WO1994018695A1 - Apparatus for heat treatment - Google Patents

Apparatus for heat treatment Download PDF

Info

Publication number
WO1994018695A1
WO1994018695A1 PCT/JP1993/000146 JP9300146W WO9418695A1 WO 1994018695 A1 WO1994018695 A1 WO 1994018695A1 JP 9300146 W JP9300146 W JP 9300146W WO 9418695 A1 WO9418695 A1 WO 9418695A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
flange
moving mechanism
chamber
quartz
Prior art date
Application number
PCT/JP1993/000146
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsusuke Kyogoku
Original Assignee
Asm Japan K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asm Japan K.K. filed Critical Asm Japan K.K.
Priority to EP93903315A priority Critical patent/EP0635875B1/en
Priority to KR1019930703897A priority patent/KR100270422B1/en
Priority to DE69307136T priority patent/DE69307136T2/en
Priority to PCT/JP1993/000146 priority patent/WO1994018695A1/en
Priority to US08/192,147 priority patent/US5484483A/en
Priority claimed from US08/192,147 external-priority patent/US5484483A/en
Publication of WO1994018695A1 publication Critical patent/WO1994018695A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0073Seals

Definitions

  • the present invention relates to a semiconductor manufacturing apparatus, particularly to an oxidation / diffusion apparatus.
  • Figures 1a and 1b and Figures 2a and 2b show a conventional vertical heat treatment apparatus and a conventional load-lock heat treatment apparatus that perform the oxidation and diffusion processes at normal pressure.
  • a heating element (2) is provided around the reaction chamber (1) made of high-purity material such as quartz, and one open end of the reaction chamber (1) is moved by a moving mechanism (not shown). Sealed by a sealed flange.
  • the moving body and the seal flange, which are moved by the moving mechanism, are connected by a panel body to improve the sealing between the seal flange and the reaction chamber. Since the pressure inside the reaction chamber and the external pressure during the process are almost the same, it is sufficient for the panel body to have a repulsive force enough to lightly press the sealing flange through the sealing material in the reaction chamber.
  • the seal flange is composed of a quartz flange (9) and a metal flange (10). When the reaction chamber is sealed, only the quartz flange is exposed inside the chamber.
  • the reaction chamber (1) is provided with a gas inlet (6), which runs along the outer side wall of the chamber to one closed end of the reaction chamber, from which the gas enters the chamber. Is introduced.
  • a gas exhaust port (7) is provided at one open end of the reaction chamber 1 from which gas is exhausted.
  • a boat (3) and a boat table (5) holding a plurality of heat-treated bodies (4) in a stacked state are provided on the seal flange. Insertion and removal are performed inside the member.
  • the object to be heat-treated is set on the boat.
  • the moving mechanism moves the boat into the reaction chamber, seals the flange, and seals the inside of the reaction chamber.
  • An inert gas such as nitrogen gas is introduced from the gas inlet, and purges air components that enter during the movement of the boat into the chamber.
  • a predetermined process gas is introduced. In the dry oxidation process, oxygen and the like are generated, and in the wet oxidation process, steam and the like generated by burning oxygen and hydrogen in an external combustion device (not shown) provided in front of the inlet (6).
  • phosphorus oxychloride (POCl 3 ) or the like is introduced.
  • the inner diameter of the inlet is usually from 10 mm to 20 mm.
  • the exhaust port (7) is open to the atmospheric pressure atmosphere, and the introduced gas is discharged from the exhaust port so as to be pushed out after contributing to a predetermined reaction.
  • the inner diameter of the exhaust port is usually several 10 mm to 20 several mm, and is often larger than the inner diameter of the inlet.
  • FIGS. 2a and 2b show examples.
  • a moving mechanism composed of a ball screw (13), a moving body (12) and the like is placed inside the moving mechanism housing chamber (11) for sealing from the atmosphere.
  • the moving mechanism storage chamber 1 (11) has an exhaust port (15) for evacuating the inside.
  • An opening (14) for inserting and taking out the object to be heat-treated is provided in the moving mechanism housing chamber (11), and is connected to the front chamber (17) via a gate valve (16).
  • the front room houses a transfer mechanism for inserting and removing the object to be heat-treated from the opening into the boat.
  • a metal manifold (23) having an exhaust port (7b) is connected to the reaction chamber 1 to evacuate the inside of the reaction chamber made of high-purity material such as quartz, and the manifold is cooled. (23b). After the process is completed, the inside of the boat is evacuated to about 10 to 6 Torr by a vacuum exhaust device connected to the exhaust port (7b), and then the boat is unloaded to take out the object to be heat-treated.
  • a metal manifold is provided to evacuate the inside of the reaction chamber. This causes heavy metal contamination of the object to be heat-treated, fighting this point, and deteriorating the performance of the equipment. Since the oxidation process is usually performed at a high temperature of around 100,000, the effect of the radiant heat is significant. Even if a cooling unit is provided, it is inevitable that metal contamination becomes significantly larger than in a conventional oxidation diffusion apparatus in which the entire inner surface of the reaction chamber is made of quartz. If the cooling is excessive, water vapor or the like will be condensed on the inner surface of the manifold during wet oxidation, causing even more serious problems such as metal corrosion.
  • the radiating heat from the lower part of the heating element increases due to the cooling, and the heat equalizing characteristic of the heating element deteriorates.
  • the cleanliness of the atmosphere in the apparatus has a limit depending on the purity of the supplied nitrogen gas and the cleanliness of the gas supply system.
  • the pressure in the transfer mechanism storage chamber should be constantly reduced to a high vacuum atmosphere of 10 to 7 Torr or less in order to further reduce the concentration of residual oxygen and water vapor. Need to be kept.
  • the atmosphere in the moving mechanism storage chamber was set to normal pressure with nitrogen gas, and the system was evacuated after the process was completed. Cost of high-purity nitrogen gas increases.
  • An exhaust port for evacuating the inside of the reaction chamber is provided in the reaction chamber, and the seal flange has a double structure of a quartz flange and a metal flange, and when the metal flange is at the movement limit position, The seal is formed between the reaction chamber and the quartz flange via a seal material.
  • the size of the repulsive force generated by moving the moving body after the seal flange moves to the sealing position by connecting the seal flange and the moving body with the panel body
  • the moving body is moved and stopped so that the force applied to the seal flange from one side of the reaction chamber is equal to or greater than the pressure applied.
  • Figure 1a shows a conventional heat treatment apparatus.
  • Figure lb shows a conventional vertical heat treatment apparatus with the boat table taken out of the reaction chamber.
  • Fig. 2a shows a conventional load-lock type ripening device.
  • Figure 2b shows a conventional load-lock type heat treatment apparatus with the boat table taken out of the reaction chamber.
  • FIG. 3 is an overall view of an apparatus showing the present invention.
  • FIG. 4a is a partially enlarged view of the device shown in FIG.
  • FIG. 4b is a partially enlarged view of the device shown in FIG.
  • FIG. 4c is a partially enlarged view of another embodiment.
  • FIG. 3 is an overall view of an apparatus showing one embodiment of the present invention.
  • FIG. 4a is a partially enlarged view of FIG.
  • An exhaust port (7) for evacuating the inside of the reaction chamber (1) is provided.
  • the inner diameter of the exhaust port (7) needs to be at least about 50 mm or more in order to make a high vacuum inside the reaction chamber in a short time.
  • the inner diameter of the reaction chamber is 240 mm, and the inner diameter of the exhaust port is 100 Omm. It may be provided separately, or may be branched at the end of the exhaust port (7).
  • a heat insulating material (8) is attached around the reaction chamber around the exhaust port (7) to prevent heat from escaping from this part, improve the uniformity of the heating element, and reduce the temperature inside the reaction chamber. ⁇ Tsu DOO steam during the oxidation process is maintained at a temperature of not condensation inside D
  • the quartz flange (9) on which the boat (3) and the boat table (5) are placed It is placed on a metal flange (10) and moved by a moving mechanism.
  • the shoulder of the metal flange (10) comes into contact with the shoulder (11) of the moving mechanism storage chamber and cannot move any further.
  • the moving body (12) is further moved to become the dimension "B".
  • the repulsive force of the panel body which is the product of the panel constant of panel body (30) and the amount of compression "A-B"
  • the metal flange (10) is the moving mechanism storage chamber (11). Is pressed against the shoulder. In this state, a normal pressure process is performed in the reaction chamber while the transfer mechanism storage chamber 1 is kept at a vacuum.
  • a force having a magnitude obtained by multiplying the pressure difference between the two chambers by the area within the effective diameter of the seal member (18) is applied to the seal flange from one side of the mobile device oval storage chamber.
  • the spring constant of the panel body and the amount of compression “A-B” are determined so that the repulsive force of the spring body is greater than the magnitude of this force. Even if a force due to the pressure difference is applied from above, the metal flange (10) acts as reinforcement against the quartz flange (9), so that the quartz flange (9) is not damaged. In the case of (10), since the force applied from the one side of the mobile machine fine storage chamber is greater than the force applied from the lower side by the spring body, it is not moved downward.
  • the flange at the end of the reaction chamber (1) is mounted on the moving mechanism storage chamber (11) via a seal material (19a) and a buffer material (21a).
  • the cooling section may be provided on the moving mechanism storage chamber side.
  • FIG. 4c is a partially enlarged view showing another embodiment.
  • the reaction chamber 1 (1) is formed in a tubular shape to the lower side from the flange portion, the inner diameter is widened near the end portion, and the end portion is sealed. This refracts the heat energy transmitted by the light beam inside the transparent quartz and reduces the effect of heat on the seal material (18).
  • the flange portion of the first reaction chamber (1) is fixed on a flange (22) having a cooling means (22b), and the flange (22) is fixed on a moving mechanism housing chamber (11).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

An apparatus for heat treatment, which prevents metallic contamination of the object of heat treatment due to a metallic manifold, and which reliably maintains a hermetic separation state between a moving mechanism storage chamber and a reaction chamber even when the pressure inside the former is remarkably lower than the pressure inside the latter. An exhaust port (7) is disposed in the quartz reaction chamber (1) so as to evacuate the inside of this chamber (1), and a sealing flange of a double structure is formed of a quartz flange (9) and a metallic flange (10). When the reaction chamber is under a sealed state, the metallic flange (1) is not exposed to the reaction chamber (1). Further, the sealing flange and a moving body (12) are engaged with each other by springs (3). When the sealing flange (10) is placed in the sealing position, the springs energized by the moving body press the sealing flange against the internal pressure of the reaction chamber.

Description

明細書  Specification
熱処理装置  Heat treatment equipment
技術分野  Technical field
本発明は、 半導体製造装置、 特に酸化、 拡散装置に関するもので ある。  The present invention relates to a semiconductor manufacturing apparatus, particularly to an oxidation / diffusion apparatus.
背景技術  Background art
図 1 a及び l b並びに図 2 a及び 2 bに酸化、 拡散プロセスを常 圧下で行う従来型縦型熱処理装置と従来型ロードロック式熱処理装 置を示す。  Figures 1a and 1b and Figures 2a and 2b show a conventional vertical heat treatment apparatus and a conventional load-lock heat treatment apparatus that perform the oxidation and diffusion processes at normal pressure.
石英等の高純度材 からなる反応チャンバ一( 1 )の周囲には加熱 体(2 )があり、 反応チャンバ一( 1 )の開放された一方の端部は移動 機構 (図示せず) によって移動されるシールフランジによって密封 される。 移動機構によって移動する移動体とシールフランジはパネ 体で連結されており、 シールフランジと反応チャンバ一の密封性を 良く している。 プロセス中の反応チャンバー內部圧力と外部圧力は ほとんど同じなので、 パネ体は反応チャンバ一にシール材を介して シールフランジを軽く押し付ける程度の反発力があれば良い。 シー ルフランジは石英製フランジ( 9 )と金属製フランジ(10 )によって構 成され。 反応チャンバ一を密封したとき、 チャンバ一内部に露出さ れるのは石英製フランジのみである。 反応チャンバ一( 1 )にはガス 導入部(6 )が設けられ、 これはチャンバ一外部側壁に沿って反応チヤ ンバーの閉じられた一方の端部まで通じており、 そこからチャンバ —内部にガスが導入される。 反応チャンバ一の開放された一方の端 部側にはガス排気口(7 )があり、 そこからガスは排気される。 シー ルフランジ上には複数の熱処理体(4 )を積層状に保持したボート( 3 )及びボートテーブル( 5 )が設けられ、 移動機構によって反応チヤ ンバー内部への挿入、 取出しが行われる。 A heating element (2) is provided around the reaction chamber (1) made of high-purity material such as quartz, and one open end of the reaction chamber (1) is moved by a moving mechanism (not shown). Sealed by a sealed flange. The moving body and the seal flange, which are moved by the moving mechanism, are connected by a panel body to improve the sealing between the seal flange and the reaction chamber. Since the pressure inside the reaction chamber and the external pressure during the process are almost the same, it is sufficient for the panel body to have a repulsive force enough to lightly press the sealing flange through the sealing material in the reaction chamber. The seal flange is composed of a quartz flange (9) and a metal flange (10). When the reaction chamber is sealed, only the quartz flange is exposed inside the chamber. The reaction chamber (1) is provided with a gas inlet (6), which runs along the outer side wall of the chamber to one closed end of the reaction chamber, from which the gas enters the chamber. Is introduced. A gas exhaust port (7) is provided at one open end of the reaction chamber 1 from which gas is exhausted. A boat (3) and a boat table (5) holding a plurality of heat-treated bodies (4) in a stacked state are provided on the seal flange. Insertion and removal are performed inside the member.
ボートが移動機構によって反応チャンバ一( 1 )外部に取り出され たときに(図 1 b )、 被熱処理体がボートにセッ トされる。 移動機構 によってボートが反応チャンバ一内へ移動し、 フランジがシールさ れ、 反応チャンバ一内が密封される。 ガス導入口から窒素ガス等の 不活性ガスが導入され、 チャンバ一内部にボート移動 時に混入し た大気成分をパージする。 加熱体によって被熱処理体が所定の温度 に達すると、 所定のプロセス用ガスが導入される。 ドライ酸化プロ セスでは、 酸素等を、 ウエッ ト酸化プロセスでは、 導入口(6 )の手 前に設けられた外部燃焼装置 (図示せず) で酸素と水素を燃焼させ て発生させた水蒸気等を又リン拡散プロセスではォキシ塩化リン( P O C l3)等を導入する。 導入口の内径は通常 1 0数 m mから 2 0 数 mmである。 排気口(7 )は大気圧雰囲気に開放されており、 導入 されたガスは所定の反応に寄与した後、 押し出されるよ うに排気口 から排出される。 排気口の内径は通常 1 0数 mmから 2 0数 mmで あり、 導入口内径よ り大きめにすることが多い。 プロセス終了後、 プロセスガスの導入が停止され、 再び窒素ガス等でパージした後、 移動機構によってボートは反応チャンバ一から取り出される。 When the boat is taken out of the reaction chamber (1) by the moving mechanism (Fig. 1b), the object to be heat-treated is set on the boat. The moving mechanism moves the boat into the reaction chamber, seals the flange, and seals the inside of the reaction chamber. An inert gas such as nitrogen gas is introduced from the gas inlet, and purges air components that enter during the movement of the boat into the chamber. When the object to be heat-treated reaches a predetermined temperature by the heating element, a predetermined process gas is introduced. In the dry oxidation process, oxygen and the like are generated, and in the wet oxidation process, steam and the like generated by burning oxygen and hydrogen in an external combustion device (not shown) provided in front of the inlet (6). In the phosphorus diffusion process, phosphorus oxychloride (POCl 3 ) or the like is introduced. The inner diameter of the inlet is usually from 10 mm to 20 mm. The exhaust port (7) is open to the atmospheric pressure atmosphere, and the introduced gas is discharged from the exhaust port so as to be pushed out after contributing to a predetermined reaction. The inner diameter of the exhaust port is usually several 10 mm to 20 several mm, and is often larger than the inner diameter of the inlet. After the end of the process, the introduction of the process gas is stopped, and after purging with nitrogen gas or the like again, the boat is taken out of the reaction chamber by the moving mechanism.
近年、 半導体デバイスの高集積化にともない、 大気成分 (酸素、 水蒸気等) やプロセス後に反応チャンバ一内へ残存するプロセスガ スによって起こる予期しない酸化を防止するために、 ロードロック 式の熱処理装置が考案されてきた。 図 2 a及び図 2 bにその例を示 す。 ボールネジ(13)、 移動体(12)等によって構成される移動機構は 大気から密封するため移動機構収納チャンバ一(11)の内部に置かれ る。 移動機構収納チャンバ一(11)は内部を真空排気するための排気 口(15)がある。 常圧でのプロセスを行う と反応チャンバ一内部圧力 と移動機構収納チャンバ一内の圧力との差によってシールフランジ を押し開く力が発生するので、 シールフランジと移動体(12 )をパネ 体でなく剛体で連結したり、 プロセス中だけまたは常時、 真空排気 後に高純度の窒素ガスを導入して移動機構収納チャンバ一(11 )の内 部圧力を常圧程度にしておく 。 移動機構収納チャンバ一(11 )には、 被熱処理体を挿入し、 また、 取り出すための開口部(14 )が設けられ ゲートバルブ(16 )を介して前室(17 )と連結されている。 前室には開 口部から被熱処理体をボートに挿入しまた、 取り出すための搬送機 構が収納される。 石英等の高純度材料からなる反応チャンバ一内部 を真空排気するために排気口(7b )を有する金属製マ二ホールド(23) が反応チャンバ一に接続して設けられ、 同マ二ホールドは冷却部(2 3b)を有する。 プロセス終了後、 排気口(7b)につながる真空排気装 置によって内部を 1 0 - 6トール程度まで真空排気した後、 ボートを アンロードして被熱処理体を取り出す。 In recent years, with the increasing integration of semiconductor devices, a load-lock type heat treatment device has been devised to prevent unexpected oxidation caused by atmospheric components (oxygen, water vapor, etc.) and process gas remaining in the reaction chamber after the process. It has been. Figures 2a and 2b show examples. A moving mechanism composed of a ball screw (13), a moving body (12) and the like is placed inside the moving mechanism housing chamber (11) for sealing from the atmosphere. The moving mechanism storage chamber 1 (11) has an exhaust port (15) for evacuating the inside. When the process is performed at normal pressure, the internal pressure of the reaction chamber The force between the seal flange and the moving body (12) is not a panel, but a rigid body, instead of a panel. After evacuation, high-purity nitrogen gas is introduced to keep the internal pressure of the transfer mechanism storage chamber 1 (11) at about normal pressure. An opening (14) for inserting and taking out the object to be heat-treated is provided in the moving mechanism housing chamber (11), and is connected to the front chamber (17) via a gate valve (16). The front room houses a transfer mechanism for inserting and removing the object to be heat-treated from the opening into the boat. A metal manifold (23) having an exhaust port (7b) is connected to the reaction chamber 1 to evacuate the inside of the reaction chamber made of high-purity material such as quartz, and the manifold is cooled. (23b). After the process is completed, the inside of the boat is evacuated to about 10 to 6 Torr by a vacuum exhaust device connected to the exhaust port (7b), and then the boat is unloaded to take out the object to be heat-treated.
よ り高集積化したデバイスの処理の実現を図るために考案された ロードロック式熱処理装置において、 反応チャンバ一内部を真空排 気するために金属製マ二ホールドが設けられたが、 それによつて被 熱処理体への重金属汚染を引き起こ し、 この点に鬨し、 装置の性能 を後退させている。 酸化プロセスは通常 1 0 0 0で前後の高温で行 うため、 その輻射熱の影響は大きなものがある。 冷却部を設けても 従来型酸化拡散装置のよ うに反応チャンバ一内部表面全てが石英で あるものよ り、 金属汚染が著しく大き くなることは避けられない。 また、 冷却し過ぎると 、 ウエ ッ ト酸化時にマ二ホールド内部表面に 水蒸気等が結露することになり、 金属の腐食等さらに大きな弊害を 引き起こす。 また、 冷却によって発熱体下部からの熟の発散が大き くなり、 発熱体の均熱特性が悪くなる。 また移動機構収納チャンバ一を真空排気後に高純度窒素で充満さ せた場合、 装置内雰囲気の清浄度は供給される窒素ガスの純度や、 ガス供給システムの清浄度に依存した限界を有する。 よ り高集積度 のデバイスへの要求に対応するには、 残存する酸素、 水蒸気等の滤 度を一層低減させるために、 移動機構収納チャンバ一圧力を常時 1 0 _ 7トール以下の高真空雰囲気に保つ必要がある。 常圧下で行われ るプロセスの間、 移動機構収納チャンバ一雰囲気を窒素ガスによつ て常圧状態にし、 プロセス終了後に真空排気していたのでは装置の スルーアッ トが低くなる上に、 供耠する高純度窒素ガスのコスト負 担が増大する。 移動体とシールフランジを剛体で連結したのなら、 移動体の停止位置精度やシールフランジと相手面との平行度を厳密 に管理しなければならず、 製造コストが大き くなると と もに、 反応 チャンバ一メインテナンス後の再組立に多大の熟練度を必要とする という問題もある。 In a load-lock type heat treatment apparatus devised to realize processing of a more highly integrated device, a metal manifold is provided to evacuate the inside of the reaction chamber. This causes heavy metal contamination of the object to be heat-treated, fighting this point, and deteriorating the performance of the equipment. Since the oxidation process is usually performed at a high temperature of around 100,000, the effect of the radiant heat is significant. Even if a cooling unit is provided, it is inevitable that metal contamination becomes significantly larger than in a conventional oxidation diffusion apparatus in which the entire inner surface of the reaction chamber is made of quartz. If the cooling is excessive, water vapor or the like will be condensed on the inner surface of the manifold during wet oxidation, causing even more serious problems such as metal corrosion. In addition, the radiating heat from the lower part of the heating element increases due to the cooling, and the heat equalizing characteristic of the heating element deteriorates. If the transfer mechanism storage chamber is filled with high-purity nitrogen after evacuation, the cleanliness of the atmosphere in the apparatus has a limit depending on the purity of the supplied nitrogen gas and the cleanliness of the gas supply system. In order to meet the demand for devices with higher integration, the pressure in the transfer mechanism storage chamber should be constantly reduced to a high vacuum atmosphere of 10 to 7 Torr or less in order to further reduce the concentration of residual oxygen and water vapor. Need to be kept. During the process performed under normal pressure, the atmosphere in the moving mechanism storage chamber was set to normal pressure with nitrogen gas, and the system was evacuated after the process was completed. Cost of high-purity nitrogen gas increases. If the moving body and the seal flange are connected by a rigid body, the precision of the stopping position of the moving body and the parallelism between the seal flange and the mating surface must be strictly controlled, increasing the manufacturing cost and increasing the reaction. There is also the problem that re-assembly after chamber maintenance requires a great deal of skill.
発明の開示  Disclosure of the invention
反応チャンバ一にその内部を真空排気するための排気口を設け、 シールフランジを石英製フランジ部と金属製フランジ部との二重構 造と し、 金属製フランジ部が移動限界位置にあるとき、 反応チャン バーと石英製フランジとの間でシール材を介してシールがなされる よ うに構成する。  An exhaust port for evacuating the inside of the reaction chamber is provided in the reaction chamber, and the seal flange has a double structure of a quartz flange and a metal flange, and when the metal flange is at the movement limit position, The seal is formed between the reaction chamber and the quartz flange via a seal material.
また、 シールフランジと移動体をパネ体で連結し、 シールフラン ジがシール位置に移動した後、 さらに移動体を移動させることによつ て発生するパネ体の反発力の大きさが、 移動機構収納チャンバ一圧 力が真空で反応チャンバ一圧力が常圧のときに、 反応チャンバ一側 からシールフランジにかかる力の大きさ以上になるよ うに移動体を 移動させ停止保持させる。 図面の簡単な説明 In addition, the size of the repulsive force generated by moving the moving body after the seal flange moves to the sealing position by connecting the seal flange and the moving body with the panel body When the pressure in the storage chamber is vacuum and the pressure in the reaction chamber is normal pressure, the moving body is moved and stopped so that the force applied to the seal flange from one side of the reaction chamber is equal to or greater than the pressure applied. BRIEF DESCRIPTION OF THE FIGURES
図 1 aは、 従来型熱処理装置である。  Figure 1a shows a conventional heat treatment apparatus.
図 l bは、 反応チャンバ一からボートテーブルを出したところの 従来型縦型熱処理装置である。  Figure lb shows a conventional vertical heat treatment apparatus with the boat table taken out of the reaction chamber.
図 2 aは、 従来型ロードロック式熟処理装置である。  Fig. 2a shows a conventional load-lock type ripening device.
図 2 bは、 反応チャンバ一からボートテーブルを出したところの 従来型ロードロック式熱処理装置である。  Figure 2b shows a conventional load-lock type heat treatment apparatus with the boat table taken out of the reaction chamber.
図 3は、 本発明を示す装置の全体図である。  FIG. 3 is an overall view of an apparatus showing the present invention.
図 4 aは、 図 3に示した装置の部分拡大図である。  FIG. 4a is a partially enlarged view of the device shown in FIG.
図 4 bは、 図 3に示した装置の部分拡大図である。  FIG. 4b is a partially enlarged view of the device shown in FIG.
図 4 cは、 他の実施例の部分拡大図である。  FIG. 4c is a partially enlarged view of another embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
図 3は本発明の一つの実施例を示す装置全体図である。 図 4 aは 図 3の部分拡大図である。  FIG. 3 is an overall view of an apparatus showing one embodiment of the present invention. FIG. 4a is a partially enlarged view of FIG.
反応チャンバ一( 1 )には内部を真空排気するための排気口(7 )が 設けられている。 反応チャンバ一内部を短時間で高真空にするため に、 排気口(7 )の内径は少なく と も 5 0 m m程度以上にすることが 必要である。 我々の装置では反応チヤンバー内径 2 4 0 m m、 排気 口内径 1 0 O m mであるが、 石英で構成しても強度等何等問題ない 常圧プロセス時のベントラインをこの排気口(7 )とは別に設けても 良いし、 排気口(7 )の先で分岐しても良い。 排気口(7 )前後の反応 チャンバ一周囲には断熱材(8〉を取付けることによって、 この部分 からの熱の逃げを防ぎ、 発熱体均熱特性を良くすると と もに、 反応 チヤンバー内壁温度をゥ ッ ト酸化プロセス時に水蒸気が内部に結 露させない温度に維持する D An exhaust port (7) for evacuating the inside of the reaction chamber (1) is provided. The inner diameter of the exhaust port (7) needs to be at least about 50 mm or more in order to make a high vacuum inside the reaction chamber in a short time. In our equipment, the inner diameter of the reaction chamber is 240 mm, and the inner diameter of the exhaust port is 100 Omm. It may be provided separately, or may be branched at the end of the exhaust port (7). A heat insulating material (8) is attached around the reaction chamber around the exhaust port (7) to prevent heat from escaping from this part, improve the uniformity of the heating element, and reduce the temperature inside the reaction chamber. © Tsu DOO steam during the oxidation process is maintained at a temperature of not condensation inside D
ボート( 3 )、 ボートテーブル( 5 )を乗せた石英製フランジ(9 )は 金属製フランジ(10)の上に置かれ移動機構によって移動させられる。 ボート(3)が反応チャンバ一(1 )内の所定の位置にくると、 金属製 フランジ(10)の肩部が移動機構収納チャンバ一肩部(11)と接してそ れ以上移動できなくなる。 このとき、 石英製フランジ(9 )と反応チヤ ンバー( 1 )の端部との間には僅かな間隙があり、 フ ッ素ゴム等から なるシール材(18)によってシールするように構成される。 従って、 石英同士が衝突したり、 石英部品に余分な力がかからないので石英 の破損の恐れがない。 このときの移動体(12)と金属製フランジ(10) の間の寸法が 「 A」 であるとすると、 移動体(12)はさらに移動させ られ、 寸法 「 B」 になる。 図 4 bに従って、 パネ体(30)のパネ定数 と圧縮量 「 A— B」 を積した大きさのパネ体の反発力で、 金属製フ ランジ(10)は移動機構収納チャンバ一(11)の肩部に押し付けられる。 この状態で移動機構収納チャンバ一を真空に保ったまま反応チャン バー内で常圧プロセスを行う。 このとき、 二つのチャンバ一の圧力 差にシール材(18)の有効径内面積を掛けた大きさの力が移動機楕収 納チャンバ一側からシールフランジにかかる。 この力の大きさ以上 にバネ体の反発力の大きさになるよ うにパネ体のバネ定数と圧縮量 「 A— B」 が決定されている。 圧力差による力が上からかかっても、 石英製フランジ(9 )に対して金属製フランジ(10〉が補強と して働く ので石英製フランジ( 9 )が破損することはない。 金属製フランジ(1 0)は移動機精収納チャンバ一側から働く力の大きさ以上力をバネ体 によって下から受けているので、 下側に移動させられることはない。 従って、 プロセス中、 プロセスガスが移動機構収納チャンバ一側に リークすることはない。 反応チャンバ一( 1 )端部のフランジ部は、 移動機構収納チヤンバー(11)上にシール材(19a)と緩衝材(21a)を介 して取り付けられ、 冷却部(20b〉を有する固定フランジ(20)によつ て緩衝材(21 b )を介して固定される。 冷却部を移動機構収納チャン バー側に設けてもよい。 The quartz flange (9) on which the boat (3) and the boat table (5) are placed It is placed on a metal flange (10) and moved by a moving mechanism. When the boat (3) reaches a predetermined position in the reaction chamber (1), the shoulder of the metal flange (10) comes into contact with the shoulder (11) of the moving mechanism storage chamber and cannot move any further. At this time, there is a slight gap between the quartz flange (9) and the end of the reaction chamber (1), and it is configured to seal with a sealing material (18) made of fluorine rubber or the like. . Therefore, there is no danger that the quartz will collide with each other or that no extra force will be applied to the quartz parts, causing the quartz to break. Assuming that the dimension between the moving body (12) and the metal flange (10) at this time is "A", the moving body (12) is further moved to become the dimension "B". According to Fig. 4b, the repulsive force of the panel body, which is the product of the panel constant of panel body (30) and the amount of compression "A-B", shows that the metal flange (10) is the moving mechanism storage chamber (11). Is pressed against the shoulder. In this state, a normal pressure process is performed in the reaction chamber while the transfer mechanism storage chamber 1 is kept at a vacuum. At this time, a force having a magnitude obtained by multiplying the pressure difference between the two chambers by the area within the effective diameter of the seal member (18) is applied to the seal flange from one side of the mobile device oval storage chamber. The spring constant of the panel body and the amount of compression “A-B” are determined so that the repulsive force of the spring body is greater than the magnitude of this force. Even if a force due to the pressure difference is applied from above, the metal flange (10) acts as reinforcement against the quartz flange (9), so that the quartz flange (9) is not damaged. In the case of (10), since the force applied from the one side of the mobile machine fine storage chamber is greater than the force applied from the lower side by the spring body, it is not moved downward. The flange at the end of the reaction chamber (1) is mounted on the moving mechanism storage chamber (11) via a seal material (19a) and a buffer material (21a). A fixed flange (20) having a cooling part (20b>) And is fixed via the cushioning material (21b). The cooling section may be provided on the moving mechanism storage chamber side.
図 4 cは、 別の実施例を示す部分拡大図である。 反応チャンバ一 ( 1 )はフランジ部よ り下方側まで管状に形成され、 その端部付近で は内径が広げられ、 その端部でシールされる。 これによつて、 透明 な石英の内部を光線で伝わって来る熱のエネルギーを屈折させ、 シ ール材(18)への熱の影響を少なくできる。 反応チャンバ一( 1 )のフ ランジ部は、 冷却手段(22b )を有するフランジ(22〉上に固定され、 フランジ(22 )は移動機構収納チヤンバー(11 )上に固定される。  FIG. 4c is a partially enlarged view showing another embodiment. The reaction chamber 1 (1) is formed in a tubular shape to the lower side from the flange portion, the inner diameter is widened near the end portion, and the end portion is sealed. This refracts the heat energy transmitted by the light beam inside the transparent quartz and reduces the effect of heat on the seal material (18). The flange portion of the first reaction chamber (1) is fixed on a flange (22) having a cooling means (22b), and the flange (22) is fixed on a moving mechanism housing chamber (11).

Claims

請求の範囲 The scope of the claims
. 石英等の高純度材料からなる反応チャンバ一と、 同反応チャン バーの周囲に配された加熱装置と、 同反応チャンバ一に被熱処理 体を保持したボートを挿入し、 取り出すための移動機構と、 同移 動機構を大気から遮蔽隔絶するための移動機構収納チャンバ一と からなるロードロック式熱処理装置において、 A reaction chamber made of high-purity material such as quartz, a heating device arranged around the reaction chamber, and a moving mechanism for inserting and removing the boat holding the object to be heat-treated from the reaction chamber In a load-lock type heat treatment apparatus comprising a moving mechanism storage chamber for shielding and isolating the moving mechanism from the atmosphere,
反応チャンバ一と移動機構収納チャンバ一を分離するシールフ ランジが前記移動機構によつて駆動され、  A seal flange separating the reaction chamber and the moving mechanism storage chamber is driven by the moving mechanism,
前記シールフランジが石英等の高純度材料からなるフランジ部 と金属材料からなるフランジ部とによる二重構成となっており、 金属フランジが移動限界位置にあるとき、 石英フランジ部と反応 チャンバ一開口端部がシール材を介してシールされ、  The seal flange has a double structure including a flange portion made of a high-purity material such as quartz and a flange portion made of a metal material. When the metal flange is at the movement limit position, the quartz flange portion and one end of the reaction chamber are opened. Part is sealed via the sealing material,
シールフランジと移動機構によって移動する移動体とがバネ体 によって連結され、 シールフランジが移動限界位置まで移動した 後、 さらに移動体の移動によ り発生するパネ体の反発力の大きさ が、 プロセス中の移動機構収納チャンバ一圧力よ り反応チャンバ 一内のプロセス圧力が大きいときに生じるフランジを押し開けよ う とする力の大きさよ り大き く 、 プロセス中、 その位置で移動体 を停止保持させることを特徴とするロードロック式熱処理装置。 . 反応チャンバ一内部を真空排気するための排気口が同反応チヤ ンバー隔壁に設けられていることを特徴とする請求項 1記載の記 載の装置。  After the seal flange and the moving body that is moved by the moving mechanism are connected by a spring body, the magnitude of the repulsive force of the panel body generated by the movement of the moving body after the seal flange moves to the movement limit position depends on the process. During the process, the moving body must be stopped and held at that position during the process, which is larger than the force for pushing open the flange generated when the process pressure in the reaction chamber is larger than the pressure in the reaction chamber. A load lock type heat treatment apparatus characterized by the above-mentioned. 2. The apparatus according to claim 1, wherein an exhaust port for evacuating the inside of the reaction chamber is provided in the reaction chamber partition wall.
. 前記排気口が前記加熱装置と移動機構収納チャンバ一との間に 設けられていることを特徴とする請求項 2記載の装置。 3. The apparatus according to claim 2, wherein the exhaust port is provided between the heating device and a moving mechanism storage chamber.
. 前記排気口の内径が 5 0 m m以上であることを特徴とする請求 項 2又は 3記載の熱処理装置。 The inner diameter of the exhaust port is 50 mm or more. Item 3. The heat treatment apparatus according to item 2 or 3.
. 反応チャンバ一内部を真空排気する排気装置に、 チャンバ一圧 力を 1 0 トールから 1 0— 3トールの範囲で制御する機能を有する ことを特徴とする請求項 2又は 3記載の熟処理装置。 . The reaction chamber first internal to the exhaust system for evacuating, Mature processing apparatus according to claim 2 or 3, wherein it has a function of controlling the chamber Ichi圧force 1 0 3 Torr in the range of 1 0 Torr .
PCT/JP1993/000146 1993-02-05 1993-02-05 Apparatus for heat treatment WO1994018695A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP93903315A EP0635875B1 (en) 1993-02-05 1993-02-05 Apparatus for heat treatment
KR1019930703897A KR100270422B1 (en) 1993-02-05 1993-02-05 Apparatus for heat treatment
DE69307136T DE69307136T2 (en) 1993-02-05 1993-02-05 ARRANGEMENT FOR THERMAL TREATMENT.
PCT/JP1993/000146 WO1994018695A1 (en) 1993-02-05 1993-02-05 Apparatus for heat treatment
US08/192,147 US5484483A (en) 1993-02-05 1994-02-04 Thermal treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP1993/000146 WO1994018695A1 (en) 1993-02-05 1993-02-05 Apparatus for heat treatment
US08/192,147 US5484483A (en) 1993-02-05 1994-02-04 Thermal treatment apparatus

Publications (1)

Publication Number Publication Date
WO1994018695A1 true WO1994018695A1 (en) 1994-08-18

Family

ID=26434372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000146 WO1994018695A1 (en) 1993-02-05 1993-02-05 Apparatus for heat treatment

Country Status (1)

Country Link
WO (1) WO1994018695A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353210A (en) * 2001-05-25 2002-12-06 Tokyo Electron Ltd Equipment and method for heat treatment
KR100431657B1 (en) * 2001-09-25 2004-05-17 삼성전자주식회사 Method and apparatus for processing a wafer, method and apparatus for etching a wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161612A (en) * 1986-12-25 1988-07-05 Toshiba Ceramics Co Ltd Vertical type furnace
JPS63177426A (en) * 1987-01-17 1988-07-21 Oki Electric Ind Co Ltd Vapor growth method and apparatus
JPH01251610A (en) * 1987-11-27 1989-10-06 Tel Sagami Ltd Heat treating apparatus
JPH0448725A (en) * 1990-06-15 1992-02-18 Kokusai Electric Co Ltd Diffusion method and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161612A (en) * 1986-12-25 1988-07-05 Toshiba Ceramics Co Ltd Vertical type furnace
JPS63177426A (en) * 1987-01-17 1988-07-21 Oki Electric Ind Co Ltd Vapor growth method and apparatus
JPH01251610A (en) * 1987-11-27 1989-10-06 Tel Sagami Ltd Heat treating apparatus
JPH0448725A (en) * 1990-06-15 1992-02-18 Kokusai Electric Co Ltd Diffusion method and its device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GENICHI HORIKOSHI, Vacuum Technology, March 18, 1983 (18.03.83), Takuo Kanno, Zaidan Hojin Tokyo Daigaku Shuppankai, p. 49-51. *
See also references of EP0635875A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353210A (en) * 2001-05-25 2002-12-06 Tokyo Electron Ltd Equipment and method for heat treatment
KR100431657B1 (en) * 2001-09-25 2004-05-17 삼성전자주식회사 Method and apparatus for processing a wafer, method and apparatus for etching a wafer

Similar Documents

Publication Publication Date Title
JP3677211B2 (en) Buffer chamber and integration method for integrating both physical vapor deposition chamber and chemical vapor deposition chamber into a processing system
JP3218488B2 (en) Processing equipment
JP3106172B2 (en) Sealing structure of heat treatment equipment
KR200491849Y1 (en) Load lock chamber with slit valve doors
JP3121915B2 (en) Sealing device
JP2012501549A (en) Load lock chamber for large area substrate processing systems
US20020197145A1 (en) Substrate processing apparatus and a method for fabricating a semiconductor device by using same
US20030077150A1 (en) Substrate processing apparatus and a method for fabricating a semiconductor device by using same
US10453718B2 (en) Slit valve door with moving mating part
US5484483A (en) Thermal treatment apparatus
JP2015076458A (en) Vacuum processing apparatus
KR100337278B1 (en) Container and method for sealing the container
KR101801452B1 (en) Process box, assembly and method for processing a coated substrate
JP2000150613A (en) Transporting device for object to be treated
WO1994018695A1 (en) Apparatus for heat treatment
JP3181308B2 (en) Heat treatment equipment
WO2012008439A1 (en) Substrate processing method and substrate processing system
EP0635875B1 (en) Apparatus for heat treatment
JPH09246351A (en) Method and device for clean conveyance and clean device
KR20130114218A (en) Device and method for processing wafers
JP2684456B2 (en) Heat treatment equipment
KR100270422B1 (en) Apparatus for heat treatment
US12014908B2 (en) Vacuum processing apparatus
JPH0265233A (en) Device for removing moisture of semiconductor wafer
US20220112594A1 (en) Device for sealing a vacuum chamber, vacuum processing system, and method of monitoring a load lock seal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1993903315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019930703897

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993903315

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993903315

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993903315

Country of ref document: EP