WO1994008748A1 - Plasma torch - Google Patents

Plasma torch Download PDF

Info

Publication number
WO1994008748A1
WO1994008748A1 PCT/JP1993/001488 JP9301488W WO9408748A1 WO 1994008748 A1 WO1994008748 A1 WO 1994008748A1 JP 9301488 W JP9301488 W JP 9301488W WO 9408748 A1 WO9408748 A1 WO 9408748A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
torch
cooling water
electrode
inner cylinder
Prior art date
Application number
PCT/JP1993/001488
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Sato
Toshio Yoshimitsu
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1994008748A1 publication Critical patent/WO1994008748A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3421Transferred arc or pilot arc mode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3436Hollow cathodes with internal coolant flow
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3442Cathodes with inserted tip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details

Definitions

  • the present invention relates to a torch for a plasma cutting machine that cuts a material to be cut by generating a plasma arc between an electrode and the material to be cut.
  • the torch for the plasma cutting machine has a nozzle around the electrode to form a working gas passage, a cooling water passage to cool the electrode, and an insulator to insulate the electrode from the nozzle. It consists of a cap that fastens the nozzle to the torch main body, and narrows the plasma arc generated between the electrode and the material to be cut in front of the tip of the electrode to raise the temperature to achieve good cutting. Like that.
  • FIG. 4 is a cross-sectional view of a torch for a plasma cutting machine.
  • An electrode 42 is press-fitted into the torch body 40 via a collar 41.
  • a ceramic insulator 43 having a hole 44 is fitted between the electrode 42 and the torch body 40.
  • a case 45 is provided on the outer periphery of the tip of the torch body 40. Between the case 45 and the insulator 43, a nozzle 46 having a hole 47 through which a plasma arc passes toward the material 60 to be cut is sandwiched. It is fastened to the case 45 by the stopper 50. nozzle
  • a gap 48 through which the working gas flows is provided between 46 and the electrode 42, and a cooling water chamber 51 is formed between the nozzle 46 and the cap 50. Further, the torch body 40 has an inlet pipe 53 and an outlet pipe for cooling water for cooling the electrode 42 and the nozzle 46.
  • a working gas passage 52 is also provided.
  • the inlet pipe 53 and the outlet pipe 54 communicate with the cooling water chamber 51 through passages 55 and 56 formed in the case 45, respectively.
  • the working gas flows in from the arrow L, and the passage 5 2
  • the gas is ejected from the hole 47 at the tip of the nozzle 46 through the hole 44 of the insulator 43 and the gap 48.
  • the cooling water flows in from the arrow M, cools the electrode 42, and then enters the cooling water chamber 51 from the passage 55, cools the nozzle 46, passes through the passage 56, the outlet pipe 54, and the arrow. Exhausted to N.
  • FIGS. 5A to 5D The electrode 42, the nozzle 46 having the hole 47, and the material 60 to be cut are the same as those in FIG. 4 described above, and 61 is a high frequency generator.
  • a high-frequency circuit is operated to cause a high-frequency discharge to cause the gas between the electrode 42 and the nozzle 46 to be insulated.
  • the high-frequency circuit is stopped, and a pilot current is caused to flow through the nozzle 46 to generate a pilot arc 62.
  • FIG. 5a showing the first step, a high-frequency circuit is operated to cause a high-frequency discharge to cause the gas between the electrode 42 and the nozzle 46 to be insulated.
  • a second step shown in FIG. 5B the high-frequency circuit is stopped, and a pilot current is caused to flow through the nozzle 46 to generate a pilot arc 62.
  • FIG. 5a showing the first step, a high-frequency circuit is operated to cause a high-frequency discharge to cause the gas between the electrode 42 and the nozzle 46 to be insulated.
  • a pilot current is passed through the nozzle 46, and a main current is passed through the material 60 to be transferred to the main arc 63.
  • the pilot circuit is cut off, and a main current is caused to flow through the workpiece 60 to start cutting.
  • the main arc 64 passes through the hole 47 of the nozzle 46, and the nozzle 46 is electrically neutral.
  • such a conventional torch for a plasma cutting machine has the following problems when cutting a three-dimensionally complex molded product such as an automobile body. That is, the electrode 42 and the nozzle 46 are held by the insulator 43, but the insulator 43 is made of alumina, has a low heat transfer coefficient, and has a poor cooling ability of the nozzle 46. Therefore, in order to cool the nozzles 46, the outer periphery of the cap 50 is water-cooled, and the outer diameter of the cap 50 is increased, so that the ability to approach (adjust to) the molded product, which is the material to be cut 60, is low. May come into contact with the molded product, causing a double arc (illegal discharge) phenomenon, which may damage the torch and the molded product.
  • the gas is allowed to flow around the outer periphery of the nozzle, and a gas shield cap is provided on the outer periphery, so that the outer diameter of the tip end of the nozzle is large and a three-dimensional molded product can be obtained.
  • the ability to approach is low.
  • the present invention has been made in order to solve the disadvantages of the prior art.
  • the outer diameter of the torch tip is small, the ability to approach a molded product is high, and the nozzle comes into contact with a material to be cut such as a molded product.
  • the purpose of the present invention is to provide a torch for a plasma cutting machine that enables the optimal setting of the flow direction and the torch, and further integrates the torch's durable members to facilitate handling and management. Disclosure of the invention
  • a first invention according to the present invention is a torch for a plasma cutting machine, in which a nozzle has a gas outlet hole for controlling a flow direction and a flow rate of a plasma gas.
  • the gas flow direction (swirl flow or axial flow) and flow rate can be optimally set as necessary.
  • a second invention is the torch for a plasma cutting machine according to the first invention, wherein the insulator for insulating the electrode and the nozzle is made of an aluminum nitride material.
  • the nozzle that has a large amount of heat flowing into it due to the extremely high temperature of the plasma arc is in contact with the insulator made of aluminum nitride material with high thermal conductivity, so the heat of the nozzle is efficiently transferred to the cooling water. This prevents damage such as melting due to a rise in the temperature of the nozzle.
  • the tip of the torch can be made thin, and the ability to approach the material to be cut is good.
  • the cooling water passage for cooling the electrode is provided around the inner cylinder supplying the cooling water and the inner cylinder, and cooling is performed through a gap between the inner cylinder and the inner cylinder.
  • the cooling water flows within the same electric potential and is less likely to cause electrolysis, thereby preventing corrosion mainly caused by electrolysis.
