WO1994020396A1 - Vacuum apparatus - Google Patents

Vacuum apparatus Download PDF

Info

Publication number
WO1994020396A1
WO1994020396A1 PCT/GB1994/000506 GB9400506W WO9420396A1 WO 1994020396 A1 WO1994020396 A1 WO 1994020396A1 GB 9400506 W GB9400506 W GB 9400506W WO 9420396 A1 WO9420396 A1 WO 9420396A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
bore
vacuum apparatus
distal end
particulate material
Prior art date
Application number
PCT/GB1994/000506
Other languages
French (fr)
Inventor
Patrick Sheehan
Original Assignee
Technivac Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technivac Limited filed Critical Technivac Limited
Publication of WO1994020396A1 publication Critical patent/WO1994020396A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/40Feeding or discharging devices
    • B65G53/42Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/02Feed or outlet devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor

Definitions

  • the present invention relates to vacuum apparatus, and in particular to vacuum apparatus suitable for removing compacted particulate material (such as spent catalyst) from a containing vessel (such as a reactor).
  • a containing vessel such as a reactor
  • Both of the above-mentioned techniques involve insertion of the pipe or screw auger into the bed of material via a port or manway in the side of the containing vessel.
  • vacuum apparatus comprising an elongate pipe defining a bore extending along the length thereof, the proximal end of the pipe being connectable with suction means arranged to transport particulate material along the bore from a distal end of the pipe toward the proximal end, the apparatus being provided with jetting means arranged to direct a plurality of pressurised fluid jets into the bore in the region of the distal end of the pipe. It is preferred that the plurality of pressurised jets are directed into the bore defined by the pipe transversely to the longitudinal direction of the pipe.
  • the pressurised jets are directed radially inwardly into the bore.
  • the jetting means comprises a plurality of jetting apertures communicating through the inner bore-defining surface of the pipe in the region distal end of the pipe.
  • the jetting apertures communicate between the bore of the pipe and a chamber defined by inner and outer surfaces of the pipe.
  • the chamber is provided with a substantially closed end defined by the distal end of the pipe.
  • the chamber will typically be substantially annular.
  • the jetting means is connectable to a supply of pressurised fluid.
  • the jetting means is supplied with a pressurised gas which may be pressurised air or nitrogen.
  • the supply of pressurised fluid is connectable (usually by means of a connection port) to the apparatus in the region of the proximal end of the pipe.
  • a fluid supply conduit or path is provided extending between the proximal and distal ends of the pipe and communicatively connecting the jetting means and the supply of pressurised fluid.
  • the fluid supply conduit or path is preferably provided outside the bore defined by the pipe.
  • the fluid supply conduit or path extends along the pipe intermediately adjacent the inner and outer surfaces of the pipe.
  • the fluid supply conduit or path comprises a relatively narrow bore defined in the material of the piping extending along the pipe intermediately adjacent the inner and outer surfaces of the pipe.
  • the pipe is preferably constructed principally of metallic material. Alternatively a hard wearing plastics material may be utilised.
  • the transverse exterior dimensions of the pipe will be such that the pipe may be conveniently inserted into a manway or port of an industrial reactor containing particulate catalyst material.
  • a method of removing particulate catalyst material or other particulate material from a container vessel comprises inserting into the particulate material contained in the vessel the distal end of a pipe comprising apparatus as defined in relation to the first aspect of the invention, directing a plurality of fluid jets into the bore of the pipe in the region of the distal end to cause agitation of the particulate material, and causing suction of the agitated particulate material along the pipe from the distal end thereof towards the proximal end.
  • FIG. 1 is a schematic perspective view of vacuum apparatus according to the invention.
  • Figure 2 is a diagrammatic view of the apparatus of Figure 1 in use.
  • the vacuum apparatus generally designated 1
  • the vacuum apparatus comprises an elongate cylindrical pipe 2 arranged to be connected at a proximal end 3 thereof to a flexible suction hose 4 which is itself connected to a filter unit and vacuum pump arrangement (not shown).
  • the major proportion of the length of the pipe 2 comprises a substantially solid cylindrical pipe wall 8 (typically of metal or plastics construction) defining a central cylindrical bore for the pipe. Proximate the distal end 5 of the pipe 2, the inner and outer walls of the pipe define an annular chamber 6 which is closed at the distal end 5 of the pipe 2. The inner cylindrical wall of chamber 6 is provided with a plurality of apertures 7 communicating between the annular chamber 6 and the bore of the pipe 2.
  • a narrow communication bore 9 extends longitudinally of the pipe 2 through the substantially solid cylindrical pipe wall 8 between a communication port 10 with annular chamber 6, and an inlet port 11 at the proximal end of pipe 2.
  • Inlet port 11 is connected via flexible pipe 12 to a supply of pressurised gas (typically air or nitrogen).
  • vacuum pipe 2 is inserted into a bed of catalyst 13 at the base of a reactor 14 via a side port or manway 15 as shown in Figure 2.
  • the vacuum pump connected to suction hose 4 is activated so as to draw transported particulate catalyst 7 material along the pipe 2 and into suction hose 4.
  • the pressurised gas supply to inlet port 11 is also activated, thereby forcing pressurised gas long narrow communication bore 9 and into chamber 6 at the distal end 5 of pipe 2.
  • the pressurised gas is then forced out of apertures 7 (which act as jets or nozzles) into the interior of pipe 2.
  • the portion of the bore of pipe 2 defined by annular chamber 6 acts as a fluidising core in which compacted particulate catalyst present in the fluidising core, or directly adjacent the distal end 5 of pipe 2 on insertion of the pipe 2 into the bed, is fluidised under the influence of the jetting pressurised gas passing through apertures 7.
  • vacuum apparatus it is possible to insert the vacuum pipe all the way to the rear of the compacted catalyst bed without substantial loss of material conveying efficiently. Furthermore on insertion of the pipe 2 into reactor 14 via manway 15 there is substantially no spillage as would be the case with prior art air powered screw auger type conveyors.

Abstract

Vacuum apparatus for industrial use in removing particulate material (such as spent catalyst) from a containing vessel (14), (such as a reactor) comprises a vacuum pipe (2) connectable to suction apparatus to transport particulate material along the bore from a distal (5) to a proximal end (3) of the pipe. The distal end of the pipe is provided with jetting means (7) arranged to direct jets of pressurised fluid into the bore of the pipe (2) in order to 'fluidise' compacted particulate material. In use, the distal end of the vacuum pipe is inserted into the vessel (14) via an appropriately dimensioned manway or port (15).

Description

Vacuum Apparatus
The present invention relates to vacuum apparatus, and in particular to vacuum apparatus suitable for removing compacted particulate material (such as spent catalyst) from a containing vessel (such as a reactor).
It is known to use elongate pipes connected to vacuum suction units to remove spent particulate catalyst material from reactor vessels or the like. It is similarly known to use screw auger feeders to transport such material from the interior of the reactor to a suction hose located on the exterior of the vessel.
Both of the above-mentioned techniques involve insertion of the pipe or screw auger into the bed of material via a port or manway in the side of the containing vessel.
Use of the first mentioned apparatus requires considerable operator skill to maintain an optimum air gap between the tip of the suction pipe and the bed of the catalyst material (which is often compacted) with the result that when the length of insertion of the pipe into the vessel is too long, material flow stops due to lack of conveying gas flow.
Use of the second mentioned apparatus has the significant disadvantage that on insertion of the rotating screw auger into the bed, spillage of the particulate catalyst material (which is hazardous to health and environment) often occurs. Furthermore, the screw auger apparatus has a tendency to jam, often causing failure, which then necessitates personnel entry into the hazardous environment of the container vessel.
Improved vacuum apparatus has now been devised which alleviates many of the above-mentioned difficulties with prior art apparatus.
According to a first aspect of the invention, there is provided vacuum apparatus comprising an elongate pipe defining a bore extending along the length thereof, the proximal end of the pipe being connectable with suction means arranged to transport particulate material along the bore from a distal end of the pipe toward the proximal end, the apparatus being provided with jetting means arranged to direct a plurality of pressurised fluid jets into the bore in the region of the distal end of the pipe. It is preferred that the plurality of pressurised jets are directed into the bore defined by the pipe transversely to the longitudinal direction of the pipe. Advantageously, the pressurised jets are directed radially inwardly into the bore.
Typically, the jetting means comprises a plurality of jetting apertures communicating through the inner bore-defining surface of the pipe in the region distal end of the pipe. Advantageously, the jetting apertures communicate between the bore of the pipe and a chamber defined by inner and outer surfaces of the pipe.
Advantageously, the chamber is provided with a substantially closed end defined by the distal end of the pipe. Where the pipe and bore are substantially cylindrical, the chamber will typically be substantially annular.
The jetting means is connectable to a supply of pressurised fluid. Typically, the jetting means is supplied with a pressurised gas which may be pressurised air or nitrogen.
Advantageously, the supply of pressurised fluid is connectable (usually by means of a connection port) to the apparatus in the region of the proximal end of the pipe. Typically a fluid supply conduit or path is provided extending between the proximal and distal ends of the pipe and communicatively connecting the jetting means and the supply of pressurised fluid.
The fluid supply conduit or path is preferably provided outside the bore defined by the pipe.
It is preferred that the fluid supply conduit or path extends along the pipe intermediately adjacent the inner and outer surfaces of the pipe. Advantageously, the fluid supply conduit or path comprises a relatively narrow bore defined in the material of the piping extending along the pipe intermediately adjacent the inner and outer surfaces of the pipe.
The pipe is preferably constructed principally of metallic material. Alternatively a hard wearing plastics material may be utilised.
Typically, the transverse exterior dimensions of the pipe will be such that the pipe may be conveniently inserted into a manway or port of an industrial reactor containing particulate catalyst material. According to a second aspect of the invention, there is provided a method of removing particulate catalyst material or other particulate material from a container vessel, which method comprises inserting into the particulate material contained in the vessel the distal end of a pipe comprising apparatus as defined in relation to the first aspect of the invention, directing a plurality of fluid jets into the bore of the pipe in the region of the distal end to cause agitation of the particulate material, and causing suction of the agitated particulate material along the pipe from the distal end thereof towards the proximal end.
The invention will now be further described in a specific embodiment by way of example only, and with reference to the accompanying drawings, in which
Figure 1 is a schematic perspective view of vacuum apparatus according to the invention; and
Figure 2 is a diagrammatic view of the apparatus of Figure 1 in use.
Referring to the drawings, the vacuum apparatus, generally designated 1, comprises an elongate cylindrical pipe 2 arranged to be connected at a proximal end 3 thereof to a flexible suction hose 4 which is itself connected to a filter unit and vacuum pump arrangement (not shown).
The major proportion of the length of the pipe 2 comprises a substantially solid cylindrical pipe wall 8 (typically of metal or plastics construction) defining a central cylindrical bore for the pipe. Proximate the distal end 5 of the pipe 2, the inner and outer walls of the pipe define an annular chamber 6 which is closed at the distal end 5 of the pipe 2. The inner cylindrical wall of chamber 6 is provided with a plurality of apertures 7 communicating between the annular chamber 6 and the bore of the pipe 2.
A narrow communication bore 9 extends longitudinally of the pipe 2 through the substantially solid cylindrical pipe wall 8 between a communication port 10 with annular chamber 6, and an inlet port 11 at the proximal end of pipe 2. Inlet port 11 is connected via flexible pipe 12 to a supply of pressurised gas (typically air or nitrogen).
In use, vacuum pipe 2 is inserted into a bed of catalyst 13 at the base of a reactor 14 via a side port or manway 15 as shown in Figure 2. Prior to insertion, the vacuum pump connected to suction hose 4 is activated so as to draw transported particulate catalyst 7 material along the pipe 2 and into suction hose 4. At this stage, the pressurised gas supply to inlet port 11 is also activated, thereby forcing pressurised gas long narrow communication bore 9 and into chamber 6 at the distal end 5 of pipe 2. The pressurised gas is then forced out of apertures 7 (which act as jets or nozzles) into the interior of pipe 2.
The portion of the bore of pipe 2 defined by annular chamber 6 acts as a fluidising core in which compacted particulate catalyst present in the fluidising core, or directly adjacent the distal end 5 of pipe 2 on insertion of the pipe 2 into the bed, is fluidised under the influence of the jetting pressurised gas passing through apertures 7. This produces a volume of fluidised particulate catalyst material at the distal end 5 of the pipe 2 which is then sucked along pipe 2 towards the proximal end 3 of pipe 2, and subsequently along flexible suction hose 4 to the filler unit and vacuum pump arrangement (not shown). Using vacuum apparatus according to the present invention, it is possible to insert the vacuum pipe all the way to the rear of the compacted catalyst bed without substantial loss of material conveying efficiently. Furthermore on insertion of the pipe 2 into reactor 14 via manway 15 there is substantially no spillage as would be the case with prior art air powered screw auger type conveyors.
Additionally, operator judgement required to achieve an optimum air gap between the compacted catalyst bed and the end of conventional vacuum pipe conveyors is eliminated by the presence in use of the fluidised core. The problem of inability to convey material when the length of insertion into the bed of conventional vacuum pipes exceeds a limiting distance is also alleviated since a supply of transport gas is effectively continually supplied to the distal end 5 of the pipe.

Claims

CLAIMS:
1. Vacuum apparatus comprising an elongate pipe defining a bore extending along the length thereof, the proximal end of the pipe being connectable with suction means arranged to transport particulate material along the bore from a distal end of the pipe toward the proximal end, the apparatus being provided with jetting means arranged to direct a plurality of pressurised fluid jets into the bore in the region of the distal end of the pipe.
2. Vacuum apparatus according to claim 1 , wherein the plurality of pressurised jets are directed into the bore transversely to the longitudinal direction of the pipe.
3. Vacuum apparatus according to claim 2, wherein the pressurised jets are directed radially inwardly into the bore.
4. Vacuum apparatus according to any preceding claim, wherein the jetting means comprises a plurality of jetting apertures communicating through the inner bore- defining surface of the pipe in the region of the distal end of the pipe.
5. Vacuum apparatus according to claim 4, wherein the jetting apertures communicate between the bore of the pipe and a chamber defined by inner and outer surfaces of the pipe.
6. Vacuum apparatus according to any preceding claim, wherein a supply of pressurised fluid is connectable to the apparatus in the region of the proximal end of the pipe, a fluid supply conduit or path being provided extending between the proximal and distal ends of the pipe and communicatively connecting the jetting means and the supply of pressurised fluid.
7. Vacuum apparatus according to claim 6, wherein the fluid supply conduit or path is provided outside the bore defined by the pipe.
8. Vacuum apparatus according to claim 7, wherein the fluid supply conduit or path extends along the pipe intermediately adjacent the inner and outer surfaces of the pipe.
9. Vacuum apparatus according to claim 8, wherein the fluid supply conduit or path comprises a relatively narrow bore defined in the material of the piping extending along the pipe intermediately adjacent the inner and outer surfaces of the pipe.
10. Vacuum apparatus according to any preceding claim wherein the transverse exterior dimensions of the pipe are such that the pipe may be conveniently inserted into a manway or port of an industrial reactor containing particulate catalyst material.
11. A method of removing particulate material from a container vessel, which method comprises inserting into the particulate material contained in the vessel the distal end of a pipe comprising vacuum apparatus according to any preceding claim, directing a plurality of fluid jets into the bore of the pipe in the region of the distal end to cause agitation of the particulate material, and causing suction of the agitated particulate material along the pipe from the distal end thereof towards the proximal end.
PCT/GB1994/000506 1993-03-12 1994-03-14 Vacuum apparatus WO1994020396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB939305061A GB9305061D0 (en) 1993-03-12 1993-03-12 Vacuum apparatus
GB9305061.5 1993-03-12

Publications (1)

Publication Number Publication Date
WO1994020396A1 true WO1994020396A1 (en) 1994-09-15

Family

ID=10731919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1994/000506 WO1994020396A1 (en) 1993-03-12 1994-03-14 Vacuum apparatus

Country Status (2)

Country Link
GB (1) GB9305061D0 (en)
WO (1) WO1994020396A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761566A1 (en) * 1995-09-12 1997-03-12 Degussa Aktiengesellschaft Method and apparatus for dispensing particles from a container
FR2829044A1 (en) * 2001-09-04 2003-03-07 Bernard Camus System, for dispensing glass beads, includes hollow shaft consisting of inner tube with curved end, and outer tube having small holes along its length
US7878225B2 (en) * 2006-12-18 2011-02-01 Tubemaster, Inc. Vacuum attachment and method
EP2705900A1 (en) 2012-09-10 2014-03-12 Petroval Process and device for unloading particulate material from a vessel
EP3108959A1 (en) * 2015-06-26 2016-12-28 Eurecat S.A. Method for complete draining of a catalytic reactor
EP3108958A1 (en) * 2015-06-26 2016-12-28 Eurecat S.A. Method for complete draining of a catalytic reactor
CN108355586A (en) * 2018-04-28 2018-08-03 新疆美克化工股份有限公司 Catalyst vacuum unloads agent device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE888385C (en) * 1942-09-02 1953-08-31 Ruhrchemie Ag Method and device for setting uniform contact levels
DE1295470B (en) * 1963-12-13 1969-05-14 Hartmann Ag Maschf Suction device for feeding bulk material or dust-like material into a conveyor line
US5195852A (en) * 1991-11-18 1993-03-23 Malugani Jack R Vacuum pick-up nozzle with air boost manifold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE888385C (en) * 1942-09-02 1953-08-31 Ruhrchemie Ag Method and device for setting uniform contact levels
DE1295470B (en) * 1963-12-13 1969-05-14 Hartmann Ag Maschf Suction device for feeding bulk material or dust-like material into a conveyor line
US5195852A (en) * 1991-11-18 1993-03-23 Malugani Jack R Vacuum pick-up nozzle with air boost manifold

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761566A1 (en) * 1995-09-12 1997-03-12 Degussa Aktiengesellschaft Method and apparatus for dispensing particles from a container
US5746347A (en) * 1995-09-12 1998-05-05 Degussa Aktiengesellschaft Method and apparatus for dispensing particles from a container
FR2829044A1 (en) * 2001-09-04 2003-03-07 Bernard Camus System, for dispensing glass beads, includes hollow shaft consisting of inner tube with curved end, and outer tube having small holes along its length
US7878225B2 (en) * 2006-12-18 2011-02-01 Tubemaster, Inc. Vacuum attachment and method
JP2014057953A (en) * 2012-09-10 2014-04-03 Petroval Method and apparatus for retrieving particulate substance from container
CN103657531A (en) * 2012-09-10 2014-03-26 佩特罗瓦尔公司 Process and device for unloading particulate material from a vessel
EP2705900A1 (en) 2012-09-10 2014-03-12 Petroval Process and device for unloading particulate material from a vessel
US9446362B2 (en) 2012-09-10 2016-09-20 Petroval Process and device for unloading particulate material from a vessel
EP3108959A1 (en) * 2015-06-26 2016-12-28 Eurecat S.A. Method for complete draining of a catalytic reactor
EP3108958A1 (en) * 2015-06-26 2016-12-28 Eurecat S.A. Method for complete draining of a catalytic reactor
FR3037823A1 (en) * 2015-06-26 2016-12-30 Eurecat Sa METHOD FOR COMPLETELY DRAINING A CATALYTIC REACTOR
FR3037824A1 (en) * 2015-06-26 2016-12-30 Eurecat Sa METHOD FOR COMPLETELY DRAINING A CATALYTIC REACTOR
US10065164B2 (en) 2015-06-26 2018-09-04 Eurecat S.A. Method for completely emptying a catalytic reactor
US10065165B2 (en) 2015-06-26 2018-09-04 Eurecat S.A. Method for completely emptying a catalytic reactor
CN108355586A (en) * 2018-04-28 2018-08-03 新疆美克化工股份有限公司 Catalyst vacuum unloads agent device

Also Published As

Publication number Publication date
GB9305061D0 (en) 1993-04-28

Similar Documents

Publication Publication Date Title
EP1011879B1 (en) Device for pipeline interior cleaning
US4770711A (en) Method for cleaning chemical sludge deposits of oil storage tanks
US4545317A (en) Device for treating the surfaces of structures and ships
WO1994020396A1 (en) Vacuum apparatus
US20070048097A1 (en) Pneumatic conveyance apparatus and process
US20160194161A1 (en) Conveying and alignment nozzle
EP0941769A4 (en) Liquid coater
US4583329A (en) High pressure jets
US4220426A (en) Tubular pneumatic conveyor pipeline
WO2001096747A1 (en) Ejector
JPH01297133A (en) Apparatus and method for feeding, dispersing and dissolving hydratable dry chemicals
US4922664A (en) Liquid sand blast nozzle and method of using same
GB2128911A (en) Sand blasting apparatus
CA2347354A1 (en) Conveyor apparatus
GB2179099A (en) Vacuum aerator feed nozzle
US3201175A (en) Salt slurry unloading system
EP0156461A1 (en) Improvement relating to vacuum cleaning apparatus
US6623233B2 (en) Method and apparatus for removing bulk material from a container
US6179929B1 (en) Motorized vehicle for cleaning and degassing underground storage tanks
US11808535B2 (en) High pressure nozzle and related methods
EP0275690A1 (en) A method of tank cleaning and a tractor for use therein
US7363877B2 (en) Method of emptying a container, and use of the method
JP2694743B2 (en) Cement milk production equipment
US5636972A (en) Device for extrusion of two component synthetic resins
JP2004131274A (en) Method and device for powder delivery of flexible container bag, and powder delivery fixture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 335703

Date of ref document: 19941112

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase