WO1994006897A1 - Fuel composition for two-cycle engines - Google Patents

Fuel composition for two-cycle engines Download PDF

Info

Publication number
WO1994006897A1
WO1994006897A1 PCT/US1993/008471 US9308471W WO9406897A1 WO 1994006897 A1 WO1994006897 A1 WO 1994006897A1 US 9308471 W US9308471 W US 9308471W WO 9406897 A1 WO9406897 A1 WO 9406897A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum
sulfur
compound
carboxylic acid
fuel composition
Prior art date
Application number
PCT/US1993/008471
Other languages
French (fr)
Inventor
Glenn E. Callis
Edward T. Sabourin
Original Assignee
Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. filed Critical Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc.
Priority to JP50815494A priority Critical patent/JP3495043B2/en
Priority to DE69322952T priority patent/DE69322952T2/en
Priority to AU48525/93A priority patent/AU670118B2/en
Priority to EP93921434A priority patent/EP0616635B1/en
Priority to CA002122825A priority patent/CA2122825C/en
Publication of WO1994006897A1 publication Critical patent/WO1994006897A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/06Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/18Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/20Organic compounds containing halogen
    • C10L1/201Organic compounds containing halogen aliphatic bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/20Organic compounds containing halogen
    • C10L1/202Organic compounds containing halogen aromatic bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/301Organic compounds compounds not mentioned before (complexes) derived from metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/301Organic compounds compounds not mentioned before (complexes) derived from metals
    • C10L1/303Organic compounds compounds not mentioned before (complexes) derived from metals boron compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/305Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/305Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
    • C10L1/306Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond) organo Pb compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/09Metal enolates, i.e. keto-enol metal complexes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • C10M2215/122Phtalamic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/26Two-strokes or two-cycle engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Definitions

  • the present invention relates to a fuel composition for two-cycle internal combustion engines which comprises a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising a lubricating oil and an additive formulation containing a molybdenum/sulfur complex of a basic nitrogen compound.
  • spark-ignited two-cycle (two-stroke) internal combustion engines including rotary engines such as those of the Wankel type has steadily increased. They are presently found in power lawn mowers and other power-operated garden equipment, power chain saws, pumps, electrical generators, marine outboard engines, snowmobiles, motorcycles, and the like.
  • U.S. Patent No. 4,708,809 to Davis discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of at least one alkyl phenol having at least one hydrocarbon-based group of at least 10 aliphatic carbon atoms.
  • such lubricant composition will also contain a detergent- dispersant additive selected from (i) a neutral or basic metal salt of an organic sulfur acid, phenol or carboxylic acid, (ii) a hydrocarbyl-substituted amine, (iii) an acylated, nitrogen-containing compound having a substituent of at least 10 aliphatic carbon atoms, (iv) a nitrogen-containing condensate of a phenol, aldehyde and amino compound, and (v) an ester of a substituted polycarboxylic acid.
  • a detergent- dispersant additive selected from (i) a neutral or basic metal salt of an organic sulfur acid, phenol or carboxylic acid, (ii) a hydrocarbyl-substituted amine, (iii) an acylated, nitrogen-containing compound having a substituent of at least 10 aliphatic carbon atoms, (iv) a nitrogen-containing condensate of a phenol, aldehyde
  • U.S. Patent No. 4,724,091 to Davis discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of a mixture of at least one alkyl phenol and at least one amino phenol, each phenol having at least one hydrocarbon-based group of at least about 10 aliphatic carbon atoms.
  • this composition will additionally contain a detergent-dispersant additive.
  • a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of at least one sulfurized alkyl phenol or metal salt thereof having at least one hydrocarbon-based group of at least 10 aliphatic carbon atoms.
  • This lubricant composition will also preferably contain a detergent-dispersant additive.
  • U.S. Patent No. 4,705,643 to Nemo discloses a lubricating oil composition for two-cycle engines comprising a lubricating oil and an ashless detergent additive which is the hydrolyzed reaction product of an aliphatic branched chain carboxylic acid of 16 to 20 carbon atoms and a polyamine of at least 3 amine groups.
  • the ashless detergent additive is the hydrolyzed reaction product of isostearic acid and tetraethylenepentamine.
  • U.S. Patent No. 4,994,196 to Kagaya et al. discloses a two-cycle engine oil composition comprising a base oil and a calcium phenate detergent additive, wherein the base oil is a mixture of (a) a copolymer of an alpha-olefin with an ester of a dicarboxylic acid and (b) an ester of pentaerythritol and a fatty acid.
  • U.S. Patent No. 3,888,776 to Silverstein discloses a two-cycle engine lubricant which comprises a major amount of a polypropylene glycol and minor amounts of a sulfurized oxymolybdenum organophosphorodithioate, a finely divided molybdenum disulfide and a halogenated hydrocarbon detergent, such as 1, 1, l-trichloroethylene, orthodichlorobenzene, perchlorinated biphenyl, and the like.
  • Molybdenum/sulfur complexes of basic nitrogen compounds have previously been described in the art as useful antioxidant additives for lubricant compositions finding application, for example, as crosshead diesel engine lubricants, automobile and railroad crankcase lubricants, lubricants for heavy machinery, greases for bearings, and the like.
  • U.S. Patent No. 4,263,152 to King et al. discloses an antioxidant additive for lubricating oils which is prepared by combining an acidic molybdenum compound, a polar promoter, a basic nitrogen-containing compound and a sulfur source to form a molybdenum and sulfur-containing complex. Similar molybdenum-containing antioxidant additives are disclosed in U.S. Patent Nos. 4,285,822; 4,283,295; 4,272,387; 4,265,773; 4,261,843; 4,259,195; and 4,259,194.
  • the present invention is directed to minimizing the problems of varnish build-up and ring sticking in two-cycle engines through the provision of effective additives for fuel-lubricating oil combinations which eliminate or reduce two-cycle engine varnish deposits and piston ring seal failure.
  • the present invention provides a fuel composition for two-cycle engines comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising:
  • a sulfurized molybdenum-containing composition prepared by (i) reacting an acidic molybdenum compound and a basic nitrogen compound selected from the group consisting of a succinimide, a carboxylic acid amide, a hydrocarbyl monoamine, a hydrocarbyl polyamine, a Mannich base, a phosphoramide, a thiophosphora ide, a phosphonamide, a dispersant viscosity index improver, or a mixture thereof, in the presence of a polar promoter, to form a molybdenum complex wherein from 0.01 to 2 atoms of molybdenum are present per basic nitrogen atom, and the promoter is present in the ratio of 0.01 to 50 moles of polar promoter per mole of molybdenum; and (ii) reacting the molybdenum complex with a sulfur-containing compound in an amount sufficient to provide about 1.5 to 4.0 atoms of sulfur per atom of molybdenum, to thereby form a
  • the present invention is based upon the unexpected discovery that additive formulations containing a molybdenum/sulfur complex of a basic nitrogen compound, plus a carboxylic acid amide and a succinimide are surprisingly effective agents for deposit control and reduction of piston ring sticking when combined in fuel-lubricating oil mixtures in two-cycle engines.
  • the fuel composition of the present invention will comprise a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising a base oil of lubricating viscosity and an additive formulation containing (1) a sulfurized molybdenum-containing composition, (2) a carboxylic acid amide, and (3) a succinimide.
  • the sulfurized molybdenum-containing composition employed in the present invention may be generally characterized as a molybdenum/sulfur complex of a basic nitrogen compound.
  • molybdenum/sulfur complexes are known in the art and are described, for example, in U.S. Patent No. 4,263,152 to King et al., the disclosure of which is hereby incorporated by reference.
  • molybdenum compositions employed in this invention are not known with certainty; however, they are believed to be compounds in which molybdenum, whose valences are satisfied with atoms of oxygen or sulfur, is either complexed by, or the salt of, one or more nitrogen atoms of the basic nitrogen containing compound used in the preparation of these compositions.
  • the molybdenum compounds used to prepare the molybdenum/sulfur complexes employed in this invention are acidic molybdenum compounds.
  • acidic is meant that the molybdenum compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure.
  • molybdenum compounds are hexavalent and are represented by the following compositions: molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate and other alkaline metal olybdates and other molybdenum salts such as hydrogen salts, e.g., hydrogen sodium molybdate, MoOCl 4 , Mo0 2 Br 2 , Mo 2 0 3 Cl 6 , molybdenum trioxide or similar acidic molybdenum compounds.
  • Preferred acidic molybdenum compounds are molybdic acid, ammonium molybdate, and alkali metal molybdates. Particularly preferred are molybdic acid and ammonium molybdate.
  • the basic nitrogen compound used to prepare the molybdenum/sulfur complexes must have a basic nitrogen content as measured by ASTM D-664 or D-2896. It is preferably oil-soluble. Typical of such compositions are succinimides, carboxylic acid amides, hydrocarbyl monoamines, hydrocarbon polya ines, Mannich bases, phosphoramides, thiophosphoramides, pho ⁇ phonamides, dispersant viscosity index improvers, and mixtures thereof. These basic nitrogen-containing compounds are described below (keeping in mind the reservation that each must have at least one basic nitrogen) .
  • any of the nitrogen-containing compositions may be after-treated with, e.g., boron, using procedures well known in the art so long as the compositions continue to contain basic nitrogen. These after-treatments are particularly applicable to succinimides and Mannich base compositions.
  • succinimide The mono and polysuccinimides that can be used to prepare the molybdenum/sulfur complexes described herein are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and the related materials encompassed by the term of art "succinimide” are taught in U.S. Patent Nos. 3,219,666; 3,172,892; and 3,272,746, the disclosures of which are hereby incorporated by reference. The term “succinimide” is understood in the art to include many of the amide, imide, and amidine species which may also be formed.
  • succinimide The predominant product however is a succinimide and this term has been generally accepted as meaning the product of a reaction of an alkenyl substituted succinic acid or anhydride with a nitrogen-containing compound.
  • Preferred succinimides because of their commercial availability, are those succinimides prepared from a hydrocarbyl succinic anhydride, wherein the hydrocarbyl group contains from about 24 to about 350 carbon atoms, and an ethylene amine, said ethylene amines being especially characterized by ethylene diamine, diethylene triamine, triethylene tetra ine, and tetraethylene pentamine.
  • Particularly preferred are those succinimides prepared from polyisobutenyl succinic anhydride of 70 to 128 carbon atoms and tetraethylene pentamine or triethylene tetramine or mixtures thereof.
  • succinimide also included within the term “succinimide” are the cooligomers of a hydrocarbyl succinic acid or anhydride and a poly secondary amine containing at least one tertiary amino nitrogen in addition to two or more secondary amino groups. Ordinarily this composition has between 1,500 and 50,000 average molecular weight.
  • a typical compound would be that prepared by reacting polyisobutenyl succinic anhydride and ethylene dipiperazine.
  • Carboxylic acid amide compositions are also suitable starting materials for preparing the molybdenum/sulfur complexes employed in this invention. Typical of such compounds are those disclosed in U.S. Patent No. 3,405,064, the disclosure of which is hereby incorporated by reference. These compositions are ordinarily prepared by reacting a carboxylic acid or anhydride or ester thereof, having at least 12 to about 350 aliphatic carbon atoms in the principal aliphatic chain and, if desired, having sufficient pendant aliphatic groups to render the molecule oil soluble with an amine or a hydrocarbyl polyamine, such as an ethylene amine, to give a mono or polycarboxylic acid amide.
  • hydrocarbyl monoamines and hydrocarbyl polyamines preferably of the type disclosed in U.S. Patent No. 3,574,576, the disclosure of which is hereby incorporated by reference.
  • the hydrocarbyl group which is preferably alkyl, or olefinic having one or two sites of unsaturation, usually contains from 9 to 350, preferably from 20 to 200 carbon atoms.
  • hydrocarbyl polyamines are those which are derived, e.g., by reacting polyisobutenyl chloride and a polyalkylene polyamine, such as an ethylene amine, e.g., ethylene diamine, diethylene tria ine, tetraethylene pentamine, 2-aminoethylpiperazine, 1, 3-propylene diamine, 1,2-propylenediamine, and the like.
  • ethylene amine e.g., ethylene diamine, diethylene tria ine, tetraethylene pentamine, 2-aminoethylpiperazine, 1, 3-propylene diamine, 1,2-propylenediamine, and the like.
  • Mannich base compositions Another class of compounds useful for supplying basic nitrogen are the Mannich base compositions. These compositions are prepared from a phenol or C 9 _ 20 g alkylphenol, an aldehyde, such as formaldehyde or formaldehyde precursor such as paraformaldehyde, and an amine compound.
  • the amine may be a mono or polyamine and typical compositions are prepared from an alkylamine, such as methylamine or an ethylene amine, such as, diethylene triamine, or tetraethylene pentamine, and the like.
  • the phenolic material may be sulfurized and preferably is dodecylphenol or a C 80 _ 100 alkylphenol.
  • Typical Mannich bases which can be used in this invention are disclosed in U.S. Patent No.
  • Mannich bases prepared by reacting an alkylphenol having at least 50 carbon atoms, preferably 50 to 200 carbon atoms with formaldehyde and an alkylene polyamine HN(ANH) n H where A is a saturated divalent alkyl hydrocarbon of 2 to 6 carbon atoms and n is 1-10 and where the condensation product of said alkylene polyamine may be further reacted with urea or thiourea.
  • compositions useful for preparing the molybdenum/sulfur complexes employed in this invention are the phosphoramides and phosphonamides such as those disclosed in U.S. Patent Nos. 3,909,430 and 3,968,157, the disclosures of which are hereby incorporated by reference. These compositions may be prepared by forming a phosphorus compound having at least one P-N bond.
  • They can be prepared, for example, by reacting phosphorus oxychloride with a hydrocarbyl diol in the presence of a monoamine or by reacting phosphorus oxychloride with a difunctional secondary amine and a mono-functional amine.
  • Thiophosphoramides can be prepared by reacting an unsaturated hydrocarbon compound containing from 2 to 450 or more carbon atoms, such as polyethylene, polyisobutylene, polypropylene, ethylene, 1-hexene, 1,3-hexadiene, isobutylene, 4-methyl-l-pentene, and the like, with phosphorus pentasulfide and a nitrogen-containing compound as defined above, particularly an alkylamine, alkyldiamine, alkylpolyamine, or an alkyleneamine, such as ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and the like.
  • an unsaturated hydrocarbon compound containing from 2 to 450 or more carbon atoms such as polyethylene, polyisobutylene, polypropylene, ethylene, 1-hexene, 1,3-hexadiene, isobutylene, 4-methyl-l-pentene, and the like
  • VI improvers dispersant viscosity index improvers
  • hydrocarbon polymer especially a polymer derived from ethylene and/or propylene, optionally containing additional units derived from one or more co-monomers such as alicyclic or aliphatic olefins or diolefins.
  • the functionalization may be carried out by a variety of processes which introduce a reactive site or sites which usually has at least one oxygen atom on the polymer.
  • the polymer is then contacted with a 1 nitrogen-containing source to introduce nitrogen-containing 2 functional groups on the polymer backbone.
  • Commonly used 3 nitrogen sources include any basic nitrogen compound 4 especially those nitrogen-containing compounds and 5 compositions described herein.
  • Preferred nitrogen sources 6 are alkylene amines, such as ethylene amines, alkyl amines, 7 and Mannich bases.
  • 8 9 Preferred basic nitrogen compounds for use in this invention 0 are succinimides, carboxylic acid amides, and Mannich bases.
  • 1 2 Representative sulfur sources for preparing the molybdenum
  • 20 agents are traditional sulfur-containing antioxidants such 2 2 1 1 as wax sulfides and polysulfides, sulfurized olefins,
  • ester-olefins and sulfurized alkylphenols and the metal 24 salts thereof.
  • the sulfurized fatty acid esters are prepared by reacting 27 sulfur, sulfur monochloride, and/or sulfur dichloride with 28 an unsaturated fatty ester under elevated temperatures.
  • Typical esters include C j -C 20 alkyl esters of C 8 -C 2 30 unsaturated fatty acids, such as palmitoleic, oleic, 31 ricinoleic, petroselinic, vaccenic, linoleic, linolenic, 32 oleostearic, licanic, paranaric, tariric, gadoleic, 33 arachidonic, cetoleic, etc.
  • mixed unsaturated fatty acid esters such as are obtained from animal fats and vegetable oils, such as tall oil, linseed oil, olive oil, caster oil, peanut oil, rape oil, fish oil, sperm oil, and so forth.
  • Exemplary fatty esters include lauryl tallate, methyl oleate, ethyl oleate, lauryl oleate, cetyl oleate, cetyl linoleate, lauryl ricinoleate, oleyl linoleate, oleyl stearate, and alkyl glycerides.
  • Cross-sulfurized ester olefins such as a sulfurized mixture of C j0 -C 25 olefins with fatty acid esters of C 10 -C 25 fatty acids and C j -C 25 alkyl or alkenyl alcohols, wherein the fatty acid and/or the alcohol is unsaturated may also be used.
  • Sulfurized olefins are prepared by the reaction of the ⁇ -C ⁇ olefin or a low-molecular-weight polyolefin derived therefrom with a sulfur-containing compound such as sulfur, sulfur monochloride, and/or sulfur dichloride.
  • aromatic and alkyl sulfides such as dibenzyl sulfide, dixylyl sulfide, dicetyl sulfide, diparaffin wax sulfide and polysulfide, cracked wax-olefin sulfides and so forth.
  • They can be prepared by treating the starting material, e.g., olefinically unsaturated compounds, with sulfur, sulfur monochloride, and sulfur dichloride.
  • the paraffin wax thiomers described in U.S. Patent No. 2,346,156.
  • Sulfurized alkyl phenols and the metal salts thereof include compositions such as sulfurized dodecylphenol and the calcium salts thereof.
  • the alkyl group ordinarily contains from 9-300 carbon atoms.
  • the metal salt may be preferably, a Group I or Group II salt, especially sodium, calcium, magnesium, or barium.
  • Preferred sulfur sources are sulfur, hydrogen sulfide, phosphorus pentasulfide, R 2 S ⁇ where R is hydrocarbyl, preferably C j -C 10 alkyl, and x is at least 3, mercaptans wherein R is CJ-CJ Q alkyl, inorganic sulfides and polysulfides, thioacetamide, and thiourea.
  • Most preferred sulfur sources are sulfur, hydrogen sulfide, phosphorus pentasulfide, and inorganic sulfides and polysulfides.
  • the polar promoter used in the preparation of the molybdenum complexes employed in this invention is one which facilitates the interaction between the acidic molybdenum compound and the basic nitrogen compound.
  • a wide variety of such promoters are well known to those skilled in the art.
  • Typical promoters are 1,3-propanediol, 1,4-butane-diol, diethylene glycol, butyl cellosolve, propylene glycol, 1,4-butyleneglycol, methyl carbitol, ethanolamine, diethanolamine, N-methyl-diethanol-amine, dimethyl formamide, N-methyl acetamide, dimethyl acetamide, methanol, ethylene glycol, dimethyl sulfoxide, hexamethyl phosphoramide, tetrahydrofuran and water.
  • Preferred are water and ethylene glycol. Particularly preferred is water.
  • the polar promoter is separately added to the reaction mixture, it may also be present, particularly in the case of water, as a component of non-anhydrous starting materials or as waters of hydration in the acidic molybdenum compound, such as (NH 4 ) 6 Mo 7 0 24 .4 H 2 0. Water may also be added as ammonium hydroxide.
  • a method for preparing the molybdenum/sulfur complexes used in this invention is to prepare a solution of the acidic molybdenum precursor and a polar promoter with a basic nitrogen-containing compound with or without diluent. The diluent is used, if necessary, to provide a suitable viscosity for easy stirring.
  • Typical diluents are lubricating oil and liquid compounds containing only carbon and hydrogen.
  • ammonium hydroxide may also be added to the reaction mixture to provide a solution of ammonium molybdate.
  • This reaction is carried out at a temperature from the melting point of the mixture to reflux temperature. It is ordinarily carried out at atmospheric pressure although higher or lower pressures may be used if desired.
  • This reaction mixture is treated with a sulfur source as defined above at a suitable pressure and temperature for the sulfur source to react with the acidic molybdenum and basic nitrogen compounds. In some cases, removal of water from the reaction mixture may be desirable prior to completion of reaction with the sulfur source.
  • the ratio of molybdenum compound to basic nitrogen compound is not critical; however, as the amount of molybdenum with respect to basic nitrogen increases, the filtration of the product becomes more difficult. Since the molybdenum component probably oligomerizes, it is advantageous to add as much molybdenum as can easily be maintained in the composition.
  • the reaction mixture will have charged to it from 0.01 to 2.00 atoms of molybdenum per basic nitrogen atom.
  • the sulfur source is usually charged to the reaction mixture in such a ratio to provide 1.5 to 4.0 atoms of sulfur per atom of molybdenum.
  • the polar promoter which is preferably water, is ordinarily present in the ratio of 0.1 to 50 moles of promoter per mole of molybdenum. Preferably from 0.5 to 25 and most preferably 1.0 to 15 moles of the promoter is present per mole of molybdenum.
  • the additive formulation employed in the present invention contains (1) a sulfurized molybdenum-containing composition, (2) a carboxylic acid amide, and (3) a succinimide.
  • the carboxylic amide component of the presently employed additive formulation may be any of the carboxylic acid amide compounds described herein as useful in the preparation of the molybdenum/sulfur complex.
  • Preferred carboxylic acid amide components include those amides derived from a carboxylic acid of the formula R 2 COOH, wherein R 2 is C 12 -C 2Q alkyl, and an ethylene amine, such as triethylene tetramine or tetraethylene pentamine.
  • the succinimide component of the presently employed additive formulation may be any of the succinimide compounds described herein as useful in the preparation of the molybdenum/sulfur complex.
  • Preferred succinimide components include those derived from polyisobutenyl succinic anhydride, wherein the polyisobutenyl group contains from about 50 to 250 carbon atoms, and an ethylene amine, such as triethylene tetramine or tetraethylene pentamine.
  • the additive formulation employed in the present invention may additionally contain a flocculant inhibitor and/or a lubricity agent, such as a polyisobutene. If necessary, a diluent oil may also be included.
  • additives such as viscosity index improvers, antioxidants, dispersants, coupling agents, pour point depressants, extreme pressure agents, color stabilizers, rust inhibitors, anticorrosion agents, and the like, may also be present in the additive formulation.
  • the lubricant composition employed in the present invention comprises a major amount of a base oil of lubricating viscosity and a minor amount of the additive formulation described above.
  • the base oil employed may be any of a wide variety of oils of lubricating viscosity.
  • the base oil can be a refined paraffin type base oil, a refined naphthenic base oil, or a synthetic hydrocarbon or non-hydrocarbon oil of lubricating viscosity.
  • the base oil can also be a mixture of mineral and synthetic oils.
  • the mineral lubricating oils are preferred, since they are presently in more general use in two-cycle engines.
  • the presently employed lubricant composition containing the additive formulation described herein can be conveniently prepared using conventional techniques by admixing the appropriate amount of each component of the additive formulation with a lubricating oil.
  • the amount of the molybdenum-containing additive will vary from about 0.05 to 15% by weight and preferably from about 0.2 to 10% by weight, based on the total lubricant composition, including base oil.
  • the carboxylic acid amide component will vary from about 0.05 to 20% by weight and preferably from about 0.2 to 15% by weight.
  • the succinimide component will vary from about 0.5 to 15% by weight and preferably from about 0.2 to 10% by weight.
  • the two-cycle engine fuel composition contemplated by the present invention comprises a major amount of fuel boiling in the gasoline range and minor amount of the lubricant composition disclosed herein.
  • the lubricant composition will generally be added directly to the fuel to form a mixture of lubricant and fuel which is then introduced into the two-cycle engine cylinder.
  • the resulting fuel composition will contain from about 15 to 250 parts fuel per 1 part lubricant, and more typically about 50 to 100 parts fuel per 1 part lubricant.
  • the lubricant may be directly injected into the combustion chamber along with the fuel or into the fuel just prior to the time the fuel enters the combustion chamber.
  • the fuel employed in the present fuel composition is a hydrocarbon distillate fuel boiling in the gasoline range.
  • other fuel additives may also be included such as antiknock agents, e.g., methylcyclopentadienyl manganese tricarbonyl, tetramethyl or tetraethyl lead, or other dispersants or detergents such as various substituted amines, etc.
  • lead scavengers such as aryl halides, e.g., dichlorobenzene or alkyl halides, e.g., ethylene dibromide.
  • antioxidants, metal deactivators, pour point depressants, corrosion inhibitors and demulsifiers may be present.
  • a 5000 ml flask was added 1200 grams of a polyamide prepared from a C lg carboxylic acid and tetraethylene pentamine and containing 6.4% nitrogen, 1200 grams hydrocarbon thinner, 42 grams molybdenum trioxide, and go grams water.
  • the mixture was refluxed at 100 ⁇ C for 3 hours. The temperature was gradually increased over approximately 1 hour to 170"C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 21 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced a product containing 5.88% nitrogen, 2.29% molybdenum, and 1.63% sulfur.
  • the molybdenum/sulfur complexes of Examples 1, 2 and 4 were formulated to provide lubricant compositions containing 10% of the carboxylic acid amide reaction product of isostearic acid and tetraethylene pentamine, 2% of a polyisobutenyl succinimide prepared from polyisobutenyl succinic anhydride wherein the polyisobutenyl group has a number average molecular weight of about 950 and tetraethylene pentamine, 2% of the molybdenum/sulfur complex of Examples 1, 2 and 4, respectively, 5% of a polyisobutene having a number average molecular weight of about 950 as a lubricity agent, 0.5% of a flocculant inhibitor, 1% of a diluent oil and about 79.5% of a base oil.
  • the base oil contains about 10% of a 150 bright stock, about 70% of a mixture of 350N and 650N neutral oils, and about 20% of a petroleum distillate
  • test engine used was an Outboard Marine Company Johnson Model No. J70ELEIE outboard engine, which is a 70 horsepower, water-cooled, three-cylinder, two-cycle engine.
  • test procedure involved a two-hour break-in period, wherein the engine was run at 3,000 rpm for 1 hour, then at 4,000 rpm for 1 hour, using a fuel:lubricant ratio of 50:1.
  • test was then conducted for 98 hours using a 50:1 fuel to lubricant ratio on a 55 minute wide-open throttle, 5 minute idle cycle.
  • the total test time, including break-in, was 100 hours.
  • the engine was disassembled and rated.
  • the average piston rating and average second-ring sticking rating for 3 cylinders was measured. in the rating system employed, the higher the numerical rating, the better the cleanliness performance, with 10.0 being the maximum rating. Except for the piston rings, the ratings are for cleanliness.
  • the piston rings are rated for the degree of sticking, with a rating of 10.0 indicating a completely free piston ring.
  • the second-ring sticking values include a National Marine Manufacturers Association (NMMA) rating, a visual rating, and an adjusted rating, which is an average of the NMMA and visual ratings.
  • NMMA National Marine Manufacturers Association
  • the reference oil employed in this test was NMMA reference oil TCW II, used as an industry standard in two-cycle engine tests to measure engine cleanliness.
  • the TCW II reference oil is a standard mineral lubricating oil containing a commercial ashless dispersant for gasoline two-cycle engines.
  • the reference oil is available from Citgo Petroleum Corporation, Tulsa, Oklahoma.
  • Table 1 demonstrate that the fuel composition of the present invention is highly effective in reducing piston deposits and piston ring sticking in two-cycle engines, and generally exceeds the performance of a fuel containing the industry standard reference oil.

Abstract

A fuel composition for two-cycle engines comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising a base oil of lubricating viscosity and an additive formulation comprising (1) a molybdenum/sulfur complex of a basic nitrogen compound, (2) a carboxylic acid amide, and (3) a succinimide.

Description

FUEL COMPOSITION FOR TWO-CYCLE ENGINES
BACKGROUND OF THE INVENTION
The present invention relates to a fuel composition for two-cycle internal combustion engines which comprises a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising a lubricating oil and an additive formulation containing a molybdenum/sulfur complex of a basic nitrogen compound.
Over the past several decades the use of spark-ignited two-cycle (two-stroke) internal combustion engines including rotary engines such as those of the Wankel type has steadily increased. They are presently found in power lawn mowers and other power-operated garden equipment, power chain saws, pumps, electrical generators, marine outboard engines, snowmobiles, motorcycles, and the like.
The increasing use of two-cycle engines coupled with increasing severity of the conditions in which they have operated has led to an increasing demand for oils to adequately lubricate such engines. Among the problems associated with lubrication of two-cycle engines are piston ring sticking, rusting, lubrication failure of connecting rods and main bearings and the general formation on the engine's interior surface of carbon and varnish deposits. The formation of varnish is a particularly vexatious problem since the build-up of varnish on piston and cylinder walls is believed to ultimately result in ring sticking which leads to failure of the sealing function of piston rings. such seal failure causes loss of cylinder compression which is particularly damaging in two-cycle engines because they depend on suction to draw the new fuel charge into the exhausted cylinder. Thus, ring sticking can lead to deterioration in engine performance, and unnecessary consumption of fuel and/or lubricant. Spark plug fouling and engine port plugging problems also occur in two-cycle engines.
A variety of compounds have been proposed as additives for fuel-lubricating oil mixtures to be used in two-cycle internal combustion engines. For example, U.S. Patent No. 4,708,809 to Davis discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of at least one alkyl phenol having at least one hydrocarbon-based group of at least 10 aliphatic carbon atoms. Preferably, such lubricant composition will also contain a detergent- dispersant additive selected from (i) a neutral or basic metal salt of an organic sulfur acid, phenol or carboxylic acid, (ii) a hydrocarbyl-substituted amine, (iii) an acylated, nitrogen-containing compound having a substituent of at least 10 aliphatic carbon atoms, (iv) a nitrogen-containing condensate of a phenol, aldehyde and amino compound, and (v) an ester of a substituted polycarboxylic acid.
U.S. Patent No. 4,724,091 to Davis discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of a mixture of at least one alkyl phenol and at least one amino phenol, each phenol having at least one hydrocarbon-based group of at least about 10 aliphatic carbon atoms. Preferably, this composition will additionally contain a detergent-dispersant additive. U.S. Patent No. 4,740,321 to Davis et al. discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of at least one sulfurized alkyl phenol or metal salt thereof having at least one hydrocarbon-based group of at least 10 aliphatic carbon atoms. This lubricant composition will also preferably contain a detergent-dispersant additive.
U.S. Patent No. 4,705,643 to Nemo discloses a lubricating oil composition for two-cycle engines comprising a lubricating oil and an ashless detergent additive which is the hydrolyzed reaction product of an aliphatic branched chain carboxylic acid of 16 to 20 carbon atoms and a polyamine of at least 3 amine groups. Preferably, the ashless detergent additive is the hydrolyzed reaction product of isostearic acid and tetraethylenepentamine.
U.S. Patent No. 4,994,196 to Kagaya et al. discloses a two-cycle engine oil composition comprising a base oil and a calcium phenate detergent additive, wherein the base oil is a mixture of (a) a copolymer of an alpha-olefin with an ester of a dicarboxylic acid and (b) an ester of pentaerythritol and a fatty acid.
U.S. Patent No. 3,888,776 to Silverstein discloses a two-cycle engine lubricant which comprises a major amount of a polypropylene glycol and minor amounts of a sulfurized oxymolybdenum organophosphorodithioate, a finely divided molybdenum disulfide and a halogenated hydrocarbon detergent, such as 1, 1, l-trichloroethylene, orthodichlorobenzene, perchlorinated biphenyl, and the like. Molybdenum/sulfur complexes of basic nitrogen compounds have previously been described in the art as useful antioxidant additives for lubricant compositions finding application, for example, as crosshead diesel engine lubricants, automobile and railroad crankcase lubricants, lubricants for heavy machinery, greases for bearings, and the like.
For example, U.S. Patent No. 4,263,152 to King et al. discloses an antioxidant additive for lubricating oils which is prepared by combining an acidic molybdenum compound, a polar promoter, a basic nitrogen-containing compound and a sulfur source to form a molybdenum and sulfur-containing complex. Similar molybdenum-containing antioxidant additives are disclosed in U.S. Patent Nos. 4,285,822; 4,283,295; 4,272,387; 4,265,773; 4,261,843; 4,259,195; and 4,259,194. However, none of these patents teaches or appreciates the use of such antioxidant additives, or lubricating oils containing such additives, in admixture with fuels in two-cycle engines. Furthermore, none of these patents teaches or appreciates that such antioxidant additives would be effective deposit control agents or would reduce piston sticking when utilized in fuel-lubricating oil mixtures in two-cycle engines.
Moreover, as taught in the aforementioned U.S. Patent No. 4,708,809, the unique problems and techniques associated with the lubrication of two-cycle engines has led to the recognition by those skilled in the art of two-cycle engine lubricants as a distinct lubricant type.
Accordingly, the present invention is directed to minimizing the problems of varnish build-up and ring sticking in two-cycle engines through the provision of effective additives for fuel-lubricating oil combinations which eliminate or reduce two-cycle engine varnish deposits and piston ring seal failure.
SUMMARY OF THE INVENTION
The present invention provides a fuel composition for two-cycle engines comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising:
(A) a major amount of a base oil of lubricating viscosity, and
(B) a minor amount of an additive formulation comprising:
(1) a sulfurized molybdenum-containing composition prepared by (i) reacting an acidic molybdenum compound and a basic nitrogen compound selected from the group consisting of a succinimide, a carboxylic acid amide, a hydrocarbyl monoamine, a hydrocarbyl polyamine, a Mannich base, a phosphoramide, a thiophosphora ide, a phosphonamide, a dispersant viscosity index improver, or a mixture thereof, in the presence of a polar promoter, to form a molybdenum complex wherein from 0.01 to 2 atoms of molybdenum are present per basic nitrogen atom, and the promoter is present in the ratio of 0.01 to 50 moles of polar promoter per mole of molybdenum; and (ii) reacting the molybdenum complex with a sulfur-containing compound in an amount sufficient to provide about 1.5 to 4.0 atoms of sulfur per atom of molybdenum, to thereby form a sulfur- and molybdenum-containing composition, (2) a carboxylic acid amide, and
(3) a succinimide.
Among other factors, the present invention is based upon the unexpected discovery that additive formulations containing a molybdenum/sulfur complex of a basic nitrogen compound, plus a carboxylic acid amide and a succinimide are surprisingly effective agents for deposit control and reduction of piston ring sticking when combined in fuel-lubricating oil mixtures in two-cycle engines.
DETAILED DESCRIPTION OF THE INVENTION
The fuel composition of the present invention will comprise a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising a base oil of lubricating viscosity and an additive formulation containing (1) a sulfurized molybdenum-containing composition, (2) a carboxylic acid amide, and (3) a succinimide.
The sulfurized molybdenum-containing composition employed in the present invention may be generally characterized as a molybdenum/sulfur complex of a basic nitrogen compound. Such molybdenum/sulfur complexes are known in the art and are described, for example, in U.S. Patent No. 4,263,152 to King et al., the disclosure of which is hereby incorporated by reference.
The precise molecular formula of the molybdenum compositions employed in this invention is not known with certainty; however, they are believed to be compounds in which molybdenum, whose valences are satisfied with atoms of oxygen or sulfur, is either complexed by, or the salt of, one or more nitrogen atoms of the basic nitrogen containing compound used in the preparation of these compositions.
The molybdenum compounds used to prepare the molybdenum/sulfur complexes employed in this invention are acidic molybdenum compounds. By acidic is meant that the molybdenum compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure. Typically these molybdenum compounds are hexavalent and are represented by the following compositions: molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate and other alkaline metal olybdates and other molybdenum salts such as hydrogen salts, e.g., hydrogen sodium molybdate, MoOCl4, Mo02Br2, Mo203Cl6, molybdenum trioxide or similar acidic molybdenum compounds. Preferred acidic molybdenum compounds are molybdic acid, ammonium molybdate, and alkali metal molybdates. Particularly preferred are molybdic acid and ammonium molybdate.
The basic nitrogen compound used to prepare the molybdenum/sulfur complexes must have a basic nitrogen content as measured by ASTM D-664 or D-2896. It is preferably oil-soluble. Typical of such compositions are succinimides, carboxylic acid amides, hydrocarbyl monoamines, hydrocarbon polya ines, Mannich bases, phosphoramides, thiophosphoramides, phoεphonamides, dispersant viscosity index improvers, and mixtures thereof. These basic nitrogen-containing compounds are described below (keeping in mind the reservation that each must have at least one basic nitrogen) . Any of the nitrogen-containing compositions may be after-treated with, e.g., boron, using procedures well known in the art so long as the compositions continue to contain basic nitrogen. These after-treatments are particularly applicable to succinimides and Mannich base compositions.
The mono and polysuccinimides that can be used to prepare the molybdenum/sulfur complexes described herein are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and the related materials encompassed by the term of art "succinimide" are taught in U.S. Patent Nos. 3,219,666; 3,172,892; and 3,272,746, the disclosures of which are hereby incorporated by reference. The term "succinimide" is understood in the art to include many of the amide, imide, and amidine species which may also be formed. The predominant product however is a succinimide and this term has been generally accepted as meaning the product of a reaction of an alkenyl substituted succinic acid or anhydride with a nitrogen-containing compound. Preferred succinimides, because of their commercial availability, are those succinimides prepared from a hydrocarbyl succinic anhydride, wherein the hydrocarbyl group contains from about 24 to about 350 carbon atoms, and an ethylene amine, said ethylene amines being especially characterized by ethylene diamine, diethylene triamine, triethylene tetra ine, and tetraethylene pentamine. Particularly preferred are those succinimides prepared from polyisobutenyl succinic anhydride of 70 to 128 carbon atoms and tetraethylene pentamine or triethylene tetramine or mixtures thereof.
Also included within the term "succinimide" are the cooligomers of a hydrocarbyl succinic acid or anhydride and a poly secondary amine containing at least one tertiary amino nitrogen in addition to two or more secondary amino groups. Ordinarily this composition has between 1,500 and 50,000 average molecular weight. A typical compound would be that prepared by reacting polyisobutenyl succinic anhydride and ethylene dipiperazine.
Carboxylic acid amide compositions are also suitable starting materials for preparing the molybdenum/sulfur complexes employed in this invention. Typical of such compounds are those disclosed in U.S. Patent No. 3,405,064, the disclosure of which is hereby incorporated by reference. These compositions are ordinarily prepared by reacting a carboxylic acid or anhydride or ester thereof, having at least 12 to about 350 aliphatic carbon atoms in the principal aliphatic chain and, if desired, having sufficient pendant aliphatic groups to render the molecule oil soluble with an amine or a hydrocarbyl polyamine, such as an ethylene amine, to give a mono or polycarboxylic acid amide. Preferred are those amides prepared from (1) a carboxylic acid of the formula R2COOH, where R2 is C12_2o alkyl or a mixture of this acid with a polyisobutenyl carboxylic acid in which the polyisobutenyl group contains from 72 to 128 carbon atoms and (2) an ethylene amine, especially triethylene tetramine or tetraethylene pentamine or mixtures thereof.
Another class of compounds which are useful in this invention are hydrocarbyl monoamines and hydrocarbyl polyamines, preferably of the type disclosed in U.S. Patent No. 3,574,576, the disclosure of which is hereby incorporated by reference. The hydrocarbyl group, which is preferably alkyl, or olefinic having one or two sites of unsaturation, usually contains from 9 to 350, preferably from 20 to 200 carbon atoms. Particularly preferred hydrocarbyl polyamines are those which are derived, e.g., by reacting polyisobutenyl chloride and a polyalkylene polyamine, such as an ethylene amine, e.g., ethylene diamine, diethylene tria ine, tetraethylene pentamine, 2-aminoethylpiperazine, 1, 3-propylene diamine, 1,2-propylenediamine, and the like.
Another class of compounds useful for supplying basic nitrogen are the Mannich base compositions. These compositions are prepared from a phenol or C9_20g alkylphenol, an aldehyde, such as formaldehyde or formaldehyde precursor such as paraformaldehyde, and an amine compound. The amine may be a mono or polyamine and typical compositions are prepared from an alkylamine, such as methylamine or an ethylene amine, such as, diethylene triamine, or tetraethylene pentamine, and the like. The phenolic material may be sulfurized and preferably is dodecylphenol or a C80_100 alkylphenol. Typical Mannich bases which can be used in this invention are disclosed in U.S. Patent No. 4,157,309 and U.S. Patent Nos. 3,649,229; 3,368,972; and 3,539,663, the disclosures of which are hereby incorporated by reference. The last referenced patent discloses Mannich bases prepared by reacting an alkylphenol having at least 50 carbon atoms, preferably 50 to 200 carbon atoms with formaldehyde and an alkylene polyamine HN(ANH)nH where A is a saturated divalent alkyl hydrocarbon of 2 to 6 carbon atoms and n is 1-10 and where the condensation product of said alkylene polyamine may be further reacted with urea or thiourea. The utility of these Mannich bases as starting materials for preparing lubricating oil additives can often be significantly improved by treating the Mannich base using conventional techniques to introduce boron into the composition. Another class of composition useful for preparing the molybdenum/sulfur complexes employed in this invention are the phosphoramides and phosphonamides such as those disclosed in U.S. Patent Nos. 3,909,430 and 3,968,157, the disclosures of which are hereby incorporated by reference. These compositions may be prepared by forming a phosphorus compound having at least one P-N bond. They can be prepared, for example, by reacting phosphorus oxychloride with a hydrocarbyl diol in the presence of a monoamine or by reacting phosphorus oxychloride with a difunctional secondary amine and a mono-functional amine. Thiophosphoramides can be prepared by reacting an unsaturated hydrocarbon compound containing from 2 to 450 or more carbon atoms, such as polyethylene, polyisobutylene, polypropylene, ethylene, 1-hexene, 1,3-hexadiene, isobutylene, 4-methyl-l-pentene, and the like, with phosphorus pentasulfide and a nitrogen-containing compound as defined above, particularly an alkylamine, alkyldiamine, alkylpolyamine, or an alkyleneamine, such as ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and the like.
Another class of nitrogen-containing compositions useful in preparing the molybdenum complexes employed in this invention includes the so-called dispersant viscosity index improvers (VI improvers) . These VI improvers are commonly prepared by functionalizing a hydrocarbon polymer, especially a polymer derived from ethylene and/or propylene, optionally containing additional units derived from one or more co-monomers such as alicyclic or aliphatic olefins or diolefins. The functionalization may be carried out by a variety of processes which introduce a reactive site or sites which usually has at least one oxygen atom on the polymer. The polymer is then contacted with a 1 nitrogen-containing source to introduce nitrogen-containing 2 functional groups on the polymer backbone. Commonly used 3 nitrogen sources include any basic nitrogen compound 4 especially those nitrogen-containing compounds and 5 compositions described herein. Preferred nitrogen sources 6 are alkylene amines, such as ethylene amines, alkyl amines, 7 and Mannich bases. 8 9 Preferred basic nitrogen compounds for use in this invention 0 are succinimides, carboxylic acid amides, and Mannich bases. 1 2 Representative sulfur sources for preparing the molybdenum
13 complexes used in this invention are sulfur, hydrogen
1* sulfide, sulfur monochloride, sulfur dichloride, phosphorus
15 pentasulfide, R2Sχ where R is hydrocarbyl, preferably Cj^0
16 alkyl, and x is at least 2, inorganic sulfides and
17 polysulfides such as (NH4)2Sχ, where x is at least 1, 18 thioacetamide, thiourea, and mercaptans of the formula RSH 19 where R is as defined above. Also useful as sulfurizing
20 agents are traditional sulfur-containing antioxidants such 2 211 as wax sulfides and polysulfides, sulfurized olefins,
22 sulfurized carboxylic and esters and sulfurized
23 ester-olefins, and sulfurized alkylphenols and the metal 24 salts thereof. 25 26 The sulfurized fatty acid esters are prepared by reacting 27 sulfur, sulfur monochloride, and/or sulfur dichloride with 28 an unsaturated fatty ester under elevated temperatures. 29 Typical esters include Cj-C20 alkyl esters of C8-C2 30 unsaturated fatty acids, such as palmitoleic, oleic, 31 ricinoleic, petroselinic, vaccenic, linoleic, linolenic, 32 oleostearic, licanic, paranaric, tariric, gadoleic, 33 arachidonic, cetoleic, etc. Particularly good results have 34 been obtained with mixed unsaturated fatty acid esters, such as are obtained from animal fats and vegetable oils, such as tall oil, linseed oil, olive oil, caster oil, peanut oil, rape oil, fish oil, sperm oil, and so forth.
Exemplary fatty esters include lauryl tallate, methyl oleate, ethyl oleate, lauryl oleate, cetyl oleate, cetyl linoleate, lauryl ricinoleate, oleyl linoleate, oleyl stearate, and alkyl glycerides.
Cross-sulfurized ester olefins, such as a sulfurized mixture of Cj0-C25 olefins with fatty acid esters of C10-C25 fatty acids and Cj-C25 alkyl or alkenyl alcohols, wherein the fatty acid and/or the alcohol is unsaturated may also be used.
Sulfurized olefins are prepared by the reaction of the ^-C^ olefin or a low-molecular-weight polyolefin derived therefrom with a sulfur-containing compound such as sulfur, sulfur monochloride, and/or sulfur dichloride.
Also useful are the aromatic and alkyl sulfides, such as dibenzyl sulfide, dixylyl sulfide, dicetyl sulfide, diparaffin wax sulfide and polysulfide, cracked wax-olefin sulfides and so forth. They can be prepared by treating the starting material, e.g., olefinically unsaturated compounds, with sulfur, sulfur monochloride, and sulfur dichloride. Particularly preferred are the paraffin wax thiomers described in U.S. Patent No. 2,346,156.
Sulfurized alkyl phenols and the metal salts thereof include compositions such as sulfurized dodecylphenol and the calcium salts thereof. The alkyl group ordinarily contains from 9-300 carbon atoms. The metal salt may be preferably, a Group I or Group II salt, especially sodium, calcium, magnesium, or barium.
Preferred sulfur sources are sulfur, hydrogen sulfide, phosphorus pentasulfide, R2Sχ where R is hydrocarbyl, preferably Cj-C10 alkyl, and x is at least 3, mercaptans wherein R is CJ-CJQ alkyl, inorganic sulfides and polysulfides, thioacetamide, and thiourea. Most preferred sulfur sources are sulfur, hydrogen sulfide, phosphorus pentasulfide, and inorganic sulfides and polysulfides.
The polar promoter used in the preparation of the molybdenum complexes employed in this invention is one which facilitates the interaction between the acidic molybdenum compound and the basic nitrogen compound. A wide variety of such promoters are well known to those skilled in the art. Typical promoters are 1,3-propanediol, 1,4-butane-diol, diethylene glycol, butyl cellosolve, propylene glycol, 1,4-butyleneglycol, methyl carbitol, ethanolamine, diethanolamine, N-methyl-diethanol-amine, dimethyl formamide, N-methyl acetamide, dimethyl acetamide, methanol, ethylene glycol, dimethyl sulfoxide, hexamethyl phosphoramide, tetrahydrofuran and water. Preferred are water and ethylene glycol. Particularly preferred is water.
While ordinarily the polar promoter is separately added to the reaction mixture, it may also be present, particularly in the case of water, as a component of non-anhydrous starting materials or as waters of hydration in the acidic molybdenum compound, such as (NH4)6Mo7024.4 H20. Water may also be added as ammonium hydroxide. A method for preparing the molybdenum/sulfur complexes used in this invention is to prepare a solution of the acidic molybdenum precursor and a polar promoter with a basic nitrogen-containing compound with or without diluent. The diluent is used, if necessary, to provide a suitable viscosity for easy stirring. Typical diluents are lubricating oil and liquid compounds containing only carbon and hydrogen. If desired, ammonium hydroxide may also be added to the reaction mixture to provide a solution of ammonium molybdate. This reaction is carried out at a temperature from the melting point of the mixture to reflux temperature. It is ordinarily carried out at atmospheric pressure although higher or lower pressures may be used if desired. This reaction mixture is treated with a sulfur source as defined above at a suitable pressure and temperature for the sulfur source to react with the acidic molybdenum and basic nitrogen compounds. In some cases, removal of water from the reaction mixture may be desirable prior to completion of reaction with the sulfur source.
in the reaction mixture, the ratio of molybdenum compound to basic nitrogen compound is not critical; however, as the amount of molybdenum with respect to basic nitrogen increases, the filtration of the product becomes more difficult. Since the molybdenum component probably oligomerizes, it is advantageous to add as much molybdenum as can easily be maintained in the composition. Usually, the reaction mixture will have charged to it from 0.01 to 2.00 atoms of molybdenum per basic nitrogen atom. Preferably from 0.4 to 1.0, and most preferably from 0.4 to 0.7, atoms of molybdenum per atom of basic nitrogen is added to the reaction mixture. The sulfur source is usually charged to the reaction mixture in such a ratio to provide 1.5 to 4.0 atoms of sulfur per atom of molybdenum. Preferably from 2.0 to 4.0 atoms of sulfur per atom of molybdenum is added, and most preferably, 2.5 to 4.0 atoms of sulfur per atom of molybdenum.
The polar promoter, which is preferably water, is ordinarily present in the ratio of 0.1 to 50 moles of promoter per mole of molybdenum. Preferably from 0.5 to 25 and most preferably 1.0 to 15 moles of the promoter is present per mole of molybdenum.
As described above, the additive formulation employed in the present invention contains (1) a sulfurized molybdenum-containing composition, (2) a carboxylic acid amide, and (3) a succinimide.
The carboxylic amide component of the presently employed additive formulation may be any of the carboxylic acid amide compounds described herein as useful in the preparation of the molybdenum/sulfur complex. Preferred carboxylic acid amide components include those amides derived from a carboxylic acid of the formula R2COOH, wherein R2 is C12-C2Q alkyl, and an ethylene amine, such as triethylene tetramine or tetraethylene pentamine.
Similarly, the succinimide component of the presently employed additive formulation may be any of the succinimide compounds described herein as useful in the preparation of the molybdenum/sulfur complex. Preferred succinimide components include those derived from polyisobutenyl succinic anhydride, wherein the polyisobutenyl group contains from about 50 to 250 carbon atoms, and an ethylene amine, such as triethylene tetramine or tetraethylene pentamine.
The additive formulation employed in the present invention may additionally contain a flocculant inhibitor and/or a lubricity agent, such as a polyisobutene. If necessary, a diluent oil may also be included.
Other additives such as viscosity index improvers, antioxidants, dispersants, coupling agents, pour point depressants, extreme pressure agents, color stabilizers, rust inhibitors, anticorrosion agents, and the like, may also be present in the additive formulation.
The lubricant composition employed in the present invention comprises a major amount of a base oil of lubricating viscosity and a minor amount of the additive formulation described above.
The base oil employed may be any of a wide variety of oils of lubricating viscosity. Thus, the base oil can be a refined paraffin type base oil, a refined naphthenic base oil, or a synthetic hydrocarbon or non-hydrocarbon oil of lubricating viscosity. The base oil can also be a mixture of mineral and synthetic oils. For purposes of the present invention, the mineral lubricating oils are preferred, since they are presently in more general use in two-cycle engines.
The presently employed lubricant composition containing the additive formulation described herein can be conveniently prepared using conventional techniques by admixing the appropriate amount of each component of the additive formulation with a lubricating oil. Generally, the amount of the molybdenum-containing additive will vary from about 0.05 to 15% by weight and preferably from about 0.2 to 10% by weight, based on the total lubricant composition, including base oil. The carboxylic acid amide component will vary from about 0.05 to 20% by weight and preferably from about 0.2 to 15% by weight. The succinimide component will vary from about 0.5 to 15% by weight and preferably from about 0.2 to 10% by weight.
The two-cycle engine fuel composition contemplated by the present invention comprises a major amount of fuel boiling in the gasoline range and minor amount of the lubricant composition disclosed herein.
For purposes of the present invention, the lubricant composition will generally be added directly to the fuel to form a mixture of lubricant and fuel which is then introduced into the two-cycle engine cylinder. Generally, the resulting fuel composition will contain from about 15 to 250 parts fuel per 1 part lubricant, and more typically about 50 to 100 parts fuel per 1 part lubricant. For some two-cycle engine applications, the lubricant may be directly injected into the combustion chamber along with the fuel or into the fuel just prior to the time the fuel enters the combustion chamber.
The fuel employed in the present fuel composition is a hydrocarbon distillate fuel boiling in the gasoline range. in such gasoline fuels, other fuel additives may also be included such as antiknock agents, e.g., methylcyclopentadienyl manganese tricarbonyl, tetramethyl or tetraethyl lead, or other dispersants or detergents such as various substituted amines, etc. Also included may be lead scavengers such as aryl halides, e.g., dichlorobenzene or alkyl halides, e.g., ethylene dibromide. Additionally, antioxidants, metal deactivators, pour point depressants, corrosion inhibitors and demulsifiers may be present.
The following examples are presented to illustrate specific embodiments of this invention and are not to be construed in any way as limiting the scope of the invention.
EXAMPLES
Example 1
To a 5000 ml flask was added 114 grams molybdenum trioxide and 196 grams of water. Stirring was started and 1200 grams of a solution of a 45% concentrate in oil of the polyisobutenyl succinimide prepared from polyisobutenyl succinic anhydride having a number average molecular weight for the polyisobutenyl group of about 950 and tetraethylene pentamine, and 1200 grams of hydrocarbon thinner were added. The mixture was refluxed at 100°C for 3 hours. The temperature was gradually increased over approximately ι hour to 170°C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 51 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced 1244 grams of product containing 1.80% nitrogen, 5.63% molybdenum, and 3.57% sulfur. Example 2
To a 5000 ml flask was added 52 grams molybdenum trioxide and 111 grams of water. Stirring was started and 1184 grams of a solution of a 45% concentrate in oil of the succinimide described in Example 1 and 1184 grams of hydrocarbon thinner were added. The mixture was refluxed at 100°C for 3 hours. The temperature was gradually increased over approximately ι hour to 170°C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 47 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced 1220 grams of product containing 1.94% nitrogen, 2.78% molybdenum, and 3.64% sulfur.
Example 3
To a 5000 ml flask was added 49 grams molybdenum trioxide and 105 grams of water. Stirring was started and 1133 grams of a solution of a 45% concentrate in oil of the succinimide described in Example 1 and 1133 grams of hydrocarbon thinner were added. The mixture was refluxed at 100°C for 3 hours. The temperature was gradually increased over approximately ι hour to 170°C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 22 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced 1163 grams of product containing 1.83% nitrogen, 2.79% molybdenum, and 1.97% sulfur.
Example 4
o a 5000 ml flask was added 1200 grams of a polyamide prepared from a Clg carboxylic acid and tetraethylene pentamine and containing 6.4% nitrogen, 1200 grams hydrocarbon thinner, 42 grams molybdenum trioxide, and go grams water. The mixture was refluxed at 100βC for 3 hours. The temperature was gradually increased over approximately 1 hour to 170"C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 21 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced a product containing 5.88% nitrogen, 2.29% molybdenum, and 1.63% sulfur.
Example 5
The molybdenum/sulfur complexes of Examples 1, 2 and 4 were formulated to provide lubricant compositions containing 10% of the carboxylic acid amide reaction product of isostearic acid and tetraethylene pentamine, 2% of a polyisobutenyl succinimide prepared from polyisobutenyl succinic anhydride wherein the polyisobutenyl group has a number average molecular weight of about 950 and tetraethylene pentamine, 2% of the molybdenum/sulfur complex of Examples 1, 2 and 4, respectively, 5% of a polyisobutene having a number average molecular weight of about 950 as a lubricity agent, 0.5% of a flocculant inhibitor, 1% of a diluent oil and about 79.5% of a base oil. The base oil contains about 10% of a 150 bright stock, about 70% of a mixture of 350N and 650N neutral oils, and about 20% of a petroleum distillate solvent.
Example 6 Two-Cvcle Gasoline Engine Test
This test was used to evaluate the detergency and general performance of the fuel composition of this invention in a two-cycle water-cooled outboard engine. Piston varnish, ring sticking and general engine deposits were evaluated.
The test engine used was an Outboard Marine Company Johnson Model No. J70ELEIE outboard engine, which is a 70 horsepower, water-cooled, three-cylinder, two-cycle engine.
The test procedure involved a two-hour break-in period, wherein the engine was run at 3,000 rpm for 1 hour, then at 4,000 rpm for 1 hour, using a fuel:lubricant ratio of 50:1.
The test was then conducted for 98 hours using a 50:1 fuel to lubricant ratio on a 55 minute wide-open throttle, 5 minute idle cycle. The total test time, including break-in, was 100 hours.
At the conclusion of the test, the engine was disassembled and rated. The average piston rating and average second-ring sticking rating for 3 cylinders was measured. in the rating system employed, the higher the numerical rating, the better the cleanliness performance, with 10.0 being the maximum rating. Except for the piston rings, the ratings are for cleanliness. The piston rings are rated for the degree of sticking, with a rating of 10.0 indicating a completely free piston ring.
The second-ring sticking values include a National Marine Manufacturers Association (NMMA) rating, a visual rating, and an adjusted rating, which is an average of the NMMA and visual ratings.
The reference oil employed in this test was NMMA reference oil TCW II, used as an industry standard in two-cycle engine tests to measure engine cleanliness. The TCW II reference oil is a standard mineral lubricating oil containing a commercial ashless dispersant for gasoline two-cycle engines. The reference oil is available from Citgo Petroleum Corporation, Tulsa, Oklahoma.
Engine test runs were performed with a 50:1 fuel to lubricant ratio, using lubricant compositions containing the molybdenum/sulfur complexes of Examples l, 2 and 4, formulated as described in Example 5. The results of the engine tests are shown in Table 1.
The results shown in Table 1 demonstrate that the fuel composition of the present invention is highly effective in reducing piston deposits and piston ring sticking in two-cycle engines, and generally exceeds the performance of a fuel containing the industry standard reference oil.
Figure imgf000026_0001
(a) Formulated as in Example 5.

Claims

WHAT IS CLAIMED IS:
l. A fuel composition for two-cycle engines comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising:
(A) a major amount of a base oil of lubricating viscosity, and
(B) a minor amount of an additive formulation comprising:
(1) a sulfurized molybdenum-containing composition prepared by (i) reacting an acidic molybdenum compound and a basic nitrogen compound selected from the group consisting of a succinimide, a carboxylic acid amide, a hydrocarbyl monoamine, a hydrocarbyl polyamine, a Mannich base, a phosphoramide, a thiophosphoramide, a phosphonamide, a dispersant viscosity index improver, or a mixture thereof, in the presence of a polar promoter, to form a molybdenum complex wherein from 0.01 to 2 atoms of molybdenum are present per basic nitrogen atom, and the promoter is present in the ratio of 0.01 to 50 moles of polar promoter per mole of molybdenum; and (ii) reacting the molybdenum complex with a sulfur-containing compound in an amount sufficient to provide about 1.5 to 4.0 atoms of sulfur per atom of molybdenum, to thereby form a sulfur- and molybdenum-containing composition, 1 (2) a carboxylic acid amide, and 2 3 (3) a succinimide. 4 5
2. The fuel composition of Claim 1, wherein the sulfur 6 source for component (1) is sulfur, hydrogen sulfide, 7 phosphorus pentasulfide, R2Sχ where R is hydrocarbyl,
08 and x is at least 2, inorganic sulfides or inorganic 9 polysulfides, thioacetamide, thiourea, mercaptans of
10 the formula RSH where R is hydrocarbyl, or a
11 sulfur-containing antioxidant. 12
13
3. The fuel composition of Claim 2, wherein the sulfur
** source for component (1) is sulfur, hydrogen sulfide,
15 phosphorus pentasulfide, R2Sχ where R is C-*^
16 hydrocarbyl, and x is at least 3, inorganic sulfides, 1 or inorganic polysulfides, thioacetamide, thiourea or
18 RSH where R is Cj^0 alkyl, and the acidic molybdenum
19 compound is molybdic acid, ammonium molybdate, or
20 alkali metal molybdate.
21
22
4. The fuel composition of Claim 3, wherein said sulfur
23 source is sulfur, hydrogen sulfide, RSH where R is C^Q
24 alkyl, phosphorus pentasulfide, or (NH4)2Sχ., where x'
25 is at least 1, said acidic molybdenum compound is
26 molybdic acid, or ammonium molybdate, and said basic
27 nitrogen compound is a succinimide, carboxylic acid
28 amide, or Mannich base.
29
30
5. The fuel composition of Claim 4, wherein said basic
31 nitrogen compound is a C24.350 hydrocarbyl succinimide,
32 carboxylic acid amide, or a Mannich base prepared from
33 a C9.20o alkylphenol, formaldehyde, and an amine.
34
6. The fuel composition of Claim 5, wherein said basic nitrogen compound is a polyisobutenyl succinimide prepared from polyisobutenyl succinic anhydride and tetraethylene pentamine or triethylene tetramine.
7. The fuel composition of Claim 5, wherein said basic nitrogen compound is a carboxylic acid amide prepared from one or more carboxylic acids of the formula R2COOH, or a derivative thereof which upon reaction with an amine yields a carboxylic acid amide, wherein R2 is Cj2_35o alkyl or C12-35θ alkenyl and a hydrocarbyl polyamine.
8. The fuel composition of Claim 7, wherein R2 is C12_20 alkyl or C12_2o alkenyl and the hydrocarbyl polyamine is tetraethylene pentamine or triethylene tetramine.
9. The fuel composition of Claim 5, wherein said basic nitrogen compound is a Mannich base prepared from dodecylphenol, formaldehyde, and methylamine.
10. The fuel composition of Claim 5, wherein said basic nitrogen compound is a Mannich base prepared from c80-100 alkylphenol, formaldehyde and triethylene tetramine, tetraethylene pentamine, or mixtures thereof.
11. The fuel composition of Claim 1, wherein the polar promoter is water.
12. The fuel composition of Claim 1, wherein the carboxylic acid amide of component (2) is derived from a carboxylic acid of the formula R2COOH, wherein R2 is ci2-20 &lkyl» and an ethylene amine.
13. The fuel composition of Claim 1, wherein the succinimide of component (3) is derived from polyisobutenyl succinic anhydride, wherein the polyisobutenyl group contains from about 50 to 250 carbon atoms, and an ethylene amine.
14. The fuel composition of Claim 1, wherein the lubricant composition contains about 0.05 to 15% by weight of the molybdenum-containing composition of component (1) , about 0.05 to 20% by weight of the carboxylic acid amide of component (2), and about 0.05 to 15% by weight of the succinimide of component (3) .
15. The fuel composition of Claim 1, wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.0 to 4.0 atoms of sulfur per atom of molybdenum.
16. The fuel composition of Claim 15, wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.5 to 4.0 atoms of sulf r per atom of molybdenum.
17. The fuel composition of Claim 1, wherein the additive . . . formulation further contains a flocculant inhibitor.
18. The fuel composition of Claim 17, wherein the additive formulation further contains a lubricity agent.
19. A method for reducing engine deposits and piston ring sticking in a two-cycle engine which comprises operating the two-cycle engine with a fuel composition comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising:
(A) a major amount of a base oil of lubricating viscosity, and
(B) a minor amount effective to reduce engine deposits and piston ring sticking of an additive formulation comprising:
(1) a sulfurized molybdenum-containing composition prepared by (i) reacting an acidic molybdenum compound and a basic nitrogen compound selected from the group consisting of a succinimide, a carboxylic acid amide, a hydrocarbyl monoamine, a hydrocarbyl polyamine, a Mannich base, a phosphoramide, a thiophosphora ide, a phosphonamide, a dispersant viscosity index improver, or a mixture thereof, in the presence of a polar promoter, to form a molybdenum complex wherein from 0.01 to 2 atoms of molybdenum are present per basic nitrogen atom, and the promoter is present in the ratio of 0.01 to 50 moles of polar promoter per mole of molybdenum; and (ii) reacting the molybdenum complex with a sulfur-containing compound in an amount sufficient to provide about 1.5 to 4.0 atoms of sulfur per atom of molybdenum, to thereby 1 form a sulfur- and molybdenum-containing 2 composition; 3 4 (2) a carboxylic acid amide; and 5 6 (3) a succinimide. 7 8
20. The method of Claim 19 wherein the sulfur source for 9 component (1) is sulfur, hydrogen sulfide, phosphorus 0 pentasulfide, R2Sχ where R is hydrocarbyl, and x is at 1 least 2, inorganic sulfides or inorganic polysulfides, 2 thioacetamide, thiourea, mercaptans of the formula RSH 3 where R is hydrocarbyl, or a sulfur-containing
1 antioxidant. 5
16 21. The method of Claim 20 wherein the sulfur source for
17 component (1) is sulfur, hydrogen sulfide, phosphorus
18 pentasulfide, R2Sχ where R is C hydrocarbyl, and x is * at least 3, inorganic sulfides, or inorganic
2 polysulfides, thioacetamide, thiourea or RSH where R is
21 CI^ alkyl, and the acidic molybdenum compound is 22 molybdic acid, ammonium molybdate, or alkali metal 23 molybdate. 24 25
22. The method of Claim 21 wherein said sulfur source is 26 sulfur, hydrogen sulfide, RSH where R is CJ.JQ alkyl, 27 phosphorus pentasulfide, or (NH4)2Sχ., where x' is at 28 least 1, said acidic molybdenum compound is molybdic 29 acid, or ammonium molybdate, and said basic nitrogen 30 compound is a succinimide, carboxylic acid amide, or 31 Mannich base. 32 33 34
01 23. The method of Claim 22 wherein said basic nitrogen
02 compound is a C24_350 hydrocarbyl succinimide,
03 carboxylic acid amide, or a Mannich base prepared from
°* a C9_20) alkylphenol, formaldehyde, and an amine. 05
06 24. The method of Claim 23 wherein said basic nitrogen
07 compound is a polyisobutenyl succinimide prepared from
08 polyisobutenyl succinic anhydride and tetraethylene
09 pentamine or triethylene tetramine.
10
11
25. The method of Claim 23 wherein said basic nitrogen
12 compound is a carboxylic acid amide prepared from one
1 or more carboxylic acids of the formula R2COOH, or a 14 derivative thereof which upon reaction with an amine yields a carboxylic acid amide, wherein R2 is C12.350
16 alkyl or C12_350 alkenyl and a hydrocarbyl polyamine. 17 18
26. The method of Claim 25 wherein R2 is C12.20 alkyl or 19 c12-20 alkenyl and the hydrocarbyl polyamine is 20
21 tetraethylene pentamine or triethylene tetramine.
22
2_
27. The method of Claim 23 wherein said basic nitrogen
,. compound is a Mannich base prepared from dodecylphenol,
-5 formaldehyde, and methylamine.
26
2_
28. The method of Claim 23 wherein said basic nitrogen
28 compound is a Mannich base prepared from C80.ιoo
29 alkylphenol, formaldehyde and triethylene tetramine, 30 tetraethylene pentamine, or mixtures thereof.
31
32 29. The method of Claim 19 wherein the polar promoter is
33 water. 34
30. The method of Claim 19 wherein the carboxylic acid amide of component (2) is derived from a carboxylic acid of the formula R2COOH, wherein R2 is C12. o alkyl, and an ethylene amine.
31. The method of Claim 19 wherein the succinimide of component (3) is derived from polyisobutenyl succinic anhydride, wherein the polyisobutenyl group contains from about 50 to 250 carbon atoms, and an ethylene amine.
32. The method of Claim 19 wherein the lubricant composition contains about 0.05 to 15% by weight of the molybdenum-containing composition of component (1) , about 0.05 to 20% by weight of the carboxylic acid amide of component (2), and about 0.05 to 15% by weight of the succinimide of component (3) .
33. The method of Claim 19 wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.0 to 4.0 atoms of sulfur per atom of molybdenum.
34. The method of Claim 33 wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.5 to 4.0 atoms of sulfur per atom of molybdenum.
35. The method of Claim 19 wherein the additive formulation further contains a flocculant inhibitor.
36. The method of Claim 35 wherein the additive formulation further contains a lubricity agent.
PCT/US1993/008471 1992-09-11 1993-09-09 Fuel composition for two-cycle engines WO1994006897A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP50815494A JP3495043B2 (en) 1992-09-11 1993-09-09 Fuel composition for two-stroke engine
DE69322952T DE69322952T2 (en) 1992-09-11 1993-09-09 FUEL COMPOSITION FOR TWO-STROKE ENGINES
AU48525/93A AU670118B2 (en) 1992-09-11 1993-09-09 Fuel composition for two-cycle engines
EP93921434A EP0616635B1 (en) 1992-09-11 1993-09-09 Fuel composition for two-cycle engines
CA002122825A CA2122825C (en) 1992-09-11 1993-09-09 Fuel composition for two-cycle engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94384492A 1992-09-11 1992-09-11
US07/943,844 1992-09-11

Publications (1)

Publication Number Publication Date
WO1994006897A1 true WO1994006897A1 (en) 1994-03-31

Family

ID=25480365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/008471 WO1994006897A1 (en) 1992-09-11 1993-09-09 Fuel composition for two-cycle engines

Country Status (8)

Country Link
US (1) US20020038525A1 (en)
EP (1) EP0616635B1 (en)
JP (1) JP3495043B2 (en)
AU (1) AU670118B2 (en)
CA (1) CA2122825C (en)
DE (1) DE69322952T2 (en)
SG (1) SG71668A1 (en)
WO (1) WO1994006897A1 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807676A3 (en) * 1996-05-17 1998-01-07 Ethyl Petroleum Additives Limited Fuel additives and compositions
WO2003089556A1 (en) * 2002-04-19 2003-10-30 The Lubrizol Corporation Methods and lubricant and fuel compositions for two-stroke engine containing power valves
EP1371716A1 (en) * 2002-05-31 2003-12-17 Chevron Oronite Company LLC Preparation of a light color molybdenum complex
EP1518918A1 (en) * 2003-09-25 2005-03-30 Afton Chemical Corporation Fuels compositions and methods for using same
DE102007061033A1 (en) 2007-01-19 2008-10-30 Afton Chemical Corp. Economical STUO lubricant with high TBN / low phosphorus
EP1990400A2 (en) 2007-05-01 2008-11-12 Afton Chemical Corporation Lubricating oil composition for marine applications
EP2078745A1 (en) 2007-12-20 2009-07-15 Chevron Oronite Company LLC Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate
EP2371935A1 (en) 2010-03-25 2011-10-05 Afton Chemical Corporation Lubricant compositions for improved engine performance
EP2500406A1 (en) 2011-03-16 2012-09-19 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant for improved soot of sludge handling capabilities
EP2524958A1 (en) 2011-05-20 2012-11-21 Afton Chemical Corporation Lubricant compositions containing a heteroaromatic compound
EP2557144A1 (en) 2011-08-11 2013-02-13 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant
EP2650349A1 (en) 2012-04-12 2013-10-16 Infineum International Limited Lubricating oil compositions containing molybdenum compound and friction modifier
EP2650350A1 (en) 2012-04-12 2013-10-16 Infineum International Limited Lubricating oil compositions
EP2687582A1 (en) 2012-07-18 2014-01-22 Afton Chemical Corporation Lubricant compositions for direct injection engines
EP2746374A2 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Additive compositions with a friction modifier and a detergent
EP2746370A1 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Friction modifiers for lubricating oils
EP2746373A2 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Friction modifiers for use in lubricating oil compositions
EP2746371A1 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Additive compositions with a friction modifier and a metal dialkyl dithio phosphate salt
EP2746372A1 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Additive compositions with plural friction modifiers
EP2767577A1 (en) 2012-12-21 2014-08-20 Afton Chemical Corporation Additive compositions with a friction modifier and a dispersant
EP2826841A1 (en) 2013-07-18 2015-01-21 Afton Chemical Corporation Friction modifiers for engine oils
EP2826842A1 (en) 2013-07-18 2015-01-21 Afton Chemical Corporation Friction modifiers for lubricating oils
EP2826843A1 (en) 2013-07-18 2015-01-21 Afton Chemical Corporation Amide alcohol friction modifiers for lubricating oils
EP2915871A1 (en) 2014-02-26 2015-09-09 Afton Chemical Corporation Lubricating oil composition and additive therefor having improved piston deposit control and emulsion stability
EP2933320A1 (en) 2014-04-17 2015-10-21 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
EP2952562A1 (en) 2014-06-02 2015-12-09 Infineum International Limited Lubricating oil compositions
EP2957624A1 (en) 2014-06-19 2015-12-23 Afton Chemical Corporation Novel phosphorus anti-wear compounds for use in lubricant compositions
EP2990469A1 (en) 2014-08-27 2016-03-02 Afton Chemical Corporation Lubricant composition suitable for use in gasoline direct injection engines
WO2017189277A1 (en) 2016-04-26 2017-11-02 Afton Chemical Corporation Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same
WO2017192202A1 (en) 2016-05-05 2017-11-09 Afton Chemical Corporaion Lubricant compositions for reducing timing chain stretch
EP3246383A1 (en) 2016-05-17 2017-11-22 Afton Chemical Corporation Synergistic dispersants
EP3263676A2 (en) 2016-06-30 2018-01-03 Infineum International Limited Lubricating oil compositions
EP3336163A1 (en) 2016-12-13 2018-06-20 Afton Chemical Corporation Polyolefin-derived dispersants
WO2018111726A1 (en) 2016-12-16 2018-06-21 Afton Chemical Corporation Multi-functional olefin copolymers and lubricating compositions containing same
EP3366754A1 (en) 2017-02-22 2018-08-29 Infineum International Limited Lubricating containing pre-ceramic polymers
WO2018226277A1 (en) 2017-06-05 2018-12-13 Afton Chemical Company Methods for improving resistance to timing chain wear with a multi-component detergent system
EP3461877A1 (en) 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
EP3476923A1 (en) 2017-10-25 2019-05-01 Afton Chemical Corporation Dispersant viscosity index improvers to enhance wear protection in engine oils
EP3495461A1 (en) 2017-12-11 2019-06-12 Infineum International Limited Automotive transmission fluid compositions for improved energy efficiency
EP3511397A1 (en) 2018-01-12 2019-07-17 Afton Chemical Corporation Emulsifier for use in lubricating oil
EP3527651A1 (en) 2018-02-15 2019-08-21 Afton Chemical Corporation Grafted polymer with soot handling properties
EP3530678A1 (en) 2018-02-27 2019-08-28 Afton Chemical Corporation Grafted polymer with soot handling properties
EP3560966A2 (en) 2018-04-25 2019-10-30 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
EP3578625A1 (en) 2018-06-05 2019-12-11 Afton Chemical Corporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
EP3674385A1 (en) 2018-12-27 2020-07-01 Infineum International Limited Dispersants for lubricating oil compositions
EP3680312A1 (en) 2019-01-11 2020-07-15 Afton Chemical Corporation Oxazoline modified dispersants
WO2020149958A1 (en) 2019-01-18 2020-07-23 Afton Chemical Corporation Engine oils for soot handling and friction reduction
WO2020174454A1 (en) 2019-02-28 2020-09-03 Afton Chemical Corporation Lubricating compositions for diesel particulate filter performance
EP3736318A1 (en) 2019-05-09 2020-11-11 Infineum International Limited Transmission fluid composition for improved wear protection
US10836976B2 (en) 2018-07-18 2020-11-17 Afton Chemical Corporation Polymeric viscosity modifiers for use in lubricants
EP3839019A1 (en) 2019-12-16 2021-06-23 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
EP3839017A1 (en) 2019-12-16 2021-06-23 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
EP3839018A1 (en) 2019-12-16 2021-06-23 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
WO2021138285A1 (en) 2020-01-03 2021-07-08 Afton Chemical Corporation Silicone functionlized viscosity index improver
EP3858954A1 (en) 2020-01-29 2021-08-04 Afton Chemical Corporation Lubricant formulations with silicon-containing compounds
EP3954753A1 (en) 2020-08-12 2022-02-16 Afton Chemical Corporation Polymeric surfactants for improved emulsion and flow properties at low temperatures
WO2022094557A1 (en) 2020-10-30 2022-05-05 Afton Chemical Corporation Engine oils with low temperature pump ability
EP3995561A2 (en) 2020-10-16 2022-05-11 Infineum International Limited Transmission fluid compositions for hybrid and electric vehicle applications
WO2022136384A1 (en) 2020-12-24 2022-06-30 Infineum International Limited Thermally responsive brush polymers having a copolymer backbone and copolymer arms
EP4067463A1 (en) 2021-03-30 2022-10-05 Afton Chemical Corporation Engine oils with improved viscometric performance
US11479736B1 (en) 2021-06-04 2022-10-25 Afton Chemical Corporation Lubricant composition for reduced engine sludge
EP4098723A1 (en) 2021-06-04 2022-12-07 Afton Chemical Corporation Lubricating compositions for a hybrid engine
WO2023004265A1 (en) 2021-07-21 2023-01-26 Afton Chemical Corporation Methods of reducing lead corrosion in an internal combustion engine
EP4124648A1 (en) 2021-07-31 2023-02-01 Afton Chemical Corporation Engine oil formulations for low timing chain stretch
US11572523B1 (en) 2022-01-26 2023-02-07 Afton Chemical Corporation Sulfurized additives with low levels of alkyl phenols
EP4194531A1 (en) 2021-12-09 2023-06-14 Infineum International Limited Borated detergents and their lubricating applications
EP4202023A1 (en) 2021-12-21 2023-06-28 Afton Chemical Corporation Mixed fleet capable lubricating compositions
WO2023141399A1 (en) 2022-01-18 2023-07-27 Afton Chemical Corporation Lubricating compositions for reduced high temperature deposits
WO2023159095A1 (en) 2022-02-21 2023-08-24 Afton Chemical Corporation Polyalphaolefin phenols with high para-position selectivity
US11773343B2 (en) 2021-11-17 2023-10-03 Afton Chemical Corporation Engine oil formulation with improved Sequence VIII performance
US11788027B2 (en) 2022-02-18 2023-10-17 Afton Chemical Corporation Engine oil formulation with improved sequence VIII performance
WO2023212165A1 (en) 2022-04-27 2023-11-02 Afton Chemical Corporation Additives with high sulfurization for lubricating oil compositions
US11851628B2 (en) 2021-12-21 2023-12-26 Afton Chemical Corporation Lubricating oil composition having resistance to engine deposits
EP4306624A1 (en) 2022-07-14 2024-01-17 Afton Chemical Corporation Transmission lubricants containing molybdenum
EP4310162A1 (en) 2022-07-15 2024-01-24 Afton Chemical Corporation Detergent systems for oxidation resistance in lubricants
EP4317369A1 (en) 2022-08-02 2024-02-07 Afton Chemical Corporation Detergent systems for improved piston cleanliness
US11898119B2 (en) 2022-01-25 2024-02-13 Afton Chemical Corporation Lubricating oil compositions with resistance to engine deposit and varnish formation
WO2024073304A1 (en) 2022-09-27 2024-04-04 Afton Chemical Corporation Lubricating composition for motorcycle applications
EP4357442A1 (en) 2022-09-21 2024-04-24 Afton Chemical Corporation Lubricating composition for fuel efficient motorcycle applications

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030056431A1 (en) * 2001-09-14 2003-03-27 Schwab Scott D. Deposit control additives for direct injection gasoline engines
HUP0300105A3 (en) * 2003-01-13 2005-05-30 Cserta Peter A new application of phosphorus-nitrogen-metal complex layer
EP1471130A1 (en) * 2003-04-23 2004-10-27 Ethyl Petroleum Additives Ltd Fuel composition containing molybdenum source and metal-containing detergent, and its use in two-stroke engines
PL379422A1 (en) * 2003-06-23 2006-09-04 Envirofuels L.P. Additive for hydrocarbon fuel and related process
AR051303A1 (en) * 2004-09-28 2007-01-03 Envirofuels Lp LIQUID OR LIQUID HYDROCARBON FUEL ADDITIVE FOR DIRECT FIRE BURNERS, OPEN CALLS AND RELATED PROCESSES
PE20060804A1 (en) * 2004-11-15 2006-09-23 Envirofuels Lp PROCESS FOR THE PREPARATION OF A FUEL ADDITIVE CONTAINING SOLID HYDROCARBONS IN DIRECT FIRE BURNERS, OVENS OR OPEN FLAME
CA2603879A1 (en) * 2005-04-22 2006-11-02 Envirofuels, Llc Additive for hydrocarbon fuel consisting of non-acidic inorganic compounds of boron and related processes
US20070049693A1 (en) * 2005-08-22 2007-03-01 Envirofuels, Llc Flow enhancement compositions for liquid and gases in tubes and pipes
US20080263939A1 (en) * 2006-12-08 2008-10-30 Baxter C Edward Lubricity improver compositions and methods for improving lubricity of hydrocarbon fuels
JP5273699B2 (en) * 2007-03-22 2013-08-28 Jx日鉱日石エネルギー株式会社 Lubricant composition and lubrication system using the same
US8207099B2 (en) * 2009-09-22 2012-06-26 Afton Chemical Corporation Lubricating oil composition for crankcase applications
WO2011040919A1 (en) * 2009-09-30 2011-04-07 Chevron Oronite Company Llc Preparation of a sulfurized molybdenum amide complex and additive compositions having low residual active sulfur
US8183189B2 (en) * 2009-09-30 2012-05-22 Chevron Oronite Company Llc Preparation of a sulfurized molybdenum amide complex and additive compositions having low residual active sulfur
JP2015063564A (en) * 2014-12-26 2015-04-09 シェブロン・オロナイト・カンパニー・エルエルシー Preparation of sulfurized molybdenum amide complex and additive compositions having low residual active sulfur
US10280383B2 (en) 2015-07-16 2019-05-07 Afton Chemical Corporation Lubricants with molybdenum and their use for improving low speed pre-ignition
US10421922B2 (en) 2015-07-16 2019-09-24 Afton Chemical Corporation Lubricants with magnesium and their use for improving low speed pre-ignition
US10336959B2 (en) 2015-07-16 2019-07-02 Afton Chemical Corporation Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition
US10550349B2 (en) 2015-07-16 2020-02-04 Afton Chemical Corporation Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition
US10214703B2 (en) 2015-07-16 2019-02-26 Afton Chemical Corporation Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines
CA3015342A1 (en) 2016-02-25 2017-08-31 Afton Chemical Corporation Lubricants for use in boosted engines
US10377963B2 (en) 2016-02-25 2019-08-13 Afton Chemical Corporation Lubricants for use in boosted engines
US9677026B1 (en) 2016-04-08 2017-06-13 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
US9701921B1 (en) 2016-04-08 2017-07-11 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
US11155764B2 (en) 2016-05-05 2021-10-26 Afton Chemical Corporation Lubricants for use in boosted engines
US10443011B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition
US10370615B2 (en) 2017-01-18 2019-08-06 Afton Chemical Corporation Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition
US10443558B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance
CA3202737A1 (en) 2020-11-25 2022-06-02 Chevron Japan Ltd. Lubricating oil compositions
US20230383211A1 (en) 2022-05-26 2023-11-30 Afton Chemical Corporation Engine oil formluation for controlling particulate emissions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219666A (en) * 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3405064A (en) * 1963-06-06 1968-10-08 Lubrizol Corp Lubricating oil composition
US4164473A (en) * 1977-10-20 1979-08-14 Exxon Research & Engineering Co. Organo molybdenum friction reducing antiwear additives
US4263152A (en) * 1979-06-28 1981-04-21 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4266945A (en) * 1979-11-23 1981-05-12 The Lubrizol Corporation Molybdenum-containing compositions and lubricants and fuels containing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219666A (en) * 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3405064A (en) * 1963-06-06 1968-10-08 Lubrizol Corp Lubricating oil composition
US4164473A (en) * 1977-10-20 1979-08-14 Exxon Research & Engineering Co. Organo molybdenum friction reducing antiwear additives
US4263152A (en) * 1979-06-28 1981-04-21 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4266945A (en) * 1979-11-23 1981-05-12 The Lubrizol Corporation Molybdenum-containing compositions and lubricants and fuels containing them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0616635A4 *

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807676A3 (en) * 1996-05-17 1998-01-07 Ethyl Petroleum Additives Limited Fuel additives and compositions
AU2003234139B2 (en) * 2002-04-19 2008-11-13 The Lubrizol Corporation Methods and lubricant and fuel compositions for two-stroke engine containing power valves
WO2003089556A1 (en) * 2002-04-19 2003-10-30 The Lubrizol Corporation Methods and lubricant and fuel compositions for two-stroke engine containing power valves
US7900590B2 (en) 2002-04-19 2011-03-08 The Lubrizol Corporation Methods and lubricant and fuel compositions for two-stroke engine containing power valves
EP1371716A1 (en) * 2002-05-31 2003-12-17 Chevron Oronite Company LLC Preparation of a light color molybdenum complex
US6962896B2 (en) 2002-05-31 2005-11-08 Chevron Oronite Company Llc Reduced color molybdenum-containing composition and a method of making same
SG126721A1 (en) * 2002-05-31 2006-11-29 Chevron Oronite Co Reduced color molybdenum-containing composition and a method of making same
US8076275B2 (en) 2002-05-31 2011-12-13 Chevron Oronite Company Llc Reduced color molybdenum-containing composition and a method of making same
KR100670617B1 (en) 2003-09-25 2007-01-17 에프톤 케미칼 코포레이션 Fuels compositions and methods for using same
US7491248B2 (en) 2003-09-25 2009-02-17 Afton Chemical Corporation Fuels compositions and methods for using same
KR100749715B1 (en) * 2003-09-25 2007-08-16 에프톤 케미칼 코포레이션 Fuels compositions and methods for using same
EP1518918A1 (en) * 2003-09-25 2005-03-30 Afton Chemical Corporation Fuels compositions and methods for using same
DE102007061033A1 (en) 2007-01-19 2008-10-30 Afton Chemical Corp. Economical STUO lubricant with high TBN / low phosphorus
US8586516B2 (en) 2007-01-19 2013-11-19 Afton Chemical Corporation High TBN / low phosphorus economic STUO lubricants
EP1990400A2 (en) 2007-05-01 2008-11-12 Afton Chemical Corporation Lubricating oil composition for marine applications
EP2078745A1 (en) 2007-12-20 2009-07-15 Chevron Oronite Company LLC Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate
EP2371935A1 (en) 2010-03-25 2011-10-05 Afton Chemical Corporation Lubricant compositions for improved engine performance
EP2500406A1 (en) 2011-03-16 2012-09-19 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant for improved soot of sludge handling capabilities
US8334243B2 (en) 2011-03-16 2012-12-18 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant for improved soot or sludge handling capabilities
EP2524958A1 (en) 2011-05-20 2012-11-21 Afton Chemical Corporation Lubricant compositions containing a heteroaromatic compound
US9090847B2 (en) 2011-05-20 2015-07-28 Afton Chemical Corporation Lubricant compositions containing a heteroaromatic compound
EP2557144A1 (en) 2011-08-11 2013-02-13 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant
US8927469B2 (en) 2011-08-11 2015-01-06 Afton Chemical Corporation Lubricant compositions containing a functionalized dispersant
EP2650349A1 (en) 2012-04-12 2013-10-16 Infineum International Limited Lubricating oil compositions containing molybdenum compound and friction modifier
EP2650350A1 (en) 2012-04-12 2013-10-16 Infineum International Limited Lubricating oil compositions
EP2687582A1 (en) 2012-07-18 2014-01-22 Afton Chemical Corporation Lubricant compositions for direct injection engines
EP2746373A2 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Friction modifiers for use in lubricating oil compositions
EP2746370A1 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Friction modifiers for lubricating oils
EP2746372A1 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Additive compositions with plural friction modifiers
EP2767577A1 (en) 2012-12-21 2014-08-20 Afton Chemical Corporation Additive compositions with a friction modifier and a dispersant
EP2746374A2 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Additive compositions with a friction modifier and a detergent
EP2746371A1 (en) 2012-12-21 2014-06-25 Afton Chemical Corporation Additive compositions with a friction modifier and a metal dialkyl dithio phosphate salt
EP2826843A1 (en) 2013-07-18 2015-01-21 Afton Chemical Corporation Amide alcohol friction modifiers for lubricating oils
EP2993220A1 (en) 2013-07-18 2016-03-09 Afton Chemical Corporation Friction modifiers for lubricating oils
EP2826842A1 (en) 2013-07-18 2015-01-21 Afton Chemical Corporation Friction modifiers for lubricating oils
EP2826841A1 (en) 2013-07-18 2015-01-21 Afton Chemical Corporation Friction modifiers for engine oils
EP2915871A1 (en) 2014-02-26 2015-09-09 Afton Chemical Corporation Lubricating oil composition and additive therefor having improved piston deposit control and emulsion stability
EP2933320A1 (en) 2014-04-17 2015-10-21 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
EP2952562A1 (en) 2014-06-02 2015-12-09 Infineum International Limited Lubricating oil compositions
EP2957624A1 (en) 2014-06-19 2015-12-23 Afton Chemical Corporation Novel phosphorus anti-wear compounds for use in lubricant compositions
EP2990469A1 (en) 2014-08-27 2016-03-02 Afton Chemical Corporation Lubricant composition suitable for use in gasoline direct injection engines
WO2017189277A1 (en) 2016-04-26 2017-11-02 Afton Chemical Corporation Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same
WO2017192202A1 (en) 2016-05-05 2017-11-09 Afton Chemical Corporaion Lubricant compositions for reducing timing chain stretch
US10323205B2 (en) 2016-05-05 2019-06-18 Afton Chemical Corporation Lubricant compositions for reducing timing chain stretch
EP3246383A1 (en) 2016-05-17 2017-11-22 Afton Chemical Corporation Synergistic dispersants
US10494583B2 (en) 2016-05-17 2019-12-03 Afton Chemical Corporation Synergistic dispersants
US10179886B2 (en) 2016-05-17 2019-01-15 Afton Chemical Corporation Synergistic dispersants
EP3263676A2 (en) 2016-06-30 2018-01-03 Infineum International Limited Lubricating oil compositions
EP3336163A1 (en) 2016-12-13 2018-06-20 Afton Chemical Corporation Polyolefin-derived dispersants
WO2018111846A1 (en) 2016-12-13 2018-06-21 Afton Chemical Corporation Polyolefin-derived dispersants
US10584297B2 (en) 2016-12-13 2020-03-10 Afton Chemical Corporation Polyolefin-derived dispersants
WO2019117992A1 (en) 2016-12-13 2019-06-20 Afton Chemical Corporation Polyolefin-derived dispersants
WO2018111726A1 (en) 2016-12-16 2018-06-21 Afton Chemical Corporation Multi-functional olefin copolymers and lubricating compositions containing same
EP3521403A1 (en) 2017-02-22 2019-08-07 Infineum International Limited Lubricating oil compositions containing pre-ceramic polymers
EP3366754A1 (en) 2017-02-22 2018-08-29 Infineum International Limited Lubricating containing pre-ceramic polymers
WO2018226277A1 (en) 2017-06-05 2018-12-13 Afton Chemical Company Methods for improving resistance to timing chain wear with a multi-component detergent system
EP3461877A1 (en) 2017-09-27 2019-04-03 Infineum International Limited Improvements in and relating to lubricating compositions
US10513668B2 (en) 2017-10-25 2019-12-24 Afton Chemical Corporation Dispersant viscosity index improvers to enhance wear protection in engine oils
EP3476923A1 (en) 2017-10-25 2019-05-01 Afton Chemical Corporation Dispersant viscosity index improvers to enhance wear protection in engine oils
EP3495461A1 (en) 2017-12-11 2019-06-12 Infineum International Limited Automotive transmission fluid compositions for improved energy efficiency
US10711219B2 (en) 2017-12-11 2020-07-14 Infineum International Limited Automotive transmission fluid compositions for improved energy efficiency
EP3511397A1 (en) 2018-01-12 2019-07-17 Afton Chemical Corporation Emulsifier for use in lubricating oil
EP3527651A1 (en) 2018-02-15 2019-08-21 Afton Chemical Corporation Grafted polymer with soot handling properties
EP3530678A1 (en) 2018-02-27 2019-08-28 Afton Chemical Corporation Grafted polymer with soot handling properties
EP3560966A2 (en) 2018-04-25 2019-10-30 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
US11098262B2 (en) 2018-04-25 2021-08-24 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
US11760953B2 (en) 2018-04-25 2023-09-19 Afton Chemical Corporation Multifunctional branched polymers with improved low-temperature performance
EP3578625A1 (en) 2018-06-05 2019-12-11 Afton Chemical Corporation Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability
US10836976B2 (en) 2018-07-18 2020-11-17 Afton Chemical Corporation Polymeric viscosity modifiers for use in lubricants
US10781393B2 (en) 2018-12-27 2020-09-22 Infineum International Limited Dispersants for lubricating oil compositions
EP3674385A1 (en) 2018-12-27 2020-07-01 Infineum International Limited Dispersants for lubricating oil compositions
EP3680312A1 (en) 2019-01-11 2020-07-15 Afton Chemical Corporation Oxazoline modified dispersants
WO2020149958A1 (en) 2019-01-18 2020-07-23 Afton Chemical Corporation Engine oils for soot handling and friction reduction
WO2020174454A1 (en) 2019-02-28 2020-09-03 Afton Chemical Corporation Lubricating compositions for diesel particulate filter performance
EP3736318A1 (en) 2019-05-09 2020-11-11 Infineum International Limited Transmission fluid composition for improved wear protection
US11312918B2 (en) 2019-05-09 2022-04-26 Infineum International Limited Transmission fluid composition for improved wear protection
EP3839017A1 (en) 2019-12-16 2021-06-23 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11685874B2 (en) 2019-12-16 2023-06-27 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
EP3839018A1 (en) 2019-12-16 2021-06-23 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11365273B2 (en) 2019-12-16 2022-06-21 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
US11384311B2 (en) 2019-12-16 2022-07-12 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
EP3839019A1 (en) 2019-12-16 2021-06-23 Infineum International Limited High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same
WO2021138285A1 (en) 2020-01-03 2021-07-08 Afton Chemical Corporation Silicone functionlized viscosity index improver
US11214753B2 (en) 2020-01-03 2022-01-04 Afton Chemical Corporation Silicone functionalized viscosity index improver
EP3858954A1 (en) 2020-01-29 2021-08-04 Afton Chemical Corporation Lubricant formulations with silicon-containing compounds
EP3954753A1 (en) 2020-08-12 2022-02-16 Afton Chemical Corporation Polymeric surfactants for improved emulsion and flow properties at low temperatures
EP3995561A2 (en) 2020-10-16 2022-05-11 Infineum International Limited Transmission fluid compositions for hybrid and electric vehicle applications
US11905488B2 (en) 2020-10-16 2024-02-20 Infineum International Limited Transmission fluid compositions for hybrid and electric vehicle applications
WO2022094557A1 (en) 2020-10-30 2022-05-05 Afton Chemical Corporation Engine oils with low temperature pump ability
WO2022136384A1 (en) 2020-12-24 2022-06-30 Infineum International Limited Thermally responsive brush polymers having a copolymer backbone and copolymer arms
EP4067463A1 (en) 2021-03-30 2022-10-05 Afton Chemical Corporation Engine oils with improved viscometric performance
US11479736B1 (en) 2021-06-04 2022-10-25 Afton Chemical Corporation Lubricant composition for reduced engine sludge
EP4098723A1 (en) 2021-06-04 2022-12-07 Afton Chemical Corporation Lubricating compositions for a hybrid engine
US11753599B2 (en) 2021-06-04 2023-09-12 Afton Chemical Corporation Lubricating compositions for a hybrid engine
WO2023004265A1 (en) 2021-07-21 2023-01-26 Afton Chemical Corporation Methods of reducing lead corrosion in an internal combustion engine
US11608477B1 (en) 2021-07-31 2023-03-21 Afton Chemical Corporation Engine oil formulations for low timing chain stretch
EP4124648A1 (en) 2021-07-31 2023-02-01 Afton Chemical Corporation Engine oil formulations for low timing chain stretch
US11773343B2 (en) 2021-11-17 2023-10-03 Afton Chemical Corporation Engine oil formulation with improved Sequence VIII performance
EP4194531A1 (en) 2021-12-09 2023-06-14 Infineum International Limited Borated detergents and their lubricating applications
US11939550B2 (en) 2021-12-09 2024-03-26 Infineum International Limited Borated detergents and their lubricating applications
US11851628B2 (en) 2021-12-21 2023-12-26 Afton Chemical Corporation Lubricating oil composition having resistance to engine deposits
EP4202023A1 (en) 2021-12-21 2023-06-28 Afton Chemical Corporation Mixed fleet capable lubricating compositions
WO2023141399A1 (en) 2022-01-18 2023-07-27 Afton Chemical Corporation Lubricating compositions for reduced high temperature deposits
US11898119B2 (en) 2022-01-25 2024-02-13 Afton Chemical Corporation Lubricating oil compositions with resistance to engine deposit and varnish formation
WO2023147258A1 (en) 2022-01-26 2023-08-03 Afton Chemical Corporation Sulfurized additives with low levels of alkyl phenols
US11572523B1 (en) 2022-01-26 2023-02-07 Afton Chemical Corporation Sulfurized additives with low levels of alkyl phenols
US11788027B2 (en) 2022-02-18 2023-10-17 Afton Chemical Corporation Engine oil formulation with improved sequence VIII performance
WO2023159095A1 (en) 2022-02-21 2023-08-24 Afton Chemical Corporation Polyalphaolefin phenols with high para-position selectivity
WO2023212165A1 (en) 2022-04-27 2023-11-02 Afton Chemical Corporation Additives with high sulfurization for lubricating oil compositions
EP4306624A1 (en) 2022-07-14 2024-01-17 Afton Chemical Corporation Transmission lubricants containing molybdenum
EP4310162A1 (en) 2022-07-15 2024-01-24 Afton Chemical Corporation Detergent systems for oxidation resistance in lubricants
EP4317369A1 (en) 2022-08-02 2024-02-07 Afton Chemical Corporation Detergent systems for improved piston cleanliness
EP4357442A1 (en) 2022-09-21 2024-04-24 Afton Chemical Corporation Lubricating composition for fuel efficient motorcycle applications
WO2024073304A1 (en) 2022-09-27 2024-04-04 Afton Chemical Corporation Lubricating composition for motorcycle applications

Also Published As

Publication number Publication date
JPH07501360A (en) 1995-02-09
EP0616635A4 (en) 1995-02-22
CA2122825C (en) 2003-12-30
EP0616635B1 (en) 1999-01-07
EP0616635A1 (en) 1994-09-28
DE69322952D1 (en) 1999-02-18
AU4852593A (en) 1994-04-12
CA2122825A1 (en) 1994-03-31
AU670118B2 (en) 1996-07-04
JP3495043B2 (en) 2004-02-09
SG71668A1 (en) 2000-04-18
US20020038525A1 (en) 2002-04-04
DE69322952T2 (en) 1999-05-27

Similar Documents

Publication Publication Date Title
EP0616635B1 (en) Fuel composition for two-cycle engines
US4370246A (en) Antioxidant combinations of molybdenum complexes and aromatic amine compounds
US5330667A (en) Two-cycle oil additive
US4263152A (en) Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4259195A (en) Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4285822A (en) Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition
US4283295A (en) Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition
US4272387A (en) Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
EP1574559B1 (en) Dispersants for lubricants and fuels
CA1048507A (en) Additive useful in oleaginous compositions
EP1371716A1 (en) Preparation of a light color molybdenum complex
JP3421035B2 (en) Two-cycle engine lubricant and method of using the same
CA2205643A1 (en) Low chlorine polyalkylene substituted carboxylic acylating agent compositions and compounds derived therefrom
JPH0253895A (en) Synergic combination of additives useful in power transmitting composition
US4142980A (en) Mannich reaction products made with alkyphenol substituted aliphatic unsaturated carboxylic acids
GB2078757A (en) Oxicdation and corrosion inhibiting additive for lubricating oils
AU686833B2 (en) Two-stroke cycle engine lubricant and method of using same
CA1174032A (en) Process of preparing molybdenum complexes, the complexes so produced and lubricants containing same
EP0451397A1 (en) Elastomer-compatible oxalic acidacylated alkenyl succinimides
US6391833B1 (en) Low sulfur lubricant composition for two-stroke engines
US3451166A (en) Mineral lubricating oil containing sulfurized alkylated aryl amine
US4443360A (en) Oil-soluble zinc cyclic hydrocarbyl dithiophosphate-succinimide complex and lubricating oil compositions containing same
US4384138A (en) Process and compositions
GB2053268A (en) Molybdenum-containing Lubricating Oil Additives
US4049565A (en) Substituted maleimide lubricant additives and lubricant compositions made therewith

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993921434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2122825

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993921434

Country of ref document: EP

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i
WWG Wipo information: grant in national office

Ref document number: 1993921434

Country of ref document: EP