WO1994006905A1 - Mutated subtilisine-like serin proteases - Google Patents

Mutated subtilisine-like serin proteases Download PDF

Info

Publication number
WO1994006905A1
WO1994006905A1 PCT/EP1993/002492 EP9302492W WO9406905A1 WO 1994006905 A1 WO1994006905 A1 WO 1994006905A1 EP 9302492 W EP9302492 W EP 9302492W WO 9406905 A1 WO9406905 A1 WO 9406905A1
Authority
WO
WIPO (PCT)
Prior art keywords
protease
subtilisin
proteases
mutated
sequence
Prior art date
Application number
PCT/EP1993/002492
Other languages
German (de)
French (fr)
Inventor
Andrea SÄTTLER
Detlev Riesner
Susanne Kanka
Karl-Heinz Maurer
Original Assignee
Cognis Gesellschaft Für Bio- Und Umwelt-Technologie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Gesellschaft Für Bio- Und Umwelt-Technologie Gmbh filed Critical Cognis Gesellschaft Für Bio- Und Umwelt-Technologie Gmbh
Priority to JP6507790A priority Critical patent/JPH08501447A/en
Priority to EP93920727A priority patent/EP0662126A1/en
Publication of WO1994006905A1 publication Critical patent/WO1994006905A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus

Definitions

  • the invention relates to mutations in the structural gene of subtilisin proteins that lead to new enzymes with a changed amino acid sequence.
  • subtilisin proteases are widespread in nature and are widely used for numerous technical applications. For many of these applications, it is desirable to improve the stability properties of the enzymes in relation to the applications required in each case. A summary of such considerations is given by J. A. Wells and D. A. Estell in TIBS (Trends in Biochemical Sciences), 13, page 291 ff (1988). Another review article that quotes virtually all known sequences and structures of subtilisin-like serine proteases was by R. R. Siezen et al. in Protein Engineering, Vol. 4 (7), pages 719 to 737 (1991). In the area of detergents, the stability against the irreversible inactivation at elevated temperatures plays a role in the proteases.
  • the invention therefore relates to a subtilisin-like serine protease, produced by mutating the structural gene of a wild strain and expressing the mutated structural gene in a production strain, characterized in that after the BPN 'count in position 194 of the protease, a glutamic acid residue and, if desired a proline residue is present in position 188.
  • the numbering of the positions to be exchanged in the proteases mutated according to the invention relates in each case to the protease BPN'-.
  • the person skilled in the art will place the amino acid sequence of this protease under the numbered sequence of the protease BPN 'in such a way that maximum agreement is achieved. In individual cases, this may require omissions or insertions of one or more amino acids.
  • the type of numbering is described in the already cited W089 / 6279.
  • the person skilled in the art can start from a large number of subtilisin-like serine proteases.
  • subtilisin-like serine proteases are, for example, Subtilisin BPN 1 -, Subtilisin Carlsberg or also the Subtilisins from Bacillus lentus. It is clear to the person skilled in the art that in order to generate clones which produce new, mutated enzymes, he does not start from the enzyme itself, but from the structural gene coding therefor and subjects it to mutagenesis and then uses it again in a production strain.
  • proteases which carry the amino acid .alanine in position 194 (all positions according to BPN 'count), which is then exchanged according to the invention for glutamic acid.
  • those proteases are assumed which carry the amino acid alanine in 194 and the amino acid serine in 188, an exchange A194E and S188P being carried out.
  • Suitable starting materials for a mutation of this type are, for example, proteases of the Subtilisin Carlsberg type and its variants.
  • a subtilisin Carlsberg variant with a mutation N158S and S161N (BPN 'count) is particularly preferred.
  • the structural gene of such a protease is described in European patent application EP 214435.
  • a protease from Bacillus lentus is used.
  • a protease which is described in WO91 / 02792, FIG. 29, is also particularly suitable.
  • amino acid serine in position 182 corresponds to serine 188 after BPN 'counting. The difference here is due to the fact that the protein described therein contains some deletions from BPN '.
  • protease mutants are produced which, after subtilisin BPN 'count, contain the following amino acid sequence: 188P-189F-190S-191S-192V-193G-194E-195E-196L-197E-198V-199M. It is particularly preferred in the sense of the invention that this sequence is inserted into a protease, as described in WO91 / 02792, between positions 181 and 194.
  • the new protease mutants according to the invention show improved stability.
  • the half-lives of the autoproteolytic degradation are extended over a wide temperature range, which increases the heat and storage stability at the same time.
  • the prolongation of the half-life is also achieved under non-physiological conditions, for example in the presence of complexing agents.
  • the proteases according to the invention can be produced with the aid of numerous methods.
  • the methods of random in vitro mutagenesis (RIM) and directed mutagenesis are preferred.
  • the modified structural genes produced in this way can be expressed and produced in a conventional manner in known expression systems.
  • W091 / 02792. For expression in a production strain and for the aforementioned applications W089 / 06279, EP 260299, EP 130756, EP 246678, EP 247647, EP 251 446.
  • mutants according to the invention not only show increased stability of the protease when used in detergents and cleaning agents, but they can also be produced on an industrial scale during purification without additional cooling of the process medium.
  • the starting point was the structural gene according to European patent application EP 214 435 and the expression vector pC51 mentioned there.
  • This sequence was first provided with the restriction site Nar1 at position 597 of the gene sequence of pC51 by T after G exchange by directed mutation, which did not result in an amino acid exchange, the new plasmid being called pASl.
  • Position 597 corresponds to the amino acid alanine in position 200 after BPN 'count.
  • Restriction of pASl with Narl and Pstl results in a 142 bp gene fragment which contains the region of the subtilisin sequence which codes for the weak calcium binding site of the molecule.
  • This double-stranded gene fragment was assembled in vitro from synthetic oligonucleotides and referred to as a gene cassette.
  • Nucleotide sequence GCT CCA TTC TCC AGC GTC GGA GAA GAG CTT GAA GTC ATG Amino acid sequence: A P F S S V G E E L E V M Position: 187 188 189 190 191 192 193 194 195 196 197 198 199
  • the mutagenic oligonucleotide III is marked.
  • the amino acid sequence is given in the one-letter code, selected positions are numbered.
  • the original wild-type nucleotide was indicated above or below the exchange at mutated positions outside the oligonucleotide III.
  • oligonucleotide molecules III During the synthesis of oligonucleotide molecules III, all four phosphoramidite solutions were combined with the three remaining phosphoramidites contaminated.
  • concentration of a doping phosphoride in the solution was 2% of the concentration of the wild-type nucleotide. This doping was suitable for introducing an average of 1-2 nucleotide exchanges per synthesized molecule at any position via the oligonucleotide III sequence.
  • All other oligonucleotides (I, II, IV, V, VI) were largely synthesized with wild-type sequences, directed nucleotide exchanges were inserted at a few positions, by which the amino acid sequence was not changed, but suitable restriction sites were inserted.
  • Figure 1 shows the nucleotides of the wild type sequence above or below the sequence actually synthesized.
  • the upper and lower strands of the cassette fragment were assembled from oligonucleotides with wild-type sequence and the mutated oligonucleotides and the strands were hybridized. ⁇ Opmol / oligonucleotide was used for the hybridization.
  • the resulting synthetic fragments were trimmed with Pstl and Narl in order to convert any multimers into the monomers.
  • the synthetic cassette fragments were purified from the free oligonucleotides by gel elution.
  • 0.05 ⁇ g of the eluted cassette fragment was cloned into 0.5 ⁇ g Pstl, Narl, Smal-cut, dephosphorylated and purified pUC19 vector.
  • the entire ligation product was transformed into Escherichia coli XL-1 and the transformants were amplified in four 250 ml cultures.
  • the plasmids which were 50% replication products of the upper, mutagenic and 50% replication products of the lower wild-type strand were prepared from the amplified Escherichia coli cultures. 40 ⁇ g of the plasmid preparation were cut with Xhol, Pstl and Narl and the mutagenic, amplified cassette fragments were separated by gel electrophoresis.
  • Wild-type fragments were cut up by this treatment and are no longer contained in the eluate.
  • 0.08 ⁇ g of the eluted mutagenic cassette fragments were cloned into 1.7 ⁇ g of the expression vector pASl and transformed into Bacillus subtilis strain DB104 in aliquots of 0.25 ⁇ g / batch.
  • This strain is deficient in the genomic and alkaline proteases. It only expresses the plasmid-encoded enzyme variants (Doi et al. (1986), Trends in Biotechnologie 4, pp. 232 - 235). All in all 25,000 clones per batch were generated in this way.
  • the resulting mutant bank was called RIM2.
  • the stabilized protease variants were increased by temperature gradient gel electrophoresis to thermostability, i. e. increased autoproteolysis stability and increased structural stability, examined, for the screening of the mutant library.
  • the method of W089 / 06279, page 24 can also be used.
  • the Pstl-Narl fragments of stabilized protease variant genes were cloned into the Escherichia coli vector pUC19 for the purpose of easier sequencing. Fourteen clones are selected from the mutant library, which express proteases with increased temperature stability.
  • the plasmid to be sequenced were prepared from the Bacillus clone of the RIM2 bank and cut with Pstl and Narl.
  • the cassette fragment to be cloned is cut out.
  • 0.006 ⁇ g of the cassette fragment was ligated into 0.055 ⁇ g of the Escherichia coli vector pUC19 and the ligate was transformed into Escherichia coli XL-1.
  • the transformants were amplified and the plasmids of a clone prepared from a 4 ml culture. These plasmids were used for a conventional sequencing reaction in which the entire Pstl-Narl cassette was sequenced.
  • the A194E and the S188P exchange were found.
  • Example 1 shows the nucleotide sequence and the amino acid sequence of the A194E, S188P clone.
  • the A194E exchange is responsible for the increased thermostability.
  • directed mutagenesis Various methods of directed mutagenesis are available for the introduction of the stabilizing glutamate residue at the corresponding positions of related subtilisin genes and for the introduction of the sequence according to claim 3.
  • a preferred method because of its high efficiency is the cassette mutagenesis described by Wells et al, Gene 34, 315-323, (1985) analogously to Example 1.
  • the gene fragment to be mutated, the ends with restriction sites suitable for cloning, is composed in vitro of synthetic oligonucleotides.
  • the desired nucleotide exchanges are introduced during the oligonucleotide synthesis. With each exchange in oligonucleotides, which form the upper strand, the corresponding complementary exchanges are also introduced in the lower strand, so that no mismatches occur after hybridization to the double-stranded fragment.
  • the synthetic cassette is cloned into the target vector cut with the same restriction enzymes via the terminal restriction sites.
  • the cut target vector is separated from the cut wild-type gene fragment by gel elution.
  • the Pstl described in Example 1 can be used.
  • Narl cassette can be used, which covers the entire area of the weak calcium binding site. The following exchanges must be made: Q191S, Y192V, G195E, D197E, I198V, V199M.
  • the stabilizing exchange A194E and the S188P exchange are introduced. Since it is directed mutagenesis, the synthetic Pstl-Narl fragment with the introduced mutations can be cloned directly (ie without amplification in Escherichia coli, as necessary for Rando mutagenesis) into a Bacillus vector and into a suitable one Bacillus expression strain can be transformed.
  • TGGE Vertical temperature gradient gel electrophoresis
  • This method is characterized by a temperature gradient which is applied to the gel perpendicular to the separation direction of the sample by means of a thermostatic plate.
  • the 0.8 mm thick 10% polyacrylamide gel (20 cm x 20 cm) was polymerized on gel-yellow film and placed on the thermostatic plate made of Teflon-coated aluminum.
  • the plate was cooled with the help of coolable water thermostats (Julabo) on one side and heated on the other side, so that a linear temperature gradient could develop over the entire width.
  • the sample was placed in a 13 cm long, 0.3 cm wide application bag, which was perpendicular to the course of the temperature gradient.
  • the temperature gradient was applied (corner temperature selection depending on the application, but not higher than 80 ° C.
  • the corner temperatures for those TGGEs which show the stabilization by the A194E exchange were 50 ° C. and 70 ° C.
  • the separation with an applied temperature gradient was carried out at 350 V and a limited current of 110 mA for 30 minutes.
  • Acetic acid, pH 5.0 was used and 0.1 M CaCl2 in the gel and electrode buffer were also used.
  • the subtilisin Carlsberg variant according to EP 214 435 with an S188P mutation of the enzyme and with an S188P and A194E mutation of the enzyme were compared with one another by the method mentioned.
  • the two mutants can be produced by directed or by random in vitro mutagenesis.
  • the structural genes were cloned into expression vectors by generally known methods and expressed in a protease-free, generally accessible strain. Cultures of the cloned protease-free strain were used and, after a fermentation period of 24 hours, 20 ml of culture supernatant were obtained and concentrated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

In a subtilisine-like resin protease produced by the mutation of the structural gene of a wild strain and the expression of the mutated structural gene into a production strain, the temperature stability of the enzyme is to be raised. This is done by introducing a glutaminic acid radical into the protease in position 194 in the BPN' system and, if desired, introducing proline into position 188.

Description

"Mutierte subtilisinartiqe Serinproteasen""Mutated Subtilisin-Type Serine Proteases"
Die Erfindung betrifft Mutationen des Strukturgens von Subtilisin-Prote- asen, die zu neuen Enzymen mit geänderter Aminosäuresequenz führen.The invention relates to mutations in the structural gene of subtilisin proteins that lead to new enzymes with a changed amino acid sequence.
Subtilisin-Proteasen sind in der Natur verbreitet und werden in großem Umfang für zahlreiche technische Anwendungen eingesetzt. So beispielsweise als Waschmittelenzyme. Für viele dieser Anwendungen ist es gewünscht, die Stabilitätseigenschaften der Enzyme in bezug auf die jeweils geforderten Anwendungen zu verbessern. Eine Zusammenfassung derartiger Überlegungen geben J. A. Wells und D. A. Estell in TIBS (Trends in Biochemical Sciences), 13, Seite 291 ff (1988). Ein weiterer Übersichtsartikel, der praktisch alle bekannten Sequenzen und Strukturen von subtilisinähnlichen Serinproteasen zitiert, wurde von R. R. Siezen et al. in Protein Engineering, Vol. 4 (7), Seite 719 bis 737 (1991), veröffentlicht. Für den Anwendungsbereich Waschmittel spielt bei den Proteasen insbesondere die Stabilität gegen die irreversible Inaktivierung bei erhöhten Temperaturen eine Rolle. Wie in dem obengenannten Übersichtsartikel von J. A. Wells et al. ausgeführt, sind jedoch keine verläßlichen theoretischen Aussagen dar¬ über möglich, durch welche Schritte sich die Temperaturstabilität verbes¬ sern läßt. Wells et al beschreiben die Einführung von Disulfidbrücken, betonen aber, daß dadurch das Problem nicht gelöst werden konnte. Zur Ver¬ besserung der Temperaturstabilität ist der Fachmann daher in erster Linie auf das Experiment angewiesen.Subtilisin proteases are widespread in nature and are widely used for numerous technical applications. For example as detergent enzymes. For many of these applications, it is desirable to improve the stability properties of the enzymes in relation to the applications required in each case. A summary of such considerations is given by J. A. Wells and D. A. Estell in TIBS (Trends in Biochemical Sciences), 13, page 291 ff (1988). Another review article that quotes virtually all known sequences and structures of subtilisin-like serine proteases was by R. R. Siezen et al. in Protein Engineering, Vol. 4 (7), pages 719 to 737 (1991). In the area of detergents, the stability against the irreversible inactivation at elevated temperatures plays a role in the proteases. As described in the J.A. Wells et al. However, it is not possible to make reliable theoretical statements about the steps by which the temperature stability can be improved. Wells et al describe the introduction of disulfide bridges, but emphasize that this did not solve the problem. To improve the temperature stability, the person skilled in the art is therefore primarily dependent on the experiment.
In der internationalen Anmeldung W087/5050 werden clonierte Subtilisin Mutanten-Gene beansprucht, die für Subtilisinproteasen codieren sollen, welche bei höherer Temperatur aktiver als die entsprechenden Wildtypen sind. Die genannte internationale Anmeldung macht zahlreiche Vorschläge für Mutationen. So soll insbesondere in der Position 218 Asparagin durch eine andere Aminosäure ausgetauscht sein. Auch wird vorgeschlagen, in Position 188 Serin durch Prolin auszutauschen. Die internationale Anmel¬ dung gibt jedoch keinen Hinweis darauf, ob dieser Serin durch Prolin-Aus- tausch oder eine der vielen anderen dort genannten Maßnahmen tatsächlich mit dem Erfolg einer erhöhten Temperaturstabilität zu verknüpfen ist. In dem aus der genannten internationalen Anmeldung hervorgehenden Europapa¬ tent EP 260299 wird daher eine Mutation S188P nicht mehr beansprucht.International application WO87 / 5050 claims cloned subtilisin mutant genes which are intended to code for subtilisin proteases which are more active at higher temperatures than the corresponding wild types. The international application mentioned makes numerous suggestions for mutations. For example, in position 218, asparagine is said to be replaced by another amino acid. It is also suggested in Item 188 to replace serine with proline. However, the international application gives no indication as to whether this serine can actually be linked to the success of increased temperature stability by proline exchange or one of the many other measures mentioned there. A mutation S188P is therefore no longer claimed in European patent EP 260299 resulting from the international application mentioned.
Die internationale Anmeldung W089/6279 schlägt ebenfalls vor, die Eigen¬ schaften von Subtilisin-Proteasen durch Austausch einzelner Aminosäuren zu verbessern. Es werden dort Änderungen an ca. 60 Aminosäuren des insgesamt ca. 275 Aminosäuren enthaltenen Moleküls vorgeschlagen. Eine der Vorschlä¬ ge lautet dabei; in Position 194 irgendeinen Austausch durchzuführen. Außer in den genannten Anmeldungen werden auch noch in den folgenden An¬ meldungen Vorschläge zur Änderung einzelner Aminosäure in Subtilisin- Proteasen gemacht: EP 130 756, EP 246678, EP 247 667 und EP 251 446.International application WO89 / 6279 also proposes to improve the properties of subtilisin proteases by exchanging individual amino acids. Changes to approximately 60 amino acids of the molecule containing a total of approximately 275 amino acids are proposed there. One of the suggestions is; to carry out any exchange in position 194. In addition to the applications mentioned, the following applications also make suggestions for changing individual amino acids in subtilisin proteases: EP 130 756, EP 246678, EP 247 667 and EP 251 446.
Vor dem Hintergrund dieses Standes der Technik war es Aufgabe der Erfin¬ dung, einen Weg zu finden, die Aminosäuresequenz von Subtilisin-Proteasen so zu verändern, daß die Temperaturstabilität erhöht wird.Against the background of this prior art, it was the object of the invention to find a way to change the amino acid sequence of subtilisin proteases in such a way that the temperature stability is increased.
Gegenstand der Erfindung ist daher eine subtilisinartige Serinprotease, hergestellt durch Mutation des Strukturgens eines Wildstammes und Expres¬ sion des mutierten Strukturgens in einem Produktionsstamm, dadurch gekenn¬ zeichnet, daß nach der BPN'-Zählung in Position 194 der Protease ein Glu¬ taminsäurerest und gewünschtenfalls in Position 188 ein Prolinrest vor¬ handen ist.The invention therefore relates to a subtilisin-like serine protease, produced by mutating the structural gene of a wild strain and expressing the mutated structural gene in a production strain, characterized in that after the BPN 'count in position 194 of the protease, a glutamic acid residue and, if desired a proline residue is present in position 188.
Die Numerierung der auszutauschenden Positionen in den erfindungsgemäß mutierten Proteasen bezieht sich in jedem Falle auf die Protease BPN'-. Um von einer beliebigen anderen Serinprotease vom Subtilisintyp auf diese Numerierung zu kommen, wird der Fachmann die Aminosäuresequenz dieser Pro¬ tease so unter die durchnumerierte Sequenz der Protease BPN'- legen, daß eine maximale Übereinstimmung erzielt wird. Dazu werden im Einzelfalle teilweise Auslassungen oder Einfügungen einzelner oder mehrerer Aminosäu¬ ren nötig sein. Die Art der Numerierung ist in der bereits zitierten W089/6279 beschrieben. Zur Herstellung der erfindungsgemäßen mutierten Proteasen kann der Fach¬ mann von einer großen Vielzahl von subtilisinartigen Serinproteasen aus¬ gehen. So beispielsweise von den in den eingangs genannten Übersichtsarti¬ keln genannten oder aber auch von bereits mutierten Enzymen. Gängige subtilisinartige Serinproteasen sind beispielsweise Subtilisin BPN1-, Subtilisin Carlsberg oder auch die Subtilisine aus Bacillus lentus. Dem Fachmann ist klar, daß er zur Erzeugung von Clonen, die neue, mutierte Enzyme herstellen, nicht von dem Enzym selber ausgeht, sondern von dem da¬ für codierenden Strukturgen und dieses einer Mutagenese unterwirft und dann wieder in einen Produktionsstamm einsetzt.The numbering of the positions to be exchanged in the proteases mutated according to the invention relates in each case to the protease BPN'-. In order to come to this numbering from any other serine protease of the subtilisin type, the person skilled in the art will place the amino acid sequence of this protease under the numbered sequence of the protease BPN 'in such a way that maximum agreement is achieved. In individual cases, this may require omissions or insertions of one or more amino acids. The type of numbering is described in the already cited W089 / 6279. To produce the mutated proteases according to the invention, the person skilled in the art can start from a large number of subtilisin-like serine proteases. For example, from the enzymes mentioned in the overview articles mentioned above or also from mutated enzymes. Common subtilisin-like serine proteases are, for example, Subtilisin BPN 1 -, Subtilisin Carlsberg or also the Subtilisins from Bacillus lentus. It is clear to the person skilled in the art that in order to generate clones which produce new, mutated enzymes, he does not start from the enzyme itself, but from the structural gene coding therefor and subjects it to mutagenesis and then uses it again in a production strain.
Nach einer Ausführungsform der Erfindung ist es besonders bevorzugt, von solchen Proteasen auszugehen, die in der Position 194 (alle Positionen nach BPN'-Zählung) die Aminosäure .Alanin tragen, die dann erfindungsgemäß gegen Glutaminsäure ausgetauscht wird. Nach einer weiteren Ausführungsform der Erfindung wird von solchen Proteasen ausgegangen, die in 194 die Ami¬ nosäure Alanin und in 188 die Aminosäure Serin tragen, wobei ein Austausch A194E und S188P durchgeführt wird. Geeignete Ausgangsmaterialien für eine Mutation dieser Art sind beispielsweise Proteasen vom Typ Subtilisin Carlsberg und dessen Varianten. Unter diesen Varianten besonders bevorzugt ist eine Subtilisin Carlsberg-Variante mit einer Mutation N158S und S161N (BPN'-Zählung). Das Strukturgen einer derartigen Protease ist in der euro¬ päischen Patentanmeldung EP 214435 beschrieben.According to one embodiment of the invention, it is particularly preferred to start from those proteases which carry the amino acid .alanine in position 194 (all positions according to BPN 'count), which is then exchanged according to the invention for glutamic acid. According to a further embodiment of the invention, those proteases are assumed which carry the amino acid alanine in 194 and the amino acid serine in 188, an exchange A194E and S188P being carried out. Suitable starting materials for a mutation of this type are, for example, proteases of the Subtilisin Carlsberg type and its variants. Among these variants, a subtilisin Carlsberg variant with a mutation N158S and S161N (BPN 'count) is particularly preferred. The structural gene of such a protease is described in European patent application EP 214435.
Nach einer weiteren bevorzugten Ausführungsform der Erfindung geht man von einer Protease aus Bacillus lentus aus. Geeignet sind neben Proteasen, die in der W089/6279 beschrieben sind, auch insbesondere eine Protease, die in der W091/02792, Figur 29, beschrieben ist. In der Zählung, wie sie in der W091/02792 vorgenommen wird, entspricht Aminosäure Serin in der Position 182 dem Serin 188 nach BPN'-Zählung. Dabei ist der Unterschied darauf zu¬ rückzuführen, daß das dort beschriebene Protein einige Deletionen gegen¬ über BPN' enthält.According to a further preferred embodiment of the invention, a protease from Bacillus lentus is used. In addition to proteases which are described in WO89 / 6279, a protease which is described in WO91 / 02792, FIG. 29, is also particularly suitable. In the count as it is carried out in WO91 / 02792, amino acid serine in position 182 corresponds to serine 188 after BPN 'counting. The difference here is due to the fact that the protein described therein contains some deletions from BPN '.
Nach einer besonders bevorzugten Ausführungsform der Erfindung werden Pro- teasemutanten hergestellt, die nach Subtilisin BPN'-Zählung die folgende Aminosäuresequenz enthalten: 188P-189F-190S-191S-192V-193G-194E-195E-196L-197E-198V-199M. Besonders bevorzugt im Sinne der Erfindung ist, daß diese Sequenz in eine Protease, wie sie in der W091/02792 beschrieben ist, zwischen Position 181 und 194 eingefügt wird.According to a particularly preferred embodiment of the invention, protease mutants are produced which, after subtilisin BPN 'count, contain the following amino acid sequence: 188P-189F-190S-191S-192V-193G-194E-195E-196L-197E-198V-199M. It is particularly preferred in the sense of the invention that this sequence is inserted into a protease, as described in WO91 / 02792, between positions 181 and 194.
Die erfindungsgemäßen neue Proteasemutanten zeigen verbesserte Stabili¬ täten. So werden die Halbwertszeiten der autoproteolytischen Degradation über einen weiten Temperaturbereich verlängert, wodurch zugleich Hitze und Lagerstabilität ansteigen. Die Verlängerung der Halbwertszeit wird dabei auch unter nicht physiologischen Bedingungen, das heißt zum Beispiel in Gegenwart von Komplexbildnern erreicht. Die erfindungsgemäßen Proteasen können mit Hilfe zahlreicher Methoden hergestellt werden. Bevorzugt sind die Methoden der Random-in vitro-Mutagenese (RIM) sowie der gerichteten Mutagenese. Die auf diesem Wege hergestellten geänderten Strukturgene können in üblicher Weise in bekannten Expressionssystemen exprimiert und produziert werden. Verwiesen sei hier beispielsweise auf die W091/02792. Für die Expression in einem Produktionsstamm und auf die zuvor genannten Anmeldungen W089/06279, EP 260299, EP 130756, EP 246678, EP 247647, EP 251 446.The new protease mutants according to the invention show improved stability. The half-lives of the autoproteolytic degradation are extended over a wide temperature range, which increases the heat and storage stability at the same time. The prolongation of the half-life is also achieved under non-physiological conditions, for example in the presence of complexing agents. The proteases according to the invention can be produced with the aid of numerous methods. The methods of random in vitro mutagenesis (RIM) and directed mutagenesis are preferred. The modified structural genes produced in this way can be expressed and produced in a conventional manner in known expression systems. For example, please refer to W091 / 02792. For expression in a production strain and for the aforementioned applications W089 / 06279, EP 260299, EP 130756, EP 246678, EP 247647, EP 251 446.
Die erfindungsgemäßen Mutanten zeigen erhöhte Stabilität der Protease nicht nur bei ihrem Einsatz in Wasch- und Reinigungsmitteln, sondern sie können auch bei der Aufreinigung ohne zusätzlich Kühlung des Prozeßmediums großtechnisch hergestellt werden. The mutants according to the invention not only show increased stability of the protease when used in detergents and cleaning agents, but they can also be produced on an industrial scale during purification without additional cooling of the process medium.
Beispiele Beispiel 1 1. Random-in-vitro-MutaqeneseExamples Example 1 1. Random in vitro mutagenesis
Ausgegangen wurde von dem Strukturgen gemäß der europäischen Patentanmel¬ dung EP 214 435 und dem dort genannten Expressionsvektor pC51. Diese Se¬ quenz wurde zunächst durch gerichtet Mutation, die keinen Aminosäureaus¬ tausch zur Folge hatte, an der Position 597 der Gensequenz von pC51 durch T nach G-Austausch mit der Restriktionsschnittstelle Narl versehen, das neue Plasmid heißt pASl. Die Position 597 entspricht der Aminosäure Alanin in Position 200 nach BPN'-Zählung. Die Restriktion von pASl mit Narl und Pstl ergibt ein 142 bp langes Genfragment, das den Bereich der Subtili- sin-Sequenz enthält, der für die schwache Calcium-Bindungsstelle des Moleküls codiert. Dieses doppelsträngige Genfragment wurde in vitro aus synthetischen Oligonukleotiden zusammengesetzt und als Genkassette be¬ zeichnet.The starting point was the structural gene according to European patent application EP 214 435 and the expression vector pC51 mentioned there. This sequence was first provided with the restriction site Nar1 at position 597 of the gene sequence of pC51 by T after G exchange by directed mutation, which did not result in an amino acid exchange, the new plasmid being called pASl. Position 597 corresponds to the amino acid alanine in position 200 after BPN 'count. Restriction of pASl with Narl and Pstl results in a 142 bp gene fragment which contains the region of the subtilisin sequence which codes for the weak calcium binding site of the molecule. This double-stranded gene fragment was assembled in vitro from synthetic oligonucleotides and referred to as a gene cassette.
T CT C
Nukleotidsequenz: GCT CCA TTC TCC AGC GTC GGA GAA GAG CTT GAA GTC ATG Aminosäuresequenz: A P F S S V G E E L E V M Position: 187 188 189 190 191 192 193 194 195 196 197 198 199Nucleotide sequence: GCT CCA TTC TCC AGC GTC GGA GAA GAG CTT GAA GTC ATG Amino acid sequence: A P F S S V G E E L E V M Position: 187 188 189 190 191 192 193 194 195 196 197 198 199
Dargestellt ist die Gensequenz der stabileren S188P, A194E-Protease im Bereich des mutagenen Oligonukleotids III. Die Nukleotidsequenz ist den Konventionen entsprechend in 5'-3'-Richtung des Gens angegeben. Die ur¬ sprünglichen Wildtyp-Nukleotide sind für jeden gefundenen Austausch über der Nukleotid-Sequenz angegeben. Für die Oligonukleotid-Synthese wurden dotierte (=verunreinigte) Phosporamidit-Lösungen verwendet. Die stabilere Protease geht auf ein Molekül des Oligonukleotids III des oberen Stranges (Figur 1) zurück. Figur 1 zeigt die Darstellung der synthetischen Kassette mit Unterteilung in die Oligonukleotide. Das mutagene Oligonukleotid III ist markiert. Die Aminosäuresequenz ist im Einbuchstabencode angegeben, ausgewählte Positionen sind numeriert. An mutierten Positionen außerhalb des Oligonukleotids III wurde das ursprüngliche Wildtypnukleotid oberhalb oder unterhalb des Austausches angegeben.The gene sequence of the more stable S188P, A194E protease in the region of the mutagenic oligonucleotide III is shown. The nucleotide sequence is given according to the conventions in the 5'-3 'direction of the gene. The original wild-type nucleotides are indicated above the nucleotide sequence for each exchange found. Doped (= contaminated) phosporamidite solutions were used for the oligonucleotide synthesis. The more stable protease is due to a molecule of oligonucleotide III in the upper strand (FIG. 1). Figure 1 shows the representation of the synthetic cassette with division into the oligonucleotides. The mutagenic oligonucleotide III is marked. The amino acid sequence is given in the one-letter code, selected positions are numbered. The original wild-type nucleotide was indicated above or below the exchange at mutated positions outside the oligonucleotide III.
Während der Synthese der Oligonukleotid-Moleküle III wurden alle vier Phosphoramidit-Lösungen mit den jeweils drei übrigen Phosphoramiditen verunreinigt. Die Konzentration eines dotierenden Phosphora idits in der Lösung betrug 2 % der Konzentration des Wildtypnukleotids. Diese Dotierung war dazu geeignet, über die Oligonukleotid III-Sequenz durchschnittlich 1-2 Nukleotidaustausche pro synthetisiertem Molekül an beliebiger Position einzuführen. Alle übrigen Oligonukleotide (I, II, IV, V, VI) wurden grö߬ tenteils mit Wildtypsequenz synthetisiert, an einigen wenigen Positionen wurden gerichtete Nukleotidaustausche eingefügt, durch die die Aminosäu¬ resequenz nicht verändert wurde, aber geeignete Restriktionsschnittstellen eingefügt wurden. Diese Schnittstellen dienten nach Replikation der Kas¬ sette als Reporterschnittstellen in folgenden Klonierungsschritten. In Abbildung 1 sind die Nukleotide der Wildtypsequenz über oder unter der tatsächlich synthetisierten Sequenz angegeben. Aus Oligonukleotiden mit Wildtypsequenz und den mutierten Oligonukleotiden wurden der obere und untere Strang des Kassettenfragments zusammengesetzt und die Stränge hybridisiert. Für die Hybridisierung wurden δOpmol/Oligonukleotid einge¬ setzt. Die entstandenen synthetischen Fragmente wurden mit Pstl und Narl nachgeschnitten, um eventuelle Multimere in die Mono ere zu überführen. Die synthetischen Kassettenfragmente wurden durch Gelelution von den freien Oligonukleotiden gereinigt. 0,05 μg des eluierten Kassettenfrag¬ ments wurden in 0,5 μg Pstl, Narl, Smal-geschnittenen, dephosphorylierten und aufgereinigten pUC19-Vektor einkloniert. Das gesamte Ligationsprodukt wurde in Escherichia coli XL-1 transformiert und die Transformanden in vier 250 ml-Kulturen amplifiziert. Aus den amplifizierten Escherichia coli-Kulturen wurden die Plasmide präpariert, die zu 50 % Replikationspro- dukte des oberen, mutagenen und zu 50 % Replikationsprodukte des unteren Wildtypstranges waren. 40 μg der Plasmidpräparation wurden mit Xhol, Pstl und Narl geschnitten und die mutagenen, amplifizierten Kassettenfragmente gelelektrophoretisch abgetrennt. Wildtypfragmente wurden durch diese Behandlung zerschnitten und sind nicht mehr im Eluat enthalten. 0,08 μg der eluierten mutagenen Kassettenfragmente wurden in 1,7 μg des Expressions¬ vektors pASl einkloniert und in Aliquots von 0,25 μg/Ansatz in den Bacillus subtilis-Stamm DB104 transformiert. Dieser Stamm ist defizient in den genomischen und alkalischen Proteasen. Es exprimiert nur die plasmidcodierten Enzym-Varianten (Doi et al. (1986), Trends in Biotechno- logy 4, S. 232 - 235). Insgesamt wurden auf diese Weise 25 000 Klone pro Ansatz erzeugt. Die entstandene Mutantenbank wurde RIM2 genannt.During the synthesis of oligonucleotide molecules III, all four phosphoramidite solutions were combined with the three remaining phosphoramidites contaminated. The concentration of a doping phosphoride in the solution was 2% of the concentration of the wild-type nucleotide. This doping was suitable for introducing an average of 1-2 nucleotide exchanges per synthesized molecule at any position via the oligonucleotide III sequence. All other oligonucleotides (I, II, IV, V, VI) were largely synthesized with wild-type sequences, directed nucleotide exchanges were inserted at a few positions, by which the amino acid sequence was not changed, but suitable restriction sites were inserted. After replication of the cassette, these interfaces served as reporter interfaces in the following cloning steps. Figure 1 shows the nucleotides of the wild type sequence above or below the sequence actually synthesized. The upper and lower strands of the cassette fragment were assembled from oligonucleotides with wild-type sequence and the mutated oligonucleotides and the strands were hybridized. ΔOpmol / oligonucleotide was used for the hybridization. The resulting synthetic fragments were trimmed with Pstl and Narl in order to convert any multimers into the monomers. The synthetic cassette fragments were purified from the free oligonucleotides by gel elution. 0.05 μg of the eluted cassette fragment was cloned into 0.5 μg Pstl, Narl, Smal-cut, dephosphorylated and purified pUC19 vector. The entire ligation product was transformed into Escherichia coli XL-1 and the transformants were amplified in four 250 ml cultures. The plasmids which were 50% replication products of the upper, mutagenic and 50% replication products of the lower wild-type strand were prepared from the amplified Escherichia coli cultures. 40 μg of the plasmid preparation were cut with Xhol, Pstl and Narl and the mutagenic, amplified cassette fragments were separated by gel electrophoresis. Wild-type fragments were cut up by this treatment and are no longer contained in the eluate. 0.08 μg of the eluted mutagenic cassette fragments were cloned into 1.7 μg of the expression vector pASl and transformed into Bacillus subtilis strain DB104 in aliquots of 0.25 μg / batch. This strain is deficient in the genomic and alkaline proteases. It only expresses the plasmid-encoded enzyme variants (Doi et al. (1986), Trends in Biotechnologie 4, pp. 232 - 235). All in all 25,000 clones per batch were generated in this way. The resulting mutant bank was called RIM2.
Die stabilisierten Protease-Varianten wurden durch Temperaturgradienten- Gelelektrophorese auf erhöhte Thermostabilität, i. e. erhöhte Autoproteo- lyse-Stabilität und auf eröhte Strukturstabilität, untersucht, für das Screening der Mutantenbank. Anwendbar ist auch die Methode der W089/06279, Seite 24.The stabilized protease variants were increased by temperature gradient gel electrophoresis to thermostability, i. e. increased autoproteolysis stability and increased structural stability, examined, for the screening of the mutant library. The method of W089 / 06279, page 24 can also be used.
Die Pstl-Narl-Fragmente stabilisierter Protease-Varianten-Gene wurden zum Zwecke der leichteren Sequenzierung in den Escherichia coli-Vektor pUC19 kloniert. Aus der Mutantenbank werdenl4 Klone selektioniert, die Proteasen mit erhöhter Temperaturstabilität exprimieren.The Pstl-Narl fragments of stabilized protease variant genes were cloned into the Escherichia coli vector pUC19 for the purpose of easier sequencing. Fourteen clones are selected from the mutant library, which express proteases with increased temperature stability.
Dabei wurden typischerweise 2 μg des zu sequenzierenden Plasmids aus dem Bacillusklon der RIM2-Bank präpariert und mit Pstl und Narl geschnitten. Dabei wird das umzuklonierende Kassettenfragment herausgeschnitten. 0,006 μg des Kassettenfragments wurden in 0,055 μg des Escherichia coli-Vektors pUC19 ligiert und das Ligat in Escherichia coli XL-1 transformiert. Die Transformanden wurden amplifiziert und die Plasmide eines Klons aus einer 4 ml-Kultur präpariert. Diese Plasmide wurden für eine konventionelle Sequenzierungsreaktion eingesetzt, wobei die gesamte Pstl-Narl-Kassette sequenziert wurde. Dabei wurden der A194E und der S188P-Austausch festge¬ stellt. Beispiel 1 zeigt die Nukleotid-Sequenz und die Aminosäuresequenz des A194E, S188P-Klons. Der A194E-Austausch wird für die erhöhte Thermo¬ stabilität verantwortlich gemacht.Typically, 2 μg of the plasmid to be sequenced were prepared from the Bacillus clone of the RIM2 bank and cut with Pstl and Narl. The cassette fragment to be cloned is cut out. 0.006 μg of the cassette fragment was ligated into 0.055 μg of the Escherichia coli vector pUC19 and the ligate was transformed into Escherichia coli XL-1. The transformants were amplified and the plasmids of a clone prepared from a 4 ml culture. These plasmids were used for a conventional sequencing reaction in which the entire Pstl-Narl cassette was sequenced. The A194E and the S188P exchange were found. Example 1 shows the nucleotide sequence and the amino acid sequence of the A194E, S188P clone. The A194E exchange is responsible for the increased thermostability.
Beispiel 2Example 2
Für die Einführung des stabilisierenden Glutamatrestes an den entsprechen¬ den Positionen verwandter Subtilisin-Gene, sowie für die Einführung der Sequenz gemäß Anspruch 3 stehen verschiedene Methoden der gerichteten Mutagenese zur Verfügung. Eine wegen ihrer hohen Effizienz bevorzugte Me¬ thode ist die von Wells et al, Gene 34, 315 - 323, (1985) beschriebene Kassettenmutagenese analog Beispiel 1. Das zu mutierende Genfragment, das mit für die Klonierung geeigneten Restriktionsschnittstellen endet, wird in vitro aus synthetischen Oligonukleotiden zusammengesetzt. Im Falle ei¬ ner gerichteten Mutagenese werden die gewünschten Nukleotid-Austausche während der Oligonukleotid-Synthese eingeführt. Bei jedem Austausch in Oligonukleotiden, die den oberen Strang bilden, werden die entsprechenden komplementären Austausche im unteren Strang ebenfalls eingeführt, so daß nach der Hybridisierung zum doppelsträngigen Fragment keine Fehlpaarungen entstehen.Various methods of directed mutagenesis are available for the introduction of the stabilizing glutamate residue at the corresponding positions of related subtilisin genes and for the introduction of the sequence according to claim 3. A preferred method because of its high efficiency is the cassette mutagenesis described by Wells et al, Gene 34, 315-323, (1985) analogously to Example 1. The gene fragment to be mutated, the ends with restriction sites suitable for cloning, is composed in vitro of synthetic oligonucleotides. In the case of directed mutagenesis, the desired nucleotide exchanges are introduced during the oligonucleotide synthesis. With each exchange in oligonucleotides, which form the upper strand, the corresponding complementary exchanges are also introduced in the lower strand, so that no mismatches occur after hybridization to the double-stranded fragment.
Die synthetische Kassette wird über die endständigen Restriktionsschnitt¬ stellen in den mit den gleichen Restriktionsenzymen geschnittenen Ziel¬ vektor einkloniert. Der geschnittene Zielvektor wird vom herausgeschnitte¬ nen Wildtyp-Genfragment durch Gelelution abgetrennt. Für die gerichtete Mutagenese zur Einführung der Sequenz 188P-189F-190S-191S-192V-193G-194E-195E-196L-197E-198V-199M in das Gen der Protease gemäß internationaler Anmeldung W091/02792 kann die in Beispiel 1 beschriebene Pstl-Narl-Kassette verwendet werden, die den gesamten Bereich der schwachen Calcium-Bindungsstelle umfaßt. Es müssen die folgenden Aus¬ tausche vorgenommen werden: Q191S, Y192V, G195E, D197E, I198V, V199M. Zu¬ gleich wird der stabilisierende Austausch A194E und der S188P-Austausch eingeführt. Da es sich um gerichtete Mutagenese handelt, kann das synthe¬ tische Pstl-Narl-Fragment mit den eingeführten Mutationen direkt (d. h. ohne Amplifikation in Escherichia coli, wie für Rando -Mutagenese notwen¬ dig) in einen Bacillus-Vektor kloniert und in einen geeigneten Bacillus- Expressionssta m transformiert werden.The synthetic cassette is cloned into the target vector cut with the same restriction enzymes via the terminal restriction sites. The cut target vector is separated from the cut wild-type gene fragment by gel elution. For directed mutagenesis for the introduction of the sequence 188P-189F-190S-191S-192V-193G-194E-195E-196L-197E-198V-199M into the gene of the protease according to international application W091 / 02792, the Pstl described in Example 1 can be used. Narl cassette can be used, which covers the entire area of the weak calcium binding site. The following exchanges must be made: Q191S, Y192V, G195E, D197E, I198V, V199M. At the same time, the stabilizing exchange A194E and the S188P exchange are introduced. Since it is directed mutagenesis, the synthetic Pstl-Narl fragment with the introduced mutations can be cloned directly (ie without amplification in Escherichia coli, as necessary for Rando mutagenesis) into a Bacillus vector and into a suitable one Bacillus expression strain can be transformed.
Nachweis der Temperaturstabilität von ProteasemutaπtenDetection of the temperature stability of protease seminars
1. Methode1. method
Angewandt wurde die senkrechte Temperaturgradienten-Gelelektrophorese (TGGE). Diese Methode ist gekennzeichnet durch einen Temperaturgradienten der mittels einer Thermostatisierplatte senkrecht zur Auftrennungsrichtung der Probe an das Gel angelegt wird. Das 0,8 mm dicke 10%ige Polyacrylamid- gel (20 cm x 20 cm) wurde auf Gelbond-Folie polymerisiert und auf die Thermostatisierplatte aus teflonbeschichtetem Aluminium aufgelegt. Die Platte wurde mit Hilfe von kühlbaren Wasserther ostaten (Julabo) auf der einen Seite gekühlt, auf der anderen Seite erhitzt, so daß sich über die gesamte Breite ein linearer Temperaturgradient ausbilden konnte. Die Probe wurde in eine 13 cm lange, 0,3 cm breite Auftragstasche gegeben, die senkrecht zum Verlauf des Temperaturgradienten lag. Nach 90 min bei zu¬ nächst gleichmäßiger Temperatur von 25 °C wurde der Temperaturgradient angelegt (Ecktemperaturwahl je nach Anwendung, aber nicht höher als 80°C. Die Ecktemperaturen für diejenigen TGGEs, die die Stabilisierung durch den A194E-Austausch zeigen, betrugen 50 °C und 70°C. Die Auftrennung bei an¬ gelegtem Temperaturgradient erfolgte bei 350 V und limitierter Stromstärke von 110 mA für 30 min. Die Probe wanderte nunmehr an jeder Stelle des Gels gemäß der temperaturinduzierten MoleküIkonformation. Als Standardgel und Elektrodenpuffer wurde 0,025 M KOH/Essigsäure, pH 5,0 benutzt. Ferner wurden 0,1 m CaCl2 im Gel und Elektrodenpuffer eingesetzt.Vertical temperature gradient gel electrophoresis (TGGE) was used. This method is characterized by a temperature gradient which is applied to the gel perpendicular to the separation direction of the sample by means of a thermostatic plate. The 0.8 mm thick 10% polyacrylamide gel (20 cm x 20 cm) was polymerized on gel-yellow film and placed on the thermostatic plate made of Teflon-coated aluminum. The plate was cooled with the help of coolable water thermostats (Julabo) on one side and heated on the other side, so that a linear temperature gradient could develop over the entire width. The sample was placed in a 13 cm long, 0.3 cm wide application bag, which was perpendicular to the course of the temperature gradient. After 90 minutes at an initially uniform temperature of 25 ° C., the temperature gradient was applied (corner temperature selection depending on the application, but not higher than 80 ° C. The corner temperatures for those TGGEs which show the stabilization by the A194E exchange were 50 ° C. and 70 ° C. The separation with an applied temperature gradient was carried out at 350 V and a limited current of 110 mA for 30 minutes. Acetic acid, pH 5.0 was used and 0.1 M CaCl2 in the gel and electrode buffer were also used.
Für den direkten Vergleich zwischen zwei Proben (z. B. Wildtyp und Vari¬ ante) in einer senkrechten TGGE wurden zwei Auftragstaschen untereinander (Abstand ca. 7 cm) benutzt. Der Nachweis der Protokoπformationen erfolgte nach der Elektrophorese durch Aktivitäts- und Silberfärbung. Die Silber¬ färbung wurde nach Blum et al (1987) durchgeführt, die Aktivitätsfärbung wurde durchgeführt, indem das Gel über Nacht in 0,2 μg/ml Alpha- Naphtylacetat, 0,5 μg/inl Fast-Red, 0,1 M Kalium-Phosphat-Puffer, pH 7,5 geschüttelt wurde. Die esterolytische Aktivität der nativen Protease- Konformation wird als roter Farbniederschlag sichtbar. Aktive Proben zei¬ gen aufgrund der autoproteolytischen Reaktion, die während der thermischen Auffaltung der Moleküle auftritt, keine denaturierte Konformation. Nur die native und aktive Konformation ist bis zur Autoproteolyse-Temperatur im Gel nachweisbar. Der Strukturübergang von der nativen zur denaturierten Konformation kann nur nach Inhibition der Proteasen durch Inkubation in 1 M Phenyl-Methyl-Sulfonyl-Fluorid nachgewiesen werden. Der Verlauf des Temperaturgradienten wurde durch Anlegen eines PtlOO-Meßwiderstandes an die Thermostatisierplatte nachgemessen.For the direct comparison between two samples (eg wild type and variant) in a vertical TGGE, two application pockets one below the other (distance approx. 7 cm) were used. The protoco formation was demonstrated after electrophoresis by activity and silver staining. The silver staining was carried out according to Blum et al (1987), the activity staining was carried out by adding the gel overnight in 0.2 μg / ml alpha-naphthyl acetate, 0.5 μg / inl Fast-Red, 0.1 M potassium -Phosphate buffer, pH 7.5 was shaken. The esterolytic activity of the native protease conformation is visible as a red color deposit. Due to the autoproteolytic reaction that occurs during the thermal unfolding of the molecules, active samples do not show any denatured conformation. Only the native and active conformation is detectable in the gel up to the autoproteolysis temperature. The structural transition from the native to the denatured conformation can only be demonstrated after inhibition of the proteases by incubation in 1 M phenyl-methyl-sulfonyl-fluoride. The course of the temperature gradient was measured by applying a Pt100 measuring resistor to the thermostatic plate.
Nach der genannten Methode wurden miteinander verglichen die Subtilisin Carlsberg-Variante gemäß EP 214 435 mit einer S188P-Mutation des Enzyms sowie mit einer S188P- und A194E-Mutation des Enzyms. Die beiden Mutanten sind durch gerichtete oder durch Zufalls-in-vitro-Mutagenese herstellbar. Die Strukturgene wurden nach allgemein bekannten Methoden in Expressions¬ vektoren kloniert und in einem proteasefreien, allgemein zugänglichen Stamm exprimiert. Es wurden Kulturen des clonierten proteasefreien Stammes herangezogen und nach einer Fermentationsdauer von 24 Stunden 20 ml Kul¬ turüberstand gewonnen und aufkonzentriert. Für die Temperaturgradienten¬ gelelektrophorese wurden insgesamt 8 ml Kulturüberstand pro Protease-Typ in Centricon-10-Filtrationsröhrchen der Firma Amicon auf 300 μl eingeengt, mit 2 ml einer 0,1 M CaCl2-Lösung vermischt und erneut mit Centricon-10- Röhrchen auf 200 μl eingeengt. Dieser letzte Schritt ist ein Dialyse- Schritt, der für die Verringerung des Salzgehaltes der Probe essentiell ist, da diese nur dann einer Geelektrophorese unterzogen werden kann. Der Dialyse-Schritt wurde unmittelbar vor der Elektrophorese durchgeführt werden, da die dialysierte Probe nur wenige Stunden stabil ist. Die 300 μl der dialysierten Probe wurden mit 300 μl Elektrodenpuffer (siehe oben) verdünnt und in der TGGE analysiert.The subtilisin Carlsberg variant according to EP 214 435 with an S188P mutation of the enzyme and with an S188P and A194E mutation of the enzyme were compared with one another by the method mentioned. The two mutants can be produced by directed or by random in vitro mutagenesis. The structural genes were cloned into expression vectors by generally known methods and expressed in a protease-free, generally accessible strain. Cultures of the cloned protease-free strain were used and, after a fermentation period of 24 hours, 20 ml of culture supernatant were obtained and concentrated. For the temperature gradient gel electrophoresis, a total of 8 ml of culture supernatant per protease type in Centricon 10 filtration tubes from Amicon was concentrated to 300 μl, mixed with 2 ml of a 0.1 M CaCl2 solution and again with Centricon 10 tubes to 200 μl concentrated. This last step is a dialysis step, which is essential for reducing the salt content of the sample, since only then can it be subjected to geelectrophoresis. The dialysis step was carried out immediately before electrophoresis, since the dialyzed sample is only stable for a few hours. The 300 ul of the dialyzed sample were diluted with 300 ul electrode buffer (see above) and analyzed in the TGGE.
Die Temperaturgradientengelelektrophorese hat das folgende Ergebnis ge¬ bracht:The temperature gradient gel electrophoresis gave the following result:
Die autoproteolytische Degradation der nachgewiesenen nativen Konformation setzte für den Subtilisin Carlsberg-Wildtyp (Variante N158S, S161N) und eine Protease, die nur den S188P-Austausch enthielt, bei der gleichen Temperatur (60,5 °C) ein, während diese Degradationstemperatur für die S188P, A194E-Mutante um 1,5 °C erhöht war. Anmerkung: Die Bestimmung der absoluten Degradationstemperatur gilt nur für die bereits angegebenen Lö¬ sungsbedingungen (d. h. pH 5 und 0,1 mM Calciumchlorid) der TGGE. Tabelle 1 faßt die Degradationstemperaturen zusammen:The autoproteolytic degradation of the detected native conformation started for the subtilisin Carlsberg wild type (variant N158S, S161N) and a protease that only contained the S188P exchange at the same temperature (60.5 ° C), while this degradation temperature for the S188P, A194E mutant was increased by 1.5 ° C. Note: The determination of the absolute degradation temperature only applies to the solution conditions of the TGGE already stated (i.e. pH 5 and 0.1 mM calcium chloride). Table 1 summarizes the degradation temperatures:
Protease-Typ DegradationstemperaturProtease type degradation temperature
Subtilisin Carlsberg 60,5 °CSubtilisin Carlsberg 60.5 ° C
S188P-Variante des Wildtyps 60,5 °C S188P; A194E-Variante des Wildtyps 62,0 °C S188P variant of the wild type 60.5 ° C S188P; A194E variant of the wild type 62.0 ° C

Claims

Patentansprüche Claims
1. Subtilisinartige Serinprotease, hergestellt durch Mutation des Struk¬ turgens eines Wildstammes und Expression des mutierten Strukturgens in einem Produktionsstamm, dadurch gekennzeichnet, daß nach der BPN'-Zäh¬ lung in Position 194 der Protease ein Glutaminsäurerest und gewünsch- tenfalls in Position 188 ein Prolinrest vorhanden ist.1. Subtilisin-like serine protease, produced by mutating the structural gene of a wild strain and expressing the mutated structural gene in a production strain, characterized in that after the BPN 'count in position 194 of the protease, a glutamic acid residue and, if desired, in position 188 Proline residue is present.
2. Serinprotease nach Anspruch 1, dadurch gekennzeichnet, daß sie die Mutation A194E, gewünschtenfalls in Kombination mit der Mutation S188P enthält.2. Serine protease according to claim 1, characterized in that it contains the mutation A194E, if desired in combination with the mutation S188P.
3. Serinprotease nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß sie ein Strukturelement 188P-189F-190S-191S-192V-193G-194E-195E-196L-197E-198V-199M enthält.3. Serine protease according to claims 1 or 2, characterized in that it contains a structural element 188P-189F-190S-191S-192V-193G-194E-195E-196L-197E-198V-199M.
4. Serinprotease nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß sie in den übrigen Resten mit Subtilisin Carlsberg oder einer Variante N158S und S161N von Subtilisin Carlsberg identisch ist.4. Serine protease according to claims 1 to 3, characterized in that it is identical in the remaining residues with Subtilisin Carlsberg or a variant N158S and S161N from Subtilisin Carlsberg.
5. Serinprotease nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie in den übrigen Resten mit einer alkalischen Bacillus lentus Protease übereinstimmt. 5. Serine protease according to one of claims 1 to 3, characterized in that it corresponds in the remaining residues with an alkaline Bacillus lentus protease.
PCT/EP1993/002492 1992-09-23 1993-09-15 Mutated subtilisine-like serin proteases WO1994006905A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6507790A JPH08501447A (en) 1992-09-23 1993-09-15 Mutant subtilisin-like serine protease
EP93920727A EP0662126A1 (en) 1992-09-23 1993-09-15 Mutated subtilisine-like serin proteases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924231726 DE4231726A1 (en) 1992-09-23 1992-09-23 Mutated subtilisin-like serine proteases
DEP4231726.6 1992-09-23

Publications (1)

Publication Number Publication Date
WO1994006905A1 true WO1994006905A1 (en) 1994-03-31

Family

ID=6468556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/002492 WO1994006905A1 (en) 1992-09-23 1993-09-15 Mutated subtilisine-like serin proteases

Country Status (4)

Country Link
EP (1) EP0662126A1 (en)
JP (1) JPH08501447A (en)
DE (1) DE4231726A1 (en)
WO (1) WO1994006905A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034935A2 (en) * 1995-05-05 1996-11-07 Unilever N.V. Subtilisin variants
WO1999049056A1 (en) * 1998-03-26 1999-09-30 The Procter & Gamble Company Serine protease variants having amino acid substitutions
US6908757B1 (en) 1998-03-26 2005-06-21 The Procter & Gamble Company Serine protease variants having amino acid deletions and substitutions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110256609A1 (en) * 2008-06-06 2011-10-20 Basler Joshua R Compositions And Methods Comprising Variant Microbial Proteases

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214435A2 (en) * 1985-08-03 1987-03-18 Henkel Kommanditgesellschaft auf Aktien Alkaline protease, method for the production of hybrid vectors and genetically transformed microorganisms
WO1989006279A1 (en) * 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
WO1989009819A1 (en) * 1988-04-12 1989-10-19 Genex Corporation Combining mutations for stabilization of subtilisin
EP0516200A1 (en) * 1991-05-01 1992-12-02 Unilever N.V. Detergent compositions containing stabilized enzymes
WO1992021760A1 (en) * 1991-05-29 1992-12-10 Cognis, Inc. Mutant proteolytic enzymes from bacillus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0214435A2 (en) * 1985-08-03 1987-03-18 Henkel Kommanditgesellschaft auf Aktien Alkaline protease, method for the production of hybrid vectors and genetically transformed microorganisms
WO1989006279A1 (en) * 1988-01-07 1989-07-13 Novo-Nordisk A/S Mutated subtilisin genes
WO1989009819A1 (en) * 1988-04-12 1989-10-19 Genex Corporation Combining mutations for stabilization of subtilisin
EP0516200A1 (en) * 1991-05-01 1992-12-02 Unilever N.V. Detergent compositions containing stabilized enzymes
WO1992021760A1 (en) * 1991-05-29 1992-12-10 Cognis, Inc. Mutant proteolytic enzymes from bacillus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034935A2 (en) * 1995-05-05 1996-11-07 Unilever N.V. Subtilisin variants
WO1996034935A3 (en) * 1995-05-05 1997-01-16 Unilever Nv Subtilisin variants
WO1999049056A1 (en) * 1998-03-26 1999-09-30 The Procter & Gamble Company Serine protease variants having amino acid substitutions
US6569663B1 (en) 1998-03-26 2003-05-27 The Procter & Gamble Company Serine protease variants having amino acid substitutions
US6908757B1 (en) 1998-03-26 2005-06-21 The Procter & Gamble Company Serine protease variants having amino acid deletions and substitutions

Also Published As

Publication number Publication date
EP0662126A1 (en) 1995-07-12
JPH08501447A (en) 1996-02-20
DE4231726A1 (en) 1994-03-24

Similar Documents

Publication Publication Date Title
DE68926163T2 (en) MUTTED SUBTILISINE GENES
DE68929484T2 (en) Proteolytic enzymes and their use in detergents
DE3853328T2 (en) SUBTILISIN ANALOG.
DE3750916T2 (en) Mutant of a non-human carbonyl hydrolase, DNA sequences and vectors coding therefor and hosts transformed by these vectors.
DE69534875T2 (en) CALCIUM-FREE SUBTILISIN MUTANT
DE69833652T2 (en) SYSTEM FOR EXPRESSING A HYPERTHERMOSTABILITY PROTEASE
DE69028040T2 (en) Multiple mutant subtilisins
DE69833031T2 (en) ALKALINE PROTEASE
EP1456366B1 (en) Novel alkali protease formed by bacillus gibsonii (dsm 14393) and washing and cleaning agents containing said novel alkali protease
DE19530816A1 (en) Use of mutant subtilisin protease in cosmetic products
DE68914664T2 (en) PURIFIED UBIQUITIN HYDROLASE, THESE ENCODING DNA SEQUENCES, AND THEIR USE TO OBTAIN POLYPEPTIDES.
DE2926808A1 (en) PROTEASE PRODUCT WITH REDUCED ALLERGENIC EFFECT, PRODUCTION PROCESS AND DETERGENT
DE3587407T2 (en) TOXIN SEGMENT OF THE CRYSTAL GENE FROM THE BACILLUS THURINGIENSIS.
EP4253511A2 (en) Variant proteases having improved performance and storage stability
EP3679132B1 (en) Performance-enhanced protease variants iii
DE69233710T2 (en) Expression vector for prolyl endopeptidase from Flavobacterium meningosepticum
EP0408945B1 (en) Plasmides, their preparation and their use in obtaining a plasminogen activator
DE69010096T2 (en) Expression and secretion of mature human beta-interleukin-1 in Bacillus subtilis and means and methods for their implementation.
WO1994006905A1 (en) Mutated subtilisine-like serin proteases
DE3730331A1 (en) NEW POLYPEPTIDES, METHOD FOR THE PRODUCTION THEREOF, THE VECTORS THEREFOR AND MEDICINAL PRODUCTS THEREOF
DD274053A5 (en) Process for producing a human single-chain plasminogen activator
DE69630630T2 (en) Staphylococcus aureus V8 protease mutants
DD297187A5 (en) EFFECTIVE MANUFACTURE OF MUTANT PROTEASES
DE69023101T2 (en) Bacterial collagenase gene.
EP1169461B1 (en) Use of pancreatic procarboxypeptidase B for the production of insulin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993920727

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 406861

Date of ref document: 19950522

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1993920727

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993920727

Country of ref document: EP