  • a fourth invention is the torch for a plasma cutting machine according to the first invention, wherein an electrical insulator is applied to a portion of the outer surface of the nozzle which is in contact with the atmosphere.
  • the torch has at least a case, a body, an insulator, a cooling water pipe and a gas pipe which are durable members, and the durable member is integrally formed.
  • This is a torch for a plasma cutting machine having a resin to be molded.
  • FIG. 1 is a cross-sectional view of a torch for a plasma cutting machine according to the present invention
  • FIG. 2 is a cross-sectional view from a direction perpendicular to FIG. 1
  • FIG. 4 is a cross-sectional view of a gas outflow hole portion of the nozzle according to the present invention (cross-section X-X in FIG. 1).
  • FIG. 4 is a cross-sectional view of a conventional torch for a plasma cutting machine.
  • FIG. 5B, FIG. 5C and FIG. 5D are explanatory diagrams of a control system for each step of the conventional plasma cutting machine.
  • BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the torch for a plasma cutting machine according to the present invention will be described below in detail with reference to the accompanying drawings.
  • a resin case 2 is fitted into the tip of a resin cover 1, and a metal body 3 having gas holes 4 is fitted into the case 2.
  • An electrical insulator 5 made of resin, ceramic, or the like is fitted inside the body 3, and the insulator 5 holds a metal outer cylinder 6 fitted inside.
  • the outer cylinder 6 has one end connected to a metal block 7 disposed inside the case 2, and the other end fitted with an electrode 10.
  • a nozzle 12 is attached to the outer periphery of the electrode 10 via an insulator 11 made of an alumina nitride material, which is an insulator, and is fastened to the body 3 by a metal cap 13.
  • a gas outlet hole '14 is provided near the rear end of the nozzle 12, and a gas outlet 15 is provided at the front end.
  • the gas outlet hole 14 may be in the tangential direction of the inner diameter surface of the nozzle 12 shown in Fig. 3a or the center direction of the inner diameter surface of the nozzle 12 shown in Fig. 3b.
  • the hole diameter of 14 is also set from the required gas flow rate.
  • An electrically insulating material 16 such as resin or ceramic is coated or adhered to the outer surface of the nozzle 12 which is in contact with the atmosphere, and is an object to be cut (not shown). Even when it comes into contact with a three-dimensional molded product, no current is supplied.
  • a gas chamber 17 is formed between the cap 13 and the insulator 11, and a gap 18 is provided between the electrode 10 and the nozzle 12. The gas chamber 17 and the gap 18 communicate with each other through a gas outlet hole 14.
  • high-frequency and high-voltage wires 19 are arranged, one end of which is connected to the body 3, and the other end of which is connected to a power supply (not shown).
  • the gas hole 4 of the body 3 and one end of the hole 23 provided in the block 2 are connected by a pipe 20, and the other end of the hole 23 is connected to a pipe 21 having a joint 22.
  • a conductive inner cylinder 30 for supplying cooling water for cooling the electrodes 10 is mounted in communication with one end of a hole 33 formed in the center of the block 7, Reach inside the electrode 10.
  • the other end of the hole 33 is connected to an inlet water pipe 31 having a joint 32.
  • An outlet water pipe 34 having a joint 35 is connected to the hole 36 communicating with the gap between the case 2 and the case 3, the body 3, the insulator 5, the outer cylinder 6, the block 7, and the power supply shown in FIG. Line 19, pipes 20 and 21 and inlet water pipe 31 and outlet water pipe 34 shown in FIG. 2 are partially or entirely molded by resin 8 and integrated. .
  • the operation of the torch for a plasma cutting machine having such a configuration is as follows. First, the flow of the plasma gas is supplied from the direction A to the joint 22, passes through the pipe 21, the hole 23, and the pipe 20, enters the gas chamber 17 from the gas hole 4, and flows through the gas outflow hole 14. Then, the gas enters the gap 18 and is ejected from the gas ejection port 15 in the direction of the material to be cut.
  • this gas outlet hole 14 is as shown in Fig. 3a, the plasma gas becomes a swirling flow, and the plasma arc has a small outer diameter, that is, is narrowed down, and is ejected from the gas outlet 15 and covered with a small-diameter plasma arc.
  • the cutting width is small and the processing accuracy is good.
  • the gas outlet hole 14 is as shown in Fig. 3b, the plasma gas flows axially and the plasma arc flows with a large component perpendicular to the material to be cut, so that the molten metal adheres to the material to be cut. Effective for reduction.
  • the heat flowing into the nozzle 12 by the plasma arc mainly passes through the insulator 11, which is a sintered body of alumina nitride (A 1 N) having good heat conduction, and passes through the rear end of the electrode 10. Therefore, similarly to the cooling of the electrode 10 described later, the cooling water is efficiently cooled by the cooling water in a low temperature state. Therefore, damage such as melting due to a rise in the temperature of the nozzle 12 is prevented, so that another cooling water passage for cooling the nozzle 12 is unnecessary, and the tip of the torch can be made thin. As a result, the ability to approach the material to be cut such as a molded article having a complicated three-dimensional shape is good, the restriction on the cutting position of the molded article is improved, and the design becomes easy.
  • the insulator 11 is a sintered body of alumina nitride (A 1 N) having good heat conduction
  • the flow of cooling water is supplied from the direction B to the joint 32 (see Fig. 2), and reaches the electrode 10 through the inlet water pipe 31, the hole 33, and the inner cylinder 30.
  • the electrode 10 After cooling the electrode 10 with the cooling water in the state, it flows through the gap between the inner cylinder 30 and the outer cylinder 6, passes through the hole 36, the outlet water pipe 34, flows from the joint 35 in the direction C, and is discharged.
  • the cooling water flows through the passage having the same potential, so that it is difficult for electrolysis to occur, thereby preventing corrosion mainly caused by electrolysis.
  • the insulator 16 is coated on the outer surface of the nozzle 12, even when it comes into contact with a three-dimensional molded product, which is a workpiece (not shown), there is no energization and a double arc is generated. There is no danger of damaging the torch or molded part because it does not occur.
  • the present invention has a high ability to approach a molded product with a thin torch tip and a complicated shape, and does not damage the torch or molded product even when the nozzle comes into contact with the workpiece, and does not cause corrosion of the cooling water passage. Further, it is useful as a torch for a plasma cutting machine capable of optimally setting the flow direction and flow rate of plasma gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Arc Welding In General (AREA)
  • Plasma Technology (AREA)
  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

