WO1994010358A1 - Process for producing a heating element - Google Patents

Process for producing a heating element Download PDF

Info

Publication number
WO1994010358A1
WO1994010358A1 PCT/EP1993/003068 EP9303068W WO9410358A1 WO 1994010358 A1 WO1994010358 A1 WO 1994010358A1 EP 9303068 W EP9303068 W EP 9303068W WO 9410358 A1 WO9410358 A1 WO 9410358A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
layer
ratio
mixture
heating element
Prior art date
Application number
PCT/EP1993/003068
Other languages
German (de)
French (fr)
Inventor
Andrej Vasilievic^´ DJOMIN
Valerij Yakovlevic^´ AIVASOV
Svetlana Ivanovna Vlaskina
Original Assignee
Mir Patent-, Lizenzverwertungen Und Handels-Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mir Patent-, Lizenzverwertungen Und Handels-Gmbh filed Critical Mir Patent-, Lizenzverwertungen Und Handels-Gmbh
Publication of WO1994010358A1 publication Critical patent/WO1994010358A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/30Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material on or between metallic plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Definitions

  • the invention relates to a method for producing a heating element according to the preamble of the claim.
  • the invention is based on the object of providing a simple and reliable method for producing large-area heating elements which have a high transmission coefficient.
  • the deposition from the first mixture forms an insulating layer of SiO 2 on the carrier.
  • This can replace the ceramics (Sitall, Polykor, CHS-22) normally used on metals (aluminum, stainless steel).
  • the Si0 2 layer ensures good adhesion of the subsequently applied resistance alloy, since, for example, when using aluminum as the support, the anodization of the metal surface or when using stainless steel as the support, a secure adhesion of the growing oxide layer to the support is ensured.
  • an almost ideal match of the thermal expansion coefficients can be achieved by using the SiO 2 layer.
  • the deposition of the resistance layer in the form of amorphous silicon ensures a controllable high specific resistance of (5 to 100 k ⁇ / kV).
  • the gases (SiH 4 : Ar), 0 and BF 3 introduced into a vacuum chamber are broken down and ionized in a high-frequency discharge field until they form an ion plasma.
  • the ionized atoms are deposited on the heated support and, depending on which gas has been introduced, form either an insulating layer of SiO 2 or a resistance layer in the form of amorphous silicon on the surface.
  • the layer thickness is determined depending on the duration of the deposition and on the desired output of the heating element.
  • the argon content in the starting mixture with SiH 4 is less than 96%, no reliable adhesion of the growing layers to the support can be guaranteed. On the other hand, if the argon content is more than 97%, no stoichiometric layers of insulating material and resistance material can be used with the required Resistance temperature coefficients of (3 to 8) x 10 " 4 K ' 1 are formed.
  • the oxide layer Si0 2 cannot be formed.
  • a ratio of less than 1: 5 is not appropriate since a reliable insulating layer cannot be formed.
  • the ratio of the starting mixture to the alloy surcharge BF 3 is more than 100: 5, no layer with a specific resistance of less than 10 ⁇ / kV can be formed. If this ratio is less than 100:10, the resistance of the heating element drops significantly.
  • the layer growth rate appropriate to the production is not optimal.
  • the entire starting mixture is not used for the decomposition and deposition of the layers.
  • Discharge powers of less than 0.1 W / cm 2 are not sufficient for the deposition of uniform layers. Discharge powers of more than 0.5 W / cm 2 are not practical for economic reasons.
  • a negative pressure of 0.2 to 0.5 mHg is generated in a deposition chamber for a plasma chemical deposition.
  • the plate-shaped support is then heated to a temperature of 250-500 ° C.
  • the starting mixture and O in a ratio of 1: (2.5 to 5) into the separation introduced and the insulating layer deposited at a discharge power of 0.1 to 0.5 W / cm 2 on the carrier.
  • the starting mixture and BF 3 are then introduced into the deposition chamber in a ratio of 100: (5 to 10) and the resistance layer is deposited on the insulating layer at a discharge power of 0.1 to 0.5 W / cm 2 .
  • the respective deposition time is selected depending on the layer growth rate. This amounts to 40 A / min for the deposition of SiO 2 and 60 A / min for the deposition of Si: F.
  • the heating element produced has a specific resistance of (5-100) k ⁇ / kV and a power loss of 8 to 10 W / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Resistance Heating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

In a process for producing a heating element, a working layer with contact areas is formed by plasma-chemical deposition on a substrate. A metal surface is used as substrate. First, an insulating layer is formed on the substrate through deposition from a first mixture consisting of a precursor mix of SiH4 and Ar, which contains 96-97 % Ar, and O, the ratio between precursor mix and O being 1:2.5-5. Then, a resistive layer of alloyed amorphous silicon is formed by deposition from a second mixture consisting of a precursor mix of SiH4 and Ar, which contains 96-97 % Ar, and BF3, the ratio between the precursor mix and BF3 being 100:5-10. Both deposition processes are carried at a substrate temperature of 250-500 °C, a pressure of 0.2-0.5 mmHg and a specific discharge output of 0.1-0.5 W/cm2.

Description

VERFAHREN ZUR HERSTELLUNG EINES HEIZELEMENTS METHOD FOR PRODUCING A HEATING ELEMENT
Die Erfindung betrifft ein Verfahren zur Herstellung eines Heizelementes nach dem Oberbegriff des Patentanspruchs.The invention relates to a method for producing a heating element according to the preamble of the claim.
Zur Herstellung von dünnschichtigen Widerstandsheizelementen ist es aus Z.Ju. Gotra "Spravochnik po tekhnologii mikroelek- tronnykh ustrojstv" (Handbuch der Technologie mikroelektroni¬ scher Vorrichtungen), Lwow, 1986, Seite 257 bekannt, die Widerstandslegierungen PC-4800, PC-3710, PC-3001, PC-1714, PC-1004, PC-4206 zu verwenden, die 10, 30 bzw. 50 % Siliziummonoxid und 90, 70 bzw. 50 % Chrompulver enthalten. Der spezifische Widerstand der aus diesen Widerstandslegierun¬ gen hergestellten Schichten beträgt bis zu 20 kfi/kV. Die Verlustleistung beträgt (1-5) W/cm2. Die Schichten werden durch "Explosions"-Verdampfung und thermische Aufdampfung herge¬ stellt. Der Nachteil dieses Verfahrens besteht darin, daß es nicht möglich ist, homogene Schichten auf große Flächen auf¬ zutragen, sowie in der geringen Effektivität des Verfahrens.For the production of thin-layer resistance heating elements, it is made of Z.Ju. Gotra "Spravochnik po tekhnologii mikroelek- tronnykh ustrojstv" (manual of the technology of microelectronic devices), Lwow, 1986, page 257, the resistance alloys PC-4800, PC-3710, PC-3001, PC-1714, PC-1004, PC-4206 to use, which contain 10, 30 or 50% silicon monoxide and 90, 70 or 50% chrome powder. The specific resistance of the layers produced from these resistance alloys is up to 20 kfi / kV. The power loss is (1-5) W / cm 2 . The layers are produced by "explosion" evaporation and thermal evaporation. The disadvantage of this process is that it is not possible to apply homogeneous layers to large areas, and that the process is not very effective.
Der Erfindung liegt die Aufgabe zugrunde, ein einfaches und zuverlässiges Verfahren zur Herstellung großflächiger Heizele¬ mente zu schaffen, die einen hohen Übertragungskoeffizienten haben.The invention is based on the object of providing a simple and reliable method for producing large-area heating elements which have a high transmission coefficient.
Diese Aufgabe wird ausgehend von dem gattungsgemäβen Verfahren durch die kennzeichnenden Maßnahmen des Patentanspruchs ge¬ löst. Durch die Abscheidung aus der ersten Mischung wird auf dem Träger eine Isolierschicht aus Si02 gebildet. Hierdurch können die normalerweise auf Metallen (Aluminium, rostfreier Stahl) verwendeten Keramika (Sitall, Polykor, CHS-22) ersetzt werden. Die Si02-Schicht bewirkt eine gute Adhäsion der anschließend aufgetragenen Widerstandslegierung, da beispielsweise bei Verwendung von Aluminium als Träger die Anodisierung der Metalloberfläche oder bei der Verwendung von rostfreiem Stahl als Träger eine sichere Haftung der wachsenden Oxidschicht am Träger gewährleistet wird. Außerdem kann durch die Verwendung der Si02-Schicht eine nahezu ideale Übereinstimmung der Wärme¬ ausdehnungskoeffizienten erreicht werden. Durch die Abschei¬ dung der Widerstandsschicht in Form von amorphem Silizium wird ein regelbarer hoher spezifischer Widerstand von (5 bis 100 kΩ/kV) gewährleistet.Starting from the generic method, this object is achieved by the characterizing measures of the patent claim. The deposition from the first mixture forms an insulating layer of SiO 2 on the carrier. This can replace the ceramics (Sitall, Polykor, CHS-22) normally used on metals (aluminum, stainless steel). The Si0 2 layer ensures good adhesion of the subsequently applied resistance alloy, since, for example, when using aluminum as the support, the anodization of the metal surface or when using stainless steel as the support, a secure adhesion of the growing oxide layer to the support is ensured. In addition, an almost ideal match of the thermal expansion coefficients can be achieved by using the SiO 2 layer. The deposition of the resistance layer in the form of amorphous silicon ensures a controllable high specific resistance of (5 to 100 kΩ / kV).
Die in eine Vakuumkammer eingeführten Gase (SiH4:Ar), 0 und BF3 werden zerlegt und in einem Hochfrequenzentladungsfeld ioni¬ siert, bis sie ein Ionenplasma bilden. Die ionisierten Atome schlagen sich auf dem erwärmten Träger nieder und bilden auf der Oberfläche je nachdem, welches Gas eingeführt wurde, entweder eine Isolierschicht aus Si02 oder eine Widerstands¬ schicht in Form von amorphem Silizium. Die Schichtdicke wird in Abhängigkeit von der Dauer der Abscheidung und von der gewünschten Leistung des Heizelements bestimmt.The gases (SiH 4 : Ar), 0 and BF 3 introduced into a vacuum chamber are broken down and ionized in a high-frequency discharge field until they form an ion plasma. The ionized atoms are deposited on the heated support and, depending on which gas has been introduced, form either an insulating layer of SiO 2 or a resistance layer in the form of amorphous silicon on the surface. The layer thickness is determined depending on the duration of the deposition and on the desired output of the heating element.
Es kann dasselbe Ausgangsgemisch aus SiH4 und Ar für die Isolier- und die Widerstandsschicht verwendet werden. Es muß nur entweder 0 oder BF3 zusätzlich zugeführt werden.The same starting mixture of SiH 4 and Ar can be used for the insulating and resistance layers. It is only necessary to add either 0 or BF 3 additionally.
Beträgt der Argongehalt im Ausgangsgemisch mit SiH4 weniger als 96 %, kann keine sichere Haftung der wachsenden Schichten am Träger gewährleistet werden. Beträgt der Argongehalt dagegen mehr als 97 %, so können keine stöchiometrischen Schichten aus Isolierstoff und Widerstandsmaterial mit dem erforderlichen Widerstandstemperaturkoeffizienten von (3 bis 8) x 10"4 K'1 gebildet werden.If the argon content in the starting mixture with SiH 4 is less than 96%, no reliable adhesion of the growing layers to the support can be guaranteed. On the other hand, if the argon content is more than 97%, no stoichiometric layers of insulating material and resistance material can be used with the required Resistance temperature coefficients of (3 to 8) x 10 " 4 K ' 1 are formed.
Beträgt das Verhältnis des Ausgangsgemisches zu O mehr als 1:2,5, kann die Oxidschicht Si02 nicht gebildet werden. Ein Verhältnis von weniger als 1:5 ist nicht zweckmäßig, da keine zuverlässige Isolierschicht gebildet werden kann.If the ratio of the starting mixture to O is more than 1: 2.5, the oxide layer Si0 2 cannot be formed. A ratio of less than 1: 5 is not appropriate since a reliable insulating layer cannot be formed.
Beträgt das Verhältnis des Ausgangsgemisches zum Legierungs¬ zuschlag BF3 mehr als 100:5, kann keine Schicht mit einem spezifischen Widerstand von weniger als 10 Ω/kV gebildet werden. Wenn dieses Verhältnis weniger als 100:10 beträgt, fällt der Widerstand des Heizelements beträchtlich ab.If the ratio of the starting mixture to the alloy surcharge BF 3 is more than 100: 5, no layer with a specific resistance of less than 10 Ω / kV can be formed. If this ratio is less than 100:10, the resistance of the heating element drops significantly.
Bei einer Temperatur des Trägers unter 250 "C wird keine siche¬ re Haftung der wachsenden Schicht am Träger erreicht. Eine Temperatur des Trägers über 500βC ist unwirtschaftlich.No secure adhesion of the growing layer to the support is achieved at a temperature of the support below 250 ° C. A temperature of the support above 500 ° C. is uneconomical.
Beträgt der Druck weniger als 0,2 mmHg, ist die fertigungs¬ gerechte Schichtwachstumsgeschwindigkeit nicht optimal. Bei einem Druck von mehr als 0,5 mmHg wird nicht das ganze Aus¬ gangsgemisch zur Zerlegung und Abscheidung der Schichten verwendet.If the pressure is less than 0.2 mmHg, the layer growth rate appropriate to the production is not optimal. At a pressure of more than 0.5 mmHg, the entire starting mixture is not used for the decomposition and deposition of the layers.
Entladungsleistungen von weniger als 0,1 W/cm2 reichen für die Abscheidung von gleichmäßigen Schichten nicht aus. Entladungs¬ leistungen von mehr als 0,5 W/cm2 sind aus wirtschaftlichen Gründen nicht zweckmäßig.Discharge powers of less than 0.1 W / cm 2 are not sufficient for the deposition of uniform layers. Discharge powers of more than 0.5 W / cm 2 are not practical for economic reasons.
Beispielexample
In einer Abscheidungskammer für eine plasmachemische Abschei¬ dung wird ein Unterdruck von 0, 2 bis 0,5 mHg erzeugt. An¬ schließend wird der plattenförmige Träger auf eine Temperatur von 250-500°C erwärmt. Anschließend wird das Ausganggemisch und O in einem Verhältnis von 1:(2,5 bis 5) in die Abschei- dungskammer eingeführt und die Isolierschicht bei einer Entla¬ dungsleistung von 0,1 bis 0,5 W/cm2 auf den Träger abgeschieden. Danach wird das Ausganggemisch und BF3 in einem Verhältnis von 100: (5 bis 10) in die Abscheidungskammer einge¬ führt und die Widerstandschicht bei einer Entladungsleistung von 0,1 bis 0,5 W/cm2 auf der Isolierschicht abgeschieden. Die jeweilige Abscheidungsdauer wird abhängig von der Schicht¬ wachstumsgeschwindigkeit gewählt. Diese beträgt bei der Ab¬ scheidung von Si02 40 A/min und bei der Abscheidung von Si:F 60 A/min.A negative pressure of 0.2 to 0.5 mHg is generated in a deposition chamber for a plasma chemical deposition. The plate-shaped support is then heated to a temperature of 250-500 ° C. Then the starting mixture and O in a ratio of 1: (2.5 to 5) into the separation introduced and the insulating layer deposited at a discharge power of 0.1 to 0.5 W / cm 2 on the carrier. The starting mixture and BF 3 are then introduced into the deposition chamber in a ratio of 100: (5 to 10) and the resistance layer is deposited on the insulating layer at a discharge power of 0.1 to 0.5 W / cm 2 . The respective deposition time is selected depending on the layer growth rate. This amounts to 40 A / min for the deposition of SiO 2 and 60 A / min for the deposition of Si: F.
Auf das erhaltene Gefüge werden Kontaktflächen aus Aluminium aufgetragen.Contact surfaces made of aluminum are applied to the structure obtained.
Das hergestellte Heizelement hat einen spezifischen Widerstand von (5-100) kΩ/kV und eine Verlustleistung von 8 bis 10 W/cm2. The heating element produced has a specific resistance of (5-100) kΩ / kV and a power loss of 8 to 10 W / cm 2 .

Claims

PATENTANSPRUCHPATENT CLAIM
Verfahren zur Herstellung eines Heizelements, bei dem eine Arbeitsschicht durch Abscheidung in einem plasmachemischen Verfahren auf einem Träger mit Kontaktflächen gebildet wird, dadurch g e k e n n z e i c h n e t,Process for the production of a heating element, in which a working layer is formed by deposition in a plasma chemical process on a carrier with contact surfaces, thereby g e k e n n e e i c h n e t,
- daß als Träger eine Metalloberfläche verwendet wird,- that a metal surface is used as a carrier,
- daß auf dem Träger zunächst eine Isolierschicht durch Ab¬ scheidung aus einer ersten Mischung gebildet wird, die aus einem Ausgangsgemisch aus SiH4 und Ar, das 96-97 % Ar ent¬ hält, und 0 besteht, wobei das Verhältnis zwischem dem Aus¬ gangsgemisch und 0 1:(2,5 bis 5) beträgt,- That an insulating layer is first formed on the carrier by deposition from a first mixture, which consists of a starting mixture of SiH 4 and Ar, which contains 96-97% Ar, and 0, the ratio between the Aus¬ mixture and 0 1: (2.5 to 5),
- daß anschließend eine Widerstandsschicht aus legiertem amor¬ phem Silizium durch Abscheidung aus einer zweiten Mischung gebildet wird, die aus einem Ausgangsgemisch aus SiH4 und Ar, das 96-97 % Ar enthält, und BF3 besteht, wobei das Verhältnis zwischem dem Ausgangsgemisch und BF3 100: (5 bis 10) beträgt, und- That a resistance layer of alloyed amorphous silicon is subsequently formed by deposition from a second mixture which consists of a starting mixture of SiH 4 and Ar, which contains 96-97% Ar, and BF 3 , the ratio between the starting mixture and BF 3 100: (5 to 10), and
- daß beide Abscheidungsvorgänge bei einer Temperatur des Trägers von 250 bis 500°C, einem Druck von 0,2 bis 0,5 mmHg und einer spezifischen Entladungsleistung von 0,1 bis 0,5 W/cm2 ausgeführt werden. - That both deposition processes are carried out at a temperature of the carrier of 250 to 500 ° C, a pressure of 0.2 to 0.5 mmHg and a specific discharge power of 0.1 to 0.5 W / cm 2 .
PCT/EP1993/003068 1992-11-02 1993-11-02 Process for producing a heating element WO1994010358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924237017 DE4237017A1 (en) 1992-11-02 1992-11-02 Method of making a heating element
DEP4237017.5 1992-11-02

Publications (1)

Publication Number Publication Date
WO1994010358A1 true WO1994010358A1 (en) 1994-05-11

Family

ID=6471943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/003068 WO1994010358A1 (en) 1992-11-02 1993-11-02 Process for producing a heating element

Country Status (2)

Country Link
DE (1) DE4237017A1 (en)
WO (1) WO1994010358A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720880A1 (en) * 1997-05-17 1998-11-19 Ego Elektro Geraetebau Gmbh Electric heating element with thermally conductive layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961997A (en) * 1975-05-12 1976-06-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabrication of polycrystalline solar cells on low-cost substrates
JPS6186269A (en) * 1984-10-04 1986-05-01 Tdk Corp Thermal head
JPH01283161A (en) * 1988-05-11 1989-11-14 Tdk Corp Heat generator for thermal head and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961997A (en) * 1975-05-12 1976-06-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabrication of polycrystalline solar cells on low-cost substrates
JPS6186269A (en) * 1984-10-04 1986-05-01 Tdk Corp Thermal head
US4679056A (en) * 1984-10-04 1987-07-07 Tdk Corporation Thermal head with invertible heating resistors
JPH01283161A (en) * 1988-05-11 1989-11-14 Tdk Corp Heat generator for thermal head and preparation thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. LÜDER: "POLYCRYSTALLINE SILICON-BASED SENSORS", SENSORS AND ACTUATORS, vol. 10, no. 1/2, September 1986 (1986-09-01), LAUSANNE CH, pages 9 - 23, XP001305319 *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 261 (M - 514) 5 September 1986 (1986-09-05) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 058 (M - 0930) 2 February 1990 (1990-02-02) *

Also Published As

Publication number Publication date
DE4237017A1 (en) 1994-05-05

Similar Documents

Publication Publication Date Title
DE102004001099B4 (en) Oxidation process with high-density plasma
DE3327103C2 (en) Sintering process for compacts
DE2658448C3 (en) Process for etching a layer of silicon nitride applied to a semiconductor body in a gas plasma
DE1621390B2 (en) PROCESS FOR DEPOSITING INSULATING THIN FILMS
EP0008406B1 (en) Method for producing a passivating layer on a silicon semiconductor body
DE3016022A1 (en) METHOD AND DEVICE FOR PRODUCING A THIN, FILM-LIKE COATING BY EVAPORATION USING A ENCLOSED PLASMA SOURCE
CH671407A5 (en)
DE69719507T2 (en) METHOD FOR USING A NON-VAPORIZABLE GETTER
WO2014194892A1 (en) Retainer, method for producing same and use thereof
DE2656821A1 (en) DEVICE AND METHOD FOR APPLYING A FILM ON A SUBSTRATE
EP0870070A2 (en) Process for producing organically mofified oxide, oxynitride or nitride layers by vacuum deposition
EP3250724A1 (en) Method for applying a metal protective coating to a surface of a steel product
DE1521605A1 (en) Process for producing oxide films on substrates
DE10308381A1 (en) Process for the deposition of silicon
WO1994010358A1 (en) Process for producing a heating element
DE3907693C2 (en)
DE2032320C3 (en) Process for improving the adhesion of a conductive material to a non-conductive inorganic substrate material
DE69910932T2 (en) Component resistant to corrosion by a gas containing chlorine
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
DE102008028990B4 (en) Increasing the high-temperature oxidation resistance of TiAl alloys and components made therefrom by Pl3
DE3509910A1 (en) METHOD FOR PRODUCING A SILICON FILM ON A CARRIER IN A PLASMA ATMOSPHERE
DE102004002304B4 (en) Process for producing a coated carbon / carbon composite and composite material produced therefrom
EP0293719A1 (en) Preparation of thin molybdenum films by glow discharge
WO1996016202A1 (en) Packing element, in particular for shutting-off and regulating means, and process for producing the same
DE19641400C1 (en) Application of thin layer containing boron by vacuum coating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CZ HU RU SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA