WO1994004795A1 - Energy generation process in a combined gas-steam power station - Google Patents

Energy generation process in a combined gas-steam power station Download PDF

Info

Publication number
WO1994004795A1
WO1994004795A1 PCT/DE1993/000741 DE9300741W WO9404795A1 WO 1994004795 A1 WO1994004795 A1 WO 1994004795A1 DE 9300741 W DE9300741 W DE 9300741W WO 9404795 A1 WO9404795 A1 WO 9404795A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
gas
gas turbine
fresh air
combustion chamber
Prior art date
Application number
PCT/DE1993/000741
Other languages
German (de)
French (fr)
Inventor
Gerhard Scholl
Lothar Stadie
Hans-Karl Petzel
Original Assignee
Saarbergwerke Aktiengesellschaft
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saarbergwerke Aktiengesellschaft, Siemens Aktiengesellschaft filed Critical Saarbergwerke Aktiengesellschaft
Publication of WO1994004795A1 publication Critical patent/WO1994004795A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/042Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas pure steam being expanded in a motor somewhere in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids

Definitions

  • the invention relates to a method for generating energy in a combined gas-steam power plant with a gas turbine circuit in which fresh air is compressed and fed to a combustion chamber upstream of the gas turbine, and a steam turbine circuit with a preferably coal-fired steam generator.
  • the heat for the gas turbine cycle is generated by combustion of a gas, e.g. Natural gas or coal gasification gas, and the heat for the steam turbine cycle is obtained by burning coal in the steam generator.
  • a gas e.g. Natural gas or coal gasification gas
  • the residual heat still contained in the exhaust gas of the gas turbine is either fed directly to the steam turbine circuit via a waste heat boiler or it is used in that the exhaust gas of the gas turbine is introduced into the furnace of the steam generator with a still relatively high oxygen content.
  • the invention is therefore based on the object of reducing or completely avoiding the specific gas consumption of the gas turbine in a method of the type mentioned at the outset.
  • This object is achieved in that at least part of the compressed fresh air is preheated in the heat exchange with hot flue gas from the steam generator before entering the combustion chamber.
  • the fresh air is heated from the initial temperature of the air compressor from approximately 250 ° C. to approximately 800 ° C. If further heating to the inlet temperature of the gas turbine of, for example, 1150 ° C. is desired, this is then carried out in the combustion chamber of the gas turbine cycle.
  • the proposed measure means that the entire heat required in the gas turbine cycle, namely precisely the amount of heat required for heating to about 800 ° C., can be covered by the combustion of the throat in the steam generator, and that only the heat required for the further heating from 800 ⁇ C to about 1150 * C by burning a gas or oil must be applied in the combustion chamber of the gas turbine.
  • the invention thus makes it possible, when the gas turbine is in operation with an inlet temperature of approximately 800 ° C., to provide all of the heat required in the gas turbine cycle in the form of coal-derived heat.
  • the need for gas or oil in the combustion chamber of the gas turbine is greatly reduced.
  • the fresh air from the gas turbine cycle is mixed with steam from the steam cycle immediately before the heat exchange with the flue gas from the steam generator.
  • This measure leads to an additional increase in the efficiency of the overall system, since steam from the steam circuit of the steam turbine can now be expanded in a work-performing manner under the substantially higher temperature level of the gas turbine circuit in the gas turbine. Since the amount of fresh air to be compressed can also be reduced by an amount of air equivalent to the amount of steam added, the air compressor is greatly relieved. Basically, only the amount of air required for the combustion reactions in the combustion chamber during operation> 800 * C needs to be compressed, while the amount of working fluid additionally required for the operation of the gas turbine is available in the form of steam from the steam circuit of the steam turbine can be put. Since the steam is brought to pressure as condensate, the compression work to be performed for this only plays a subordinate role in comparison to the compression work saved in the air compressor of the gas turbine cycle.
  • the mass ratio to be set in each case of the water vapor or fresh air flows to be heated in the heat exchange with hot flue gas from the steam generator basically only depends on whether in the respective individual case either the lowest possible fuel consumption in the combustion chamber of the gas turbine or rather a possible one the highest possible efficiency of the entire system is sought.
  • a driving style is also conceivable that on the one hand with the highest efficiency, but on the other hand also with the highest fuel consumption in the combustion chamber of the gas turbine cycle is connected, in which only water vapor is heated in the heat exchange with the hot flue gas of the steam generator and is then introduced into the combustion chamber of the gas turbine cycle, while the fresh air compressed in the compressor of the gas turbine cycle is directly the Combustion chamber is fed.
  • already processed steam from the steam turbine circuit can also be introduced directly into the combustion chamber of the gas turbine circuit.
  • This process variant is e.g. of interest if, when retrofitting a power plant, the space available for the fresh air / flue gas heat exchanger to be installed in the steam generator is limited and it can therefore only be designed for the quantity of fresh air required in the combustion chamber of the gas turbine.