This invention relates to a plasma torch. The distal end of the torch has high approach-ability to a workpiece having a complicated shape, does not damage the torch or the workpiece even when a nozzle comes into contact with the workpiece, does not cause corrosion of a cooling water passage and can set a flowing direction and a flow rate of a plasma gas to optimum values. The nozzle (12) is equipped with an orifice (14) for controlling the flow rate and the flowing direction of the plasma gas, and an electrically insulating material (12) is deposited to a portion of the outer surface of the nozzle (12) coming into contact with atmosphere. An insulator (12) for separating an electrode (10) from the nozzle (12) is made of an aluminum nitride material. Further, the cooling water passage for cooling the electrode includes an inner cylinder (30) for supplying cooling water and an outer cylinder (6) formed around the inner cylinder (30) and discharging cooling water from a gap with the inner cylinder (30). Furthermore, the cooling water passage is molded with a resin (8) integrally with a durable member.

Description

明 細 書 プラズマ切断機用 トーチ 技 術 分 野  Description Torch technology for plasma cutting machine
本発明は、 電極と被切断材との間にプラズマアークを発生させて、 被切断材を 切断するプラズマ切断機用 トーチに関する。 背 景 技 術  The present invention relates to a torch for a plasma cutting machine that cuts a material to be cut by generating a plasma arc between an electrode and the material to be cut. Background technology
プラズマ切断機用 トーチは、 電極の周囲にノズルを設けて作動ガスの通路を形 成するとと もに、 電極を冷却する冷却水通路を設け、 さ らに、 電極とノズルとを 絶縁する碍子と、 ノズルを トーチ本体に締着するキャ ップ等からなり、 電極の先 端前方において電極と被切断材との間に発生させたプラズマアークを絞って高温 にし、 良好な切断を行う ことができるようにしている。  The torch for the plasma cutting machine has a nozzle around the electrode to form a working gas passage, a cooling water passage to cool the electrode, and an insulator to insulate the electrode from the nozzle. It consists of a cap that fastens the nozzle to the torch main body, and narrows the plasma arc generated between the electrode and the material to be cut in front of the tip of the electrode to raise the temperature to achieve good cutting. Like that.
このような従来の技術に関し、 まず、 プラズマ切断機用 トーチの断面図である 図 4で構成を説明する。 トーチ本体 4 0 には電極 4 2がカラー 4 1 を介して圧入 されている。 電極 4 2 と トーチ本体 4 0 との間には穴 4 4を有するセラ ミ ッ ク製 の絶縁体 4 3が嵌入されている。 また、 トーチ本体 4 0の先端部外周にはケース 4 5が設けられている。 このケース 4 5 と絶縁体 4 3 との間には、 被切断材 6 0 に向かってプラズマアークが通過する穴 4 7を有するノズル 4 6が挾着されてお り、 このノズル 4 6 はキャ ップ 5 0 によりケース 4 5 に締着されている。 ノズル Regarding such a conventional technique, first, the configuration will be described with reference to FIG. 4 which is a cross-sectional view of a torch for a plasma cutting machine. An electrode 42 is press-fitted into the torch body 40 via a collar 41. A ceramic insulator 43 having a hole 44 is fitted between the electrode 42 and the torch body 40. A case 45 is provided on the outer periphery of the tip of the torch body 40. Between the case 45 and the insulator 43, a nozzle 46 having a hole 47 through which a plasma arc passes toward the material 60 to be cut is sandwiched. It is fastened to the case 45 by the stopper 50. nozzle
4 6 と電極 4 2 との間には作動ガスが流れる隙間 4 8が設けられ、 ノズル 4 6 と キャ ップ 5 0 との間には冷却水室 5 1が形成されている。 さ らに、 トーチ本体 4 0 には、 電極 4 2およびノズル 4 6の冷却用となる冷却水の入口管 5 3 と出口管A gap 48 through which the working gas flows is provided between 46 and the electrode 42, and a cooling water chamber 51 is formed between the nozzle 46 and the cap 50. Further, the torch body 40 has an inlet pipe 53 and an outlet pipe for cooling water for cooling the electrode 42 and the nozzle 46.
5 4が設けられ、 作動ガスの通路 5 2 も設けられている。 この入口管 5 3 と出口 管 5 4 は、 ケース 4 5 に穿設された通路 5 5、 5 6によつてそれぞれ冷却水室 5 1 に連通している。 かかる構成により、 作動ガスは矢印 Lから流入し、 通路 5 2 、 絶縁体 4 3の穴 4 4、 隙間 4 8を経てノズル 4 6の先端の穴 4 7から噴出する 。 一方、 冷却水は矢印 Mから流入し、 電極 4 2を冷却した後、. 通路 5 5から冷却 水室 5 1 に入り、 ノズル 4 6を冷却後、 通路 5 6、 出口管 5 4を経て矢印 Nに排 出される。 54 are provided, and a working gas passage 52 is also provided. The inlet pipe 53 and the outlet pipe 54 communicate with the cooling water chamber 51 through passages 55 and 56 formed in the case 45, respectively. With this configuration, the working gas flows in from the arrow L, and the passage 5 2 The gas is ejected from the hole 47 at the tip of the nozzle 46 through the hole 44 of the insulator 43 and the gap 48. On the other hand, the cooling water flows in from the arrow M, cools the electrode 42, and then enters the cooling water chamber 51 from the passage 55, cools the nozzle 46, passes through the passage 56, the outlet pipe 54, and the arrow. Exhausted to N.
次に、 第 5図 a〜第 5図 dでプラズマ切断機の制御システムを説明する。 電極 4 2、 穴 4 7を有するノズル 4 6、 被切断材 6 0は上述第 4図と同じであり、 6 1 は高周波発生器である。 まず、 第 1 ステツプを示す第 5図 aにおいて、 高周波 回路を作動させ、 高周波放電を行わせて電極 4 2とノズル 4 6との間のガスの絶 縁破壊を行わせる。 次に、 第 5図 bに示す第 2ステップで、 高周波回路を停止し 、 パイ口ッ ト電流をノズル 4 6に流してパイロッ トアーク 6 2を発生させる。 次 に、 第 3 ステツプを示す第 5図 cにおいて、 パイ口ッ ト電流をノズル 4 6に流し 、 メィン電流を被切断材 6 0に流してメインアーク 6 3に移行させる。 そして、 第 5図 dに示す第 4ステップにおいて、 パイロッ 卜回路を遮断し、 メィン電流を 被切断材 6 0に流して切断を開始する。 この時、 メインアーク 6 4はノズル 4 6 の穴 4 7を通り、 ノズル 4 6は電気的に中立である。  Next, a control system of the plasma cutting machine will be described with reference to FIGS. 5A to 5D. The electrode 42, the nozzle 46 having the hole 47, and the material 60 to be cut are the same as those in FIG. 4 described above, and 61 is a high frequency generator. First, in FIG. 5a showing the first step, a high-frequency circuit is operated to cause a high-frequency discharge to cause the gas between the electrode 42 and the nozzle 46 to be insulated. Next, in a second step shown in FIG. 5B, the high-frequency circuit is stopped, and a pilot current is caused to flow through the nozzle 46 to generate a pilot arc 62. Next, in FIG. 5c showing the third step, a pilot current is passed through the nozzle 46, and a main current is passed through the material 60 to be transferred to the main arc 63. Then, in a fourth step shown in FIG. 5d, the pilot circuit is cut off, and a main current is caused to flow through the workpiece 60 to start cutting. At this time, the main arc 64 passes through the hole 47 of the nozzle 46, and the nozzle 46 is electrically neutral.
しかし、 かかる従来のプラズマ切断機用 トーチにおいては、 自動車のボディ等 3次元の複雑形状な成形品を切断加工する場合、 次のような問題がある。 すなわ ち、 電極 4 2とノズル 4 6 とは絶縁体 4 3により保持されているが、 絶縁体 4 3 はアルミナ製であり、 熱伝達率が低く、 ノズル 4 6の冷却能が悪い。 そこでノズ ル 4 6を冷却するため、 外周より水冷する構造になつており、 キャップ 5 0の外 径が大きくなって被切断材 6 0である成形品への接近 (寄りつき) 能力が低く、 トーチが成形品に接触してダブルアーク (不正放電) 現象を起こし、 トーチや成 形品を損傷させる危険がある。  However, such a conventional torch for a plasma cutting machine has the following problems when cutting a three-dimensionally complex molded product such as an automobile body. That is, the electrode 42 and the nozzle 46 are held by the insulator 43, but the insulator 43 is made of alumina, has a low heat transfer coefficient, and has a poor cooling ability of the nozzle 46. Therefore, in order to cool the nozzles 46, the outer periphery of the cap 50 is water-cooled, and the outer diameter of the cap 50 is increased, so that the ability to approach (adjust to) the molded product, which is the material to be cut 60, is low. May come into contact with the molded product, causing a double arc (illegal discharge) phenomenon, which may damage the torch and the molded product.
また、 冷却水はトーチ中央の冷却水の入口管 5 3から流入し、 ノズル 4 6の外 周の冷却水室 5 1を通って出口管 5 4から流出するため、 水は電位差のある通路 を流れることになり、 電気分解が生じやすい。 そのため、 通路となる金属を損傷 させ、 水詰まりを発生する危険がある。 次に、 別の従来技術と して、 トーチ本体に電気的絶縁体を介して金属製キヤ ッ プを取り付け、 キヤ ップと絶縁体とノズルとの間にガスの整流室を形成すること で、 被切断材との短絡を防止し、 安定したガスの流れを行えるアーク トーチが知 られている (例えば日本特公昭 5 6 — 4 3 5 1号公報参照) 。 しかし、 ノズルの 外周にガスが流れるようにし、 さ らに、 外周にガスシール ド用キャ ップが設けて あるので、 卜一チ先端部の外径が大き く 、 三次元形状の成形品への接近能力が低 い。 In addition, since the cooling water flows in from the cooling water inlet pipe 53 at the center of the torch, and flows out of the outlet pipe 54 through the cooling water chamber 51 on the outer periphery of the nozzle 46, the water flows through a passage having a potential difference. It will flow and electrolysis is likely to occur. Therefore, there is a risk of damaging the metal that becomes the passage and causing water clogging. Next, as another conventional technique, a metal cap is attached to the torch body via an electrical insulator, and a gas rectification chamber is formed between the cap, the insulator, and the nozzle. An arc torch that prevents a short circuit with a material to be cut and allows a stable gas flow is known (for example, see Japanese Patent Publication No. Sho 56-4351). However, the gas is allowed to flow around the outer periphery of the nozzle, and a gas shield cap is provided on the outer periphery, so that the outer diameter of the tip end of the nozzle is large and a three-dimensional molded product can be obtained. The ability to approach is low.
本発明は、 かかる従来技術の欠点を解消するためになされたもので、 トーチ先 端の外径が小さ く て成形品への接近能力が高く 、 ノズルが成形品などの被切断材 に接触しても トーチや成形品を損傷することが無く 、 しかも冷却水の電気分解に よる損傷を発生しないプラズマ切断機用 トーチを提供することを目的と している また、 本発明は、 プラズマガスの流量と流れ方向を最適に設定することを可能 と し、 さ らに トーチの耐久性部材を一体化して取扱や管理を容易にするプラズマ 切断機用 トーチを提供することを目的と している。 発 明 の 開 示  The present invention has been made in order to solve the disadvantages of the prior art. The outer diameter of the torch tip is small, the ability to approach a molded product is high, and the nozzle comes into contact with a material to be cut such as a molded product. It is another object of the present invention to provide a torch for a plasma cutting machine that does not damage a torch or a molded product and does not cause damage due to electrolysis of cooling water. The purpose of the present invention is to provide a torch for a plasma cutting machine that enables the optimal setting of the flow direction and the torch, and further integrates the torch's durable members to facilitate handling and management. Disclosure of the invention
本発明に係わる第 1 の発明は、 ノズルが、 プラズマ用ガスの流れ方向および流 量を制御するガス流出穴を具備するプラズマ切断機用 トーチである。  A first invention according to the present invention is a torch for a plasma cutting machine, in which a nozzle has a gas outlet hole for controlling a flow direction and a flow rate of a plasma gas.
かかる構成により、 必要に応じてガスの流れ方向 (旋回流あるいは軸流) およ び流量を最適に設定することができる。  With this configuration, the gas flow direction (swirl flow or axial flow) and flow rate can be optimally set as necessary.
第 2の発明は、 第 1 の発明において、 電極とノズルとを絶縁する碍子が、 アル ミ ナイ トライ ド材で構成されているプラズマ切断機用 トーチである。  A second invention is the torch for a plasma cutting machine according to the first invention, wherein the insulator for insulating the electrode and the nozzle is made of an aluminum nitride material.
かかる構成により、 極めて高温となるプラズマアークによる流入熱量の多いノ ズルは、 熱伝導率の高いアルミ ナイ トライ ド材からなる碍子と接触しているので 、 ノズルの熱が効率よ く 冷却水に伝達され、 ノズルの温度上昇による溶融等の損 傷が防止される。 これにより、 ノズル冷却を目的とする冷却水の通路が廃止可能 となり、 トーチの先端を細くすることができ、 被切断材への接近能力が良い。 第 3の発明は、 第 1の発明又は第 2の発明において、 電極を冷却する冷却水通 路が、 冷却水を供給する内筒と、 内筒に周設され、 内筒との隙間から冷却水を排 出する外筒とより構成されるプラズマ切断機用 トーチである。 With this configuration, the nozzle that has a large amount of heat flowing into it due to the extremely high temperature of the plasma arc is in contact with the insulator made of aluminum nitride material with high thermal conductivity, so the heat of the nozzle is efficiently transferred to the cooling water. This prevents damage such as melting due to a rise in the temperature of the nozzle. This allows the passage of cooling water for nozzle cooling to be eliminated The tip of the torch can be made thin, and the ability to approach the material to be cut is good. In a third aspect based on the first aspect or the second aspect, the cooling water passage for cooling the electrode is provided around the inner cylinder supplying the cooling water and the inner cylinder, and cooling is performed through a gap between the inner cylinder and the inner cylinder. This is a torch for a plasma cutting machine composed of an outer cylinder that discharges water.
かかる構成により、 冷却水は同電位内を流れ、 電気分解を起こしにく く なり、 電気分解が主原因となる腐食を防止できる。  With such a configuration, the cooling water flows within the same electric potential and is less likely to cause electrolysis, thereby preventing corrosion mainly caused by electrolysis.
第 4の発明は、 第 1の発明において、 ノズルの外面で、 大気に接する部分に電 気的絶縁物を被着せるプラズマ切断機用 トーチである。  A fourth invention is the torch for a plasma cutting machine according to the first invention, wherein an electrical insulator is applied to a portion of the outer surface of the nozzle which is in contact with the atmosphere.
かかる構成により、 切断中にノズルが被切断材に接触しても電気が流れること が無く、 トーチおよび被切断材の損傷が無い。  With this configuration, electricity does not flow even when the nozzle comes into contact with the workpiece during cutting, and there is no damage to the torch and the workpiece.
第 5の発明は、 第 1の発明において、 トーチは、 少なく とも耐久性部材である ケース、 ボディ、 絶縁体、 冷却水用パイプおよびガス用パイプを有し、 かつ、 耐 久性部材を一体にモールドする樹脂を有するプラズマ切断機用 トーチである。 かかる構成により、 切断作業により消耗部品として交換が必要な電極およびノ ズル、 またその交換のために取り外しや取り付けが必要な碍子およびキヤップを 除く、 トーチを構成する耐久性ある部材を組み立て後、 樹脂でモールドするので 、 一体化が可能となり、 安価に製作できる。 図面の簡単な説明  In a fifth aspect based on the first aspect, the torch has at least a case, a body, an insulator, a cooling water pipe and a gas pipe which are durable members, and the durable member is integrally formed. This is a torch for a plasma cutting machine having a resin to be molded. With this configuration, after assembling the durable members that make up the torch, except for the electrodes and nozzles that need to be replaced as consumable parts by the cutting work, and the insulators and caps that need to be removed and attached for replacement, Since it is molded with, it can be integrated and can be manufactured at low cost. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係わるプラズマ切断機用 トーチの断面図であり、 第 2図は 、 第 1図に対して直角方向からの断面図であり、 第 3図 aおよび第 3図 bは、 本 発明に係わるノズルのガス流出穴部の断面図 (第 1図中の X— X断面) であり、 第 4図は、 従来のプラズマ切断機用 トーチの断面図であり、 第 5図 a、 第 5図 b 、 第 5図 cおよび第 5図 dは、 従来のプラズマ切断機のステップ毎の制御システ ムの説明図である。 発明を実施するための最良の形態 本発明に係わるプラズマ切断機用 トーチについて、 好ま しい実施例を添付図面 に従って、 以下に詳述する。 FIG. 1 is a cross-sectional view of a torch for a plasma cutting machine according to the present invention, FIG. 2 is a cross-sectional view from a direction perpendicular to FIG. 1, and FIG. 3a and FIG. FIG. 4 is a cross-sectional view of a gas outflow hole portion of the nozzle according to the present invention (cross-section X-X in FIG. 1). FIG. 4 is a cross-sectional view of a conventional torch for a plasma cutting machine. FIG. 5B, FIG. 5C and FIG. 5D are explanatory diagrams of a control system for each step of the conventional plasma cutting machine. BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the torch for a plasma cutting machine according to the present invention will be described below in detail with reference to the accompanying drawings.
第 1図において、 樹脂製のカバ一 1の先端には樹脂製のケース 2が嵌入され、 ケース 2にはガス穴 4を有する金属製のボディ 3が嵌入されている。 ボディ 3の 内部には樹脂あるいはセラミ ック製等の電気的な絶縁体 5が嵌入され、 絶縁体 5 は内部に嵌入される金属製の外筒 6を保持している。 外筒 6は、 一端はケース 2 の内部に配設された金属製のブロック 7に連結しており、 他端は電極 1 0が嵌着 されている。 電極 1 0の外周には絶縁体であるアルミナイ トライ ド材の碍子 1 1 を介してノズル 1 2が被着され、 金属製のキヤップ 1 3によりボディ 3に締着さ れている。 ノズル 1 2の後端部近傍にはガス流出穴' 1 4が設けられ、 先端部には ガス噴出口 1 5が設けられている。 なお、 ガス流出穴 1 4は、 第 3図 aに示すノ ズル 1 2の内径面の接線方向、 あるいは第 3図 bに示すノズル 1 2の内径面の中 心方向などでよく、 ガス流出穴 1 4の穴径も必要なガス流量から設定する。 また 、 ノズル 1 2の外表面の大気との接触面には、 樹脂あるいはセラミ ック製等の電 気的な絶縁物 1 6をコーティ ングあるいは接着等してあり、 図示しない被切断物 である三次元形状の成形品と接触しても通電しないようにしてある。 キャップ 1 3 と碍子 1 1 との間にはガス室 1 7が形成され、 電極 1 0とノズル 1 2との間に は隙間 1 8が設けられている。 ガス室 1 7と隙間 1 8とはガス流出穴 1 4によつ て連通している。  In FIG. 1, a resin case 2 is fitted into the tip of a resin cover 1, and a metal body 3 having gas holes 4 is fitted into the case 2. An electrical insulator 5 made of resin, ceramic, or the like is fitted inside the body 3, and the insulator 5 holds a metal outer cylinder 6 fitted inside. The outer cylinder 6 has one end connected to a metal block 7 disposed inside the case 2, and the other end fitted with an electrode 10. A nozzle 12 is attached to the outer periphery of the electrode 10 via an insulator 11 made of an alumina nitride material, which is an insulator, and is fastened to the body 3 by a metal cap 13. A gas outlet hole '14 is provided near the rear end of the nozzle 12, and a gas outlet 15 is provided at the front end. The gas outlet hole 14 may be in the tangential direction of the inner diameter surface of the nozzle 12 shown in Fig. 3a or the center direction of the inner diameter surface of the nozzle 12 shown in Fig. 3b. The hole diameter of 14 is also set from the required gas flow rate. An electrically insulating material 16 such as resin or ceramic is coated or adhered to the outer surface of the nozzle 12 which is in contact with the atmosphere, and is an object to be cut (not shown). Even when it comes into contact with a three-dimensional molded product, no current is supplied. A gas chamber 17 is formed between the cap 13 and the insulator 11, and a gap 18 is provided between the electrode 10 and the nozzle 12. The gas chamber 17 and the gap 18 communicate with each other through a gas outlet hole 14.
カバー 1内には高周波、 高電圧用の電線 1 9が配設され、 一端はボディ 3に接 続し、 他端は図示しない電源装置に接続している。 ボディ 3のガス穴 4とプロッ ク Ίに設けられた穴 2 3の一端とはパイプ 2 0により連結され、 穴 2 3の他端に は継手 2 2を有するパイプ 2 1が連結されている。  Inside the cover 1, high-frequency and high-voltage wires 19 are arranged, one end of which is connected to the body 3, and the other end of which is connected to a power supply (not shown). The gas hole 4 of the body 3 and one end of the hole 23 provided in the block 2 are connected by a pipe 20, and the other end of the hole 23 is connected to a pipe 21 having a joint 22.
第 2図において、 電極 1 0冷却用の冷却水を供給する導電性の内筒 3 0は、 ブ ロ ッ ク 7の中央に穿設された穴 3 3の一端に連通して装着され、 先端が電極 1 0 の内部に達している。 穴 3 3の他端には継手 3 2を有する入口水管 3 1が連結さ れている。 ブロック 7に設けられた内筒 3 0と、 内筒 3 0に周設された外筒 6 と の隙間に連通する穴 3 6には、 継手 3 5を有する出口水管 3 4が連結されている また、 第 1図に示すケース 2、 ボディ 3、 絶縁体 5、 外筒 6、 ブロック 7、 電 線 1 9、 パイプ 2 0 , 2 1 と、 第 2図に示す入口水管 3 1 , 出口水管 3 4 とは樹 脂 8によつて各部材の一部あるいは全体がモールドされ、 一体化されている。 かかる構成によるプラズマ切断機用 トーチの作動は次のようになる。 まず、 プ ラズマガスの流れについては、 継手 2 2に方向 Aより供給され、 パイプ 2 1、 穴 2 3、 パイプ 2 0を経て、 ガス穴 4からガス室 1 7に入り、 ガス流出穴 1 4を通 つて隙間 1 8に入り、 ガス噴出口 1 5から被切断材方向に噴出する。 このガス流 出穴 1 4が第 3図 aの場合、 プラズマガスは旋回流となり、 プラズマアークは外 径の小さい、 即ち細く絞られてガス噴出口 1 5から噴出し、 小径なプラズマァー クで被切断材を切断するので、 切断幅が小さく しかも加工精度もよい。 一方、 ガ ス流出穴 1 4が第 3図 bの場合、 プラズマガスは軸流となり、 プラズマアークは 被切断材に対して垂直成分の多い流れとなるので、 溶融金属の被切断材への付着 低減に効果がある。 In FIG. 2, a conductive inner cylinder 30 for supplying cooling water for cooling the electrodes 10 is mounted in communication with one end of a hole 33 formed in the center of the block 7, Reach inside the electrode 10. The other end of the hole 33 is connected to an inlet water pipe 31 having a joint 32. An inner cylinder 30 provided in the block 7 and an outer cylinder 6 provided around the inner cylinder 30; An outlet water pipe 34 having a joint 35 is connected to the hole 36 communicating with the gap between the case 2 and the case 3, the body 3, the insulator 5, the outer cylinder 6, the block 7, and the power supply shown in FIG. Line 19, pipes 20 and 21 and inlet water pipe 31 and outlet water pipe 34 shown in FIG. 2 are partially or entirely molded by resin 8 and integrated. . The operation of the torch for a plasma cutting machine having such a configuration is as follows. First, the flow of the plasma gas is supplied from the direction A to the joint 22, passes through the pipe 21, the hole 23, and the pipe 20, enters the gas chamber 17 from the gas hole 4, and flows through the gas outflow hole 14. Then, the gas enters the gap 18 and is ejected from the gas ejection port 15 in the direction of the material to be cut. When this gas outlet hole 14 is as shown in Fig. 3a, the plasma gas becomes a swirling flow, and the plasma arc has a small outer diameter, that is, is narrowed down, and is ejected from the gas outlet 15 and covered with a small-diameter plasma arc. Since the cutting material is cut, the cutting width is small and the processing accuracy is good. On the other hand, when the gas outlet hole 14 is as shown in Fig. 3b, the plasma gas flows axially and the plasma arc flows with a large component perpendicular to the material to be cut, so that the molten metal adheres to the material to be cut. Effective for reduction.
次に、 プラズマアークによりノズル 1 2に流入する熱は、 主に、 熱伝導の良好 なアルミナイ トライ ド (A 1 N ) の焼結体である碍子 1 1を経て、 電極 1 0の後 端側に流れるので、 後述する電極 1 0の冷却と同様に、 低温状態の冷却水で効率 よく冷却される。 従って、 ノズル 1 2の温度上昇による溶融等の損傷が防止され るので、 ノズル 1 2の冷却用として別の冷却水通路は不要であり、 トーチの先端 を細くすることができる。 これにより、 複雑な三次元形状の成形品等の被切断材 への接近能力が良く、 成形品等の切断位置の制限が改善され、 設計などが容易に なる。  Next, the heat flowing into the nozzle 12 by the plasma arc mainly passes through the insulator 11, which is a sintered body of alumina nitride (A 1 N) having good heat conduction, and passes through the rear end of the electrode 10. Therefore, similarly to the cooling of the electrode 10 described later, the cooling water is efficiently cooled by the cooling water in a low temperature state. Therefore, damage such as melting due to a rise in the temperature of the nozzle 12 is prevented, so that another cooling water passage for cooling the nozzle 12 is unnecessary, and the tip of the torch can be made thin. As a result, the ability to approach the material to be cut such as a molded article having a complicated three-dimensional shape is good, the restriction on the cutting position of the molded article is improved, and the design becomes easy.
次に、 冷却水の流れについては、 継手 3 2 (第 2図参照) に方向 Bより供給さ れ、 入口水管 3 1 , 穴 3 3、 内筒 3 0を通って電極 1 0に達し、 低温状態の冷却 水で電極 1 0を冷却した後、 内筒 3 0 と外筒 6との隙間を通り、 穴 3 6、 出口水 管 3 4を経て、 継手 3 5より方向 Cに流れ、 排出される。 従って、 方向 Bよりの 供給から方向 Cまでの排出のあいだ、 外筒 6に嵌着される導電性の電極 1 0 も含 めて、 冷却水の流れる通路を構成する部材は導電性であり、 しかも金属製のプロ ック 7と導電可能に接続されているので、 同電位になる。 これにより、 冷却水は 同電位の通路を流れるので、 電気分解を起こしにく くなり、 電気分解が主原因と なる腐食を防止できる。 Next, the flow of cooling water is supplied from the direction B to the joint 32 (see Fig. 2), and reaches the electrode 10 through the inlet water pipe 31, the hole 33, and the inner cylinder 30. After cooling the electrode 10 with the cooling water in the state, it flows through the gap between the inner cylinder 30 and the outer cylinder 6, passes through the hole 36, the outlet water pipe 34, flows from the joint 35 in the direction C, and is discharged. You. Therefore, from direction B During the discharge from the supply to the direction C, including the conductive electrode 10 fitted to the outer cylinder 6, the members constituting the passage for the cooling water are conductive, and the metal Since it is conductively connected to the ground 7, it has the same potential. As a result, the cooling water flows through the passage having the same potential, so that it is difficult for electrolysis to occur, thereby preventing corrosion mainly caused by electrolysis.
また、 ノズル 1 2の外表面に絶縁物 1 6がコーティ ング等されているので、 図 示しない被切断物である三次元形状の成形品と接触しても通電することがなく、 ダブルアークが生じないから、 トーチや成形品を損傷させる危険がない。  In addition, since the insulator 16 is coated on the outer surface of the nozzle 12, even when it comes into contact with a three-dimensional molded product, which is a workpiece (not shown), there is no energization and a double arc is generated. There is no danger of damaging the torch or molded part because it does not occur.
さらに、 トーチを構成する主要な部材のうち、 切断作業に伴い消耗し交換の必 要な部材以外に相当する、 耐久性ある部材を樹脂 8によってモールドして一体化 するので、 取り付け用ボルト等が大幅に低減され、 組み立て構造が簡単になり、 安価に製作できる。 さらに、 取扱や管理も容易になる。 産業上の利用可能性  In addition, of the main components that make up the torch, durable components that correspond to components other than those that need to be replaced due to wear due to the cutting work are molded with resin 8 and integrated, so mounting bolts etc. It is greatly reduced, the assembly structure is simplified, and it can be manufactured at low cost. In addition, handling and management become easier. Industrial applicability
本発明は、 トーチ先端が細くて複雑形状の成形品への接近能力が高く、 ノズル が被切断材に接触しても トーチや成形品を損傷せず、 また冷却水通路の腐食も生 じなく、 さらにプラズマガスの流れ方向と流量を最適に設定することが可能なプ ラズマ切断機用トーチとして有用である。  The present invention has a high ability to approach a molded product with a thin torch tip and a complicated shape, and does not damage the torch or molded product even when the nozzle comes into contact with the workpiece, and does not cause corrosion of the cooling water passage. Further, it is useful as a torch for a plasma cutting machine capable of optimally setting the flow direction and flow rate of plasma gas.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電極と、 電極に周設されたプラズマガス噴出用ノズルと、 電極とノズルとを 絶縁する碍子と、 ノズルを トーチ本体に締着するキャップと、 電極冷却用の冷却 水通路とを備えたプラズマ切断機用 トーチにおいて、 前記ノズルが、 プラズマ用 ガスの流れ方向および流量を制御するガス流出穴を具備することを特徴とするプ ラズマ切断機用 トーチ。  1. An electrode, a plasma gas injection nozzle provided around the electrode, an insulator for insulating the electrode and the nozzle, a cap for fastening the nozzle to the torch body, and a cooling water passage for cooling the electrode A torch for a plasma cutting machine, wherein the nozzle is provided with a gas outlet hole for controlling a flow direction and a flow rate of a plasma gas.
2 . 前記電極と前記ノズルとを絶縁する前記碍子が、 アルミナイ トライ ド材で構 成されていることを特徴とする請求の範囲 1記載のプラズマ切断機用 トーチ。 2. The torch for a plasma cutting machine according to claim 1, wherein the insulator that insulates the electrode from the nozzle is made of an alumina nitride material.
3 . 前記電極を冷却する前記冷却水通路が、 冷却水を供給する内筒と、 前記内筒 に周設され、 前記内筒との隙間から前記冷却水を排出する外筒とより構成される ことを特徴とする請求の範囲 1又は 2記載のプラズマ切断機用 トーチ。 3. The cooling water passage that cools the electrode includes an inner cylinder that supplies cooling water, and an outer cylinder that is provided around the inner cylinder and that discharges the cooling water from a gap between the inner cylinder and the inner cylinder. The torch for a plasma cutting machine according to claim 1 or 2, wherein:
4 . 前記ノズルの外面で、 大気に接する部分に電気的絶縁物を被着せることを特 徵とする請求の範囲 1記載のプラズマ切断機用トーチ。 4. The torch for a plasma cutting machine according to claim 1, wherein an electrical insulator is applied to a portion of the outer surface of the nozzle that comes into contact with the atmosphere.
5 . 前記トーチは、 少なく とも耐久性部材であるケース、 ボディ、 絶縁体、 冷却 水用パイプおよびガス用パイプを有し、 かつ、 前記耐久性部材を一体にモールド する樹脂を有することを特徴とする請求の範囲 1記載のプラズマ切断機用 トーチ 5. The torch has a case, a body, an insulator, a cooling water pipe and a gas pipe which are at least durable members, and has a resin for integrally molding the durable members. The torch for a plasma cutting machine according to claim 1.
PCT/JP1993/001488 1992-10-20 1993-10-18 Plasma torch WO1994008748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP078917U JPH0639276U (en) 1992-10-20 1992-10-20 Torch for plasma cutting machine
JP4/78917U 1992-10-20

Publications (1)

Publication Number Publication Date
WO1994008748A1 true WO1994008748A1 (en) 1994-04-28

Family

ID=13675210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001488 WO1994008748A1 (en) 1992-10-20 1993-10-18 Plasma torch

Country Status (2)

Country Link
JP (1) JPH0639276U (en)
WO (1) WO1994008748A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2804450B1 (en) * 2013-05-16 2022-05-04 Kjellberg-Stiftung Insulating member for a plasma arc torch consisting of several parts, torch and related assemblies equipped with the same and associated method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208095B1 (en) * 1998-12-23 2001-03-27 Axcelis Technologies, Inc. Compact helical resonator coil for ion implanter linear accelerator
JP4688450B2 (en) * 2004-08-16 2011-05-25 株式会社小松製作所 Plasma processing machine, plasma torch and method for attaching / detaching the parts
JP4828108B2 (en) * 2004-10-14 2011-11-30 タマティーエルオー株式会社 Physical vapor deposition equipment
BR112015028734B1 (en) * 2013-10-04 2022-03-22 Kjellberg-Stiftung Insulating part of one or more parts for a plasma arc torch, in particular a plasma cutting torch and plasma torches and arrangements having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117290U (en) * 1984-07-09 1986-01-31 日立精工株式会社 Plasma Arch
JPS6353376U (en) * 1986-09-18 1988-04-09
JPS63145576U (en) * 1987-03-13 1988-09-26
JPS6415676U (en) * 1987-07-13 1989-01-26

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116178B2 (en) * 1973-04-11 1976-05-22
JPS5675826A (en) * 1979-11-22 1981-06-23 Ube Ind Ltd Cover sheet with adhesive agent
JPS6330181A (en) * 1986-07-21 1988-02-08 Mitsubishi Heavy Ind Ltd Plasma torch
JPS6444283A (en) * 1987-08-10 1989-02-16 Osaka Denki Co Ltd Plasma arc torch
JPH0471779A (en) * 1990-07-12 1992-03-06 Masahiro Ashizuka Soldering gun
JPH04197582A (en) * 1990-11-29 1992-07-17 Kawasaki Steel Corp Torch for gas shielded arc welding
JP4108976B2 (en) * 2001-12-28 2008-06-25 キヤノンマーケティングジャパン株式会社 Recruitment vehicle search server and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117290U (en) * 1984-07-09 1986-01-31 日立精工株式会社 Plasma Arch
JPS6353376U (en) * 1986-09-18 1988-04-09
JPS63145576U (en) * 1987-03-13 1988-09-26
JPS6415676U (en) * 1987-07-13 1989-01-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2804450B1 (en) * 2013-05-16 2022-05-04 Kjellberg-Stiftung Insulating member for a plasma arc torch consisting of several parts, torch and related assemblies equipped with the same and associated method

Also Published As

Publication number Publication date
JPH0639276U (en) 1994-05-24

Similar Documents

Publication Publication Date Title
US10730063B2 (en) Plasma transfer wire arc thermal spray system
JP2532957B2 (en) Plasma arc torch and cutting method
EP0186253B1 (en) Plasma-arc torch and gas cooled cathode therefor
US5109150A (en) Open-arc plasma wire spray method and apparatus
EP0196612B1 (en) Plasma arc apparatus
KR101696872B1 (en) Plasma gun device for plasma spray system and plasma spray spray system comprising the same
US10124354B2 (en) Plasma nozzle for thermal spraying using a consumable wire
JP3733461B2 (en) Composite torch type plasma generation method and apparatus
CN113195143B (en) Gas nozzle for protecting gas flow and burner neck piece with same
WO1994008748A1 (en) Plasma torch
JPH07108378A (en) Torch for arc welding or cutting
JPS629779A (en) Plasma cutter for metallic work
JPH07256462A (en) Structure of welding part in gas shield arc welding equipment
JP3138578B2 (en) Multi-electrode plasma jet torch
JP2568439Y2 (en) Plasma torch
JPS63154273A (en) Plasma torch
US12030078B2 (en) Plasma transfer wire arc thermal spray system
JP4804854B2 (en) Composite torch type plasma spraying equipment
JPH10180448A (en) Plasma torch
JP3085038B2 (en) Plasma spraying equipment
JPH0763034B2 (en) Axial supply type plasma heating material injection device
JP3005902B2 (en) Plasma spraying equipment
JP3831023B2 (en) Plasma torch nozzle structure
JPH0741931A (en) Plsma thermal spraying device
JP3260013B2 (en) Plasma torch nozzle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase