve the cell wall in plants by forming water soluble polysaccharide xanthates with the hydroxyl groups of polysaccharides which make up a substantial portion of plant cell walls.
  • xanthate-forming compounds can also bind metal ions to inhibit DNAase activity.
  • xanthate-forming compounds enable selectively dissolving DNA from cell organelles, leaving contaminating proteins, metal ions and other compounds as an insoluble residue. DNA can then be precipitated from the supernatant.
  • the same xanthate-forming compounds can be effectively used for the efficient extraction of DNA from animal cells and tissues.
  • the isolated DNA is free of contaminants that interfere with restriction enzyme digestion.
  • xanthate-forming compounds include any compound capable of forming xanthate reaction products with cell wall polysaccharides from plant cells. These specifically include carbon disulfide and its organoalkaline derivatives. While the common reagent used in industrial use of this reaction (the viscose rayon process) is carbon disulfide, for analytical isolation of DNA according to this invention the organoalkaline derivatives of carbon disulfide are preferred.
  • organoalkaline derivatives of carbon disulfide is meant compounds of the general formula
  • R is an unsubstituted or substituted alkyl, alkenyl or aralkyl group, preferably selected from methyl, ethyl, propyl, butyl, hexyl, isoamyl, vinyl, allyl, 2-3-dihydroxypropyl, phenethyl, 4- morpholinylmethyl, and hydroxyphenethyl; and wherein M is an alkali metal or NH 4 , preferably Na or K.
  • the entire class of compounds useful in this invention (including carbon disulfide) can thus be represented by the formula
  • R is an unsubstituted or substituted alkyl, alkenyl or aralkyl group, preferably selected from methyl, ethyl, propyl, butyl, hexyl, isoamyl, vinyl, allyl, 2-3-dihydroxypropyl, phenethyl, 4- morpholinylmethyl, and hydroxyphenethyl; and wherein M is alkali metal or ammonium, preferably Na or K, when n is 1 and another bond to the carbon when n is 0.
  • Fresh leaf material (0.6 - 0.63 g) of thirteen day old corn seedlings was frozen in a liquid nitrogen bath until it was very brittle and was ground to a fine powder using a glass homogenizer.
  • the powder was suspended in 4 ml buffered extraction reagent (694 mM carbonodithioic acid, o-ethyl ester, sodium salt, 100 mM Tris, pH 7.5, 700 mM NaCl, 10 mM EDTA, pH 8 or 625 mM carbonodithioic acid, o-ethyl ester, potassium salt, 100 mM Tris, pH 7.5, 700 mM NaCl, 10 mM EDTA) in 15 ml propylene tube. After 5 min. incubation at 65°, the leaf debris was removed by filtering the homogenate through Miracloth. The DNA was precipitated from the filtrate by addition of two volumes of ethanol and centrifuged for 10 minutes at 3K at 4°.
  • the pellet was suspended in 100 ⁇ l TE and centrifuged for 3 min. as before to remove precipitated proteins and metal xanthates. The supernatant was transferred into 1.5 ml Eppendorf tube and centrifuged for 5 minutes. The DNA was precipitated again from the supernatant by adjusting to 2M NH 4 0AC and adding two volumes of ethanol. DNA was pelleted by centrifuging for 5 min. at 735 g. After decanting the supernatant, the pellet was dried in a speed vac and redissolved in 100 ⁇ l TE buffer. The yield of DNA was 20-40 ⁇ g.
  • DNA was completely digested and was free of contaminants which interfere with restriction enzyme digestion.
  • Example V To further substantiate the quality of the isolated DNA for molecular biology applications, extracted DNA was assayed by polymerase chain reaction (PCR) . After isolation, the DNA was amplified and the products were run on an agarose gel. A control experiment was also performed in which template DNA was not included in the PCR reaction. The absence of the expected target band in the control and its presence in the DNA samples obtained from the foregoing protocols further confirmed the quality of DNA.
  • Example VI The yield and efficiency of these extraction procedures was tested with a grinding protocol. Addition of a known amount (20 ⁇ g) of DNA to the leaf sample prior to homogenization and following the same steps yielded at least 81% DNA in the final step. This suggested that losses of DNA due to enzymatic or mechanical degradation were minimum.
  • the simplicity of the non-grinding method may facilitate automation of DNA isolation and field use of analytical and diagnostic methods requiring DNA isolation by non-specialists.
  • the wide applicability of the grinding method of this invention makes it a potential general method of DNA isolation from plant cells. The extractions have been attempted at various temperatures using different concentrations of substrates under various pH values, using different amounts and concentrations of buffer.
  • Examples XXVII-XXVIII The method of this invention was also applied successfully for the isolation of DNA from animal tissue. Approximately 1.0 g samples of drained chicken liver were ground unfrozen with a mortar and pestle. Approximately 5 ml of fresh buffered extraction reagent (624 mM potassium ethyl xanthogenate; 100 mM Tris, pH 7.5, 700 mM NaCl; 10 mM EDTA) was added to the mortar. The mixture was ground until a reasonably smooth slurry was obtained. The slurry was poured into a sterile 15 ml polypropylene tube and incubated at 65°C for 15 minutes. The tubes were cooled to room temperature and then spun at 14,460 g for 15 minutes.
  • fresh buffered extraction reagent 624 mM potassium ethyl xanthogenate; 100 mM Tris, pH 7.5, 700 mM NaCl; 10 mM EDTA
  • the supernatants in each tube were precipitated with equal volumes of cold isopropanol in new polypropylene tubes.
  • the tubes were incubated at -20°C for 15 min.
  • the pink pellets were rinsed with ethanol, dried at room temperature and resuspended in 300 ⁇ l sterile distilled water.
  • the yield of DNA from 1.0 g samples of liver tissue using the method of the present invention was 150 to 159 ⁇ g.
  • the yield of DNA from 1.0 g samples of the same liver tissue extracted using the well known CTAB method, as taught by Saghai-Maroof et al . , PNAS 8JL: 8014- 8018 (1984) which is herein incorporated by reference, was 74 to 88 ⁇ g.
  • the method of this invention was also applied to EDTA-treated rabbit blood obtained from Bethel Laboratories. Approximately 10 ml samples of blood were each placed in 15 ml polypropylene tubes and centrifuged at 14,460 g for 20 minutes. The cell pellets were not ground or vortexed. The pellets were drained and resuspended in 3 ml of buffered extraction reagent (624 mM potassium ethyl xanthogenate; 100 mM Tris, pH 7.5, 700 mM NaCl; 10 mM EDTA) . The tubes were incubated at 65°C for 15 minutes and then cooled to room temperature. The remaining steps in the DNA isolation method were the same as that described above for liver tissue, except that the final DNA pellet was resuspended in 100 ⁇ l of sterile distilled water.
  • buffered extraction reagent 624 mM potassium ethyl xanthogenate; 100 mM Tris, pH 7.5, 700
  • the yield of DNA from 10 ml samples of blood using the method of the present invention was 28 to 30 i/g.
  • the yield of DNA from 10 ml of the same blood extracted using the CTAB method was 24 to 27 ⁇ g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

A novel method for the isolation of high molecular weight DNA from plants, yeast, bacteria, and animal cells or tissue employs xanthate forming compounds, such as sodium/potassium ethyl xanthogenate. The procedure does not require deproteination and yields clean DNA that is suitable for both PCR and Southern blotting. It can be utilized on a small scale without homogenizing the tissue. These features also facilitate automated screening of tissue samples, one of the labor-intensive techniques in molecular biology.

Description

DNA ISOLATION METHOD
Technical Field This invention relates to the isolation of DNA from whole plants and plant cells, tissues and parts, from yeasts and bacteria, and from animal cells and tissues.
Background of the Invention
With the increasing need for DNA fingerprinting, restriction fragment length polymorphism (RFLP) analysis. Southern transfers, construction of genomic libraries and transformation experiments in biotechnology, the isolation of high molecular weight (HMW) DNA becomes a major problem. Several procedures for the isolation of HMW DNA have been reported, all of which have drawbacks for various reasons. The methods generally involve physical grinding of cells or tissue followed by extraction in buffers containing detergent, EDTA, Tris and other reagents. Some of the reagents used react with various cellular organelles; the function of others is unknown.
The prior art methods are often"~time consuming, irreproducible and give variable yields of DNA, involving more art than science. The DNA obtained also varies in terms of its purity, and all of the methods involve purification of DNA with phenol, a protein denaturant which can be hazardous to users. Finally, a method that is effective in DNA extraction in one plant or animal group often fails when used on other plants or animals. More recently, a solid phase extraction material comprising silica and having hydroxyl groups on its surface has been reported as a replacement for phenol for removal of proteins. However, the preparation of this material is cumbersome, and grinding of tissue is still needed.
In view of these difficulties, a continuing need exists for a versatile method that would overcome these problems.
It is an object of this invention to provide such a method.
Disclosure of the Invention While not intending to be limited by theory, the isolation of DNA from plants, yeasts and bacteria is difficult partly due to the presence of a rigid cell wall which is rich in polysaccharides and therefore difficult to rupture completely with commonly used buffers. Removal of the cell wall by enzymes is tedious and not always feasible. Variations in DNA yield and quality from extraction to extraction using current methods probably arises from the varying degrees of cell wall break up. Thus, there has been a need for new technique for disrupting cell walls by a thorough, yet delimited mechanism to allow isolation of DNA in a reproducible manner without the need to homogenize cells or tissues.
Polyhydric alcohols, including cellulose, have been solubilized in the past by conversion to metal xanthates. This method was discovered by Zeise in 1815 and it has been widely employed in the textile industry. Xanthates find extensive application in the separation and quantitative determination of numerous metal ions by taking advantage of the low and differential solubilities of metal xanthates under controlled pH conditions. It has now been determined that the replacement of existing reagents for DNA extraction by xanthate-forming compounds is feasible and highly advantageous. It was postulated that these compounds would dissolve the cell wall in plants by forming water soluble polysaccharide xanthates with the hydroxyl groups of polysaccharides which make up a substantial portion of plant cell walls. The reaction of xanthate-forming compounds with amines is also reported. Furthermore, xanthate-forming compounds can also bind metal ions to inhibit DNAase activity. As a result, these compounds enable selectively dissolving DNA from cell organelles, leaving contaminating proteins, metal ions and other compounds as an insoluble residue. DNA can then be precipitated from the supernatant.
The same xanthate-forming compounds can be effectively used for the efficient extraction of DNA from animal cells and tissues. The isolated DNA is free of contaminants that interfere with restriction enzyme digestion.
Xanthate-forming compounds The "xanthate-forming compounds" of this invention include any compound capable of forming xanthate reaction products with cell wall polysaccharides from plant cells. These specifically include carbon disulfide and its organoalkaline derivatives. While the common reagent used in industrial use of this reaction (the viscose rayon process) is carbon disulfide, for analytical isolation of DNA according to this invention the organoalkaline derivatives of carbon disulfide are preferred. By "organoalkaline derivatives of carbon disulfide" is meant compounds of the general formula
S
// RO-C
\
SM wherein R is an unsubstituted or substituted alkyl, alkenyl or aralkyl group, preferably selected from methyl, ethyl, propyl, butyl, hexyl, isoamyl, vinyl, allyl, 2-3-dihydroxypropyl, phenethyl, 4- morpholinylmethyl, and hydroxyphenethyl; and wherein M is an alkali metal or NH4, preferably Na or K. These compounds are formed by reaction of carbon disulfide with the corresponding alcoholic alkali:
CS2 + MOH + ROH —> ROC(S)SM +H20.
The most preferred of these compounds, the carbonodithioic acid o-ethyl ester, sodium salt (R=C2H5,
M=Na; sodium ethyl xanthogenate) can be prepared by standard methods, and its potassium analogue is commercially available from Fluka. The entire class of compounds useful in this invention (including carbon disulfide) can thus be represented by the formula
S //
(R0)nC
\
SM
wherein n is 0 or 1; R is an unsubstituted or substituted alkyl, alkenyl or aralkyl group, preferably selected from methyl, ethyl, propyl, butyl, hexyl, isoamyl, vinyl, allyl, 2-3-dihydroxypropyl, phenethyl, 4- morpholinylmethyl, and hydroxyphenethyl; and wherein M is alkali metal or ammonium, preferably Na or K, when n is 1 and another bond to the carbon when n is 0. The methods described herein using these compounds enable efficient DNA isolation without homogenizing tissues and without removing proteins.
Example I Tissue Grinding Protocol
Fresh leaf material (0.6 - 0.63 g) of thirteen day old corn seedlings was frozen in a liquid nitrogen bath until it was very brittle and was ground to a fine powder using a glass homogenizer. The powder was suspended in 4 ml buffered extraction reagent (694 mM carbonodithioic acid, o-ethyl ester, sodium salt, 100 mM Tris, pH 7.5, 700 mM NaCl, 10 mM EDTA, pH 8 or 625 mM carbonodithioic acid, o-ethyl ester, potassium salt, 100 mM Tris, pH 7.5, 700 mM NaCl, 10 mM EDTA) in 15 ml propylene tube. After 5 min. incubation at 65°, the leaf debris was removed by filtering the homogenate through Miracloth. The DNA was precipitated from the filtrate by addition of two volumes of ethanol and centrifuged for 10 minutes at 3K at 4°.
The pellet was suspended in 100 μl TE and centrifuged for 3 min. as before to remove precipitated proteins and metal xanthates. The supernatant was transferred into 1.5 ml Eppendorf tube and centrifuged for 5 minutes. The DNA was precipitated again from the supernatant by adjusting to 2M NH40AC and adding two volumes of ethanol. DNA was pelleted by centrifuging for 5 min. at 735 g. After decanting the supernatant, the pellet was dried in a speed vac and redissolved in 100 μl TE buffer. The yield of DNA was 20-40 μg.
Example II Non-Grinding Protocol
1 g of fresh leaves in 4 ml of extraction buffer containing carbonodithioic acid, o-ethyl ester, sodium salt are incubated at 65° for 20 min. and filtered. The DNA is precipitated from the filtrate and reprecipitated as above. This non-grinding method applied to corn yielded 2.56 to 6.68 μg DNA per gram of leaf tissue.
Example III
To evaluate the protocols of Examples I and II, DNA isolated was digested for 6 h with Bam HI and Hind III,
EcoRI and Sst I and assayed by agarose gel electrophoresis. The undigested DNA showed an apparent molecular weight greater than the λ marker which is 23 kb. The absence of high molecular weight DNA and presence of smear in the digested samples suggested that
DNA was completely digested and was free of contaminants which interfere with restriction enzyme digestion.
Example IV
The quality of the DNA preparations was further assessed by Southern transfer experiments. Isolated DNA was digested with Bam HI, electrophoresed, transferred to
MSI membrane and hybridized with 32p single copy probes.
Undigested and digested DNA gave the expected hybridization pattern. The appearance of discrete bands in the digested samples confirmed that the DNA was digested completely by the enzyme and that the hybridization with the probe was successful. This is an important criterion for the quality of DNA.
Example V To further substantiate the quality of the isolated DNA for molecular biology applications, extracted DNA was assayed by polymerase chain reaction (PCR) . After isolation, the DNA was amplified and the products were run on an agarose gel. A control experiment was also performed in which template DNA was not included in the PCR reaction. The absence of the expected target band in the control and its presence in the DNA samples obtained from the foregoing protocols further confirmed the quality of DNA. Example VI The yield and efficiency of these extraction procedures was tested with a grinding protocol. Addition of a known amount (20 μg) of DNA to the leaf sample prior to homogenization and following the same steps yielded at least 81% DNA in the final step. This suggested that losses of DNA due to enzymatic or mechanical degradation were minimum.
Examples VII - XII The grinding method has also been successfully employed for the isolation of DNA from thirteen-day-old seedlings of soybean, sorghum, sunflower, alfalfa and tobacco as determined by agarose gel electrophoresis and Southern transfers. Results are shown in Table 1.
Table 1
Ex. Plant Yield1 Hiqh DNA Southern Blot
Ouality2
VI Alfalfa 15-42 Yes works
VIII Canola 8-14 Yes
IX Sorghum 12-28 Yes works
X Soybean 26-37 Yes works
XI Sunflower 7-30 Yes
XII Tobacco 7-30 Yes
1 μg/600-630 mg fresh leaves
2 DNA is completely digested by Bam HI
Examples XIII - XXIV The versatility of these two methods (grinding and nongrinding) was also compared on alfalfa, barley, canola, sorghum, soybean, sunflower, tobacco, wheat, petunia, spinach, yeast and E. coll . With yeast and E. coli , homogenization was omitted in the grinding protocol. Table 2 gives the yields of DNA. Table 2
Yield1 Yield2
Ex. Plant grinding method non-grinding method
XIII Alfalfa 15-42 1.50-2.80
XIV Canola 8-14 2.70-4.80
XV Sorghum 12-28 1.70-2.66
XVI Soybean 26-37 0.45-1.14
XVII Sunflower 7-30 0.13-1.34
XVIII Tobacco 7-30 1.00-3.74
XIX Petunia 11-19 2.07-2.27
XX Lettuce 18-43 1.63-2.173
XXI Wheat 7-38 1.12-4.27
XXII E. coli 50 22-25
Different Series:
XXIII Spinach 20.64 1.4346
XXIV Yeast 1.239 2.369
1 μg/600-630 mg fresh tissue
2 μg DNA/1 g fresh tissue
3 μg DNA/2 g (market-purchased) lettuce
Examples XXV-XXVI
The method of this invention was also applied successfully for the isolation of DNA from the following plants:
Ex. Plant XXV Celosia XXVI Alyssum
The simplicity of the non-grinding method may facilitate automation of DNA isolation and field use of analytical and diagnostic methods requiring DNA isolation by non-specialists. The wide applicability of the grinding method of this invention makes it a potential general method of DNA isolation from plant cells. The extractions have been attempted at various temperatures using different concentrations of substrates under various pH values, using different amounts and concentrations of buffer.
With the non-grinding method, alfalfa, corn, sorghum and lettuce gave high yield and quality of DNA using 2 ml of buffer/reagent. On the other hand, isolation of DNA from soybean, sunflower and wheat using sodium ethyl xanthogenate required twice that amount to give clean DNA. With canola, tobacco and petunia, slight gentle homogenization prior to incubation helped to give better quality and yield of DNA. Thus, it can be seen that numerous specific embodiments of the methods of this invention can be optimized to suit the specific in vivo or in vitro system under consideration.
Examples XXVII-XXVIII The method of this invention was also applied successfully for the isolation of DNA from animal tissue. Approximately 1.0 g samples of drained chicken liver were ground unfrozen with a mortar and pestle. Approximately 5 ml of fresh buffered extraction reagent (624 mM potassium ethyl xanthogenate; 100 mM Tris, pH 7.5, 700 mM NaCl; 10 mM EDTA) was added to the mortar. The mixture was ground until a reasonably smooth slurry was obtained. The slurry was poured into a sterile 15 ml polypropylene tube and incubated at 65°C for 15 minutes. The tubes were cooled to room temperature and then spun at 14,460 g for 15 minutes.
The supernatants in each tube were precipitated with equal volumes of cold isopropanol in new polypropylene tubes. The tubes were incubated at -20°C for 15 min. The pink pellets were rinsed with ethanol, dried at room temperature and resuspended in 300 μl sterile distilled water.
The yield of DNA from 1.0 g samples of liver tissue using the method of the present invention was 150 to 159 ηg. In contrast, the yield of DNA from 1.0 g samples of the same liver tissue extracted using the well known CTAB method, as taught by Saghai-Maroof et al . , PNAS 8JL: 8014- 8018 (1984) which is herein incorporated by reference, was 74 to 88 ηg.
The method of this invention was also applied to EDTA-treated rabbit blood obtained from Bethel Laboratories. Approximately 10 ml samples of blood were each placed in 15 ml polypropylene tubes and centrifuged at 14,460 g for 20 minutes. The cell pellets were not ground or vortexed. The pellets were drained and resuspended in 3 ml of buffered extraction reagent (624 mM potassium ethyl xanthogenate; 100 mM Tris, pH 7.5, 700 mM NaCl; 10 mM EDTA) . The tubes were incubated at 65°C for 15 minutes and then cooled to room temperature. The remaining steps in the DNA isolation method were the same as that described above for liver tissue, except that the final DNA pellet was resuspended in 100 μl of sterile distilled water.
The yield of DNA from 10 ml samples of blood using the method of the present invention was 28 to 30 i/g. In contrast, the yield of DNA from 10 ml of the same blood extracted using the CTAB method was 24 to 27 ηg.
To evaluate and compare DNA isolated from liver tissue and rabbit blood using the method of the instant invention and the CTAB method, DNA samples were digested overnight with EcoRl and assayed lay agarose gel electrophoresis. Both the undigested control DNA samples and the digested DNA samples, produced by either the CTAB method or the method of the instant invention, appeared equivalent. Both produced a smear suggesting the DNA was completely digested and was free of contaminants that interfere with restriction enzyme digestion.

Claims

What Is Claimed Is:
1. A method for isolating DNA from animal cells or tissues, comprising the steps of contacting said cells or tissue with an aqueous solution comprising a compound or compounds that are xanthate-forming compounds, and isolating DNA from the cells.
2. A method according to Claim 1 wherein said compound or compounds has the formula
S
// (RO)nC
\
SM wherein n is 0 or 1; R is unsubstituted or substituted lower alkyl, lower alkenyl, or aralkyl; and M is alkali metal or ammonium when n is 1 and a sulfur-carbon bond when n is 0.
3. A method according to Claim 2 wherein n is 1, R is unsubstituted or substituted lower alkyl, and M is Na or K.
4. A method according to Claim 3 wherein R is selected from the group consisting of methyl, ethyl, propyl, butyl, hexyl, isoamyl, and 2-3-dihydroxypropyl.
5. A method according to Claim 4 wherein the compound or compounds is the sodium or potassium salt of ethyl xanthogenate.
6. A method according to Claim 1, further comprising the step of removing cellular debris from the solution by means of centrifugation.
7. A method according to Claim 6, further comprising the step of precipitating the DNA from the centrifuged solution with ethanol.
PCT/US1994/003010 1993-03-23 1994-03-22 Dna isolation method WO1994021782A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94912813A EP0647269A1 (en) 1993-03-23 1994-03-22 Dna isolation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/036,208 1993-03-23
US08/036,208 US5352777A (en) 1990-12-26 1993-03-23 DNA isolation from animal cells

Publications (2)

Publication Number Publication Date
WO1994021782A2 true WO1994021782A2 (en) 1994-09-29
WO1994021782A3 WO1994021782A3 (en) 1994-11-10

Family

ID=21887274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/003010 WO1994021782A2 (en) 1993-03-23 1994-03-22 Dna isolation method

Country Status (7)

Country Link
US (1) US5352777A (en)
EP (1) EP0647269A1 (en)
JP (1) JP2619228B2 (en)
CA (1) CA2097254A1 (en)
HU (1) HUT70980A (en)
NZ (1) NZ263944A (en)
WO (1) WO1994021782A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
EP1042061A1 (en) 1997-12-24 2000-10-11 Cepheid Integrated fluid manipulation cartridge
NL1009437C2 (en) * 1998-06-18 1999-12-21 Xenobiosis Extraction process.
US7914994B2 (en) 1998-12-24 2011-03-29 Cepheid Method for separating an analyte from a sample
US6431476B1 (en) 1999-12-21 2002-08-13 Cepheid Apparatus and method for rapid ultrasonic disruption of cells or viruses
US20040200909A1 (en) 1999-05-28 2004-10-14 Cepheid Apparatus and method for cell disruption
CA2374423C (en) 1999-05-28 2013-04-09 Cepheid Apparatus and method for analyzing a liquid sample
US8815521B2 (en) 2000-05-30 2014-08-26 Cepheid Apparatus and method for cell disruption
US9073053B2 (en) 1999-05-28 2015-07-07 Cepheid Apparatus and method for cell disruption
US6878540B2 (en) * 1999-06-25 2005-04-12 Cepheid Device for lysing cells, spores, or microorganisms
US7687254B2 (en) * 2006-07-11 2010-03-30 Case Western Reserve University Phenol-free method of isolating DNA
US9399986B2 (en) 2012-07-31 2016-07-26 General Electric Company Devices and systems for isolating biomolecules and associated methods thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493115A2 (en) * 1990-12-26 1992-07-01 Pioneer Hi-Bred International, Inc. DNA isolation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25785E (en) * 1965-06-01 Process for preparing a nucleic acid
US3163638A (en) * 1960-12-28 1964-12-29 Toyo Boseki Extraction of ribonucleic acid
US3582468A (en) * 1968-09-27 1971-06-01 Merck & Co Inc Recovery of double-stranded ribonucleic acid
US4830969A (en) * 1981-08-31 1989-05-16 The Research Foundation Of State University Of New York Process for the rapid and simple isolation of nucleic acids
GB8311905D0 (en) * 1983-04-29 1983-06-02 Cox R A Isolation and detection of nucleotide sequence
US4843012A (en) * 1986-09-17 1989-06-27 Genetics Institute, Inc. Novel composition for nucleic acid purification
DE3639949A1 (en) * 1986-11-22 1988-06-09 Diagen Inst Molekularbio METHOD FOR SEPARATING LONG CHAIN NUCLEIC ACIDS
US4908318A (en) * 1987-09-04 1990-03-13 Integrated Genetics, Inc. Nucleic acid extraction methods
EP0310913A3 (en) * 1987-09-30 1990-04-25 Biotechnica Diagnostics Inc Dna isolation procedure
EP0473575B1 (en) * 1989-05-22 1994-04-13 Genetics Institute, Inc. Improved composition for isolating and purifying nucleic acid and improved method using same
EP0489300A3 (en) * 1990-12-05 1993-03-17 J. Uriach & Cia. S.A. New tetralones with pharmacological activity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493115A2 (en) * 1990-12-26 1992-07-01 Pioneer Hi-Bred International, Inc. DNA isolation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
METHODS MOL. CELL. BIOL. vol. 3 , 1992 pages 15 - 22 A.K. JHINGAN 'A novel technology for DNA isolation' *

Also Published As

Publication number Publication date
JPH07508422A (en) 1995-09-21
JP2619228B2 (en) 1997-06-11
EP0647269A1 (en) 1995-04-12
CA2097254A1 (en) 1994-09-27
US5352777A (en) 1994-10-04
NZ263944A (en) 1996-08-27
WO1994021782A3 (en) 1994-11-10
HUT70980A (en) 1995-11-28
HU9403751D0 (en) 1995-02-28

Similar Documents

Publication Publication Date Title
US5945515A (en) Product and process for isolating DNA, RNA and proteins
US5352777A (en) DNA isolation from animal cells
US5783686A (en) Method for purifying nucleic acids from heterogenous mixtures
DE3750301T2 (en) Process for the purification of recombinant proteins and the use of its products.
EP0747388B1 (en) Method and kit for purifying nucleic acids
US4921952A (en) Nucleic acid isolation process
KR20010080625A (en) Formulations and methods for isolating nucleic acids from any complex starting material and subsequent complex genetic analysis
EP1994142A2 (en) Methods and compositions for the rapid isolation of small rna molecules
US5204246A (en) Dna isolation method
AU2621899A (en) Improved method for the isolation of nucleic acid
US5047345A (en) Composition for isolating and purifying nucleic acid and improved method using same
WO2005045030A1 (en) A rapid and low cost method for isolating nucleic acid
US4843012A (en) Novel composition for nucleic acid purification
KR100486179B1 (en) Cell lysis composition, method and kit for isolating and purifing nucleic acids
AU670490B2 (en) DNA isolation method
AU645630B2 (en) DNA isolation method
JP2001502179A (en) Compositions and methods for rapid isolation of plasmid DNA
KR101775790B1 (en) Cell lysis composition for nucleic acid separating and refining
RU2116795C1 (en) Set for dna isolation
CN115058415B (en) Rapid, high-quality and universal genome DNA extraction kit and DNA extraction method
JPH0667B2 (en) Aqueous composition for nucleic acid isolation
WO2022139709A1 (en) Modified method for high quality and pure rna isolation from pomegranate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AT BB BG BR BY CH CN CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AT BB BG BR BY CH CN CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 263944

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1994912813

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994912813

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1994912813

Country of ref document: EP