  • Another feature of the invention that is very important for the operation of the entire power plant provides for the exhaust gas of the gas turbine to be cooled with the fresh air for the steam generator in indirect heat exchange.
  • the residual heat of the gas turbine exhaust gas without the exhaust gas having to be introduced into the steam generator.
  • the residual oxygen content of the exhaust gas therefore no longer plays a role in the further treatment of the exhaust gas, so that the combustion chamber of the gas turbine can be operated almost stoichiometrically with respect to the combustion reactions, with the result that the nitrogen oxide formation is very low.
  • the heat exchange between the exhaust gas from the gas turbine and the fresh air for the steam generator can be set so that at least part of the water vapor contained in the exhaust gas is condensed in the course of the heat exchange. This means that at least part of the heat of vaporization released can be used again in the process. Further explanations of the invention can be found in the exemplary embodiment shown schematically in the figure.
  • the figure shows a combined gas-steam power plant with a gas turbine circuit with an air compressor 1, a combustion chamber 2, a gas turbine 3 and a generator 4 and a steam turbine circuit with a feed water pump 5, a coal-fired steam generator 6 with heating surfaces 7, 8, 9 and 10 for water heating, steam generation and steam superheating, a multi-stage steam turbine 11, a generator 12 and a condenser 13.
  • the fresh air required in the gas turbine cycle is fed to the compressor 1 via a line 14, compressed in the latter to approximately 12-15 bar and heated to approximately 280 ° C. in the process.
  • the fresh air flows according to the proposal according to the invention via a line 15 to additional heat exchanger surfaces 16 and 17 provided in the flue gas path of the steam generator 6, and is further heated in these to a temperature of about 800 * c in the heat exchange with hot flue gas.
  • the heated fresh air is then fed via a line 18 into the combustion chamber 2, in which part of the oxygen carried during operation is used at> 800 ° C. for the combustion of natural gas which flows in via a line 19 to the combustion chamber.
  • the exhaust gas from the combustion chamber is expanded at a temperature of approximately 800.degree. C. or 1150.degree.
  • the proposed routing of the fresh air over the heating surfaces 16 and 17 makes it possible, when the gas turbine is operating up to 800 ° C., to provide the entire amount of heat required for heating to the gas turbine inlet temperature via the steam generator 6.
  • the gas turbine is operated above 800 * C, the amount of natural gas required in the combustion chamber 2 is correspondingly greatly reduced.
  • the entire amount of fresh air from the compressor 1 is passed over the heating surfaces 16 and 17.
  • the condensate accumulating in the condenser 13 is pumped to the process pressure of about 300 bar in the feed water pump 5 and then heated, evaporated and superheated in the heating surfaces 7, 8, 9 and 10 of the steam generator 6.
  • the über ⁇ overheated steam leaves the steam generator 6 via a line 20 with a temperature to about 600 * C and is expanded to perform work in the Mat ⁇ stage formed steam turbine 11 and then recondensed in the condenser. 13
  • steam which has already largely been processed is drawn off from an intermediate stage of the steam turbine 11 at a temperature of about 350-400 ° C. and a pressure of about 17 bar via a line 21 and introduced into line 15.
  • the water vapor now passes through the heating surfaces 16 and 17 in a mixture with the fresh air compressed in the compressor 1 and is also heated therein to a temperature of about 800 ° C. Further heating to the inlet temperature> 800 * C of the gas turbine 3 then takes place in the combustion chamber 2.
  • this process feature makes it possible to relax some of the steam from the steam cycle under the high temperature of the gas turbine, while performing work.
  • the compressor 1 is greatly relieved, since basically only the amount of fresh air required for the combustion reactions in the combustion chamber needs to be compressed.
  • the additional amount of working fluid required for the gas turbine can be made available in the form of water vapor, which is pumped under pressure as condensate.
  • the optimal mixing ratio of fresh air and water vapor depends, among other things, on the design data of the entire system. However, it is also readily possible, for example in part-load operation, to drive the gas turbine exclusively with water vapor as the working medium. In this case, the fresh air compressor 1 can be switched off. be switched. It is also possible to supply the entire amount of fresh air compressed in the compressor 1 directly to the combustion chamber 2 and to heat only steam in the heating surfaces 16 and 17.
  • the resulting condensate is separated from the exhaust gas in a separator 24 and, after cleaning, can be fed back into the steam turbine circuit via a line 25.
  • the remaining exhaust gas is combined with the flue gas from the steam generator 6 cleaned in an electrostatic filter 26 and a flue gas desulfurization system 27 and then preferably discharged into the atmosphere via the cooling tower of the power plant, not shown here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A process is disclosed for generating energy in a combined gas-steam power station having a gas turbine circuit, in which fresh air is compressed and supplied to a combustion chamber (2) upstream of the gas turbine (3), and a steam turbine circuit with a preferably coal-fired steam generator (6). At least part of the compressed fresh air is pre-heated (16, 17) before entering the combustion chamber (2) by heat exchange with hot flue gas from the steam generator (6). This process allows a considerable proportion of the thermal requirements of the gas turbine circuit to be covered by the coal-produced heat from the steam generator. The consumption of oil or gas for the gas turbine circuit is thus considerably reduced.

Description

Verfahren zur Erzeugung von Energie in einer kombinierten Gas-DampfkraftanlageProcess for generating energy in a combined gas-steam power plant
Die Erfindung betrifft ein Verfahren zur Erzeugung von Energie in einer kombinierten Gas-Dampfkraftanlage mit einem Gas¬ turbinenkreislauf, in dem Frischluft verdichtet und einer der Gasturbine vorgeschalteten Brennkammer zugeführt wird, und einem Dampfturbinenkreislauf mit einem vorzugsweise kohlebe¬ feuerten Dampferzeuger.The invention relates to a method for generating energy in a combined gas-steam power plant with a gas turbine circuit in which fresh air is compressed and fed to a combustion chamber upstream of the gas turbine, and a steam turbine circuit with a preferably coal-fired steam generator.
Bei den bekannt gewordenen gattungsgemä3en Verfahren zur Er¬ zeugung von Energie in kombinierten Gas-Dampfkraftanlagen wird die Wärme für den Gasturbinenkreislauf durch Verbrennung eines Gases, z.B. Erdgas oder Kohlevergasungsgas, und die Wärme für den Dampfturbinenkreislauf durch Verbrennung von Kohle im Dampferzeuger gewonnen. Die im Abgas der Gasturbine noch enthaltene Restwärme wird entweder über einen Abhitzekessel direkt dem Dampfturbinenkreislauf zugeführt oder sie wird dadurch genutzt, dajß das Abgas der Gasturbine mit einem noch relativ hohen Sauerstoffgehalt in die Feuerung des Dampfer¬ zeugers eingeleitet wird.In the known methods for generating energy in combined gas-steam power plants, the heat for the gas turbine cycle is generated by combustion of a gas, e.g. Natural gas or coal gasification gas, and the heat for the steam turbine cycle is obtained by burning coal in the steam generator. The residual heat still contained in the exhaust gas of the gas turbine is either fed directly to the steam turbine circuit via a waste heat boiler or it is used in that the exhaust gas of the gas turbine is introduced into the furnace of the steam generator with a still relatively high oxygen content.
Aufgrund der hohen Eintrittstemperatur der Gasturbine, die in modernen Anlagen mittlerweile bereits bei über 1100 °C liegt, sowie der großen Temperaturdifferenz zwischen dem Eingang der Gasturbine und dem Ausgang der Dampfturbine zeichnen sich der¬ artige kombinierte Verfahren durch einen relativ hohen Wirkungsgrad aus. Dies ist insbesondere dann der Fall, wenn Gasturbine und Dampfturbine jeweils etwa die gleiche Leistung haben.Because of the high inlet temperature of the gas turbine, which in modern systems is already above 1100 ° C., and the large temperature difference between the inlet of the gas turbine and the outlet of the steam turbine, such combined processes are characterized by a relatively high degree of efficiency. This is particularly the case when the gas turbine and steam turbine each have approximately the same output.
ERSÄTZBLATT Nachteilig ist jedoch, da/? insbesondere bei Großkraftwerken in der Größenordnung von 800 MW und mehr erhebliche Gasmengen entweder in Form von Erdgas oder in Form von Kohlevergasungsgas benötigt werden. Der Einsatz von Erdgas ist teuer und kann aufgrund der Importabhängigkeit zu Problemen in der Beschaffung führen. Auch die Herstellung von Kohlevergasungsgas ist aufgrund des zusätzlichen apparativen Aufwandes sehr kostenintensiv und führt darüber hinaus zu einer Verringerung des Wirkungsgrades der Gesamtanlage, da nunmehr auch der Wirkungsgrad der Kohle¬ vergasung bei der Ermittlung des Gesamtwirkungsgrades zu berücksichtigen ist.REPLACEMENT LEAF However, the disadvantage is that /? Large gas plants in the order of magnitude of 800 MW or more require significant amounts of gas either in the form of natural gas or in the form of coal gasification gas. The use of natural gas is expensive and can lead to procurement problems due to the dependency on imports. The production of coal gasification gas is also very cost-intensive owing to the additional outlay in terms of apparatus and also leads to a reduction in the efficiency of the overall system, since the efficiency of coal gasification must now also be taken into account when determining the overall efficiency.
Der Erfindung liegt demnach die Aufgabe zugrunde, bei einem Verfahren der eingangs genannten Art, den spezifischen Gasver¬ brauch der Gasturbine zu reduzieren oder ganz zu vermeiden.The invention is therefore based on the object of reducing or completely avoiding the specific gas consumption of the gas turbine in a method of the type mentioned at the outset.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß z indest ein Teil der verdichteten Frischluft vor Eintritt in die Brennkammer im Wärmetausch mit heißem Rauchgas des Dampfer¬ zeugers vorerhitzt wird.This object is achieved in that at least part of the compressed fresh air is preheated in the heat exchange with hot flue gas from the steam generator before entering the combustion chamber.
Durch die vorgeschlagene Maßnahme erfolgt z.B. im Wärmetausch mit dem Rauchgas des Dampferzeugers eine Aufheizung der Frisch¬ luft von der Ausgangstemperatur des Luftverdichters von etwa 250 *C auf etwa 800 *C. Falls eine weitere Erhitzung auf die Eingangstemperatur der Gasturbine von beispielsweise 1150 'C erwünscht ist, erfolgt diese dann in der Brennkammer des Gasturbinenkreislaufs.With the proposed measure, e.g. in the heat exchange with the flue gas from the steam generator, the fresh air is heated from the initial temperature of the air compressor from approximately 250 ° C. to approximately 800 ° C. If further heating to the inlet temperature of the gas turbine of, for example, 1150 ° C. is desired, this is then carried out in the combustion chamber of the gas turbine cycle.
Es ergibt sich somit, daß durch die vorgeschlagene Maßnahme die gesamte der im Gasturbinenkreislauf benötigten Wärme, nämlich genau die Wärmemenge, die für die Erhitzung auf etwa 800 *C benötigt wird, durch die Verbrennung von Kehle im Dampferzeuger gedeckt werden kann, und daß nur noch die für die weitere Erhitzung von 800 βC auf etwa 1150 *C benötigte Wärme durch Verbrennung eines Gases oder auch von öl in der Brennkammer der Gasturbine aufgebracht werden muß. Durch die Erfindung gelingt es somit, bei Betrieb der Gasturbine mit einer Eintrittstemperatur von ca. 800 *C die gesamte der im Gasturbinenkreislauf benötigten Wärme in Form von kohlestämmiger Wärme zur Verfügung zu stellen. Bei Betrieb der Gasturbine mit einer Eintrittstemperatur >800 βC wird der Bedarf an Gas bzw. öl in der Brennkammer der Gasturbine stark reduziert.It follows that the proposed measure means that the entire heat required in the gas turbine cycle, namely precisely the amount of heat required for heating to about 800 ° C., can be covered by the combustion of the throat in the steam generator, and that only the heat required for the further heating from 800 β C to about 1150 * C by burning a gas or oil must be applied in the combustion chamber of the gas turbine. The invention thus makes it possible, when the gas turbine is in operation with an inlet temperature of approximately 800 ° C., to provide all of the heat required in the gas turbine cycle in the form of coal-derived heat. When the gas turbine is operated with an inlet temperature> 800 β C, the need for gas or oil in the combustion chamber of the gas turbine is greatly reduced.
Nach einem weiteren Merkmal der Erfindung wird der Frischluft des Gasturbinenkreislaufs unmittelbar vor dem Wärmetausch mit dem Rauchgas des Dampferzeugers bereits abgearbeiteter Dampf aus dem Dampf urbinenkreislauf zugemischt. Diese Maßnahme führt zu einer zusätzlichen Wirkungsgraderhöhung der Gesamtanlage, da nunmehr auch Dampf aus dem Dampfkreislauf der Dampfturbine unter dem wesentlich höheren Temperaturniveau des Gasturbinen¬ kreislaufs in der Gasturbine arbeitsleistend entspannt werden kann. Da zudem die zu verdichtende Frischluftmeπge um eine der zugemischten Dampfmenge äquivalente Luftmenge verringert werden kann, wird der Luftkompressor stark entlastet. Im Grunde braucht nur noch die für die Verbrennungsreaktionen in der Brennkammer bei Betrieb >800 *C benötigte Luftmenge verdichtet zu werden, während die für den Betrieb der Gasturbine zusätzlich noch be¬ nötigte Arbeitsmittelmenge in Form von Dampf aus dem Dampfkreis¬ lauf der Dampfturbine zur Verfügung gestellt werden kann. Da der Dampf als Kondensat auf Druck gebracht wird, spielt die hierfür aufzuwendende Verdichtungsarbeit im Vergleich zur im Luftkompres¬ sor des Gasturbinenkreislaufes eingesparten Verdichtungsarbeit nur eine untergeordnete Rolle.According to a further feature of the invention, the fresh air from the gas turbine cycle is mixed with steam from the steam cycle immediately before the heat exchange with the flue gas from the steam generator. This measure leads to an additional increase in the efficiency of the overall system, since steam from the steam circuit of the steam turbine can now be expanded in a work-performing manner under the substantially higher temperature level of the gas turbine circuit in the gas turbine. Since the amount of fresh air to be compressed can also be reduced by an amount of air equivalent to the amount of steam added, the air compressor is greatly relieved. Basically, only the amount of air required for the combustion reactions in the combustion chamber during operation> 800 * C needs to be compressed, while the amount of working fluid additionally required for the operation of the gas turbine is available in the form of steam from the steam circuit of the steam turbine can be put. Since the steam is brought to pressure as condensate, the compression work to be performed for this only plays a subordinate role in comparison to the compression work saved in the air compressor of the gas turbine cycle.
Das jeweils einzustellende Massenverhältnis der im Wärmetausch mit heißem Rauchgas des Dampferzeugers zu erhitzenden Wasser¬ dampf- bzw. Frischluftströ e hängt im Grunde nur davon ab, ob im jeweiligen Einzelfall entweder ein möglichst geringer Brennstoff¬ verbrauch in der Brennkammer der Gasturbine oder eher ein mög¬ lichst hoher Wirkungsgrad der Gesamtanlage anestrebt wird. Im Grenzfall ist somit auch eine Fahrweise denkbar, die einer¬ seits mit dem höchsten Wirkungsgrad, andererseits aber auch mit dem höchsten Brennstoffverbrauch in der Brennkammer des Gastur¬ binenkreislaufes verbunden ist, bei der ausschließlich Wasser¬ dampf im Wärmetausch mit dem heißen Rauchgas des Dampferzeugers erhitzt und dann in die Brennkammer des Gasturbinenkreislaufes eingeleitet wird, während die im Verdichter des Gasturbinen¬ kreislaufes komprimierte Frischluft direkt der Brennkammer zugeführt wird.The mass ratio to be set in each case of the water vapor or fresh air flows to be heated in the heat exchange with hot flue gas from the steam generator basically only depends on whether in the respective individual case either the lowest possible fuel consumption in the combustion chamber of the gas turbine or rather a possible one the highest possible efficiency of the entire system is sought. In the limit case, a driving style is also conceivable that on the one hand with the highest efficiency, but on the other hand also with the highest fuel consumption in the combustion chamber of the gas turbine cycle is connected, in which only water vapor is heated in the heat exchange with the hot flue gas of the steam generator and is then introduced into the combustion chamber of the gas turbine cycle, while the fresh air compressed in the compressor of the gas turbine cycle is directly the Combustion chamber is fed.
Nach einem weiteren Merkmal der Erfindung kann bereits abge¬ arbeiteter Dampf aus dem Dampfturbinenkreislauf auch direkt in die Brennkammer des Gasturbinenkreislaufs eingeleitet werden. Diese Verfahrensvariante ist z.B. dann von Interesse, wenn bei der Nachrüstung eines Kraftwerkes das Platzangebot für den zu installierenden Frischluft/Rauchgas-Wärmetauscher im Dampf¬ erzeuger begrenzt ist und dieser somit nur für die in der Brenn¬ kammer der Gasturbine benötigte Frischluftmenge ausgelegt werden kann.According to a further feature of the invention, already processed steam from the steam turbine circuit can also be introduced directly into the combustion chamber of the gas turbine circuit. This process variant is e.g. of interest if, when retrofitting a power plant, the space available for the fresh air / flue gas heat exchanger to be installed in the steam generator is limited and it can therefore only be designed for the quantity of fresh air required in the combustion chamber of the gas turbine.
Ein weiteres für den Betrieb des Gesamtkraftwerkes sehr bedeut¬ sames Merkmal der Erfindung sieht vor, das Abgas der Gasturbine im indirekten Wärmetausch mit der Frischluft für den Dampf¬ erzeuger abzukühlen. Hierdurch gelingt es, die Restwärme des Gasturbinenabgases zu nutzen, ohne daß das Abgas in den Dampf¬ erzeuger eingeleitet, werden muß. Der Sauerstoff-Restgehalt des Abgases spielt somit für die weitere Behandlung des Abgases keine Rolle mehr, so daß die Brennkammer der Gasturbine in Bezug auf die Verbrennungsreaktionen nahezu stöchiometrisch gefahren werden kann mit der Folge einer sehr geringen Stickoxidbildung.Another feature of the invention that is very important for the operation of the entire power plant provides for the exhaust gas of the gas turbine to be cooled with the fresh air for the steam generator in indirect heat exchange. In this way it is possible to use the residual heat of the gas turbine exhaust gas without the exhaust gas having to be introduced into the steam generator. The residual oxygen content of the exhaust gas therefore no longer plays a role in the further treatment of the exhaust gas, so that the combustion chamber of the gas turbine can be operated almost stoichiometrically with respect to the combustion reactions, with the result that the nitrogen oxide formation is very low.
Der Wärmetausch zwischen dem Abgas der Gasturbine und der Frisch luft für den Dampferzeuger kann dabei so eingestellt werden, daß im Zuge des Wärmetausches zumindest ein Teil des im Abgas ent¬ haltenen Wasserdampfes kondensiert wird. Damit kann zumindest ein Teil der freigesetzten Verdampfungswärme erneut im Prozeß genutzt werden. Weitere Erläuterungen zu der Erfindung sind dem in der Figur schematisch dargestellten Ausführungsbeispiel zu entnehmen.The heat exchange between the exhaust gas from the gas turbine and the fresh air for the steam generator can be set so that at least part of the water vapor contained in the exhaust gas is condensed in the course of the heat exchange. This means that at least part of the heat of vaporization released can be used again in the process. Further explanations of the invention can be found in the exemplary embodiment shown schematically in the figure.
Die Figur zeigt eine kombinierte Gas-Dampfkraftanlage mit einem Gasturbinenkreislauf mit einem Luftverdichter 1, einer Brenn¬ kammer 2, einer Gasturbine 3 und einem Generator 4 sowie einen Dampfturbinenkreislauf mit einer Speisewasserpumpe 5, einem kohlebefeuerten Dampferzeuger 6 mit Heizflächen 7, 8, 9 und 10 zur Wassererwärmung, Dampferzeugung und Dampfüberhitzung, einer mehrstufig ausgebildeten Dampfturbine 11, einem Generator 12 und einem Kondensator 13.The figure shows a combined gas-steam power plant with a gas turbine circuit with an air compressor 1, a combustion chamber 2, a gas turbine 3 and a generator 4 and a steam turbine circuit with a feed water pump 5, a coal-fired steam generator 6 with heating surfaces 7, 8, 9 and 10 for water heating, steam generation and steam superheating, a multi-stage steam turbine 11, a generator 12 and a condenser 13.
Im Betrieb der Anlage wird die im Gasturbinenkreislauf benötigte Frischluft über eine Leitung 14 dem Verdichter 1 zugeführt, in diesem auf etwa 12 - 15 bar verdichtet und dabei auf etwa 280 *C erwärmt. Nach der Verdichtung strömt die Frischluft entsprechend dem erfindungsgemäßen Vorschlag über eine Leitung 15 zu zusätz¬ lich im Rauchgasweg des Dampferzeugers 6 vorgesehenen Wärme¬ tauscherflächen 16 und 17 und wird in diesen im Wärmetausch mit heißem Rauchgas auf eine Temperatur von etwa 800 *c weiter erhitzt. Über eine Leitung 18 wird die erhitzte Frischluft dann in die Brennkammer 2 eingespeist, in der ein Teil des mitge¬ führten Sauerstoffs bei Betrieb >800 *C zur Verbrennung von Erdgas, welches über eine Leitung 19 der Brennkammer zuströmt, verbraucht wird. Das Abgas der Brennkammer wird unter einer Temperatur von etwa 800 "C bzw. 1150 "C in der Gasturbine 3 arbeitsleistend entspannt.During operation of the system, the fresh air required in the gas turbine cycle is fed to the compressor 1 via a line 14, compressed in the latter to approximately 12-15 bar and heated to approximately 280 ° C. in the process. After compression, the fresh air flows according to the proposal according to the invention via a line 15 to additional heat exchanger surfaces 16 and 17 provided in the flue gas path of the steam generator 6, and is further heated in these to a temperature of about 800 * c in the heat exchange with hot flue gas. The heated fresh air is then fed via a line 18 into the combustion chamber 2, in which part of the oxygen carried during operation is used at> 800 ° C. for the combustion of natural gas which flows in via a line 19 to the combustion chamber. The exhaust gas from the combustion chamber is expanded at a temperature of approximately 800.degree. C. or 1150.degree.
Durch die vorgeschlagene Führung der Frischluft über die Heiz¬ flächen 16 und 17 gelingt es, bei Betrieb der Gasturbine bis 800 *C, die gesamte für die Aufheizung auf Gasturbinenein ritts temperatur benötigten Wärmemenge über den Dampferzeuger 6 zur Verfügung zu stellen. Bei Betrieb der Gasturbine oberhalb 800 *C ist die in der Brennkammer 2 benötigte Erdgasmenge entsprechend stark reduziert.The proposed routing of the fresh air over the heating surfaces 16 and 17 makes it possible, when the gas turbine is operating up to 800 ° C., to provide the entire amount of heat required for heating to the gas turbine inlet temperature via the steam generator 6. When the gas turbine is operated above 800 * C, the amount of natural gas required in the combustion chamber 2 is correspondingly greatly reduced.
Im vorliegenden Ausführungsbeispiel wird die gesamte Frischluft¬ menge aus dem Verdichter 1 über die Heizflächen 16 und 17 geleitet. Je nach Auslegung ist es jedoch auch ohne weiteres möglich, nur einen Teil der Frischluft über die Heizflächen 16 und 17 zu führen und den Rest direkt in die Brennkammer 2 einzuleiten.In the present exemplary embodiment, the entire amount of fresh air from the compressor 1 is passed over the heating surfaces 16 and 17. Depending on the design, however, it is also easy possible to pass only part of the fresh air over the heating surfaces 16 and 17 and to feed the rest directly into the combustion chamber 2.
Im Dampfturbinenkreislauf wird das im Kondensator 13 anfallende Kondensat in der Speisewasserpumpe 5 auf den Verfahrensdruck von etwa 300 bar gepumpt und dann in den Heizflächen 7, 8, 9 und 10 des Dampferzeugers 6 erwärmt, verdampft und überhitzt. Der über¬ hitzte Wasserdampf verläßt den Dampferzeuger 6 über eine Leitung 20 unter einer Temperatur bis etwa 600 *C und wird in der mehr¬ stufig ausgebildeten Dampfturbine 11 arbeitsleistend entspannt und dann im Kondensator 13 erneut kondensiert.In the steam turbine cycle, the condensate accumulating in the condenser 13 is pumped to the process pressure of about 300 bar in the feed water pump 5 and then heated, evaporated and superheated in the heating surfaces 7, 8, 9 and 10 of the steam generator 6. The über¬ overheated steam leaves the steam generator 6 via a line 20 with a temperature to about 600 * C and is expanded to perform work in the mehr¬ stage formed steam turbine 11 and then recondensed in the condenser. 13
Nach einem weiteren Merkmal der Erfindung wird aus einer Zwischenstufe der Dampfturbine 11 bereits weitgehend abgear¬ beiteter Dampf unter einer Temperatur von etwa 350 - 400 *C und einem Druck von etwa 17 bar über eine Leitung 21 abgezogen und in die Leitung 15 eingeleitet. Der Wasserdampf passiert nunmehr in Mischung mit der im Verdichter 1 komprimierten Frischluft die Heizflächen 16 und 17 und wird in diesen ebenfalls auf eine Temperatur von etwa 800 *C aufgeheizt. Die weitere Aufheizung auf die Eintrittstemperatur >800 *C der Gasturbine 3 erfolgt dann in der Brennkammer 2.According to a further feature of the invention, steam which has already largely been processed is drawn off from an intermediate stage of the steam turbine 11 at a temperature of about 350-400 ° C. and a pressure of about 17 bar via a line 21 and introduced into line 15. The water vapor now passes through the heating surfaces 16 and 17 in a mixture with the fresh air compressed in the compressor 1 and is also heated therein to a temperature of about 800 ° C. Further heating to the inlet temperature> 800 * C of the gas turbine 3 then takes place in the combustion chamber 2.
Durch dieses Verfahrensmerkmal gelingt es zum einen, auch einen Teil des Dampfes aus dem Dampfkreislauf unter der hohen Tempera¬ tur der Gasturbine arbeitsleistend zu entspannen. Zum anderen wird der Verdichter 1 stark entlastet, da im Grunde nur noch die für die Verbrennungsreaktionen in der Brennkammer benötigte Frischluftmenge verdichtet zu werden braucht. Die zusätzlich noch für die Gasturbine benötigte Arbeitsmittelmenge kann in Form von Wasserdampf, der als Kondensat auf Druck gepumpt wird, zur Verfügung gestellt werden.On the one hand, this process feature makes it possible to relax some of the steam from the steam cycle under the high temperature of the gas turbine, while performing work. On the other hand, the compressor 1 is greatly relieved, since basically only the amount of fresh air required for the combustion reactions in the combustion chamber needs to be compressed. The additional amount of working fluid required for the gas turbine can be made available in the form of water vapor, which is pumped under pressure as condensate.
Das optimale Mischungsverhältnis von Frischluft und Wasserdampf hängt u. a. von den Auslegedaten der Gesamtanlage ab. Es ist aber auch ohne weiteres möglich, z.B. im Teillastbetrieb, die Gasturbine ausschließlich mit Wasserdampf als Arbeitsmittel zu fahren. In diesem Falle kann der Frischluftkompressor 1 abge- schaltet werden. Ebenso ist es möglich, die gesamte im Verdich¬ ter 1 komprimierte Frischluftmenge direkt der Brennkammer 2 zuzuführen und in den Heizflächen 16 und 17 ausschließlich Wasserdampf zu erhitzen.The optimal mixing ratio of fresh air and water vapor depends, among other things, on the design data of the entire system. However, it is also readily possible, for example in part-load operation, to drive the gas turbine exclusively with water vapor as the working medium. In this case, the fresh air compressor 1 can be switched off. be switched. It is also possible to supply the entire amount of fresh air compressed in the compressor 1 directly to the combustion chamber 2 and to heat only steam in the heating surfaces 16 and 17.
Das arbeitsleistend entspannte und mit Wasserdampf angereicherte Abgas der Gasturbine 3, das immer noch eine Temperatur von ca. 500 - 600 *C aufweist, wird in einem Wärmetauscher 22 im Wärme¬ tausch mit über ein Frischluftgebläse 23 geförderter Frischluft für den Dampferzeuger 6 bis unter den Taupunkt abgekühlt. Das anfallende Kondensat wird in einem Abscheider 24 aus dem Abgas abgetrennt und kann nach erfolgter Reinigung über eine Leitung 25 erneut in den Dampfturbinenkreislauf eingespeist werden. Das verbleibende Abgas wird mit dem in einem Elektrofilter 26 und einer Rauchgasentschwefelungsanlage 27 gereinigten Rauchgas des Dampferzeugers 6 zusammengeführt und dann vorzugsweise über den hier nicht dargestellten Kühlturm des Kraftwerkes in die Atmos¬ phäre abgeleitet. The exhaust gas from the gas turbine 3, which is relaxed and water vapor-enriched and still has a temperature of approx. 500-600 ° C., is exchanged in a heat exchanger 22 with fresh air for the steam generator 6 to below that conveyed by a fresh air blower 23 Cooled down dew point. The resulting condensate is separated from the exhaust gas in a separator 24 and, after cleaning, can be fed back into the steam turbine circuit via a line 25. The remaining exhaust gas is combined with the flue gas from the steam generator 6 cleaned in an electrostatic filter 26 and a flue gas desulfurization system 27 and then preferably discharged into the atmosphere via the cooling tower of the power plant, not shown here.

Claims

Patentansprüche Claims
1. Verfahren zur Erzeugung von Energie in einer kombinierten Gas-Dampf raftanlage mit einem Gasturbinenkreislauf, in dem Frischluft verdichtet und einer der Gasturbine vorgeschal¬ teten Brennkammer zugeführt wird, und einem Dampfturbinen- kreislauf mit einem vorzugsweise kohlebefeuerten Dampf¬ erzeuger, dadurch gekennzeichnet, daß zumindest ein Teil der verdichteten Frischluft vor Eintritt in die Brennkammer im Wärmetausch mit heißem Rauchgas des Dampferzeugers verer¬ hitzt wird.1. A method for generating energy in a combined gas-steam rafting plant with a gas turbine cycle in which fresh air is compressed and one of the gas turbines upstream combustion chamber is supplied, and a steam turbine cycle with a preferably coal-fired steam generator, characterized in that at least part of the compressed fresh air is heated before entering the combustion chamber in the heat exchange with hot flue gas from the steam generator.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Frischluft des Gasturbinenkreislaufes unmittelbar vor dem Wärmetausch mit dem Rauchgas des Dampferzeugers bereits abgearbeiteter Dampf aus dem Dampf urbinenkreislauf zugemischt wird.2. The method according to claim 1, characterized in that the fresh air of the gas turbine circuit is mixed directly before the heat exchange with the flue gas of the steam generator already processed steam from the steam turbine circuit.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ausschließlich bereits abgearbeiteter Wasserdampf im Wärmetausch mit dem Rauchgas des Dampferzeugers erhitzt und in die Brennkammer des Gasturbinenkreislaufes eingeleitet wird.3. The method according to claim 2, characterized in that only already processed water vapor is heated in heat exchange with the flue gas of the steam generator and is introduced into the combustion chamber of the gas turbine cycle.
4. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekenn¬ zeichnet, daß bereits abgearbeiteter Dampf aus dem Dampf- turbinenkreislauf direkt in die Brennkammer des Gasturbinen¬ kreislaufs eingeleitet wird.4. The method according to claims 1 or 2, characterized gekenn¬ characterized in that already processed steam from the steam turbine circuit is introduced directly into the combustion chamber of the gas turbine circuit.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekann¬ zeichnet, daß das Abgas der Gasturbine im indirekten Wärme¬ tausch mit der Frischluft für den Dampferzeuger abgekühlt wird. - _Q9_5. The method according to any one of claims 1 to 4, characterized gekann¬ characterized in that the exhaust gas of the gas turbine is cooled in indirect heat exchange with the fresh air for the steam generator. - _ Q 9_
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß im Zuge des Wärmetausches zwischen Gasturbinenabgas und Frisch¬ luft der im Abgas enthaltene Wasserdampf zumindest teilweise kondensiert wird.6. The method according to claim 5, characterized in that in the course of the heat exchange between gas turbine exhaust gas and fresh air the water vapor contained in the exhaust gas is at least partially condensed.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der kondensierte Wasserdampf nach erfolgter Reinigung erneut dem Dampfturbinenkreislauf zugeführt wird. 7. The method according to claim 6, characterized in that the condensed steam is supplied to the steam turbine cycle again after cleaning.
PCT/DE1993/000741 1992-08-18 1993-08-17 Energy generation process in a combined gas-steam power station WO1994004795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4227146.0 1992-08-18
DE19924227146 DE4227146A1 (en) 1992-08-18 1992-08-18 Process for generating energy in a combined gas-steam power plant

Publications (1)

Publication Number Publication Date
WO1994004795A1 true WO1994004795A1 (en) 1994-03-03

Family

ID=6465697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000741 WO1994004795A1 (en) 1992-08-18 1993-08-17 Energy generation process in a combined gas-steam power station

Country Status (2)

Country Link
DE (1) DE4227146A1 (en)
WO (1) WO1994004795A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275821A1 (en) 2001-07-12 2003-01-15 Siemens Aktiengesellschaft Method of operating a steam power plant and corresponding power plant
DE10337240A1 (en) * 2003-08-13 2005-03-17 Siemens Ag Method and device for obtaining water from a power plant
US9404395B2 (en) * 2013-11-22 2016-08-02 Siemens Aktiengesellschaft Selective pressure kettle boiler for rotor air cooling applications
DE102018208026A1 (en) * 2018-05-22 2019-11-28 MTU Aero Engines AG An exhaust treatment device, aircraft propulsion system, and method of treating an exhaust flow

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1312886A (en) * 1961-07-13 1962-12-21 Siemens Ag Gas-steam thermal power plant
DE2138664A1 (en) * 1971-07-23 1973-03-08 Sulzer Ag PROCESS FOR MIXED GAS AND STEAM OPERATION OF A GAS TURBINE SYSTEM
DE3203082A1 (en) * 1982-01-30 1983-08-04 Rudolf Dr. 6800 Mannheim Wieser Combined gas-turbine/steam-turbine system and combined gas-turbine/steam-generator system
DE3815993A1 (en) * 1988-05-10 1989-11-23 Rudolf Dr Wieser Binary-vapour turbine plant
DE4019343A1 (en) * 1990-06-18 1991-12-19 Steinmueller Gmbh L & C Electrical energy prodn. in combined-cycle power plant - involves preheating of air forced into boiler, unless gas-turbine exhaust provides enough oxygen for combustion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2660680C1 (en) * 1976-10-27 1985-05-02 Joachim 4600 Dortmund Schwieger Method for operating a gas-steam turbine plant
DE3613300A1 (en) * 1986-04-19 1987-10-22 Bbc Brown Boveri & Cie METHOD FOR GENERATING ELECTRICAL ENERGY WITH A COMBINED GAS TURBINE VAPOR POWER PLANT HAVING A FLUIDIZED BOTTOM BURNER, AND SYSTEM FOR IMPLEMENTING THE METHOD
DE3731082C1 (en) * 1987-09-16 1989-04-13 Steag Ag Method and plant for obtaining energy from solid, high-ballast fuels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1312886A (en) * 1961-07-13 1962-12-21 Siemens Ag Gas-steam thermal power plant
DE2138664A1 (en) * 1971-07-23 1973-03-08 Sulzer Ag PROCESS FOR MIXED GAS AND STEAM OPERATION OF A GAS TURBINE SYSTEM
DE3203082A1 (en) * 1982-01-30 1983-08-04 Rudolf Dr. 6800 Mannheim Wieser Combined gas-turbine/steam-turbine system and combined gas-turbine/steam-generator system
DE3815993A1 (en) * 1988-05-10 1989-11-23 Rudolf Dr Wieser Binary-vapour turbine plant
DE4019343A1 (en) * 1990-06-18 1991-12-19 Steinmueller Gmbh L & C Electrical energy prodn. in combined-cycle power plant - involves preheating of air forced into boiler, unless gas-turbine exhaust provides enough oxygen for combustion

Also Published As

Publication number Publication date
DE4227146A1 (en) 1994-02-24

Similar Documents

Publication Publication Date Title
EP0150340B1 (en) Method of operating a combined gas/steam turbine power plant
EP0597305B1 (en) Method of operating a combined cycle installation
EP0822320B1 (en) Gas and steam turbine plant
EP0674099A1 (en) Cooling method for the thermically charged components of a gasturbine powerplant
EP2167794B1 (en) Device and method for the generation of power heat
EP0639214B1 (en) Process for dressing brown coal for combined gas and steam processes
WO2005019606A1 (en) Method for increasing the efficiency of a gas turbine system, and gas turbine system suitable therefor
WO1992005344A1 (en) Combined gas and steam turbine plant
EP0515911B1 (en) Method of operating a gas and steam turbine plant and corresponding plant
DE19506787B4 (en) Process for operating a steam turbine
EP2423465A2 (en) Method for operating a steam turbine power plant and device for generating steam
DE4321081A1 (en) Process for operating a gas and steam turbine plant and a combined cycle gas plant
WO2000020728A1 (en) Gas and steam turbine installation
EP0209044B1 (en) Combined gas and steam turbine power station
WO2000011325A1 (en) Gas and steam turbine unit
EP1286030B1 (en) Gas and air turbine powerplant
DE10319477A1 (en) Operating process for a lignite fired steam turbine power plant, uses energy from the liquid evaporated in drying the lignite to prewarm the cold feed water
DE19943782C5 (en) Gas and steam turbine plant
WO1994004795A1 (en) Energy generation process in a combined gas-steam power station
EP0586425B1 (en) Energy generating process in a combined gas/steam generating power station
EP0650554B1 (en) Process for operating a gas turbine
DE3836463C2 (en) Method and device for using waste heat from a process
DE2648576C2 (en) Gas-steam turbine plant
WO1995025880A1 (en) Process for operating a waste heat steam generator and waste heat steam generator so operated
EP2138677B1 (en) Gas and steam turbine array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KZ RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase