WO1994020906A1 - Flash file system - Google Patents
Flash file system Download PDFInfo
- Publication number
- WO1994020906A1 WO1994020906A1 PCT/US1994/001848 US9401848W WO9420906A1 WO 1994020906 A1 WO1994020906 A1 WO 1994020906A1 US 9401848 W US9401848 W US 9401848W WO 9420906 A1 WO9420906 A1 WO 9420906A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- memory
- address
- block
- unit
- physical
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/023—Free address space management
- G06F12/0238—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
- G06F12/0246—Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0662—Virtualisation aspects
- G06F3/0664—Virtualisation aspects at device level, e.g. emulation of a storage device or system
Definitions
- This invention relates to an improved system for storing and retrieving information in flash memories, and more particularly to a system that organizes and manages data written to a flash memory.
- EEPROMs electrically erasable and programmable read-only memories
- flash memories are non ⁇ volatile memories similar in functionality and performance to EPROM memories, with an additional functionality that allows an in-circuit, programmable, operation to erase blocks of the memory.
- EPROM memories electrically erasable and programmable read-only memories
- flash memory it is not practical to rewrite a previously written area of the memory without a preceding block erase of the area. While this invention will be described in the context of a flash memory, those skilled in the art will understand that its teachings are also applicable to data storage devices with the same write, read, and block erase before write characteristics as flash memories.
- the operating system program is responsible for data management of the data storage devices that are a part of the system.
- a necessary, and usually sufficient, attribute of a data storage device to achieve compatibility with the operating system program is that it can read data from, and write data to, any location in the data storage medium.
- flash memories are not compatible with typical existing operating system programs, since data cannot be written to an area of flash memory in which data has previously been written, unless the area is first erased.
- Software products have been proposed in the prior art to allow a flash memory to be managed by existing computer operating programs without modification of the operating system program. However, these prior art programs operate the flash memory as a "write once read many" device. This prior art software product cannot recycle previously written memory locations. When all locations are eventually written the memory cannot be urther used without specific user intervention.
- An object of this invention is the provision of a method (i.e., software, firmware of hardware) to control and manage access to a flash memory so that the flash memory appears to the computer operating system as a data storage device in which it is possible to read data from, and write data to, any flash memory location.
- a method that allows flash memory to emulate random access memories and allows existing computer operating systems to provide all other required support in the same manner provided by standard random access memories and independent of the emulation method.
- this invention contemplates the provision of a flash memory, virtual mapping system that allows data to be continuously written to unwritten physical address locations.
- the virtual memory map relates flash memory physical location addresses in order to track the location of data in the memory.
- the flash memory physical locations are organized as an array of bytes. Each of the bytes in the array is assigned a number of address by means of which the byte is physically accessible, referred to herein as the physical address space. Each of the bytes in the array has a second address, called the virtual address space.
- a table called a virtual map, converts virtual addresses to physical addresses.
- the virtual address space is not necessarily the same size as the physical address space.
- One or more physically contiguous flash memory areas (called zones) that can be physically erased using suitable prior art flash memory technology comprise a unit and each unit contains an integral number of blocks.
- the virtual memory map is a table in which the first entry belongs to virtual block 0, the second to virtual block 1, and so on. Associated in the table with each virtual block address there is a corresponding physical address.
- a computer generated address is decoded as a virtual block address and a byte location within the block.
- the virtual memory map is used to convert the virtual block address to a physical block address; the byte location is the same in the virtual address space and the physical address space.
- the computer generated address is again interpreted as a virtual block address and a byte location within the block.
- the virtual memory map converts this to physical memory block address. If the flash memory block corresponding to the physical address is then currently written, it is generally not possible to write to this physical address. An unwritten block is therefore located and written to.
- the virtual memory map is changed so that the unwritten physical block address is mapped to the original virtual address and original physical address is denoted as unusable and remains unusable until there is a zone erase operation that erases the unit that includes that block. It will be noted that a write operation assumes that an entire block will be rewritten. This is the manner in which computer systems usually access data in a storage media.
- each unit is assigned a logical unit address that remains unchanged as the unit is rewritten into a new physical address location in flash memory.
- the virtual map contains references to the logical unit addresses rather than the physical unit addresses so that data movement during unit transfers has no effect on the virtual map.
- Each unit has a usage map of all the blocks within the unit; the virtual address of a block, if it is mapped, and special characters to denote free blocks and to denote unusable blocks.
- Unusable blocks of previously written flash memory are reclaimed by transferring memory units that include the unusable blocks to a reserved unwritten space in the flash memory. Only the usable blocks are written in the transfer operation so that, as rewritten, the locations where the unusable blocks were, are not rewritten in the reserved space and are thus usable. After having been rewritten, the original memory unit space is flash erased as a unit and thus becomes an unwritten reserved space to which a subsequent transfer can be made.
- the virtual map is stored primarily in the flash memory with only a small secondary virtual map in random access memory.
- the virtual map in flash memory is stored in blocks and organized into pages whose size is equal to the product of the number of bytes in a block times the number of physical block addresses this number of bytes represents.
- a secondary random access memory contains the page addresses.
- the page number is determined by dividing address by the page size.
- the result indexes the secondary virtual map to find the correct primary virtual map block, the remainder is used to calculate the required physical address for the virtual map stored in flash memory.
- the altered map is written into a free block and the secondary map in random access memory is altered to reflect the change in the primary map location. The replaced block is marked as deleted.
- Figure 1 is a block diagram illustrating functional components of a system in accordance with one embodiment of a system in accordance with the teachings of this invention.
- Figure 2 is a pictorial illustration of one level of flash memory organization in accordance with the teachings of this invention.
- Figure 3 is a pictorial illustration of how a unit is formatted.
- Figure 4 is a pictorial representation illustrating how the computer generated addresses are mapped to physical addresses.
- Figure 5 is a flow diagram illustrating a read operation.
- Figure 6 is a flow diagram illustrating a write operation.
- Figure 7 is a pictorial diagram illustrating the status of a unit before and after a transfer operation.
- Figure 8 is a flow diagram of a transfer operation.
- Figure 9 is a flow diagram illustrating the operation where a major portion of the virtual to physical map is stored in flash memory.
- a processor 10 in combination with its operating system software, issues a series of read and write commands to read from, and write data to, specific address locations in a random access memory.
- a random access storage device such as a disk memory
- data can be written to, or read from, any address location.
- the processor 10 writes data to, and reads data from, a flash memory 12 in blocks at specific address locations. Although zones of the flash memory 12 can be erased, currently written address locations cannot be rewritten until the entire zone is erased.
- a flash memory controller 14 provides a fully rewritable virtual address space so that the flash memory 12 emulates a random access memory, such as a disk memory, and the processor operating system software provides all other required operating support (such as a file system) in the same manner as it provides for a standard random access memory, and in a manner that is independent of the flash memory 12 and its controller 14.
- a typical system also includes a conventional random access memory 16. It will be appreciated that controller 14 functions may be carried out in software, firmware of hardware, and would not necessarily exist as a physically separate unit as the drawing suggests.
- the flash memory has a number of zones labeled here as zone A, zone B, etc.
- Each zone is comprised of a number of contiguous physical memory locations that can be block erased using conventional, well known, flash memory technology.
- the zones are organized as units only four of which are shown, labeled in the drawing as; UNIT #1, UNIT #6, UNIT N-l and TRANSFER UNIT.
- Each unit is comprised of at least one zone, of a plurality of contiguous zones.
- each unit is comprised of two zones (i.e., UNIT #1 - zone A and zone B; UNIT #2 - zone C and zone D, TRANSFER UNIT - zone x2 and 2x).
- Each unit is comprised of an integral number of addressable blocks and each block, in turn, is comprised of a contiguous, fixed length group of bytes. At all times, there will be a unit in the memory 12 that is unwritten (i.e., TRANSFER UNIT), so that active blocks in a unit that is to be erased can be written to this unwritten unit prior to erasing the unit.
- each unit contains an integral number of contiguous data blocks 21 that are in turn comprised of contiguous byte addresses, that can be addressed as a block number and offset within the block.
- Each block in a unit has a unit can be addressed by block number and offset with the unit.
- Each unit has a unit header 23 and a map 25 of the allocation status of each block in the unit.
- the unit header 23 includes a format identifier, and the logical unit number of the unit. Because data must move physically during a unit transfer, the unit number preferably remains unchanged even as the physical location of the unit in the flash memory 12 changes. In addition, the header may also include system-wide information.
- the block allocation map 25 has a word for each block that denotes its status and its offset in the unit. The status indications are: "block free and writable”; "block deleted and not writable”; "block allocates and contains user data”; and virtual address of the block (back pointer). As previously mentioned, preferably each unit is assigned a logical unit number that does not change, even though the physical location in the memory of the unit change.
- the computer 10 generated addresses 29 are comprised of a block number and a block offset. These address are interpreted by the flash controller 14 as virtual addresses, and a virtual map is used to establish a correspondence between the virtual address space and physical address space. The virtual map changes as blocks are rewritten an the virtual address space is therefore dynamic. It should be noted also that, at any given time, a block or blocks in the virtual address space may be unmapped to the physical address space, and that blocks in the physical address space may be unwritten and, therefore, free to be written into.
- a virtual map 31 maps block numbers to logical unit address in the first step of a two level address translation.
- the logical unit address is an address relative to a logical unit number, similar to a physical address, which is an address relative to a physical unit number.
- the logical unit number is the high order binary digits of the logical address and may be derived from the logical address by a bit shift operation.
- the logical address 33 obtained from map 31 includes a logical unit number along with the offset of the block within the unit.
- a logical unit table 35 translates the logical unit number to a physical unit number for the logical unit. This two-step address translation procedure obviates the need to change block addresses in the map when a unit is moved to a new physical location.
- the virtual address 29 comprised of a block address, for example, initially is mapped to a logical unit number and a block offset within the unit in the addressed block.
- Map 35 maps the unit number 33 to a physical address 37 for the unit along with the offset of the addressed 37 block within the unit, and the addressed data block is read from this physically location.
- Figure 5 is a flow diagram illustrating this read operation.
- the virtual address 29 is mapped to a logical address (block 40) in the first step of a two-step address translation.
- the logical address is mapped to a physical address in the flash memory, block 41. Data at this physical address is read, block 42, which terminates this operation.
- the virtual address 29 is again mapped initially to a logic unit number and a block offset within the unit.
- the controller 14 algorithm examines the block allocation map 25 for this unit. If the block corresponding to this address has been written, a write command cannot be executed at the corresponding physical address.
- the control algorithm scans the block allocation maps 25 for each unit until a free block is located. The status of the block in the block map 25 at the original unit address is changed to deleted in the block in the allocation map, and the status of the free block is changed to written.
- the virtual map 31 is update so that the original virtual address now points to the new logical address where the write operation is to take place. This logical address is mapped to a physical address, in the manner previously described, and the block is written to this address.
- Figure 6 is a flow diagram illustrating this write operation.
- the virtual address 29 is mapped to a logical unit address, block 45, and the unit allocation for the unit is examined, block 46. If in decision block 47 the unit address is free, the unit address is mapped to a physical address, block 48, and data is written to this physical address, block 49, and the operation ends. If the logical address is not free (block 47), the unit tables are scanned to locate a free address in the unit allocation tables, block 50. This new logical address is mapped to a physical address, block 51, and the data is written to this physical address, block 52.
- the unit allocation tables are updated (block 53) to indicate that the original block is deleted and not writable, and that the new block is allocated and contains user data.
- the virtual to logical address map is then updated to point to the new physical address of the data corresponding to the original virtual address, blocks 54 and 55.
- an active unit is selected (here, UNIT #M) and all of its currently-mapped active blocks are read and then written to the TRANSFER UNIT.
- the selected unit #M is then block erased, and it becomes the TRANSFER UNIT while the transfer unit to which the active blocks have been written becomes, in this example, unit #M.
- Figure 7 illustrates the status of the units before and after a transfer operation.
- Figure 8 is a flow diagram of this transfer operation.
- a transfer operation a unit is selected for transfer, block 60, and the active data blocks in the selected unit are read, block 61. These active data blocks are then written to the transfer unit at positions in the transfer unit corresponding to the positions at which they were located in the original unit, block 62.
- the original unit selected is then flash erased, block 63, and the logical to physical address map is changed so that the selected unit becomes the transfer unit and the transfer unit is assigned the unit number of the selected unit, block 64.
- the system thus far described requires a virtual map whose contents are freely updated, and such a map may be stored in a conventional random access memory.
- a block size of 512 bytes since the virtual map contains a entry for each block, and each entry may be, for example, 4 bytes long (i.e., capable of addressing up to 4 Gigabytes of memory), a flash memory of 80 Mbytes would require a memory of 640 Kbytes to store the map tables.
- a major portion of the map data is stored in the flash memory 12 itself, and a secondary virtual map that maps virtual addresses from the computer to the primary virtual map is stored in a random access memory, such as memory 16.
- a secondary virtual map that maps virtual addresses from the computer to the primary virtual map is stored in a random access memory, such as memory 16.
- the virtual map itself treated in a manner equivalent to the user data in the foregoing description and the virtual map stored in random access memory (i.e., secondary virtual map) is the equivalent of the virtual map in the previous description.
- the virtual map resides in the flash memory 12 at negative virtual addresses; ordinary space starts at virtual address zero.
- the virtual map maps the negative address used by itself, so that the virtual map residing in flash memory can be read and written like ordinary user data, and only the portion of the virtual map that maps itself (i.e., the secondary virtual map) resides in random access memory.
- each block can store 128 physical addresses.
- each block contains the addresses of 64 Kbytes of virtual flash memory.
- Each block of virtual flash memory addresses is considered as a page and the random access memory stores the page addresses; (in this example, only 48 bytes) mapped to the address blocks.
- the address is divided by the page size (64 Kbytes) to obtain a page number in the secondary virtual memory that maps to the page block of the primary virtual map where the address is stored.
- the procedure to map to a specific flash memory physical address can proceed in the manner already described. For example, after the virtual address is divided by the page size, the remainder can be divided by the virtual memory block size (e.g., 512) to obtain an index to the array of address read from flash memory.
- the computer generated address is also divided by the page size to obtain an index to the secondary virtual map in flash memory.
- the secondary virtual map maps to the primary virtual map, where the primary virtual map block is read; and this is used to map to the physical block that has been addressed where it is read.
- an unwritten block is identified and written into in the manner previously described, with the original data block marked as deleted.
- To update the virtual map residing flash memory essentially the same procedure is followed.
- the virtual map block in its modified form to reflect the new physical location of the address data, is written to an unwritten block in the flash memory and the old block is marked as deleted.
- the secondary virtual memory in random access memory is changed, as needed, to reflect the change in the primary virtual memory block locations.
- Figure 9 is a flow diagram of this operation.
- the first step in this process is to convert a virtual address to a page number, block 70, and to use the page number to locate in RAM 16 the address, in flash memory 12, of the relevant page block of the virtual map stored in the flash memory, block 21.
- the page block of the virtual map at this address is read from the flash memory (block 72) and used in the manner previously described to a locate physical address corresponding to the virtual address for a data read or data write operation.
- the virtual map page block In a data write operation, the virtual map page block must be updated, block 73, and the updated page block virtual map is written to a free flash memory physical address location, block 74.
- the original flash memory address at which the page block virtual map was located is marked as deleted, block 75, and the RAM memory 16 is updated to point to the virtual to physical map address for the updated map, block 76.
- the virtual map can be readily reconstructed upon system startup.
- the virtual maps residing in flash memory are non-volatile and do not require reconstruction.
- the secondary virtual map residing in volatile random access memory can be reconstructed by scanning, at startup, the block usage map that resides at the top of each unit. Blocks marked as mapped to a virtual address are identified, and the secondary virtual map is constructed accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Memory System (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Memory System Of A Hierarchy Structure (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU62699/94A AU6269994A (en) | 1993-03-08 | 1994-02-28 | Flash file system |
EP94910145A EP0688450B1 (en) | 1993-03-08 | 1994-02-28 | Flash file system |
KR1019950703788A KR100292011B1 (en) | 1993-03-08 | 1994-02-28 | Flash file means |
DE69414556T DE69414556T2 (en) | 1993-03-08 | 1994-02-28 | QUICKLY DELETABLE FILE |
JP6520018A JPH08510072A (en) | 1993-03-08 | 1994-02-28 | Flash file system |
FI954235A FI105726B (en) | 1993-03-08 | 1995-09-08 | Memory Management Method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/027,131 US5404485A (en) | 1993-03-08 | 1993-03-08 | Flash file system |
US08/027,131 | 1993-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994020906A1 true WO1994020906A1 (en) | 1994-09-15 |
Family
ID=21835870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/001848 WO1994020906A1 (en) | 1993-03-08 | 1994-02-28 | Flash file system |
Country Status (12)
Country | Link |
---|---|
US (1) | US5404485A (en) |
EP (1) | EP0688450B1 (en) |
JP (2) | JPH08510072A (en) |
KR (1) | KR100292011B1 (en) |
CN (1) | CN1078364C (en) |
AU (1) | AU6269994A (en) |
DE (1) | DE69414556T2 (en) |
FI (1) | FI105726B (en) |
IL (1) | IL108766A (en) |
TW (1) | TW264547B (en) |
WO (1) | WO1994020906A1 (en) |
ZA (1) | ZA941446B (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2291991A (en) * | 1995-09-27 | 1996-02-07 | Memory Corp Plc | Disk drive emulation with a block-erasable memory |
EP0704803A1 (en) * | 1994-09-30 | 1996-04-03 | Alcatel SEL Aktiengesellschaft | Flash memory management method |
EP0712067A2 (en) * | 1994-11-09 | 1996-05-15 | Mitsubishi Denki Kabushiki Kaisha | Flash disk card |
WO1996024900A1 (en) * | 1995-02-10 | 1996-08-15 | Aristocrat Leisure Industries Pty. Ltd. | Dram emulator |
JPH08221223A (en) * | 1995-02-16 | 1996-08-30 | Mitsubishi Electric Corp | Semiconductor disk device |
WO1997008619A1 (en) * | 1995-08-28 | 1997-03-06 | Siemens Aktiengesellschaft | Processor unit with plug-in memory |
WO1997012324A1 (en) * | 1995-09-27 | 1997-04-03 | Memory Corporation | Memory management |
JPH0993523A (en) * | 1995-09-28 | 1997-04-04 | Canon Inc | Electronic camera |
JPH0997314A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Ic card device |
JPH0997207A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Method, device for managing flash rom and computer control equipment |
JPH0997217A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Method and device for managing flash rom and computer control equipment |
JPH0997206A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Method, device for managing flash rom and computer control equipment |
EP0770960A1 (en) * | 1995-10-27 | 1997-05-02 | SCM Microsystems, Inc. | Flash translation layer block indication map revision system and method |
EP0770959A1 (en) * | 1995-10-27 | 1997-05-02 | SCM Microsystems, Inc. | Flash translation layer clean-up system |
EP0813157A2 (en) * | 1996-06-14 | 1997-12-17 | Eastman Kodak Company | A system and method for accessing data of a digital camera from a personal computer |
AU692670B2 (en) * | 1995-02-10 | 1998-06-11 | Aristocrat Technologies Australia Pty Limited | Dram emulator |
EP0973097A1 (en) * | 1997-12-05 | 2000-01-19 | Tokyo Electron Limited | Memory and access method |
WO2000049488A1 (en) * | 1999-02-17 | 2000-08-24 | Memory Corporation Plc | Memory system |
WO2000058838A1 (en) * | 1999-03-30 | 2000-10-05 | International Business Machines Corporation | Reclaiming memory from deleted applications |
WO2002103526A2 (en) * | 2001-06-18 | 2002-12-27 | M-Systems Flask Disk Pioneers Ltd. | System and method for flexible flash file system |
US6643731B2 (en) * | 1999-12-31 | 2003-11-04 | Texas Instruments Incorporated | Low cost memory management that resists power interruption |
EP1376608A1 (en) * | 2002-06-28 | 2004-01-02 | Cp8 | Programming method in a nonvolatile memory and system for realisation of such a method |
US6763424B2 (en) | 2001-01-19 | 2004-07-13 | Sandisk Corporation | Partial block data programming and reading operations in a non-volatile memory |
EP1444583A1 (en) * | 2001-09-05 | 2004-08-11 | M-Systems Flash Disk Pioneers Ltd | Flash management system for large page size |
EP1542129A2 (en) * | 2003-12-10 | 2005-06-15 | Samsung Electronics Co., Ltd. | Flash memory and mapping control apparatus and method for flash memory |
KR100862584B1 (en) | 2001-03-22 | 2008-10-09 | 마쯔시다덴기산교 가부시키가이샤 | Storage device |
US7539077B2 (en) | 2006-08-03 | 2009-05-26 | Samsung Electronics Co., Ltd. | Flash memory device having a data buffer and programming method of the same |
WO2009100031A1 (en) * | 2008-02-04 | 2009-08-13 | Apple Inc. | Memory mapping techniques |
WO2009107506A1 (en) | 2008-02-29 | 2009-09-03 | Kabushiki Kaisha Toshiba | Memory system |
EP2120435A2 (en) * | 1999-04-05 | 2009-11-18 | SanDisk IL Ltd. | Architecture for a universal serial bus-based PC flash disk |
US7631138B2 (en) | 2003-12-30 | 2009-12-08 | Sandisk Corporation | Adaptive mode switching of flash memory address mapping based on host usage characteristics |
US7725628B1 (en) | 2004-04-20 | 2010-05-25 | Lexar Media, Inc. | Direct secondary device interface by a host |
US8117380B2 (en) | 2003-12-30 | 2012-02-14 | Sandisk Technologies Inc. | Management of non-volatile memory systems having large erase blocks |
US8171203B2 (en) | 1995-07-31 | 2012-05-01 | Micron Technology, Inc. | Faster write operations to nonvolatile memory using FSInfo sector manipulation |
WO2012170848A1 (en) * | 2011-06-09 | 2012-12-13 | Apple Inc. | Dual flash translation layer |
US8468293B2 (en) | 2009-07-24 | 2013-06-18 | Apple Inc. | Restore index page |
US8516219B2 (en) | 2009-07-24 | 2013-08-20 | Apple Inc. | Index cache tree |
US8694722B2 (en) | 2001-09-28 | 2014-04-08 | Micron Technology, Inc. | Memory systems |
US8892831B2 (en) | 2008-01-16 | 2014-11-18 | Apple Inc. | Memory subsystem hibernation |
US9026721B2 (en) | 1995-07-31 | 2015-05-05 | Micron Technology, Inc. | Managing defective areas of memory |
US9032134B2 (en) | 2001-09-28 | 2015-05-12 | Micron Technology, Inc. | Methods of operating a memory system that include outputting a data pattern from a sector allocation table to a host if a logical sector is indicated as being erased |
US9213606B2 (en) | 2002-02-22 | 2015-12-15 | Micron Technology, Inc. | Image rescue |
US9576154B2 (en) | 2004-04-30 | 2017-02-21 | Micron Technology, Inc. | Methods of operating storage systems including using a key to determine whether a password can be changed |
IT201700057287A1 (en) * | 2017-05-26 | 2018-11-26 | St Microelectronics Srl | PROCEDURE FOR MANAGING INTEGRATED CIRCUIT CARDS, CARD AND CORRESPONDING EQUIPMENT |
Families Citing this family (520)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2251323B (en) * | 1990-12-31 | 1994-10-12 | Intel Corp | Disk emulation for a non-volatile semiconductor memory |
US5657332A (en) * | 1992-05-20 | 1997-08-12 | Sandisk Corporation | Soft errors handling in EEPROM devices |
US5581723A (en) * | 1993-02-19 | 1996-12-03 | Intel Corporation | Method and apparatus for retaining flash block structure data during erase operations in a flash EEPROM memory array |
US5519843A (en) * | 1993-03-15 | 1996-05-21 | M-Systems | Flash memory system providing both BIOS and user storage capability |
US5479638A (en) * | 1993-03-26 | 1995-12-26 | Cirrus Logic, Inc. | Flash memory mass storage architecture incorporation wear leveling technique |
US5485595A (en) * | 1993-03-26 | 1996-01-16 | Cirrus Logic, Inc. | Flash memory mass storage architecture incorporating wear leveling technique without using cam cells |
US6311286B1 (en) * | 1993-04-30 | 2001-10-30 | Nec Corporation | Symmetric multiprocessing system with unified environment and distributed system functions |
US5600821A (en) * | 1993-07-28 | 1997-02-04 | National Semiconductor Corporation | Distributed directory for information stored on audio quality memory devices |
US5640529A (en) * | 1993-07-29 | 1997-06-17 | Intel Corporation | Method and system for performing clean-up of a solid state disk during host command execution |
JP3215237B2 (en) * | 1993-10-01 | 2001-10-02 | 富士通株式会社 | Storage device and method for writing / erasing storage device |
US5784706A (en) * | 1993-12-13 | 1998-07-21 | Cray Research, Inc. | Virtual to logical to physical address translation for distributed memory massively parallel processing systems |
EP0663636B1 (en) * | 1994-01-12 | 2001-10-31 | Sun Microsystems, Inc. | Logically addressable physical memory for a virtual memory computer system that supports multiple page sizes |
US5696917A (en) * | 1994-06-03 | 1997-12-09 | Intel Corporation | Method and apparatus for performing burst read operations in an asynchronous nonvolatile memory |
US5765175A (en) * | 1994-08-26 | 1998-06-09 | Intel Corporation | System and method for removing deleted entries in file systems based on write-once or erase-slowly media |
JP2669365B2 (en) * | 1994-11-24 | 1997-10-27 | 日本電気株式会社 | Rewritable ROM file device |
JP3464836B2 (en) * | 1995-01-19 | 2003-11-10 | 富士通株式会社 | Memory management device for storage device |
JP2671860B2 (en) | 1995-03-30 | 1997-11-05 | 日本電気株式会社 | File system for flash memory |
JPH08328762A (en) * | 1995-06-06 | 1996-12-13 | Mitsubishi Electric Corp | Semiconductor disk device and memory management method therefor |
US6081878A (en) * | 1997-03-31 | 2000-06-27 | Lexar Media, Inc. | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
US5930815A (en) * | 1995-07-31 | 1999-07-27 | Lexar Media, Inc. | Moving sequential sectors within a block of information in a flash memory mass storage architecture |
US5845313A (en) * | 1995-07-31 | 1998-12-01 | Lexar | Direct logical block addressing flash memory mass storage architecture |
US6978342B1 (en) * | 1995-07-31 | 2005-12-20 | Lexar Media, Inc. | Moving sectors within a block of information in a flash memory mass storage architecture |
US5933847A (en) * | 1995-09-28 | 1999-08-03 | Canon Kabushiki Kaisha | Selecting erase method based on type of power supply for flash EEPROM |
US5987478A (en) * | 1995-10-31 | 1999-11-16 | Intel Corporation | Virtual small block file manager for flash memory array |
US5829013A (en) | 1995-12-26 | 1998-10-27 | Intel Corporation | Memory manager to allow non-volatile memory to be used to supplement main memory |
US5978808A (en) * | 1995-12-27 | 1999-11-02 | Intel Corporation | Virtual small block file manager for flash memory array |
JPH09185551A (en) * | 1996-01-08 | 1997-07-15 | Mitsubishi Electric Corp | Semiconductor memory device |
US5787445A (en) * | 1996-03-07 | 1998-07-28 | Norris Communications Corporation | Operating system including improved file management for use in devices utilizing flash memory as main memory |
US5860082A (en) * | 1996-03-28 | 1999-01-12 | Datalight, Inc. | Method and apparatus for allocating storage in a flash memory |
US5896393A (en) * | 1996-05-23 | 1999-04-20 | Advanced Micro Devices, Inc. | Simplified file management scheme for flash memory |
KR980013092A (en) * | 1996-07-29 | 1998-04-30 | 김광호 | File management apparatus and method of exchange system |
FR2752072B1 (en) * | 1996-08-01 | 1999-01-29 | Solaic Sa | CARD WITH INTEGRATED CIRCUIT COMPRISING FILES CLASSIFIED ACCORDING TO A TREE |
JPH10124381A (en) * | 1996-10-21 | 1998-05-15 | Mitsubishi Electric Corp | Semiconductor storage device |
US5745418A (en) * | 1996-11-25 | 1998-04-28 | Macronix International Co., Ltd. | Flash memory mass storage system |
US6182188B1 (en) | 1997-04-06 | 2001-01-30 | Intel Corporation | Method of performing reliable updates in a symmetrically blocked nonvolatile memory having a bifurcated storage architecture |
US5937434A (en) * | 1997-02-14 | 1999-08-10 | Intel Corporation | Method of managing a symmetrically blocked nonvolatile memory having a bifurcated storage architecture |
US6311290B1 (en) | 1997-02-14 | 2001-10-30 | Intel Corporation | Methods of reliably allocating, de-allocating, re-allocating, and reclaiming objects in a symmetrically blocked nonvolatile memory having a bifurcated storage architecture |
US5982553A (en) | 1997-03-20 | 1999-11-09 | Silicon Light Machines | Display device incorporating one-dimensional grating light-valve array |
US6088759A (en) | 1997-04-06 | 2000-07-11 | Intel Corporation | Method of performing reliable updates in a symmetrically blocked nonvolatile memory having a bifurcated storage architecture |
US5943692A (en) * | 1997-04-30 | 1999-08-24 | International Business Machines Corporation | Mobile client computer system with flash memory management utilizing a virtual address map and variable length data |
JP3104646B2 (en) * | 1997-06-04 | 2000-10-30 | ソニー株式会社 | External storage device |
GB2328531A (en) * | 1997-08-23 | 1999-02-24 | Ibm | Storing a long record in a set of shorter keyed records |
DE19740525C1 (en) * | 1997-09-15 | 1999-02-04 | Siemens Ag | Method of data storage and recovery in control system, esp. in motor vehicle, such as taxi |
US5937425A (en) * | 1997-10-16 | 1999-08-10 | M-Systems Flash Disk Pioneers Ltd. | Flash file system optimized for page-mode flash technologies |
JPH11203191A (en) * | 1997-11-13 | 1999-07-30 | Seiko Epson Corp | Nonvolatile storage device, control method of nonvolatile storage device and information recording medium recorded with program for controlling nonvolatile storage device |
US6040997A (en) * | 1998-03-25 | 2000-03-21 | Lexar Media, Inc. | Flash memory leveling architecture having no external latch |
US6101036A (en) | 1998-06-23 | 2000-08-08 | Silicon Light Machines | Embossed diffraction grating alone and in combination with changeable image display |
US6130770A (en) | 1998-06-23 | 2000-10-10 | Silicon Light Machines | Electron gun activated grating light valve |
JP4085478B2 (en) * | 1998-07-28 | 2008-05-14 | ソニー株式会社 | Storage medium and electronic device system |
US6303986B1 (en) | 1998-07-29 | 2001-10-16 | Silicon Light Machines | Method of and apparatus for sealing an hermetic lid to a semiconductor die |
JP4046877B2 (en) | 1998-12-14 | 2008-02-13 | 株式会社ルネサステクノロジ | Batch erase nonvolatile memory and mobile phone |
US6314557B1 (en) | 1998-12-14 | 2001-11-06 | Infineon Technologies Development Center Tel Aviv Ltd | Hybrid computer programming environment |
KR20000041291A (en) * | 1998-12-22 | 2000-07-15 | 김영환 | Method for managing data of visiting mobile subscribers in mobile communication system |
FR2787901B1 (en) * | 1998-12-28 | 2001-02-09 | Bull Sa | MEMORY ORGANIZATION BY PHYSICAL AREAS |
AU2006200756B2 (en) * | 1999-04-05 | 2008-04-03 | Sandisk Il Ltd | A USB flash memory device for connecting to a USB-defined BUS |
US6282605B1 (en) | 1999-04-26 | 2001-08-28 | Moore Computer Consultants, Inc. | File system for non-volatile computer memory |
KR100330164B1 (en) | 1999-04-27 | 2002-03-28 | 윤종용 | A method for simultaneously programming plural flash memories having invalid blocks |
KR100544175B1 (en) * | 1999-05-08 | 2006-01-23 | 삼성전자주식회사 | Recording medium storing linking type information and method for processing defective area |
US7830666B2 (en) | 2000-01-06 | 2010-11-09 | Super Talent Electronics, Inc. | Manufacturing process for single-chip MMC/SD flash memory device with molded asymmetric circuit board |
US8625270B2 (en) | 1999-08-04 | 2014-01-07 | Super Talent Technology, Corp. | USB flash drive with deploying and retracting functionalities using retractable cover/cap |
US7447037B2 (en) * | 1999-08-04 | 2008-11-04 | Super Talent Electronics, Inc. | Single chip USB packages by various assembly methods |
US7535719B2 (en) * | 1999-08-04 | 2009-05-19 | Super Talent Electronics, Inc. | Single chip USB packages with contact-pins cover |
US7872871B2 (en) * | 2000-01-06 | 2011-01-18 | Super Talent Electronics, Inc. | Molding methods to manufacture single-chip chip-on-board USB device |
US8141240B2 (en) | 1999-08-04 | 2012-03-27 | Super Talent Electronics, Inc. | Manufacturing method for micro-SD flash memory card |
US7318117B2 (en) | 2004-02-26 | 2008-01-08 | Super Talent Electronics, Inc. | Managing flash memory including recycling obsolete sectors |
US7466556B2 (en) * | 1999-08-04 | 2008-12-16 | Super Talent Electronics, Inc. | Single chip USB packages with swivel cover |
US20080209114A1 (en) * | 1999-08-04 | 2008-08-28 | Super Talent Electronics, Inc. | Reliability High Endurance Non-Volatile Memory Device with Zone-Based Non-Volatile Memory File System |
US7702831B2 (en) * | 2000-01-06 | 2010-04-20 | Super Talent Electronics, Inc. | Flash memory controller for electronic data flash card |
US7690031B2 (en) * | 2000-01-06 | 2010-03-30 | Super Talent Electronics, Inc. | Managing bad blocks in flash memory for electronic data flash card |
US8102662B2 (en) * | 2007-07-05 | 2012-01-24 | Super Talent Electronics, Inc. | USB package with bistable sliding mechanism |
KR100577380B1 (en) * | 1999-09-29 | 2006-05-09 | 삼성전자주식회사 | A flash-memory and a it's controling method |
KR100703680B1 (en) * | 1999-10-14 | 2007-04-05 | 삼성전자주식회사 | Flash file system |
CN1088218C (en) * | 1999-11-14 | 2002-07-24 | 邓国顺 | Electronic flash storage method and device for data processing system |
US7702984B1 (en) | 2000-01-06 | 2010-04-20 | Super Talent Electronics, Inc. | High volume testing for USB electronic data flash cards |
US20060161725A1 (en) * | 2005-01-20 | 2006-07-20 | Lee Charles C | Multiple function flash memory system |
US20080286990A1 (en) * | 2003-12-02 | 2008-11-20 | Super Talent Electronics, Inc. | Direct Package Mold Process For Single Chip SD Flash Cards |
US6424975B1 (en) | 2000-01-07 | 2002-07-23 | Trg Products, Inc. | FAT file system in palm OS computer |
US7102671B1 (en) | 2000-02-08 | 2006-09-05 | Lexar Media, Inc. | Enhanced compact flash memory card |
US6426893B1 (en) * | 2000-02-17 | 2002-07-30 | Sandisk Corporation | Flash eeprom system with simultaneous multiple data sector programming and storage of physical block characteristics in other designated blocks |
EP1130516A1 (en) * | 2000-03-01 | 2001-09-05 | Hewlett-Packard Company, A Delaware Corporation | Address mapping in solid state storage device |
US7167944B1 (en) | 2000-07-21 | 2007-01-23 | Lexar Media, Inc. | Block management for mass storage |
US7113432B2 (en) | 2000-09-14 | 2006-09-26 | Sandisk Corporation | Compressed event counting technique and application to a flash memory system |
US6473845B1 (en) * | 2000-09-28 | 2002-10-29 | Hewlett-Packard Company | System and method for dynamically updating memory address mappings |
KR100644602B1 (en) * | 2000-10-11 | 2006-11-10 | 삼성전자주식회사 | Method for driving remapping for flash memory and flash memory architecture thereto |
US6986030B2 (en) | 2000-10-27 | 2006-01-10 | M-Systems Flash Disk Pioneers Ltd. | Portable memory device includes software program for interacting with host computing device to provide a customized configuration for the program |
US7606733B2 (en) * | 2000-10-27 | 2009-10-20 | Sandisk Il Ltd. | Account portability for computing |
US7373656B2 (en) * | 2000-10-27 | 2008-05-13 | Sandisk Il Ltd. | Automatic configuration for portable devices |
US7028165B2 (en) * | 2000-12-06 | 2006-04-11 | Intel Corporation | Processor stalling |
KR100365725B1 (en) | 2000-12-27 | 2002-12-26 | 한국전자통신연구원 | Ranked Cleaning Policy and Error Recovery Method for File Systems Using Flash Memory |
US6510488B2 (en) | 2001-02-05 | 2003-01-21 | M-Systems Flash Disk Pioneers Ltd. | Method for fast wake-up of a flash memory system |
US6707591B2 (en) | 2001-04-10 | 2004-03-16 | Silicon Light Machines | Angled illumination for a single order light modulator based projection system |
US6732221B2 (en) | 2001-06-01 | 2004-05-04 | M-Systems Flash Disk Pioneers Ltd | Wear leveling of static areas in flash memory |
KR100389867B1 (en) * | 2001-06-04 | 2003-07-04 | 삼성전자주식회사 | Flash memory management method |
US6747781B2 (en) | 2001-06-25 | 2004-06-08 | Silicon Light Machines, Inc. | Method, apparatus, and diffuser for reducing laser speckle |
US6782205B2 (en) | 2001-06-25 | 2004-08-24 | Silicon Light Machines | Method and apparatus for dynamic equalization in wavelength division multiplexing |
US7024532B2 (en) * | 2001-08-09 | 2006-04-04 | Matsushita Electric Industrial Co., Ltd. | File management method, and memory card and terminal apparatus that make use of the method |
US6829092B2 (en) | 2001-08-15 | 2004-12-07 | Silicon Light Machines, Inc. | Blazed grating light valve |
US7356641B2 (en) * | 2001-08-28 | 2008-04-08 | International Business Machines Corporation | Data management in flash memory |
GB0123417D0 (en) * | 2001-09-28 | 2001-11-21 | Memquest Ltd | Improved data processing |
US6678785B2 (en) * | 2001-09-28 | 2004-01-13 | M-Systems Flash Disk Pioneers Ltd. | Flash management system using only sequential write |
GB0123421D0 (en) * | 2001-09-28 | 2001-11-21 | Memquest Ltd | Power management system |
GB0123419D0 (en) | 2001-09-28 | 2001-11-21 | Memquest Ltd | Data handling system |
US7299463B2 (en) | 2001-09-28 | 2007-11-20 | Intel Corporation | Method for atomically updating a plurality of files |
GB0123416D0 (en) * | 2001-09-28 | 2001-11-21 | Memquest Ltd | Non-volatile memory control |
KR100449708B1 (en) * | 2001-11-16 | 2004-09-22 | 삼성전자주식회사 | Flash memory management method |
US6977847B2 (en) * | 2001-11-23 | 2005-12-20 | M-Systems Flash Disk Pioneers Ltd. | Detecting partially erased units in flash devices |
JP3967121B2 (en) * | 2001-12-11 | 2007-08-29 | 株式会社ルネサステクノロジ | File system, file system control method, and program for controlling file system |
DE10163342A1 (en) * | 2001-12-21 | 2003-07-10 | Elektro Beckhoff Gmbh Unterneh | Data transmission method, serial bus system and connection unit for a passive bus device |
TWI240861B (en) * | 2002-01-11 | 2005-10-01 | Integrated Circuit Solution In | Data access method and architecture of flash memory |
US6800238B1 (en) | 2002-01-15 | 2004-10-05 | Silicon Light Machines, Inc. | Method for domain patterning in low coercive field ferroelectrics |
US6957295B1 (en) | 2002-01-18 | 2005-10-18 | Lexar Media, Inc. | File management of one-time-programmable nonvolatile memory devices |
US6621739B2 (en) * | 2002-01-18 | 2003-09-16 | Sandisk Corporation | Reducing the effects of noise in non-volatile memories through multiple reads |
US6950918B1 (en) | 2002-01-18 | 2005-09-27 | Lexar Media, Inc. | File management of one-time-programmable nonvolatile memory devices |
AU2003218299A1 (en) * | 2002-03-19 | 2003-10-08 | Michael Bucci | Device and method for throwing motion training |
US6767751B2 (en) | 2002-05-28 | 2004-07-27 | Silicon Light Machines, Inc. | Integrated driver process flow |
US6728023B1 (en) | 2002-05-28 | 2004-04-27 | Silicon Light Machines | Optical device arrays with optimized image resolution |
US6822797B1 (en) | 2002-05-31 | 2004-11-23 | Silicon Light Machines, Inc. | Light modulator structure for producing high-contrast operation using zero-order light |
US6829258B1 (en) | 2002-06-26 | 2004-12-07 | Silicon Light Machines, Inc. | Rapidly tunable external cavity laser |
US6714337B1 (en) | 2002-06-28 | 2004-03-30 | Silicon Light Machines | Method and device for modulating a light beam and having an improved gamma response |
US6813059B2 (en) | 2002-06-28 | 2004-11-02 | Silicon Light Machines, Inc. | Reduced formation of asperities in contact micro-structures |
KR100484147B1 (en) * | 2002-07-26 | 2005-04-18 | 삼성전자주식회사 | Flash memory management method |
TWI246064B (en) * | 2002-07-29 | 2005-12-21 | Milsys Ltd | Data storage and processing device, electronic appliance, electronic system and method of operating an appliance that responds to a plurality of commands |
US6801354B1 (en) | 2002-08-20 | 2004-10-05 | Silicon Light Machines, Inc. | 2-D diffraction grating for substantially eliminating polarization dependent losses |
US7130979B2 (en) * | 2002-08-29 | 2006-10-31 | Micron Technology, Inc. | Dynamic volume management |
US6968439B2 (en) | 2002-08-29 | 2005-11-22 | Micron Technology, Inc. | Single segment data object management |
US6970969B2 (en) * | 2002-08-29 | 2005-11-29 | Micron Technology, Inc. | Multiple segment data object management |
US6712480B1 (en) | 2002-09-27 | 2004-03-30 | Silicon Light Machines | Controlled curvature of stressed micro-structures |
US7174440B2 (en) * | 2002-10-28 | 2007-02-06 | Sandisk Corporation | Method and apparatus for performing block caching in a non-volatile memory system |
US7254668B1 (en) * | 2002-10-28 | 2007-08-07 | Sandisk Corporation | Method and apparatus for grouping pages within a block |
JP3694501B2 (en) * | 2002-10-30 | 2005-09-14 | 松下電器産業株式会社 | Storage device |
JP4199519B2 (en) * | 2002-11-05 | 2008-12-17 | パナソニック株式会社 | Memory management device and memory management method |
DE10252059B3 (en) * | 2002-11-08 | 2004-04-15 | Infineon Technologies Ag | Data memory operating method e.g. for portable data carrier or mobile data processor, using back-up memory for retaining memory cell contents upon current interruption during programming |
KR100457812B1 (en) * | 2002-11-14 | 2004-11-18 | 삼성전자주식회사 | Flash memory, access apparatus and method using flash memory |
KR100483490B1 (en) * | 2002-12-24 | 2005-04-15 | 한국전자통신연구원 | Doubly Journaling Store Method For Storing Data in Storage Medium |
RU2319227C2 (en) * | 2002-12-24 | 2008-03-10 | Эл Джи Электроникс Инк. | Recording method with double logging and data carrier for use with the method |
FI20022297A (en) * | 2002-12-31 | 2004-07-01 | Nokia Corp | A method for comparing the contents of memory components |
TW200415464A (en) * | 2003-02-12 | 2004-08-16 | Acard Technology Corp | SATA flash memory device |
US6829077B1 (en) | 2003-02-28 | 2004-12-07 | Silicon Light Machines, Inc. | Diffractive light modulator with dynamically rotatable diffraction plane |
US6806997B1 (en) | 2003-02-28 | 2004-10-19 | Silicon Light Machines, Inc. | Patterned diffractive light modulator ribbon for PDL reduction |
US7526598B2 (en) * | 2003-03-03 | 2009-04-28 | Sandisk Il, Ltd. | Efficient flash memory device driver |
US20040186746A1 (en) * | 2003-03-21 | 2004-09-23 | Angst Wendy P. | System, apparatus and method for storage and transportation of personal health records |
US7003621B2 (en) * | 2003-03-25 | 2006-02-21 | M-System Flash Disk Pioneers Ltd. | Methods of sanitizing a flash-based data storage device |
EP1462946A1 (en) * | 2003-03-25 | 2004-09-29 | Acard Technology Corp. | Architecture for a serial ATA bus based flash memory apparatus |
US7664987B2 (en) * | 2003-05-25 | 2010-02-16 | Sandisk Il Ltd. | Flash memory device with fast reading rate |
US6973519B1 (en) | 2003-06-03 | 2005-12-06 | Lexar Media, Inc. | Card identification compatibility |
US7606993B2 (en) * | 2003-06-10 | 2009-10-20 | Tdk Corporation | Flash memory controller, memory control circuit, flash memory system, and method for controlling data exchange between host computer and flash memory |
US7372731B2 (en) * | 2003-06-17 | 2008-05-13 | Sandisk Il Ltd. | Flash memories with adaptive reference voltages |
JP4433372B2 (en) * | 2003-06-18 | 2010-03-17 | 株式会社日立製作所 | Data access system and method |
US6988175B2 (en) * | 2003-06-30 | 2006-01-17 | M-Systems Flash Disk Pioneers Ltd. | Flash memory management method that is resistant to data corruption by power loss |
US7188228B1 (en) | 2003-10-01 | 2007-03-06 | Sandisk Corporation | Hybrid mapping implementation within a non-volatile memory system |
US7012835B2 (en) * | 2003-10-03 | 2006-03-14 | Sandisk Corporation | Flash memory data correction and scrub techniques |
US7173852B2 (en) * | 2003-10-03 | 2007-02-06 | Sandisk Corporation | Corrected data storage and handling methods |
US7296144B2 (en) * | 2003-11-24 | 2007-11-13 | Sandisk Il Ltd. | Method of traceless portable application execution |
US7440286B2 (en) * | 2005-04-21 | 2008-10-21 | Super Talent Electronics, Inc. | Extended USB dual-personality card reader |
US8102657B2 (en) | 2003-12-02 | 2012-01-24 | Super Talent Electronics, Inc. | Single shot molding method for COB USB/EUSB devices with contact pad ribs |
US8998620B2 (en) * | 2003-12-02 | 2015-04-07 | Super Talent Technology, Corp. | Molding method for COB-EUSB devices and metal housing package |
US7872873B2 (en) | 2003-12-02 | 2011-01-18 | Super Talent Electronics, Inc. | Extended COB-USB with dual-personality contacts |
US20050132178A1 (en) * | 2003-12-12 | 2005-06-16 | Sridhar Balasubramanian | Removable flash backup for storage controllers |
CN1809833B (en) | 2003-12-17 | 2015-08-05 | 雷克萨媒体公司 | For reducing the method for the theft incidence of the electronic equipment for buying |
JP2005190036A (en) | 2003-12-25 | 2005-07-14 | Hitachi Ltd | Storage controller and control method for storage controller |
JP4463042B2 (en) | 2003-12-26 | 2010-05-12 | 株式会社日立製作所 | Storage system having volume dynamic allocation function |
US7139864B2 (en) * | 2003-12-30 | 2006-11-21 | Sandisk Corporation | Non-volatile memory and method with block management system |
KR100526188B1 (en) * | 2003-12-30 | 2005-11-04 | 삼성전자주식회사 | Method for address mapping and managing mapping information, and flash memory thereof |
US7383375B2 (en) * | 2003-12-30 | 2008-06-03 | Sandisk Corporation | Data run programming |
US20050144363A1 (en) * | 2003-12-30 | 2005-06-30 | Sinclair Alan W. | Data boundary management |
US7433993B2 (en) * | 2003-12-30 | 2008-10-07 | San Disk Corportion | Adaptive metablocks |
WO2005067377A2 (en) * | 2004-01-15 | 2005-07-28 | M-Systems Flash Disk Pioneers Ltd. | Removable medium with bookmark |
WO2005069288A1 (en) * | 2004-01-19 | 2005-07-28 | Trek 2000 International Ltd. | Portable data storage device using a memory address mapping table |
US7869219B2 (en) * | 2004-01-20 | 2011-01-11 | Super Talent Electronics, Inc. | Flash drive with spring-loaded retractable connector |
US7177200B2 (en) * | 2004-02-10 | 2007-02-13 | Msystems Ltd. | Two-phase programming of a flash memory |
US7716413B2 (en) * | 2004-02-15 | 2010-05-11 | Sandisk Il Ltd. | Method of making a multi-bit-cell flash memory |
US8019928B2 (en) * | 2004-02-15 | 2011-09-13 | Sandisk Il Ltd. | Method of managing a multi-bit-cell flash memory |
EP1733555A4 (en) * | 2004-02-23 | 2009-09-30 | Lexar Media Inc | Secure compact flash |
CN1323358C (en) * | 2004-03-05 | 2007-06-27 | 中国科学院计算技术研究所 | Virtual storing model and method thereof |
US7310347B2 (en) * | 2004-03-14 | 2007-12-18 | Sandisk, Il Ltd. | States encoding in multi-bit flash cells |
US20050213393A1 (en) | 2004-03-14 | 2005-09-29 | M-Systems Flash Disk Pioneers, Ltd. | States encoding in multi-bit flash cells for optimizing error rate |
TWI254947B (en) * | 2004-03-28 | 2006-05-11 | Mediatek Inc | Data managing method and data access system for storing all management data in a management bank of a non-volatile memory |
US7325090B2 (en) * | 2004-04-29 | 2008-01-29 | Sandisk Il Ltd. | Refreshing data stored in a flash memory |
TWI249670B (en) * | 2004-04-29 | 2006-02-21 | Mediatek Inc | System and method capable of sequentially writing a flash memory |
US8352697B2 (en) * | 2004-05-17 | 2013-01-08 | Sandisk Il Ltd. | Method of managing files for optimal performance |
US7346401B2 (en) * | 2004-05-25 | 2008-03-18 | International Business Machines Corporation | Systems and methods for providing constrained optimization using adaptive regulatory control |
WO2005121968A2 (en) * | 2004-06-07 | 2005-12-22 | Wms Gaming Inc. | Gaming device with resource swapping |
KR100568115B1 (en) * | 2004-06-30 | 2006-04-05 | 삼성전자주식회사 | Incremental merge method and memory system using the same |
US20060004951A1 (en) * | 2004-06-30 | 2006-01-05 | Rudelic John C | Method and apparatus to alter code in a memory |
US20080195817A1 (en) * | 2004-07-08 | 2008-08-14 | Super Talent Electronics, Inc. | SD Flash Memory Card Manufacturing Using Rigid-Flex PCB |
US7957189B2 (en) * | 2004-07-26 | 2011-06-07 | Sandisk Il Ltd. | Drift compensation in a flash memory |
US7817469B2 (en) * | 2004-07-26 | 2010-10-19 | Sandisk Il Ltd. | Drift compensation in a flash memory |
US7386700B2 (en) * | 2004-07-30 | 2008-06-10 | Sandisk Il Ltd | Virtual-to-physical address translation in a flash file system |
US8407396B2 (en) * | 2004-07-30 | 2013-03-26 | Hewlett-Packard Development Company, L.P. | Providing block data access for an operating system using solid-state memory |
US8275969B2 (en) * | 2004-08-05 | 2012-09-25 | Sandisk Il Ltd. | Storage with persistent user data |
US7594063B1 (en) * | 2004-08-27 | 2009-09-22 | Lexar Media, Inc. | Storage capacity status |
US7464306B1 (en) * | 2004-08-27 | 2008-12-09 | Lexar Media, Inc. | Status of overall health of nonvolatile memory |
EP1797645B1 (en) * | 2004-08-30 | 2018-08-01 | Google LLC | Systems and methods for providing nonvolatile memory management in wireless phones |
US20060059296A1 (en) * | 2004-09-16 | 2006-03-16 | M-Systems Flash Disk Pioneers, Ltd. | Emulating small block size of flash memory |
US7164611B2 (en) | 2004-10-26 | 2007-01-16 | Micron Technology, Inc. | Data retention kill function |
US7496493B1 (en) * | 2004-11-09 | 2009-02-24 | Western Digital Technologies, Inc. | External memory device to provide disk device and optical functionality |
EP1672487A1 (en) * | 2004-12-14 | 2006-06-21 | Sony Ericsson Mobile Communications AB | Method and means for an efficient memory usage |
WO2006063941A2 (en) * | 2004-12-14 | 2006-06-22 | Sony Ericsson Mobile Communications Ab | Method and means for an efficient memory usage |
US7685400B2 (en) * | 2004-12-15 | 2010-03-23 | International Business Machines Corporation | Storage of data blocks of logical volumes in a virtual disk storage subsystem |
US7412560B2 (en) * | 2004-12-16 | 2008-08-12 | Sandisk Corporation | Non-volatile memory and method with multi-stream updating |
US7386655B2 (en) * | 2004-12-16 | 2008-06-10 | Sandisk Corporation | Non-volatile memory and method with improved indexing for scratch pad and update blocks |
US7395404B2 (en) | 2004-12-16 | 2008-07-01 | Sandisk Corporation | Cluster auto-alignment for storing addressable data packets in a non-volatile memory array |
US7366826B2 (en) * | 2004-12-16 | 2008-04-29 | Sandisk Corporation | Non-volatile memory and method with multi-stream update tracking |
US7315916B2 (en) * | 2004-12-16 | 2008-01-01 | Sandisk Corporation | Scratch pad block |
US7149111B2 (en) * | 2004-12-17 | 2006-12-12 | Msystems Ltd. | Method of handling limitations on the order of writing to a non-volatile memory |
US7246195B2 (en) * | 2004-12-30 | 2007-07-17 | Intel Corporation | Data storage management for flash memory devices |
DE102005001038B3 (en) * | 2005-01-07 | 2006-05-04 | Hyperstone Ag | Non volatile memory`s e.g. flash memory, block management method for e.g. computer system, involves assigning physical memory block number of real memory block number on table, and addressing real memory blocks with physical block number |
US7308525B2 (en) * | 2005-01-10 | 2007-12-11 | Sandisk Il Ltd. | Method of managing a multi-bit cell flash memory with improved reliablility and performance |
US7426623B2 (en) * | 2005-01-14 | 2008-09-16 | Sandisk Il Ltd | System and method for configuring flash memory partitions as super-units |
US8341371B2 (en) * | 2005-01-31 | 2012-12-25 | Sandisk Il Ltd | Method of managing copy operations in flash memories |
US9104315B2 (en) | 2005-02-04 | 2015-08-11 | Sandisk Technologies Inc. | Systems and methods for a mass data storage system having a file-based interface to a host and a non-file-based interface to secondary storage |
US7877539B2 (en) * | 2005-02-16 | 2011-01-25 | Sandisk Corporation | Direct data file storage in flash memories |
US20060184719A1 (en) * | 2005-02-16 | 2006-08-17 | Sinclair Alan W | Direct data file storage implementation techniques in flash memories |
US20060184718A1 (en) * | 2005-02-16 | 2006-08-17 | Sinclair Alan W | Direct file data programming and deletion in flash memories |
US8108691B2 (en) * | 2005-02-07 | 2012-01-31 | Sandisk Technologies Inc. | Methods used in a secure memory card with life cycle phases |
US8321686B2 (en) * | 2005-02-07 | 2012-11-27 | Sandisk Technologies Inc. | Secure memory card with life cycle phases |
US8423788B2 (en) * | 2005-02-07 | 2013-04-16 | Sandisk Technologies Inc. | Secure memory card with life cycle phases |
CA2597551A1 (en) * | 2005-02-11 | 2006-08-17 | M-Systems Flash Disk Pioneers Ltd. | Nand flash memory system architecture |
US7224604B2 (en) * | 2005-03-14 | 2007-05-29 | Sandisk Il Ltd. | Method of achieving wear leveling in flash memory using relative grades |
US8522048B2 (en) * | 2005-04-14 | 2013-08-27 | Sandisk Il Ltd. | Content delivery system |
US7634494B2 (en) * | 2005-05-03 | 2009-12-15 | Intel Corporation | Flash memory directory virtualization |
US7275140B2 (en) * | 2005-05-12 | 2007-09-25 | Sandisk Il Ltd. | Flash memory management method that is resistant to data corruption by power loss |
US7334725B2 (en) * | 2005-06-01 | 2008-02-26 | San Disk Il Ltd. | Flash memory device within a business card |
US7389397B2 (en) * | 2005-06-01 | 2008-06-17 | Sandisk Il Ltd | Method of storing control information in a large-page flash memory device |
JP2006338371A (en) | 2005-06-02 | 2006-12-14 | Toshiba Corp | Memory system |
KR100827227B1 (en) * | 2005-06-24 | 2008-05-07 | 삼성전자주식회사 | Method and apparatus for managing DRM right object in low-processing power's storage efficiently |
US20070005929A1 (en) * | 2005-06-30 | 2007-01-04 | Post Daniel J | Method, system, and article of manufacture for sector mapping in a flash device |
US7748031B2 (en) | 2005-07-08 | 2010-06-29 | Sandisk Corporation | Mass storage device with automated credentials loading |
US8335920B2 (en) | 2005-07-14 | 2012-12-18 | Imation Corp. | Recovery of data access for a locked secure storage device |
US8015606B1 (en) | 2005-07-14 | 2011-09-06 | Ironkey, Inc. | Storage device with website trust indication |
US8321953B2 (en) * | 2005-07-14 | 2012-11-27 | Imation Corp. | Secure storage device with offline code entry |
US8438647B2 (en) | 2005-07-14 | 2013-05-07 | Imation Corp. | Recovery of encrypted data from a secure storage device |
US20070016721A1 (en) * | 2005-07-18 | 2007-01-18 | Wyse Technology Inc. | Flash file system power-up by using sequential sector allocation |
US7949845B2 (en) * | 2005-08-03 | 2011-05-24 | Sandisk Corporation | Indexing of file data in reprogrammable non-volatile memories that directly store data files |
US7627733B2 (en) * | 2005-08-03 | 2009-12-01 | Sandisk Corporation | Method and system for dual mode access for storage devices |
US7480766B2 (en) * | 2005-08-03 | 2009-01-20 | Sandisk Corporation | Interfacing systems operating through a logical address space and on a direct data file basis |
US7984084B2 (en) * | 2005-08-03 | 2011-07-19 | SanDisk Technologies, Inc. | Non-volatile memory with scheduled reclaim operations |
US7669003B2 (en) * | 2005-08-03 | 2010-02-23 | Sandisk Corporation | Reprogrammable non-volatile memory systems with indexing of directly stored data files |
US7552271B2 (en) | 2005-08-03 | 2009-06-23 | Sandisk Corporation | Nonvolatile memory with block management |
US7558906B2 (en) | 2005-08-03 | 2009-07-07 | Sandisk Corporation | Methods of managing blocks in nonvolatile memory |
KR100739722B1 (en) * | 2005-08-20 | 2007-07-13 | 삼성전자주식회사 | A method for managing a flash memory and a flash memory system |
US7571275B2 (en) * | 2005-08-31 | 2009-08-04 | Hamilton Sundstrand Corporation | Flash real-time operating system for small embedded applications |
US20070067620A1 (en) * | 2005-09-06 | 2007-03-22 | Ironkey, Inc. | Systems and methods for third-party authentication |
US8855714B2 (en) | 2005-09-14 | 2014-10-07 | Sandisk Il Ltd. | Removable media player for mobile phones |
US7934049B2 (en) * | 2005-09-14 | 2011-04-26 | Sandisk Corporation | Methods used in a secure yet flexible system architecture for secure devices with flash mass storage memory |
US7536540B2 (en) * | 2005-09-14 | 2009-05-19 | Sandisk Corporation | Method of hardware driver integrity check of memory card controller firmware |
US8291295B2 (en) * | 2005-09-26 | 2012-10-16 | Sandisk Il Ltd. | NAND flash memory controller exporting a NAND interface |
US7631245B2 (en) | 2005-09-26 | 2009-12-08 | Sandisk Il Ltd. | NAND flash memory controller exporting a NAND interface |
TWI298836B (en) * | 2005-10-12 | 2008-07-11 | Sunplus Technology Co Ltd | Apparatus for controlling flash memory and method thereof |
US7529905B2 (en) | 2005-10-13 | 2009-05-05 | Sandisk Corporation | Method of storing transformed units of data in a memory system having fixed sized storage blocks |
US7814262B2 (en) * | 2005-10-13 | 2010-10-12 | Sandisk Corporation | Memory system storing transformed units of data in fixed sized storage blocks |
US7681109B2 (en) * | 2005-10-13 | 2010-03-16 | Ramot At Tel Aviv University Ltd. | Method of error correction in MBC flash memory |
US7526715B2 (en) * | 2005-10-17 | 2009-04-28 | Ramot At Tel Aviv University Ltd. | Probabilistic error correction in multi-bit-per-cell flash memory |
US7509471B2 (en) * | 2005-10-27 | 2009-03-24 | Sandisk Corporation | Methods for adaptively handling data writes in non-volatile memories |
US7631162B2 (en) | 2005-10-27 | 2009-12-08 | Sandisck Corporation | Non-volatile memory with adaptive handling of data writes |
ATE518190T1 (en) * | 2005-12-09 | 2011-08-15 | Sandisk Il Ltd | FLASH MEMORY MANAGEMENT METHOD |
US7877540B2 (en) * | 2005-12-13 | 2011-01-25 | Sandisk Corporation | Logically-addressed file storage methods |
US7793068B2 (en) * | 2005-12-21 | 2010-09-07 | Sandisk Corporation | Dual mode access for non-volatile storage devices |
US7769978B2 (en) * | 2005-12-21 | 2010-08-03 | Sandisk Corporation | Method and system for accessing non-volatile storage devices |
US7747837B2 (en) | 2005-12-21 | 2010-06-29 | Sandisk Corporation | Method and system for accessing non-volatile storage devices |
JP2009521049A (en) * | 2005-12-21 | 2009-05-28 | エヌエックスピー ビー ヴィ | Memory with block erasable storage locations |
US8639873B1 (en) | 2005-12-22 | 2014-01-28 | Imation Corp. | Detachable storage device with RAM cache |
US8266378B1 (en) | 2005-12-22 | 2012-09-11 | Imation Corp. | Storage device with accessible partitions |
KR100755700B1 (en) * | 2005-12-27 | 2007-09-05 | 삼성전자주식회사 | Storage apparatus using non volatile memory and method for managing the same |
US7519754B2 (en) * | 2005-12-28 | 2009-04-14 | Silicon Storage Technology, Inc. | Hard disk drive cache memory and playback device |
US20070147115A1 (en) * | 2005-12-28 | 2007-06-28 | Fong-Long Lin | Unified memory and controller |
FR2895828B1 (en) * | 2006-01-03 | 2008-05-30 | Thales Sa | METHOD OF MANAGING DATA TO BE WRITTEN AND READ IN A MEMORY |
US7512847B2 (en) * | 2006-02-10 | 2009-03-31 | Sandisk Il Ltd. | Method for estimating and reporting the life expectancy of flash-disk memory |
US8848442B2 (en) * | 2006-03-06 | 2014-09-30 | Sandisk Il Ltd. | Multi-bit-per-cell flash memory device with non-bijective mapping |
US7388781B2 (en) * | 2006-03-06 | 2008-06-17 | Sandisk Il Ltd. | Multi-bit-per-cell flash memory device with non-bijective mapping |
US8645793B2 (en) | 2008-06-03 | 2014-02-04 | Marvell International Ltd. | Statistical tracking for flash memory |
US7823043B2 (en) * | 2006-05-10 | 2010-10-26 | Sandisk Il Ltd. | Corruption-resistant data porting with multiple error correction schemes |
US7583545B2 (en) * | 2006-05-21 | 2009-09-01 | Sandisk Il Ltd | Method of storing data in a multi-bit-cell flash memory |
US8042029B2 (en) | 2006-05-21 | 2011-10-18 | Ramot At Tel Aviv University Ltd. | Error correction decoding by trial and error |
US7711890B2 (en) | 2006-06-06 | 2010-05-04 | Sandisk Il Ltd | Cache control in a non-volatile memory device |
US20070300031A1 (en) * | 2006-06-22 | 2007-12-27 | Ironkey, Inc. | Memory data shredder |
US8307148B2 (en) * | 2006-06-23 | 2012-11-06 | Microsoft Corporation | Flash management techniques |
US7533328B2 (en) * | 2006-07-04 | 2009-05-12 | Sandisk Il, Ltd. | Method of error correction in a multi-bit-per-cell flash memory |
US20080046630A1 (en) * | 2006-08-21 | 2008-02-21 | Sandisk Il Ltd. | NAND flash memory controller exporting a logical sector-based interface |
US20080046641A1 (en) * | 2006-08-21 | 2008-02-21 | Sandisk Il Ltd. | NAND flash memory controller exporting a logical sector-based interface |
US20080072058A1 (en) * | 2006-08-24 | 2008-03-20 | Yoram Cedar | Methods in a reader for one time password generating device |
US20080052524A1 (en) * | 2006-08-24 | 2008-02-28 | Yoram Cedar | Reader for one time password generating device |
WO2008026466A1 (en) * | 2006-08-31 | 2008-03-06 | Sharp Kabushiki Kaisha | File system |
KR100802059B1 (en) * | 2006-09-06 | 2008-02-12 | 삼성전자주식회사 | Memory system capable of suppressing generation of bad blocks due to read disturbance and operating method thereof |
US7716538B2 (en) * | 2006-09-27 | 2010-05-11 | Sandisk Corporation | Memory with cell population distribution assisted read margining |
US7886204B2 (en) * | 2006-09-27 | 2011-02-08 | Sandisk Corporation | Methods of cell population distribution assisted read margining |
US7761625B2 (en) * | 2006-09-28 | 2010-07-20 | Virident Systems, Inc. | Methods for main memory with non-volatile type memory modules, and related technologies |
US7761624B2 (en) * | 2006-09-28 | 2010-07-20 | Virident Systems, Inc. | Systems and apparatus for main memory with non-volatile type memory modules, and related technologies |
US7761623B2 (en) * | 2006-09-28 | 2010-07-20 | Virident Systems, Inc. | Main memory in a system with a memory controller configured to control access to non-volatile memory, and related technologies |
US8074022B2 (en) * | 2006-09-28 | 2011-12-06 | Virident Systems, Inc. | Programmable heterogeneous memory controllers for main memory with different memory modules |
US9984012B2 (en) | 2006-09-28 | 2018-05-29 | Virident Systems, Llc | Read writeable randomly accessible non-volatile memory modules |
WO2008040028A2 (en) * | 2006-09-28 | 2008-04-03 | Virident Systems, Inc. | Systems, methods, and apparatus with programmable memory control for heterogeneous main memory |
US7761626B2 (en) * | 2006-09-28 | 2010-07-20 | Virident Systems, Inc. | Methods for main memory in a system with a memory controller configured to control access to non-volatile memory, and related technologies |
US8949555B1 (en) | 2007-08-30 | 2015-02-03 | Virident Systems, Inc. | Methods for sustained read and write performance with non-volatile memory |
US20080082750A1 (en) * | 2006-09-28 | 2008-04-03 | Okin Kenneth A | Methods of communicating to, memory modules in a memory channel |
KR100849221B1 (en) | 2006-10-19 | 2008-07-31 | 삼성전자주식회사 | Method for managing non-volatile memory, and memory-based apparatus including the non-volatile memory |
KR100771519B1 (en) * | 2006-10-23 | 2007-10-30 | 삼성전자주식회사 | Memory system including flash memory and merge method of thereof |
WO2008051940A2 (en) | 2006-10-23 | 2008-05-02 | Virident Systems, Inc. | Methods and apparatus of dual inline memory modules for flash memory |
US7814263B2 (en) * | 2006-10-26 | 2010-10-12 | Sandisk Il Ltd. | Erase history-based flash writing method |
KR100789406B1 (en) | 2006-11-03 | 2007-12-28 | 삼성전자주식회사 | Flash memory system and garbage collection method therof |
US7774556B2 (en) | 2006-11-04 | 2010-08-10 | Virident Systems Inc. | Asymmetric memory migration in hybrid main memory |
KR100816761B1 (en) * | 2006-12-04 | 2008-03-25 | 삼성전자주식회사 | Memory card system including nand flash memory and sram/nor flash memory and data storage method thereof |
US9116823B2 (en) | 2006-12-06 | 2015-08-25 | Intelligent Intellectual Property Holdings 2 Llc | Systems and methods for adaptive error-correction coding |
US20080140724A1 (en) * | 2006-12-06 | 2008-06-12 | David Flynn | Apparatus, system, and method for servicing object requests within a storage controller |
US8935302B2 (en) | 2006-12-06 | 2015-01-13 | Intelligent Intellectual Property Holdings 2 Llc | Apparatus, system, and method for data block usage information synchronization for a non-volatile storage volume |
US8706968B2 (en) * | 2007-12-06 | 2014-04-22 | Fusion-Io, Inc. | Apparatus, system, and method for redundant write caching |
US8719501B2 (en) | 2009-09-08 | 2014-05-06 | Fusion-Io | Apparatus, system, and method for caching data on a solid-state storage device |
US9495241B2 (en) | 2006-12-06 | 2016-11-15 | Longitude Enterprise Flash S.A.R.L. | Systems and methods for adaptive data storage |
US9104599B2 (en) | 2007-12-06 | 2015-08-11 | Intelligent Intellectual Property Holdings 2 Llc | Apparatus, system, and method for destaging cached data |
US8443134B2 (en) * | 2006-12-06 | 2013-05-14 | Fusion-Io, Inc. | Apparatus, system, and method for graceful cache device degradation |
US8151082B2 (en) * | 2007-12-06 | 2012-04-03 | Fusion-Io, Inc. | Apparatus, system, and method for converting a storage request into an append data storage command |
US8161353B2 (en) * | 2007-12-06 | 2012-04-17 | Fusion-Io, Inc. | Apparatus, system, and method for validating that a correct data segment is read from a data storage device |
US8489817B2 (en) | 2007-12-06 | 2013-07-16 | Fusion-Io, Inc. | Apparatus, system, and method for caching data |
KR100845552B1 (en) | 2006-12-18 | 2008-07-10 | (재)대구경북과학기술연구원 | Method for address mapping in Flash Translation LayerFTL |
US7814401B2 (en) * | 2006-12-21 | 2010-10-12 | Ramot At Tel Aviv University Ltd. | Soft decoding of hard and soft bits read from a flash memory |
US8127200B2 (en) * | 2006-12-24 | 2012-02-28 | Sandisk Il Ltd. | Flash memory device and system with randomizing for suppressing errors |
US8370561B2 (en) * | 2006-12-24 | 2013-02-05 | Sandisk Il Ltd. | Randomizing for suppressing errors in a flash memory |
US8423794B2 (en) * | 2006-12-28 | 2013-04-16 | Sandisk Technologies Inc. | Method and apparatus for upgrading a memory card that has security mechanisms for preventing copying of secure content and applications |
US8885384B2 (en) | 2007-01-11 | 2014-11-11 | Chengdu Haicun Ip Technology Llc | Mask-programmed read-only memory with reserved space |
KR100885181B1 (en) | 2007-02-06 | 2009-02-23 | 삼성전자주식회사 | Memory system performing group mapping operation and address mapping method thereof |
US7966355B2 (en) | 2007-02-13 | 2011-06-21 | Modu Ltd. | Interface for extending functionality of memory cards |
US8370562B2 (en) * | 2007-02-25 | 2013-02-05 | Sandisk Il Ltd. | Interruptible cache flushing in flash memory systems |
US20080222349A1 (en) * | 2007-03-07 | 2008-09-11 | Ocz Technology Group Inc. | Ieee 1394 interface-based flash drive using multilevel cell flash memory devices |
CN100461134C (en) * | 2007-03-27 | 2009-02-11 | 华为技术有限公司 | Controller of external storing device and address change method based on same |
US7573773B2 (en) * | 2007-03-28 | 2009-08-11 | Sandisk Corporation | Flash memory with data refresh triggered by controlled scrub data reads |
US7477547B2 (en) * | 2007-03-28 | 2009-01-13 | Sandisk Corporation | Flash memory refresh techniques triggered by controlled scrub data reads |
JP4636046B2 (en) * | 2007-03-29 | 2011-02-23 | Tdk株式会社 | MEMORY CONTROLLER, FLASH MEMORY SYSTEM HAVING MEMORY CONTROLLER, AND FLASH MEMORY CONTROL METHOD |
US7808834B1 (en) | 2007-04-13 | 2010-10-05 | Marvell International Ltd. | Incremental memory refresh |
US8254134B2 (en) | 2007-05-03 | 2012-08-28 | Super Talent Electronics, Inc. | Molded memory card with write protection switch assembly |
US7689762B2 (en) * | 2007-05-03 | 2010-03-30 | Atmel Corporation | Storage device wear leveling |
US7850468B2 (en) | 2007-06-28 | 2010-12-14 | Super Talent Electronics, Inc. | Lipstick-type USB device |
US7789680B2 (en) * | 2007-07-05 | 2010-09-07 | Super Talent Electronics, Inc. | USB device with connected cap |
US8102658B2 (en) * | 2007-07-05 | 2012-01-24 | Super Talent Electronics, Inc. | Micro-SD to secure digital adaptor card and manufacturing method |
CN101094183B (en) * | 2007-07-25 | 2011-12-07 | 杭州华三通信技术有限公司 | Buffer memory management method and device |
US8031526B1 (en) | 2007-08-23 | 2011-10-04 | Marvell International Ltd. | Write pre-compensation for nonvolatile memory |
US7944702B2 (en) | 2007-08-27 | 2011-05-17 | Super Talent Electronics, Inc. | Press-push flash drive apparatus with metal tubular casing and snap-coupled plastic sleeve |
US8189381B1 (en) | 2007-08-28 | 2012-05-29 | Marvell International Ltd. | System and method for reading flash memory cells |
US8085605B2 (en) | 2007-08-29 | 2011-12-27 | Marvell World Trade Ltd. | Sequence detection for flash memory with inter-cell interference |
US9921896B2 (en) | 2007-08-30 | 2018-03-20 | Virident Systems, Llc | Shutdowns and data recovery to avoid read errors weak pages in a non-volatile memory system |
JP4746598B2 (en) * | 2007-09-28 | 2011-08-10 | 株式会社東芝 | Semiconductor memory device |
US7970983B2 (en) * | 2007-10-14 | 2011-06-28 | Sandisk Il Ltd. | Identity-based flash management |
US8024545B2 (en) | 2007-10-19 | 2011-09-20 | Inha-Industry Partnership Institute | Efficient prefetching and asynchronous writing for flash memory |
US8241047B2 (en) * | 2007-10-30 | 2012-08-14 | Super Talent Electronics, Inc. | Flash drive with spring-loaded swivel connector |
US20090138673A1 (en) * | 2007-11-28 | 2009-05-28 | Apple Inc. | Internal memory mapped external memory interface |
US8116083B2 (en) * | 2007-12-04 | 2012-02-14 | Super Talent Electronics, Inc. | Lipstick-type USB device with tubular housing |
US7836226B2 (en) | 2007-12-06 | 2010-11-16 | Fusion-Io, Inc. | Apparatus, system, and method for coordinating storage requests in a multi-processor/multi-thread environment |
US9519540B2 (en) | 2007-12-06 | 2016-12-13 | Sandisk Technologies Llc | Apparatus, system, and method for destaging cached data |
US8316277B2 (en) * | 2007-12-06 | 2012-11-20 | Fusion-Io, Inc. | Apparatus, system, and method for ensuring data validity in a data storage process |
US8195912B2 (en) * | 2007-12-06 | 2012-06-05 | Fusion-io, Inc | Apparatus, system, and method for efficient mapping of virtual and physical addresses |
US8621138B2 (en) * | 2007-12-27 | 2013-12-31 | Sandisk Enterprise Ip Llc | Flash storage controller execute loop |
KR101386489B1 (en) * | 2008-01-14 | 2014-04-21 | 삼성전자주식회사 | Memory device and method of multi-bit programming |
US8856464B2 (en) * | 2008-02-12 | 2014-10-07 | Virident Systems, Inc. | Systems for two-dimensional main memory including memory modules with read-writeable non-volatile memory devices |
US9251899B2 (en) * | 2008-02-12 | 2016-02-02 | Virident Systems, Inc. | Methods for upgrading main memory in computer systems to two-dimensional memory modules and master memory controllers |
KR101437123B1 (en) * | 2008-04-01 | 2014-09-02 | 삼성전자 주식회사 | Memory system and wear leveling method thereof |
US8156392B2 (en) * | 2008-04-05 | 2012-04-10 | Fusion-Io, Inc. | Apparatus, system, and method for bad block remapping |
US8266366B2 (en) * | 2008-04-11 | 2012-09-11 | SanDisk Technologies, Inc. | Memory device operable in read-only and write-once, read-many (WORM) modes of operation |
CA2629960C (en) * | 2008-04-28 | 2009-12-08 | Westport Power Inc. | Apparatus and method for improving the accuracy of measurements taken with a capacitance-type sensor |
WO2009137371A2 (en) * | 2008-05-02 | 2009-11-12 | Ironkey, Inc. | Enterprise device recovery |
EP2297742B1 (en) * | 2008-05-16 | 2013-07-24 | Fusion-io, Inc. | Apparatus, system, and method for detecting and replacing failed data storage |
JP2009282678A (en) * | 2008-05-21 | 2009-12-03 | Hitachi Ltd | Flash memory module and storage system |
KR101497074B1 (en) * | 2008-06-17 | 2015-03-05 | 삼성전자주식회사 | Non-volatile memory system and data manage method thereof |
US8417873B1 (en) | 2008-06-24 | 2013-04-09 | Virident Systems, Inc. | Random read and read/write block accessible memory |
US9513695B2 (en) | 2008-06-24 | 2016-12-06 | Virident Systems, Inc. | Methods of managing power in network computer systems |
TWI370969B (en) | 2008-07-09 | 2012-08-21 | Phison Electronics Corp | Data accessing method, and storage system and controller using the same |
US8417902B2 (en) * | 2008-08-05 | 2013-04-09 | Atmel Corporation | One-time-programmable memory emulation |
JP4909963B2 (en) * | 2008-09-09 | 2012-04-04 | 株式会社東芝 | Integrated memory management device |
US7962801B2 (en) * | 2008-10-15 | 2011-06-14 | Silicon Motion, Inc. | Link table recovery method |
KR101510120B1 (en) * | 2008-11-21 | 2015-04-10 | 삼성전자주식회사 | Memory device and management method of memory device |
US8316201B2 (en) * | 2008-12-18 | 2012-11-20 | Sandisk Il Ltd. | Methods for executing a command to write data from a source location to a destination location in a memory device |
US9612954B2 (en) * | 2008-12-31 | 2017-04-04 | Micron Technology, Inc. | Recovery for non-volatile memory after power loss |
US8589700B2 (en) | 2009-03-04 | 2013-11-19 | Apple Inc. | Data whitening for writing and reading data to and from a non-volatile memory |
US20100228906A1 (en) * | 2009-03-06 | 2010-09-09 | Arunprasad Ramiya Mothilal | Managing Data in a Non-Volatile Memory System |
US8176295B2 (en) | 2009-04-20 | 2012-05-08 | Imation Corp. | Logical-to-physical address translation for a removable data storage device |
US8065469B2 (en) | 2009-04-20 | 2011-11-22 | Imation Corp. | Static wear leveling |
TWI457940B (en) * | 2009-05-15 | 2014-10-21 | Macronix Int Co Ltd | Byte-access in block-based flash memory |
US8307258B2 (en) * | 2009-05-18 | 2012-11-06 | Fusion-10, Inc | Apparatus, system, and method for reconfiguring an array to operate with less storage elements |
US8281227B2 (en) * | 2009-05-18 | 2012-10-02 | Fusion-10, Inc. | Apparatus, system, and method to increase data integrity in a redundant storage system |
US8745365B2 (en) * | 2009-08-06 | 2014-06-03 | Imation Corp. | Method and system for secure booting a computer by booting a first operating system from a secure peripheral device and launching a second operating system stored a secure area in the secure peripheral device on the first operating system |
US8683088B2 (en) | 2009-08-06 | 2014-03-25 | Imation Corp. | Peripheral device data integrity |
US20110041039A1 (en) * | 2009-08-11 | 2011-02-17 | Eliyahou Harari | Controller and Method for Interfacing Between a Host Controller in a Host and a Flash Memory Device |
US20110040924A1 (en) * | 2009-08-11 | 2011-02-17 | Selinger Robert D | Controller and Method for Detecting a Transmission Error Over a NAND Interface Using Error Detection Code |
US8612718B2 (en) * | 2009-08-19 | 2013-12-17 | Seagate Technology Llc | Mapping alignment |
US20110055471A1 (en) * | 2009-08-28 | 2011-03-03 | Jonathan Thatcher | Apparatus, system, and method for improved data deduplication |
US8688894B2 (en) * | 2009-09-03 | 2014-04-01 | Pioneer Chip Technology Ltd. | Page based management of flash storage |
US9223514B2 (en) | 2009-09-09 | 2015-12-29 | SanDisk Technologies, Inc. | Erase suspend/resume for memory |
US9122579B2 (en) | 2010-01-06 | 2015-09-01 | Intelligent Intellectual Property Holdings 2 Llc | Apparatus, system, and method for a storage layer |
US8429436B2 (en) | 2009-09-09 | 2013-04-23 | Fusion-Io, Inc. | Apparatus, system, and method for power reduction in a storage device |
WO2011031903A2 (en) * | 2009-09-09 | 2011-03-17 | Fusion-Io, Inc. | Apparatus, system, and method for allocating storage |
US8255655B2 (en) * | 2009-10-02 | 2012-08-28 | Sandisk Technologies Inc. | Authentication and securing of write-once, read-many (WORM) memory devices |
US8489803B2 (en) * | 2009-12-14 | 2013-07-16 | Smsc Holdings S.A.R.L. | Efficient use of flash memory in flash drives |
US8443263B2 (en) | 2009-12-30 | 2013-05-14 | Sandisk Technologies Inc. | Method and controller for performing a copy-back operation |
US8595411B2 (en) * | 2009-12-30 | 2013-11-26 | Sandisk Technologies Inc. | Method and controller for performing a sequence of commands |
US9396104B1 (en) | 2010-03-22 | 2016-07-19 | Seagate Technology, Llc | Accessing compressed data of varying-sized quanta in non-volatile memory |
WO2011143628A2 (en) | 2010-05-13 | 2011-11-17 | Fusion-Io, Inc. | Apparatus, system, and method for conditional and atomic storage operations |
US8416624B2 (en) | 2010-05-21 | 2013-04-09 | SanDisk Technologies, Inc. | Erase and programming techniques to reduce the widening of state distributions in non-volatile memories |
KR20120003283A (en) * | 2010-07-02 | 2012-01-10 | 삼성전자주식회사 | Data storage device and bad block managing method thereof |
EP2598996B1 (en) | 2010-07-28 | 2019-07-10 | SanDisk Technologies LLC | Apparatus, system, and method for conditional and atomic storage operations |
US8725934B2 (en) | 2011-12-22 | 2014-05-13 | Fusion-Io, Inc. | Methods and appratuses for atomic storage operations |
US8984216B2 (en) | 2010-09-09 | 2015-03-17 | Fusion-Io, Llc | Apparatus, system, and method for managing lifetime of a storage device |
US8452914B2 (en) * | 2010-11-26 | 2013-05-28 | Htc Corporation | Electronic devices with improved flash memory compatibility and methods corresponding thereto |
US10817502B2 (en) | 2010-12-13 | 2020-10-27 | Sandisk Technologies Llc | Persistent memory management |
US9047178B2 (en) | 2010-12-13 | 2015-06-02 | SanDisk Technologies, Inc. | Auto-commit memory synchronization |
US8527693B2 (en) | 2010-12-13 | 2013-09-03 | Fusion IO, Inc. | Apparatus, system, and method for auto-commit memory |
US10817421B2 (en) | 2010-12-13 | 2020-10-27 | Sandisk Technologies Llc | Persistent data structures |
US9208071B2 (en) | 2010-12-13 | 2015-12-08 | SanDisk Technologies, Inc. | Apparatus, system, and method for accessing memory |
US9218278B2 (en) | 2010-12-13 | 2015-12-22 | SanDisk Technologies, Inc. | Auto-commit memory |
WO2012083308A2 (en) | 2010-12-17 | 2012-06-21 | Fusion-Io, Inc. | Apparatus, system, and method for persistent data management on a non-volatile storage media |
DE102010063773A1 (en) * | 2010-12-21 | 2012-07-12 | Endress + Hauser Wetzer Gmbh + Co. Kg | Field device used in monitoring operation of plant, has semi permanent electronic memory whose memory areas are stored with data by different storage methods according to configuration of memory areas |
US9213594B2 (en) | 2011-01-19 | 2015-12-15 | Intelligent Intellectual Property Holdings 2 Llc | Apparatus, system, and method for managing out-of-service conditions |
CN102609214A (en) * | 2011-01-21 | 2012-07-25 | 鸿富锦精密工业(深圳)有限公司 | System and method for simulating BIOS (basic input/output system) ROM (read only memory) into disk |
WO2012106362A2 (en) | 2011-01-31 | 2012-08-09 | Fusion-Io, Inc. | Apparatus, system, and method for managing eviction of data |
US9003104B2 (en) | 2011-02-15 | 2015-04-07 | Intelligent Intellectual Property Holdings 2 Llc | Systems and methods for a file-level cache |
US9201677B2 (en) | 2011-05-23 | 2015-12-01 | Intelligent Intellectual Property Holdings 2 Llc | Managing data input/output operations |
US8874823B2 (en) | 2011-02-15 | 2014-10-28 | Intellectual Property Holdings 2 Llc | Systems and methods for managing data input/output operations |
US9141527B2 (en) | 2011-02-25 | 2015-09-22 | Intelligent Intellectual Property Holdings 2 Llc | Managing cache pools |
WO2012129191A2 (en) | 2011-03-18 | 2012-09-27 | Fusion-Io, Inc. | Logical interfaces for contextual storage |
US9563555B2 (en) | 2011-03-18 | 2017-02-07 | Sandisk Technologies Llc | Systems and methods for storage allocation |
JP2012203443A (en) * | 2011-03-23 | 2012-10-22 | Toshiba Corp | Memory system and control method of memory system |
JP2012226822A (en) | 2011-04-15 | 2012-11-15 | Samsung Electronics Co Ltd | Nonvolatile memory device |
TWI521343B (en) * | 2011-08-01 | 2016-02-11 | Toshiba Kk | An information processing device, a semiconductor memory device, and a semiconductor memory device |
US8687421B2 (en) | 2011-11-21 | 2014-04-01 | Sandisk Technologies Inc. | Scrub techniques for use with dynamic read |
US9274937B2 (en) | 2011-12-22 | 2016-03-01 | Longitude Enterprise Flash S.A.R.L. | Systems, methods, and interfaces for vector input/output operations |
US9767032B2 (en) | 2012-01-12 | 2017-09-19 | Sandisk Technologies Llc | Systems and methods for cache endurance |
US9251052B2 (en) | 2012-01-12 | 2016-02-02 | Intelligent Intellectual Property Holdings 2 Llc | Systems and methods for profiling a non-volatile cache having a logical-to-physical translation layer |
US10102117B2 (en) | 2012-01-12 | 2018-10-16 | Sandisk Technologies Llc | Systems and methods for cache and storage device coordination |
US9251086B2 (en) | 2012-01-24 | 2016-02-02 | SanDisk Technologies, Inc. | Apparatus, system, and method for managing a cache |
US9116812B2 (en) | 2012-01-27 | 2015-08-25 | Intelligent Intellectual Property Holdings 2 Llc | Systems and methods for a de-duplication cache |
US10019353B2 (en) | 2012-03-02 | 2018-07-10 | Longitude Enterprise Flash S.A.R.L. | Systems and methods for referencing data on a storage medium |
US8629689B1 (en) * | 2012-05-18 | 2014-01-14 | Altera Corporation | Integrated circuit with improved interconnect routing and associated methods |
US8996957B1 (en) | 2012-05-22 | 2015-03-31 | Pmc-Sierra, Inc. | Systems and methods for initializing regions of a flash drive having diverse error correction coding (ECC) schemes |
US9021337B1 (en) | 2012-05-22 | 2015-04-28 | Pmc-Sierra, Inc. | Systems and methods for adaptively selecting among different error correction coding schemes in a flash drive |
US9183085B1 (en) | 2012-05-22 | 2015-11-10 | Pmc-Sierra, Inc. | Systems and methods for adaptively selecting from among a plurality of error correction coding schemes in a flash drive for robustness and low latency |
US9176812B1 (en) | 2012-05-22 | 2015-11-03 | Pmc-Sierra, Inc. | Systems and methods for storing data in page stripes of a flash drive |
US9047214B1 (en) | 2012-05-22 | 2015-06-02 | Pmc-Sierra, Inc. | System and method for tolerating a failed page in a flash device |
US8793556B1 (en) | 2012-05-22 | 2014-07-29 | Pmc-Sierra, Inc. | Systems and methods for reclaiming flash blocks of a flash drive |
US8972824B1 (en) | 2012-05-22 | 2015-03-03 | Pmc-Sierra, Inc. | Systems and methods for transparently varying error correction code strength in a flash drive |
US9021333B1 (en) | 2012-05-22 | 2015-04-28 | Pmc-Sierra, Inc. | Systems and methods for recovering data from failed portions of a flash drive |
US8788910B1 (en) | 2012-05-22 | 2014-07-22 | Pmc-Sierra, Inc. | Systems and methods for low latency, high reliability error correction in a flash drive |
US9021336B1 (en) | 2012-05-22 | 2015-04-28 | Pmc-Sierra, Inc. | Systems and methods for redundantly storing error correction codes in a flash drive with secondary parity information spread out across each page of a group of pages |
US20130326114A1 (en) * | 2012-05-30 | 2013-12-05 | Seagate Technology Llc | Write mitigation through fast reject processing |
US9128820B1 (en) | 2012-06-18 | 2015-09-08 | Western Digital Technologies, Inc. | File management among different zones of storage media |
KR102147359B1 (en) | 2012-06-29 | 2020-08-24 | 삼성전자 주식회사 | Method for managing non-volatile memory device, and non-volatile memory device |
US10339056B2 (en) | 2012-07-03 | 2019-07-02 | Sandisk Technologies Llc | Systems, methods and apparatus for cache transfers |
US9612966B2 (en) | 2012-07-03 | 2017-04-04 | Sandisk Technologies Llc | Systems, methods and apparatus for a virtual machine cache |
US9064575B2 (en) | 2012-08-03 | 2015-06-23 | Micron Technology, Inc. | Determining whether a memory cell state is in a valley between adjacent data states |
US9699263B1 (en) | 2012-08-17 | 2017-07-04 | Sandisk Technologies Llc. | Automatic read and write acceleration of data accessed by virtual machines |
US10346095B2 (en) | 2012-08-31 | 2019-07-09 | Sandisk Technologies, Llc | Systems, methods, and interfaces for adaptive cache persistence |
US10318495B2 (en) | 2012-09-24 | 2019-06-11 | Sandisk Technologies Llc | Snapshots for a non-volatile device |
US10509776B2 (en) | 2012-09-24 | 2019-12-17 | Sandisk Technologies Llc | Time sequence data management |
US9542166B2 (en) | 2012-10-30 | 2017-01-10 | Oracle International Corporation | System and method for inferring immutability of program variables |
US9612948B2 (en) | 2012-12-27 | 2017-04-04 | Sandisk Technologies Llc | Reads and writes between a contiguous data block and noncontiguous sets of logical address blocks in a persistent storage device |
US9454420B1 (en) | 2012-12-31 | 2016-09-27 | Sandisk Technologies Llc | Method and system of reading threshold voltage equalization |
US9652376B2 (en) | 2013-01-28 | 2017-05-16 | Radian Memory Systems, Inc. | Cooperative flash memory control |
US11249652B1 (en) | 2013-01-28 | 2022-02-15 | Radian Memory Systems, Inc. | Maintenance of nonvolatile memory on host selected namespaces by a common memory controller |
US9478271B2 (en) * | 2013-03-14 | 2016-10-25 | Seagate Technology Llc | Nonvolatile memory data recovery after power failure |
US9870830B1 (en) | 2013-03-14 | 2018-01-16 | Sandisk Technologies Llc | Optimal multilevel sensing for reading data from a storage medium |
US9009565B1 (en) | 2013-03-15 | 2015-04-14 | Pmc-Sierra, Inc. | Systems and methods for mapping for solid-state memory |
US9842053B2 (en) | 2013-03-15 | 2017-12-12 | Sandisk Technologies Llc | Systems and methods for persistent cache logging |
US9208018B1 (en) | 2013-03-15 | 2015-12-08 | Pmc-Sierra, Inc. | Systems and methods for reclaiming memory for solid-state memory |
US9081701B1 (en) | 2013-03-15 | 2015-07-14 | Pmc-Sierra, Inc. | Systems and methods for decoding data for solid-state memory |
US9053012B1 (en) | 2013-03-15 | 2015-06-09 | Pmc-Sierra, Inc. | Systems and methods for storing data for solid-state memory |
US9026867B1 (en) | 2013-03-15 | 2015-05-05 | Pmc-Sierra, Inc. | Systems and methods for adapting to changing characteristics of multi-level cells in solid-state memory |
US9558108B2 (en) | 2013-04-15 | 2017-01-31 | Macronix International Co., Ltd. | Half block management for flash storage devices |
US10102144B2 (en) | 2013-04-16 | 2018-10-16 | Sandisk Technologies Llc | Systems, methods and interfaces for data virtualization |
US10558561B2 (en) | 2013-04-16 | 2020-02-11 | Sandisk Technologies Llc | Systems and methods for storage metadata management |
CN103324553B (en) * | 2013-06-21 | 2016-08-24 | 华为技术有限公司 | Data reconstruction method, system and device |
US9524235B1 (en) | 2013-07-25 | 2016-12-20 | Sandisk Technologies Llc | Local hash value generation in non-volatile data storage systems |
US9842128B2 (en) | 2013-08-01 | 2017-12-12 | Sandisk Technologies Llc | Systems and methods for atomic storage operations |
US9639463B1 (en) | 2013-08-26 | 2017-05-02 | Sandisk Technologies Llc | Heuristic aware garbage collection scheme in storage systems |
US9442662B2 (en) | 2013-10-18 | 2016-09-13 | Sandisk Technologies Llc | Device and method for managing die groups |
US10019320B2 (en) | 2013-10-18 | 2018-07-10 | Sandisk Technologies Llc | Systems and methods for distributed atomic storage operations |
US10019352B2 (en) | 2013-10-18 | 2018-07-10 | Sandisk Technologies Llc | Systems and methods for adaptive reserve storage |
US9436831B2 (en) | 2013-10-30 | 2016-09-06 | Sandisk Technologies Llc | Secure erase in a memory device |
US10073630B2 (en) | 2013-11-08 | 2018-09-11 | Sandisk Technologies Llc | Systems and methods for log coordination |
US9703816B2 (en) | 2013-11-19 | 2017-07-11 | Sandisk Technologies Llc | Method and system for forward reference logging in a persistent datastore |
US9520197B2 (en) | 2013-11-22 | 2016-12-13 | Sandisk Technologies Llc | Adaptive erase of a storage device |
US9520162B2 (en) | 2013-11-27 | 2016-12-13 | Sandisk Technologies Llc | DIMM device controller supervisor |
US9582058B2 (en) | 2013-11-29 | 2017-02-28 | Sandisk Technologies Llc | Power inrush management of storage devices |
CN103713857B (en) * | 2013-12-24 | 2017-06-27 | 华为技术有限公司 | The method and storage device of data storage |
US9703636B2 (en) | 2014-03-01 | 2017-07-11 | Sandisk Technologies Llc | Firmware reversion trigger and control |
US9230689B2 (en) | 2014-03-17 | 2016-01-05 | Sandisk Technologies Inc. | Finding read disturbs on non-volatile memories |
US9454448B2 (en) | 2014-03-19 | 2016-09-27 | Sandisk Technologies Llc | Fault testing in storage devices |
US9448876B2 (en) | 2014-03-19 | 2016-09-20 | Sandisk Technologies Llc | Fault detection and prediction in storage devices |
US9626400B2 (en) | 2014-03-31 | 2017-04-18 | Sandisk Technologies Llc | Compaction of information in tiered data structure |
US9626399B2 (en) | 2014-03-31 | 2017-04-18 | Sandisk Technologies Llc | Conditional updates for reducing frequency of data modification operations |
US9697267B2 (en) | 2014-04-03 | 2017-07-04 | Sandisk Technologies Llc | Methods and systems for performing efficient snapshots in tiered data structures |
US9703491B2 (en) | 2014-05-30 | 2017-07-11 | Sandisk Technologies Llc | Using history of unaligned writes to cache data and avoid read-modify-writes in a non-volatile storage device |
US10114557B2 (en) | 2014-05-30 | 2018-10-30 | Sandisk Technologies Llc | Identification of hot regions to enhance performance and endurance of a non-volatile storage device |
US10372613B2 (en) | 2014-05-30 | 2019-08-06 | Sandisk Technologies Llc | Using sub-region I/O history to cache repeatedly accessed sub-regions in a non-volatile storage device |
US10656842B2 (en) | 2014-05-30 | 2020-05-19 | Sandisk Technologies Llc | Using history of I/O sizes and I/O sequences to trigger coalesced writes in a non-volatile storage device |
US10146448B2 (en) | 2014-05-30 | 2018-12-04 | Sandisk Technologies Llc | Using history of I/O sequences to trigger cached read ahead in a non-volatile storage device |
US10162748B2 (en) | 2014-05-30 | 2018-12-25 | Sandisk Technologies Llc | Prioritizing garbage collection and block allocation based on I/O history for logical address regions |
US10656840B2 (en) | 2014-05-30 | 2020-05-19 | Sandisk Technologies Llc | Real-time I/O pattern recognition to enhance performance and endurance of a storage device |
US9652381B2 (en) | 2014-06-19 | 2017-05-16 | Sandisk Technologies Llc | Sub-block garbage collection |
US9443601B2 (en) | 2014-09-08 | 2016-09-13 | Sandisk Technologies Llc | Holdup capacitor energy harvesting |
US10552085B1 (en) | 2014-09-09 | 2020-02-04 | Radian Memory Systems, Inc. | Techniques for directed data migration |
US9542118B1 (en) | 2014-09-09 | 2017-01-10 | Radian Memory Systems, Inc. | Expositive flash memory control |
US10114562B2 (en) | 2014-09-16 | 2018-10-30 | Sandisk Technologies Llc | Adaptive block allocation in nonvolatile memory |
US9552171B2 (en) | 2014-10-29 | 2017-01-24 | Sandisk Technologies Llc | Read scrub with adaptive counter management |
US9978456B2 (en) | 2014-11-17 | 2018-05-22 | Sandisk Technologies Llc | Techniques for reducing read disturb in partially written blocks of non-volatile memory |
US9349479B1 (en) | 2014-11-18 | 2016-05-24 | Sandisk Technologies Inc. | Boundary word line operation in nonvolatile memory |
US9627072B2 (en) | 2014-11-25 | 2017-04-18 | Macronix International Co., Ltd. | Variant operation sequences for multibit memory |
US9449700B2 (en) | 2015-02-13 | 2016-09-20 | Sandisk Technologies Llc | Boundary word line search and open block read methods with reduced read disturb |
US9946607B2 (en) | 2015-03-04 | 2018-04-17 | Sandisk Technologies Llc | Systems and methods for storage error management |
US10009438B2 (en) | 2015-05-20 | 2018-06-26 | Sandisk Technologies Llc | Transaction log acceleration |
US10185513B1 (en) | 2015-06-05 | 2019-01-22 | Life365, Inc. | Device configured for dynamic software change |
CN106547480B (en) * | 2015-09-17 | 2019-04-12 | 慧荣科技股份有限公司 | Data storage device and data reading method thereof |
US9653154B2 (en) | 2015-09-21 | 2017-05-16 | Sandisk Technologies Llc | Write abort detection for multi-state memories |
US10185666B2 (en) | 2015-12-15 | 2019-01-22 | Facebook, Inc. | Item-wise simulation in a block cache where data eviction places data into comparable score in comparable section in the block cache |
US20170168956A1 (en) * | 2015-12-15 | 2017-06-15 | Facebook, Inc. | Block cache staging in content delivery network caching system |
US10126962B2 (en) | 2016-04-22 | 2018-11-13 | Microsoft Technology Licensing, Llc | Adapted block translation table (BTT) |
US9817593B1 (en) | 2016-07-11 | 2017-11-14 | Sandisk Technologies Llc | Block management in non-volatile memory system with non-blocking control sync system |
US9881682B1 (en) | 2016-11-23 | 2018-01-30 | Seagate Technology Llc | Fine grained data retention monitoring in solid state drives |
CN108733576B (en) * | 2017-04-20 | 2022-12-09 | 得一微电子股份有限公司 | Solid state disk and mapping method of memory conversion layer thereof |
US10318416B2 (en) * | 2017-05-18 | 2019-06-11 | Nxp B.V. | Method and system for implementing a non-volatile counter using non-volatile memory |
KR102521746B1 (en) | 2017-12-18 | 2023-04-13 | 에스케이하이닉스 주식회사 | Semiconductor device managing address mapping of a semiconductor memory device and data storage device including the same |
KR20190120573A (en) * | 2018-04-16 | 2019-10-24 | 에스케이하이닉스 주식회사 | Memory system, data processing system and operating method of the memory system |
JP2021023748A (en) * | 2019-08-09 | 2021-02-22 | 株式会社島津製作所 | X-ray fluoroscopic apparatus |
US11586385B1 (en) | 2020-05-06 | 2023-02-21 | Radian Memory Systems, Inc. | Techniques for managing writes in nonvolatile memory |
TWI842009B (en) * | 2022-07-08 | 2024-05-11 | 瑞昱半導體股份有限公司 | Data accessing method and data accessing system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4511964A (en) * | 1982-11-12 | 1985-04-16 | Hewlett-Packard Company | Dynamic physical memory mapping and management of independent programming environments |
US5193184A (en) * | 1990-06-18 | 1993-03-09 | Storage Technology Corporation | Deleted data file space release system for a dynamically mapped virtual data storage subsystem |
US5210866A (en) * | 1990-09-12 | 1993-05-11 | Storage Technology Corporation | Incremental disk backup system for a dynamically mapped data storage subsystem |
US5301288A (en) * | 1990-03-23 | 1994-04-05 | Eastman Kodak Company | Virtual memory management and allocation arrangement for digital data processing system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0271342A (en) * | 1988-09-07 | 1990-03-09 | Oki Electric Ind Co Ltd | Memory controller |
JPH0314042A (en) * | 1989-06-13 | 1991-01-22 | Fujitsu Ltd | Resource management system for data base |
JP2584119B2 (en) * | 1990-09-28 | 1997-02-19 | 富士写真フイルム株式会社 | Data recording method in memory card and memory card system |
GB2251323B (en) * | 1990-12-31 | 1994-10-12 | Intel Corp | Disk emulation for a non-volatile semiconductor memory |
JP2582487B2 (en) * | 1991-07-12 | 1997-02-19 | インターナショナル・ビジネス・マシーンズ・コーポレイション | External storage system using semiconductor memory and control method thereof |
JP3407317B2 (en) * | 1991-11-28 | 2003-05-19 | 株式会社日立製作所 | Storage device using flash memory |
JP3178909B2 (en) * | 1992-01-10 | 2001-06-25 | 株式会社東芝 | Semiconductor memory device |
JPH0695955A (en) * | 1992-09-09 | 1994-04-08 | Ricoh Co Ltd | Flash file system |
-
1993
- 1993-03-08 US US08/027,131 patent/US5404485A/en not_active Expired - Lifetime
-
1994
- 1994-02-24 IL IL10876694A patent/IL108766A/en not_active IP Right Cessation
- 1994-02-28 AU AU62699/94A patent/AU6269994A/en not_active Abandoned
- 1994-02-28 DE DE69414556T patent/DE69414556T2/en not_active Expired - Lifetime
- 1994-02-28 JP JP6520018A patent/JPH08510072A/en active Pending
- 1994-02-28 EP EP94910145A patent/EP0688450B1/en not_active Expired - Lifetime
- 1994-02-28 WO PCT/US1994/001848 patent/WO1994020906A1/en active IP Right Grant
- 1994-02-28 KR KR1019950703788A patent/KR100292011B1/en not_active IP Right Cessation
- 1994-03-02 ZA ZA941446A patent/ZA941446B/en unknown
- 1994-03-08 CN CN94102329A patent/CN1078364C/en not_active Expired - Lifetime
- 1994-05-07 TW TW083104170A patent/TW264547B/zh not_active IP Right Cessation
-
1995
- 1995-09-08 FI FI954235A patent/FI105726B/en not_active IP Right Cessation
-
2002
- 2002-09-04 JP JP2002259073A patent/JP3997130B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4511964A (en) * | 1982-11-12 | 1985-04-16 | Hewlett-Packard Company | Dynamic physical memory mapping and management of independent programming environments |
US5301288A (en) * | 1990-03-23 | 1994-04-05 | Eastman Kodak Company | Virtual memory management and allocation arrangement for digital data processing system |
US5193184A (en) * | 1990-06-18 | 1993-03-09 | Storage Technology Corporation | Deleted data file space release system for a dynamically mapped virtual data storage subsystem |
US5210866A (en) * | 1990-09-12 | 1993-05-11 | Storage Technology Corporation | Incremental disk backup system for a dynamically mapped data storage subsystem |
Non-Patent Citations (1)
Title |
---|
See also references of EP0688450A4 * |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0704803A1 (en) * | 1994-09-30 | 1996-04-03 | Alcatel SEL Aktiengesellschaft | Flash memory management method |
EP0712067A3 (en) * | 1994-11-09 | 1998-06-10 | Mitsubishi Denki Kabushiki Kaisha | Flash disk card |
EP0712067A2 (en) * | 1994-11-09 | 1996-05-15 | Mitsubishi Denki Kabushiki Kaisha | Flash disk card |
JPH08137634A (en) * | 1994-11-09 | 1996-05-31 | Mitsubishi Electric Corp | Flash disk card |
WO1996024900A1 (en) * | 1995-02-10 | 1996-08-15 | Aristocrat Leisure Industries Pty. Ltd. | Dram emulator |
AU692670B2 (en) * | 1995-02-10 | 1998-06-11 | Aristocrat Technologies Australia Pty Limited | Dram emulator |
JPH08221223A (en) * | 1995-02-16 | 1996-08-30 | Mitsubishi Electric Corp | Semiconductor disk device |
US9026721B2 (en) | 1995-07-31 | 2015-05-05 | Micron Technology, Inc. | Managing defective areas of memory |
US8171203B2 (en) | 1995-07-31 | 2012-05-01 | Micron Technology, Inc. | Faster write operations to nonvolatile memory using FSInfo sector manipulation |
WO1997008619A1 (en) * | 1995-08-28 | 1997-03-06 | Siemens Aktiengesellschaft | Processor unit with plug-in memory |
GB2291991A (en) * | 1995-09-27 | 1996-02-07 | Memory Corp Plc | Disk drive emulation with a block-erasable memory |
WO1997012324A1 (en) * | 1995-09-27 | 1997-04-03 | Memory Corporation | Memory management |
US6069827A (en) * | 1995-09-27 | 2000-05-30 | Memory Corporation Plc | Memory system |
JPH0993523A (en) * | 1995-09-28 | 1997-04-04 | Canon Inc | Electronic camera |
JPH0997206A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Method, device for managing flash rom and computer control equipment |
JPH0997314A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Ic card device |
JPH0997207A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Method, device for managing flash rom and computer control equipment |
JPH0997217A (en) * | 1995-09-28 | 1997-04-08 | Canon Inc | Method and device for managing flash rom and computer control equipment |
EP0770959A1 (en) * | 1995-10-27 | 1997-05-02 | SCM Microsystems, Inc. | Flash translation layer clean-up system |
EP0770960A1 (en) * | 1995-10-27 | 1997-05-02 | SCM Microsystems, Inc. | Flash translation layer block indication map revision system and method |
US5867641A (en) * | 1995-10-27 | 1999-02-02 | Scm Microsystems (U.S.) Inc. | Flash translation layer cleanup system and method |
EP0813157A2 (en) * | 1996-06-14 | 1997-12-17 | Eastman Kodak Company | A system and method for accessing data of a digital camera from a personal computer |
US6477632B1 (en) | 1997-12-05 | 2002-11-05 | Tokyo Electron Device Limited | Storage device and accessing method |
EP0973097A4 (en) * | 1997-12-05 | 2000-04-12 | Tokyo Electron Ltd | Memory and access method |
EP0973097A1 (en) * | 1997-12-05 | 2000-01-19 | Tokyo Electron Limited | Memory and access method |
KR100614469B1 (en) * | 1997-12-05 | 2006-08-25 | 동경 엘렉트론 디바이스 주식회사 | Storage device |
WO2000049488A1 (en) * | 1999-02-17 | 2000-08-24 | Memory Corporation Plc | Memory system |
WO2000058838A1 (en) * | 1999-03-30 | 2000-10-05 | International Business Machines Corporation | Reclaiming memory from deleted applications |
US6581133B1 (en) | 1999-03-30 | 2003-06-17 | International Business Machines Corporation | Reclaiming memory from deleted applications |
USRE44641E1 (en) | 1999-04-05 | 2013-12-10 | Sandisk Il, Ltd | USB flash memory device with integrated USB controller |
EP2120435A3 (en) * | 1999-04-05 | 2010-05-05 | SanDisk IL Ltd. | Architecture for a universal serial bus-based PC flash disk |
EP2163991A3 (en) * | 1999-04-05 | 2010-05-05 | SanDisk IL Ltd | Architecture for a universal serial bus-based pc flash disk |
USRE44653E1 (en) | 1999-04-05 | 2013-12-17 | Sandisk Il, Ltd | USB flash memory device with integral memory technology driver |
EP2120435A2 (en) * | 1999-04-05 | 2009-11-18 | SanDisk IL Ltd. | Architecture for a universal serial bus-based PC flash disk |
US6643731B2 (en) * | 1999-12-31 | 2003-11-04 | Texas Instruments Incorporated | Low cost memory management that resists power interruption |
US6763424B2 (en) | 2001-01-19 | 2004-07-13 | Sandisk Corporation | Partial block data programming and reading operations in a non-volatile memory |
US7818490B2 (en) | 2001-01-19 | 2010-10-19 | Sandisk Corporation | Partial block data programming and reading operations in a non-volatile memory |
US7970987B2 (en) | 2001-01-19 | 2011-06-28 | Sandisk Corporation | Partial block data programming and reading operations in a non-volatile memory |
US6968421B2 (en) | 2001-01-19 | 2005-11-22 | Sandisk Corporation | Partial block data programming and reading operations in a non-volatile memory |
US7657702B2 (en) | 2001-01-19 | 2010-02-02 | Sandisk Corporation | Partial block data programming and reading operations in a non-volatile memory |
US8316177B2 (en) | 2001-01-19 | 2012-11-20 | Sandisk Corporation | Partial block data programming and reading operations in a non-volatile memory |
KR100862584B1 (en) | 2001-03-22 | 2008-10-09 | 마쯔시다덴기산교 가부시키가이샤 | Storage device |
WO2002103526A3 (en) * | 2001-06-18 | 2004-03-04 | Systems Flask Disk Pioneers Lt | System and method for flexible flash file system |
WO2002103526A2 (en) * | 2001-06-18 | 2002-12-27 | M-Systems Flask Disk Pioneers Ltd. | System and method for flexible flash file system |
EP1444583A1 (en) * | 2001-09-05 | 2004-08-11 | M-Systems Flash Disk Pioneers Ltd | Flash management system for large page size |
EP1444583A4 (en) * | 2001-09-05 | 2008-01-16 | Milsys Ltd | Flash management system for large page size |
US8694722B2 (en) | 2001-09-28 | 2014-04-08 | Micron Technology, Inc. | Memory systems |
US9032134B2 (en) | 2001-09-28 | 2015-05-12 | Micron Technology, Inc. | Methods of operating a memory system that include outputting a data pattern from a sector allocation table to a host if a logical sector is indicated as being erased |
US9489301B2 (en) | 2001-09-28 | 2016-11-08 | Micron Technology, Inc. | Memory systems |
US9213606B2 (en) | 2002-02-22 | 2015-12-15 | Micron Technology, Inc. | Image rescue |
EP1376608A1 (en) * | 2002-06-28 | 2004-01-02 | Cp8 | Programming method in a nonvolatile memory and system for realisation of such a method |
WO2004003927A1 (en) * | 2002-06-28 | 2004-01-08 | Axalto Sa | Method to write in a non volatile memory and system to implement such method |
EP1542129A3 (en) * | 2003-12-10 | 2008-08-13 | Samsung Electronics Co., Ltd. | Flash memory and mapping control apparatus and method for flash memory |
EP1542129A2 (en) * | 2003-12-10 | 2005-06-15 | Samsung Electronics Co., Ltd. | Flash memory and mapping control apparatus and method for flash memory |
US8504798B2 (en) | 2003-12-30 | 2013-08-06 | Sandisk Technologies Inc. | Management of non-volatile memory systems having large erase blocks |
US8301826B2 (en) | 2003-12-30 | 2012-10-30 | Sandisk Technologies Inc. | Adaptive mode switching of flash memory address mapping based on host usage characteristics |
US8117380B2 (en) | 2003-12-30 | 2012-02-14 | Sandisk Technologies Inc. | Management of non-volatile memory systems having large erase blocks |
US8745322B2 (en) | 2003-12-30 | 2014-06-03 | Sandisk Technologies Inc. | Management of non-volatile memory systems having large erase blocks |
US7631138B2 (en) | 2003-12-30 | 2009-12-08 | Sandisk Corporation | Adaptive mode switching of flash memory address mapping based on host usage characteristics |
US7725628B1 (en) | 2004-04-20 | 2010-05-25 | Lexar Media, Inc. | Direct secondary device interface by a host |
US9576154B2 (en) | 2004-04-30 | 2017-02-21 | Micron Technology, Inc. | Methods of operating storage systems including using a key to determine whether a password can be changed |
US10049207B2 (en) | 2004-04-30 | 2018-08-14 | Micron Technology, Inc. | Methods of operating storage systems including encrypting a key salt |
US7539077B2 (en) | 2006-08-03 | 2009-05-26 | Samsung Electronics Co., Ltd. | Flash memory device having a data buffer and programming method of the same |
US8892831B2 (en) | 2008-01-16 | 2014-11-18 | Apple Inc. | Memory subsystem hibernation |
WO2009100031A1 (en) * | 2008-02-04 | 2009-08-13 | Apple Inc. | Memory mapping techniques |
US8417893B2 (en) | 2008-02-04 | 2013-04-09 | Apple Inc. | Memory mapping techniques |
US8397014B2 (en) | 2008-02-04 | 2013-03-12 | Apple Inc. | Memory mapping restore and garbage collection operations |
EP2111583A1 (en) * | 2008-02-29 | 2009-10-28 | Memory system | |
US8738867B2 (en) | 2008-02-29 | 2014-05-27 | Kabushiki Kaisha Toshiba | Memory system |
WO2009107506A1 (en) | 2008-02-29 | 2009-09-03 | Kabushiki Kaisha Toshiba | Memory system |
US9043564B2 (en) | 2008-02-29 | 2015-05-26 | Kabushiki Kaisha Toshiba | Memory system with fixed and variable pointers |
US8438343B2 (en) | 2008-02-29 | 2013-05-07 | Kabushiki Kaisha Toshiba | Memory system with fixed and variable pointers |
EP2111583A4 (en) * | 2008-02-29 | 2010-06-02 | Toshiba Kk | Memory system |
US8516219B2 (en) | 2009-07-24 | 2013-08-20 | Apple Inc. | Index cache tree |
US8468293B2 (en) | 2009-07-24 | 2013-06-18 | Apple Inc. | Restore index page |
WO2012170848A1 (en) * | 2011-06-09 | 2012-12-13 | Apple Inc. | Dual flash translation layer |
IT201700057287A1 (en) * | 2017-05-26 | 2018-11-26 | St Microelectronics Srl | PROCEDURE FOR MANAGING INTEGRATED CIRCUIT CARDS, CARD AND CORRESPONDING EQUIPMENT |
EP3407633A1 (en) * | 2017-05-26 | 2018-11-28 | STMicroelectronics Srl | A method of managing integrated circuit cards, corresponding card and apparatus |
US10698626B2 (en) | 2017-05-26 | 2020-06-30 | Stmicroelectronics S.R.L. | Method of managing integrated circuit cards, corresponding card and apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE69414556T2 (en) | 1999-05-06 |
CN1078364C (en) | 2002-01-23 |
EP0688450B1 (en) | 1998-11-11 |
FI105726B (en) | 2000-09-29 |
KR100292011B1 (en) | 2001-09-17 |
IL108766A0 (en) | 1994-05-30 |
US5404485A (en) | 1995-04-04 |
AU6269994A (en) | 1994-09-26 |
KR960701402A (en) | 1996-02-24 |
CN1098526A (en) | 1995-02-08 |
JPH08510072A (en) | 1996-10-22 |
JP3997130B2 (en) | 2007-10-24 |
IL108766A (en) | 1996-12-05 |
JP2003085037A (en) | 2003-03-20 |
FI954235A0 (en) | 1995-09-08 |
FI954235A (en) | 1995-11-08 |
EP0688450A4 (en) | 1995-10-20 |
DE69414556D1 (en) | 1998-12-17 |
EP0688450A1 (en) | 1995-12-27 |
ZA941446B (en) | 1994-09-26 |
TW264547B (en) | 1995-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5404485A (en) | Flash file system | |
EP0852765B1 (en) | Memory management | |
US5905993A (en) | Flash memory card with block memory address arrangement | |
US6122195A (en) | Method and apparatus for decreasing block write operation times performed on nonvolatile memory | |
KR100495722B1 (en) | Improved flash file system | |
US9489301B2 (en) | Memory systems | |
US6587915B1 (en) | Flash memory having data blocks, spare blocks, a map block and a header block and a method for controlling the same | |
JP4511576B2 (en) | Memory system | |
US5611067A (en) | Nonvolatile semiconductor memory device having means for selective transfer of memory block contents and for chaining together unused memory blocks | |
USRE45222E1 (en) | Method of writing of writing to a flash memory including data blocks and log blocks, using a logical address having a block address portion and page identifying portion, a block address table and a page table | |
US7814265B2 (en) | Single sector write operation in flash memory | |
KR101329068B1 (en) | Nonvolatile memory with block management | |
US20060168392A1 (en) | Flash memory file system | |
KR100608602B1 (en) | Flash memory, Mapping controlling apparatus and method for the same | |
KR20000048766A (en) | Method for performing a continuous over-write of a file in a nonvolatile memory | |
US6581134B2 (en) | Logic partitioning of a nonvolatile memory array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994910145 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 954235 Country of ref document: FI |
|
WWP | Wipo information: published in national office |
Ref document number: 1994910145 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWG | Wipo information: grant in national office |
Ref document number: 1994910145 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 954235 Country of ref document: FI |