WO1994004820A1 - Eolienne, aile d'eolienne et element ajoute se montant sur l'aile - Google Patents

Eolienne, aile d'eolienne et element ajoute se montant sur l'aile Download PDF

Info

Publication number
WO1994004820A1
WO1994004820A1 PCT/DK1993/000279 DK9300279W WO9404820A1 WO 1994004820 A1 WO1994004820 A1 WO 1994004820A1 DK 9300279 W DK9300279 W DK 9300279W WO 9404820 A1 WO9404820 A1 WO 9404820A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
wings
mill
effect
actuator means
Prior art date
Application number
PCT/DK1993/000279
Other languages
English (en)
Inventor
Hans Ullersted
Per Hansen
Arne Nielsen
Original Assignee
Hans Ullersted
Per Hansen
Arne Nielsen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans Ullersted, Per Hansen, Arne Nielsen filed Critical Hans Ullersted
Priority to AU49447/93A priority Critical patent/AU4944793A/en
Publication of WO1994004820A1 publication Critical patent/WO1994004820A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0256Stall control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0236Adjusting aerodynamic properties of the blades by changing the active surface of the wind engaging parts, e.g. reefing or furling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/325Air temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • Windmill wing for such a mill, and add-on element to be mounted on a mill wing.
  • the present invention relates to a common type windmill, i.e. with a wing-carrying rotor, the wings of which are rotated by means of an existing wind ac ⁇ tuation.
  • a distinction is made differen ⁇ tiating between mills with fixed and turnably adjustable wings, respectively, and the invention relates in par ⁇ ticular to rotors with fixed wings.
  • maximum effect is meant the greatest possible exploitation of the existing wind at low wind velocity up to the point where the effect gained is commensurate with the maximum effect the mill is design ⁇ ed to produce.
  • the wings are automatically turned about their longitudinal axis such that their efficiency is reduced in order to safeguard the mill against overload.
  • the wing rotor When the wing rotor is coupled to an AC generator the rotor speed will be reasonably constant in a large part of the wind velocity area.
  • the wings move in a direction directly transversely to the wind direction and, in consequence, the inclination angle of the ensu ⁇ ing air flow on the wings depends on the wind force.
  • the wings in question are stall-regulated, viz. they are profiled such that, in the said strong wind velocity area, they display increased stalling the stronger the wind is, thusly avoiding the said overload condition.
  • a mill wing adjustment is chosen corresponding to high temperature operation for fully effective wings, whilst, by means of temperature sensors and coupled actuator means, a re ⁇ duction of the wing efficiency at decreasing temperature is undertaken.
  • This reduction may be induced in dif ⁇ ferent ways, e.g. through an operative local deformation of sections of the wings; through controlled alteration of the angle position of the wings; or through controll ⁇ ed alteration of the effective wing surface area.
  • the mill in hot weather may operate at an increased stall-wind velocity, i.e. hot, forceful winds may be exploited better without risking overload if or when the temperature is low.
  • the wings will be more or less inefficient, but this is of no consequence as long as they are able to continue to operate at the determined maximum effect.
  • a marked energy gain is attainable, at least 2-3% or more, depending on local conditions, and furthermore, it will eliminate the need to execute the said summer and wintertime operational service adjustments.
  • the wings may be arranged with telescope-like fixed wing tips which are kept retracted at low temperatures, but which are unfolded outwards gradually in step with ris ⁇ ing temperatures. This also ensures that an optimizing of the wings occurs without risking overload.
  • the wings may be turned slightly for a suitable change of the effective inclination angle, which should be reduced the colder the air is, such that the wings will stall at an even earlier point.
  • the wings may still retain the fixed-wing characteristics, since all it takes is for a turning joint and a temperature-sensitive rotation actuator to be placed between the wing blade and the wing base.
  • a combination of various regulation means may be implimented, as required, depending on the desired de ⁇ gree of accuracy in the effect equalization between high and low air temperatures.
  • Fig. 1 is a perspective view of a windmill with an arrangement according to the invention.
  • Figs. 2 and 3 are sectional views of a wing with the arrangement depicted in two different positions.
  • Figs. 4 and 5 are corresponding views to illustrate another embodiment of the arrangement according to the invention.
  • Fig. 6 is a longitudinal sectional view of same
  • Fig. 7 is a front view of a wing according to yet another embodiment of the invention.
  • Fig. 8 is a schematic perspective view of a third embodiment of the invention.
  • the mill illustrated in Fig. l is of a type having fixed, i.e. non-adjustable wings 2, and according to the invention these are made with some specific, schemati ⁇ cally illustrated front edge areas 4. These may be inte ⁇ grated areas; however, as depicted on the lefthand side of the view, add-on units 6 could be considered which are shaped to fit onto the wing front edge and may be fixated to this, e.g. by gluing means.
  • Figs. 2 and 3 are shown in a cross sectional view. It consists of a semi-rigid, pre ⁇ ferably rubber elastic material 8 which, when mounted, forms an aerodynamic extension of the wing front edge. Embedded in the material are some heat-expanding elements 10, which are illustrated in Fig. 2 in a "hot" state, e.g. at 40°C, where the profile surface exhibits its ordinary, effective form. In Fig. 2, the elements 10 are depicted at a relatively low temperature for the
  • a longitudinal, V-shaped front edge rail 14 which is displaceable in its longisudinal direction by means of a temperature responsive actuator 16 of a known type, and which is wedge-supported against a rigid rail 18 such that the rail 14 will remain in its retracted position, at high temperatures, as shown in Fig. 4, whilst, at low temperatures, it will assume a projecting position, as shown in Fig. 5.
  • the rail 14 may be kept in place by the frontwise positioned, slotted part of the member material 8 which will merely curve outwards ela- stically when the rail 14 is guided into its projecting position.
  • the rail 18 form the displaceable element by means of which an I-shaped rail 14 may be displaced forwards and backwards in a straight line, and the actuator 16 is preferably placed behind the rail 18 whereby the element 6 may remain active practically throughout its entire length.
  • a tip exten ⁇ sion will manifest itself, in terms of area, as the square on the extension and will thusly be effective for even a modest displacement.
  • the wings are normally dimensioned or adapted in correlation with the low temperatures where the impact is the strongest, but where it, in consequence, becomes necessary to relinquish the extra effect which will not be exploitable at high tempera ⁇ tures without the special thermal control arrangement.
  • Such an embodiment with a projectable wing tip is il lustrated in Fig. 7 where the wing tip portion 20 covers the fixed wing tip and is projectable to the shown position marked by dotted lines, in that a tempe ⁇ rature-sensitive actuator 22 is placed inside the wing or optionally in the very wing tip portion 20.
  • Fig. 8 illustrates that the wing 2, at its base portion 24, may be turnably lodged in a socket 26 which supports the wing mounting flange 28.
  • a socket 26 which supports the wing mounting flange 28.
  • a radial peg 32 extends and is connected to the base portion 24.
  • the extreme end of this peg is coupled to a driving rod on a thermal actua ⁇ tor 34 which is firmly connected to the socket 26.
  • Fol ⁇ lowing this, the wing blade 2 is turnably adjusted ac ⁇ cording to the temperature, e.g. by a 1-3° angle so that the inclination angle is increased the hotter the tem ⁇ perature is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Généralement, les ailes d'éolienne réglées en blocage contre la surcharge présentant un effet propulseur moins élevé à des températures supérieures qu'à des températures inférieures étant donné que plus la température est élevée, plus la densité de l'air est basse quelque soit la vitesse du vent. Ceci est critique quand le vent souffle à une vitesse de blocage, à laquelle l'éolienne produit son rendement maximum. Si les ailes sont réglées pour un rendement maximum à des températures élevées, une surcharge se produira à basse température, quand le vent souffle à une vitesse de blocage. De ce fait, les ailes sont réglées normalement pour des conditions de basse température, cependant, on doit renoncer au rendement maximum à des températures élevées. D'après l'invention, un détecteur de température d'air (10, 16, 22, 34) sert à modifier la structure de l'aile, au moyen d'organes de commande accouplés (14, 20, 32), de façon que l'aile devient généralement moins efficace à des températures décroissantes. Ceci permet d'augmenter le rendement de l'éolienne étant donné qu'elle pourra mieux exploiter la vitesse élevée du vent à des températures élevées, sans que les basses températures ne posent de problème en termes de surcharge.
PCT/DK1993/000279 1992-08-26 1993-08-26 Eolienne, aile d'eolienne et element ajoute se montant sur l'aile WO1994004820A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49447/93A AU4944793A (en) 1992-08-26 1993-08-26 Windmill, wing for such a mill, and add-on element to be mounted on a mill wing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK921059A DK105992D0 (da) 1992-08-26 1992-08-26 Temperaturafhaengig effektregulator til vindmoeller med fastmonteret vinger aestallregulatorae
DK1059/92 1992-08-26

Publications (1)

Publication Number Publication Date
WO1994004820A1 true WO1994004820A1 (fr) 1994-03-03

Family

ID=8100525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK1993/000279 WO1994004820A1 (fr) 1992-08-26 1993-08-26 Eolienne, aile d'eolienne et element ajoute se montant sur l'aile

Country Status (3)

Country Link
AU (1) AU4944793A (fr)
DK (1) DK105992D0 (fr)
WO (1) WO1994004820A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308867A (en) * 1995-12-05 1997-07-09 John Arthur Howard Automatic wind turbine control
WO2001086142A1 (fr) * 2000-05-06 2001-11-15 Aloys Wobben Eolienne dotee d'un capteur de particules
WO2002068818A1 (fr) * 2001-02-28 2002-09-06 Aloys Wobben Regulation de puissance d'une turbine eolienne en fonction de la densite atmospherique
US6966758B2 (en) 2000-06-19 2005-11-22 Lm Glasfiber A/S Wind turbine rotor blade comprising one or more means secured to the blade for changing the profile thereof depending on the atmospheric temperature
DE102005014884B3 (de) * 2005-04-01 2006-09-14 Nordex Energy Gmbh Rotorblatt für eine Windenergieanlage
CN101825070A (zh) * 2010-06-04 2010-09-08 西安交通大学 一种风力发电机叶片结构
WO2010120595A1 (fr) * 2009-04-13 2010-10-21 Frontier Wind, Llc Pale de turbine éolienne de longueur variable ayant des éléments de zone de transition
US20120141271A1 (en) * 2011-09-13 2012-06-07 General Electric Company Actuatable spoiler assemblies for wind turbine rotor blades
US20150098820A1 (en) * 2013-10-09 2015-04-09 Siemens Aktiengesellchaft Method and apparatus for reduction of fatigue and gust loads on wind turbine blades

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096828A (en) * 1961-12-04 1963-07-09 Standard Thomson Corp Fluid control apparatus
US4297076A (en) * 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
GB2140508A (en) * 1983-05-25 1984-11-28 Howden James & Co Ltd Wind turbines
GB2157774A (en) * 1984-04-26 1985-10-30 Lawson Tancred Sons & Company Wind turbine blades
SU1332069A1 (ru) * 1986-04-02 1987-08-23 Н.А.Шихайлов и В.В.Душин Регул тор частоты вращени ветроколеса

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096828A (en) * 1961-12-04 1963-07-09 Standard Thomson Corp Fluid control apparatus
US4297076A (en) * 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
GB2140508A (en) * 1983-05-25 1984-11-28 Howden James & Co Ltd Wind turbines
GB2157774A (en) * 1984-04-26 1985-10-30 Lawson Tancred Sons & Company Wind turbine blades
SU1332069A1 (ru) * 1986-04-02 1987-08-23 Н.А.Шихайлов и В.В.Душин Регул тор частоты вращени ветроколеса

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DERWENT'S ABSTRACT, No. 88-90337/13, week 8813; & SU,A,1 332 069 (SHIKHAILOV N A), 23 August 1987. *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2308867A (en) * 1995-12-05 1997-07-09 John Arthur Howard Automatic wind turbine control
WO2001086142A1 (fr) * 2000-05-06 2001-11-15 Aloys Wobben Eolienne dotee d'un capteur de particules
AU775450B2 (en) * 2000-05-06 2004-07-29 Aloys Wobben Wind power plant with a particle sensor
US6837681B2 (en) 2000-05-06 2005-01-04 Aloys Wobben Wind power plant with a particle sensor
US6966758B2 (en) 2000-06-19 2005-11-22 Lm Glasfiber A/S Wind turbine rotor blade comprising one or more means secured to the blade for changing the profile thereof depending on the atmospheric temperature
WO2002068818A1 (fr) * 2001-02-28 2002-09-06 Aloys Wobben Regulation de puissance d'une turbine eolienne en fonction de la densite atmospherique
US7023105B2 (en) 2001-02-28 2006-04-04 Aloys Wobben Atmospheric density-dependent power adjustment for wind turbines
EP1707806A2 (fr) 2005-04-01 2006-10-04 NORDEX ENERGY GmbH Aube de rotor pour une éolienne
DE102005014884B3 (de) * 2005-04-01 2006-09-14 Nordex Energy Gmbh Rotorblatt für eine Windenergieanlage
WO2010120595A1 (fr) * 2009-04-13 2010-10-21 Frontier Wind, Llc Pale de turbine éolienne de longueur variable ayant des éléments de zone de transition
US8206107B2 (en) 2009-04-13 2012-06-26 Frontier Wind, Llc Variable length wind turbine blade having transition area elements
CN101825070A (zh) * 2010-06-04 2010-09-08 西安交通大学 一种风力发电机叶片结构
CN101825070B (zh) * 2010-06-04 2012-11-28 西安交通大学 一种风力发电机叶片结构
US20120141271A1 (en) * 2011-09-13 2012-06-07 General Electric Company Actuatable spoiler assemblies for wind turbine rotor blades
CN102996331A (zh) * 2011-09-13 2013-03-27 通用电气公司 用于风力发电机转子叶片的致动式扰流板组件
US20150098820A1 (en) * 2013-10-09 2015-04-09 Siemens Aktiengesellchaft Method and apparatus for reduction of fatigue and gust loads on wind turbine blades
US9689374B2 (en) * 2013-10-09 2017-06-27 Siemens Aktiengesellschaft Method and apparatus for reduction of fatigue and gust loads on wind turbine blades

Also Published As

Publication number Publication date
AU4944793A (en) 1994-03-15
DK105992D0 (da) 1992-08-26

Similar Documents

Publication Publication Date Title
AU2006257538B2 (en) A blade with hinged blade tip
WO1994004820A1 (fr) Eolienne, aile d'eolienne et element ajoute se montant sur l'aile
AU2004234487B2 (en) Rotor blade of a wind energy facility
ES2282475T3 (es) Rotor con palas extensibles y criterio de control asociado.
DK1805412T3 (en) The turbine and compressor, which uses a rotor model with tuberkelforkant
US4310284A (en) Automatically controlled wind propeller and tower shadow eliminator
US6441507B1 (en) Rotor pitch control method and apparatus for parking wind turbine
US4456429A (en) Wind turbine
KR100756800B1 (ko) 세로축 풍차
AU2007269847A1 (en) Methods and apparatus for efficiently pressurizing and ventilating an air- supported structure
CA1185534A (fr) Turbine eolienne
CA2425976A1 (fr) Eolienne a axe vertical
CN110145160A (zh) 一种5g通信网络通讯塔
US20050118026A1 (en) Wind power station
EP2734442A1 (fr) Pale de ventilateur à profil d'aile souple
US3764227A (en) Temperature sensitive fan
US3395761A (en) Fan
WO2017160136A1 (fr) Centrale éolienne
EP0702754A1 (fr) Turbine entrainee en rotation par un milieu en ecoulement
US9181924B2 (en) Exchange of momentum wind turbine vane
CN109945328A (zh) 一种变频空调机组
JP3435540B2 (ja) 風力発電装置
KR200210581Y1 (ko) 집열판 구동형 태양열 보일러
JPH0230341Y2 (fr)
RU2135824C1 (ru) Ротор ветродвигателя

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA