WO1994002668A1 - Polytetrafluoroethylene fiber containing conductive filler - Google Patents

Polytetrafluoroethylene fiber containing conductive filler Download PDF

Info

Publication number
WO1994002668A1
WO1994002668A1 PCT/US1992/006661 US9206661W WO9402668A1 WO 1994002668 A1 WO1994002668 A1 WO 1994002668A1 US 9206661 W US9206661 W US 9206661W WO 9402668 A1 WO9402668 A1 WO 9402668A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fabric
volume resistivity
ohm
less
Prior art date
Application number
PCT/US1992/006661
Other languages
French (fr)
Inventor
Raymond B. Minor
Gordon Mcgregor
Williams P. Mortimer
Original Assignee
W.L. Gore & Associates, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/915,484 external-priority patent/US5262234A/en
Application filed by W.L. Gore & Associates, Inc. filed Critical W.L. Gore & Associates, Inc.
Publication of WO1994002668A1 publication Critical patent/WO1994002668A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/04Asbestos
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/02Wool
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A fiber of expanded porous polytetrafluoroethylene in which an amount of a conductive particulate filler is incorporated imparting a measure of conductivity to the fiber is disclosed. The fiber may be twisted along its length. The fiber may be a continuous monofilament fiber, a tow, a staple, or a flock.

Description

PO YI-El-RA-πjUOROEπiYLENE FIBER CONTAINING CODUCTIVE FILLER
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of application Serial Number 07/777984 filed October 7, 1991.
TITLE OF THE INVENTION
POLYTETRAFLUOROETHYLENE FIBER CONTAINING CONDUCTIVE FILLER
FIELD OF INVENTION
This invention relates to expanded porous polytetrafluoroethylene fibers filled with conductive particulate material.
BACKGROUND OF THE INVENTION
In the past, fibers have been used for their electrical properties, and fibers which possess a degree of electrical conductivity have been incorporated into articles to increase the conductivity of the article and to provide a measure of electrostatic discharge (ESD) protection to the article. Types of fibers Utilized for their electrical conductivity include naturally occurring fibers, such as wool, which provide a measure of electrical conductivity due to the fact that a certain amount of moisture is normally found on the fiber's outside surface.
Moisture associated with the fiber's outside surface can provide a conductive pathway, thereby permitting static electric charges present on the outside surface of the fiber to dissipate. Man-made fibers based upon commonly produced polymeric materials used in the production of fibers such as polyamides or polyesters have been used to produce fibers which possess a degree of electrical conductivity. These man-made fibers may be treated on their outside surfaces with a conductive agent to increase the conductivity of the fiber. Conductive agents include antistatic finishes which are applied to the outside surface of the fiber. Durability of antistatic finishes are usually less than the fiber on which the antistatic finishes are placed. Fibers which rely on such finishes for electrical conductivity can gradually lose their antistatic finishes while in use or through a cleansing process and become less electrically conductive overtime.
Conductive agents may also be in the form of a coating of a metal or carbon black placed on the outside surface of a fiber. The durability of the coating of metal or carbon black is dependent on the ability of these materials to bond and remain bonded to the outside surface of the fiber. If the coating is less flexible than the fiber on which it is placed, the coating may crack producing discontinuities in a conductive pathway provided by the coating. Conductive agents have been incorporated into man-made fibers to provide a permanently conductive fiber. Conductive agents that have been incorporated into man-made fibers include antistatic finishes, carbon blacks and powdered metals. The conductive agents may be distributed throughout the man-made fiber or may be contained within a conductive core or strip. The electrical properties of these fibers usually remain for the life of the fiber. However, the polymeric materials used to produce these fibers, such as polyamides or polyesters have utility over a relatively narrow range of temperatures and chemical and environmental conditions.
Polytetrafluoroethylene (PTFE) exhibits utility over a relatively wide range of temperatures and chemical and environmental conditions. PTFE is usable over a temperature range from as high as 260°C to as low as near -273°C. PTFE is also highly resistant to attack from many harsh chemical reagents.
However, PTFE does not possess exceptional strength. A form of PTFE, expanded porous polytetrafluoroethylene (ePTFE) as produced by the method taught in US Patent No. 3,953,566 to Gore, exhibits higher strength than PTFE. ePTFE is an excellent dielectric material and has been used as an insulative layer on wire and cable applications. ePTFE in film form has been filled with various fillers as taught in US Patent Nos. 4,187,390 to Gore and 4,985,296 to Mortimer. Jr. Conductive fillers are taught as well in Gore and Mortimer, Jr.. however, the filled ePTFE articles taught are in film form and not in fiber form.
The~present invention is directed to ePTFE fibers which are filled with an amount of conductive filler thereby imparting a degree of electrical conductivity to the fiber.
BRIEF DESCRIPTION OF THE INVENTION
The product of this invention is a fiber comprising an expanded porous polytetrafluoroethylene matrix in which a conductive particulate filler is distributed wherein the fiber has a bulk tensile strength of 65,000 KPa or greater and a volume resistivity of lxlO9 ohm cm or less.
DETAILED DESCRIPTION OF THE INVENTION
A fiber of the present invention is produced from an ePTFE matrix in film form in which an amount of a conductive particulate is contained. The ePTFE matrix in film form is produced in the following manner:
A fine powder PTFE resin is combined with a conductive particulate through one of two methods. The conductive particulate having utility in the present invention may be selected from a group consisting of metals, metal oxides or carbon blacks. By "particulate" is meant individual particles of any aspect ratio and thus includes flock, flakes and powders.
In one method, an amount of fine powder PTFE resin is mixed with an amount of conductive particulate filler and a sufficient quantity of a mineral spirit, preferably an odorless mineral spirit, in a blender to obtain an intimate mixture of the components and form a compound.
It is preferable to combined fine powder PTFE resin with the mineral spirit prior to the addition of the conductive particulate filler to the blender in order to obtain a consistent mixture of the fine powder PTFE resin and the conductive particulate filler.
In another method, an aqueous dispersion PTFE resin is -A- obtained! Into the aqueous dispersion, a conductive particulate filler is added. The mixture is co-coagulated by rapid shearing of the aqueous dispersion, or through destabilization of the aqueous dispersion with salt, acid, polyethylene i ine or the like. A coagulum of fine powder PTFE resin and conductive particulate is subsequently formed and dried into cakes. When dry, the cakes are carefully crumbled and lubricated with a mineral spirit and blended forming a compound.
The compound produced by either of the previously described methods is compressed into a billet and subsequently extruded through a die by a ram-type extruder forming a coherent extrudate. The mineral spirit functions as an extrusion lubricant for the compound.
The coherent extrudate is compressed between a pair of calender rollers to reduce its thickness. Subsequently, the mineral spirit is removed from the calendered coherent extrudate by passing the coherent extrudate over a series of heated rollers. The heated rollers are heated to a temperature at or above the boiling point of the mineral spirit present in the coherent extrudate thereby volatilizing the mineral spirit leaving a dry coherent calendered extrudate.
The dry coherent calendered extrudate is stretched using the method of expanding PTFE taught in US Patent No. 3,543,566 to Gore incorporated herein by reference. The dry coherent calendered extrudate is initially rapidly stretched uniaxially in a longitudinal direction 1.2x to 5000x, preferably 2x to lOOx its starting length, at a stretch rate over 10% per second at a temperature of between 35°C and 327°C. An expanded porous polytetrafluoroethylene (ePTFE) matrix in continuous film form in which is distributed a conductive particulate filler is produced. The ePTFE matrix in continuous film form may be slit to a desired width by a means for slitting films to form a continuous slit film fiber having a substantially rectangular profile. The continuous slit film fiber is subsequently stretched uniaxially in a longitudinal direction up to fifty (50) times its length by the method taught in Gore, previously referenced herein. The second stretching step increases the strength of the resultant fiber producing an expanded continuous slit film fiber. The increase in strength of the expanded continuous slit film fiber is a result of increased orientation of the ePTFE matrix. For any specific conductive particulate filler, the amount of stretching to which the continuous slit film fiber may be subjected is dependent on the percentage of particulate filler present in the fiber. The greater the percentage of particulate filler, the less the continuous slit film fiber may be stretched.
The expanded continuous slit film fiber may subsequently be subjected to a temperature in excess of 342°C in order to perform an amorphous locking step as taught in Gore specifically on column 3, lines 49-65. If fully restrained longitudinally, the amorphous locking step further increases the strength and density of the expanded continuous slit film fiber.
Alternatively, prior to slitting, the ePTFE matrix in continuous film form may be compressed and densified by a means for compressing, such as a pair of adjacent nip rollers, to reduce the thickness of the ePTFE matrix in continuous film form, as taught in US Patent No. 4,985,296 to Mortimer, Jr. incorporated herein by reference. Compression and densification increases contact between individual conductive particulate filler particles thereby increasing conductivity of the ePTFE matrix in continuous film form producing a thin ePTFE matrix in continuous film form. To increase the strength of the thin ePTFE matrix in continuous film form, multiple layers of the coherent extrudate are stacked longitudinally and calendered upon one another forming a layered article. The layered article is subsequently dried, expanded and densified to produce a thin ePTFE matrix of greater strength when compared to an analogous thin ePTFE matrix produced from a single layer of ePTFE-matrix. The thin ePTFE matrix may be subjected to the amorphous locking step previously described. The thin ePTFE matrix in continuous film form may be slit to a desired width by a means for slitting films to form a thin continuous fiber having a substantially rectangular profile. Fibers of the present invention exhibit relatively high bulk tensile strengths with relatively low volume resistivities. Conductive particulate filler distributed in the ePTFE matrix, while responsible for the fiber's volume resistivity, does not contribute to the fiber's strength. Rather, strength of the fiber is as a result of the amount of PTFE present and the strength of that PTFE. However, the formation of an ePTFE matrix, while increasing the strength of the matrix, also reduces its density and, therefore, increases its volume resistivity.
Expansion of the ePTFE matrix for increased bulk tensile strength and subsequent densification of the ePTFE matrix for decreased volume resistivity permits one to tailor the properties of the inventive fiber. It is possible to increase the conductivity of the fiber by increasing the density of the fiber. The density of the fiber may be increased through compression. Compression of the fiber may be accomplished by passing the fiber through a means for compressing such as, for example, a pair of nipped rollers. Preferably, compression of the fiber may be accomplished through a twisting step, where the fiber is twisted about its central longitudinal axis by a means for twisting forming a twisted fiber. The resultant twisted fiber also exhibits greater maintenance of its volume resistivity upon exposure to tensile forces when compared to an analogous compressed untwisted fiber. The resultant twisted fiber is more dense than an analogous untwisted fiber and appears rounder than an untwisted fiber. The twisted fiber may have 1 to 18 twists per cm preferably 4 to 11 twists per cm.
The density of the fiber may also be increased by subjecting the fiber to the previously described amorphous locking step which causes a degree of shrinkage in the fiber. Densification of the fiber through the amorphous locking step is preferable when the profile of the continuous fiber is to be maintained rather than altered through a compression step. Fibers of this invention may have a range of volume resistivities. A fiber of the present invention with a volume resistivity of 109 ohms cm or less has utility in providing articles of manufacture with ESD capabilities. A fiber of the invention with a volume resistivity of 10 ohms cm or less has utility in providing articles of manufacture with a measure of conductivity thereby providing electromagnetic interference (EMI) shielding to said articles. The lower value of volume resistivity is not critical and is limited by the conductive particulate used. Fibers having a bulk tensile strength of 65,000 KPa or greater with a volume resistivity of lxlO3 ohm cm or less, a bulk tensile strength of 65,000 KPa or greater with a volume resistivity of 10 ohm cm or less; and a bulk tensile strength of 200,000 KPa or greater and a volume resistivity of lxlO3 ohm cm or less can be produced using the present invention. The upper value of bulk tensile strength is not critical and is limited by the strength of the PTFE used.
The term "fiber" is defined herein as to include any slender filament and thus includes continuous monofilament, tow, staple and flock.
A continuous monofilament fiber of the present invention may be subsequently formed into a tow comprised of an ePTFE matrix containing a conductive particulate filler. The tow is formed by hackling the continuous monofilament fiber forming a fibrous tow web. This fibrous tow web is subsequently chopped into short lengths thereby producing a staple comprised of a matrix of ePTFE in which a conductive particulate filler is distributed. A chopping into shorter lengths produces a flock. Fibers of the present invention may subsequently be made in the form of a woven, non-woven or knitted fabric. The fabric may be made solely from fibers of the present invention or may be made from a combination of fibers of the present invention combined with at least one additional fiber. The additional fiber may be a synthetic fiber selected from the group consisting of polyester, polyamide, aramide, graphite, ceramic and metal. Alternatively, the additional fiber may be a natural fiber selected from the group consisting of cotton, wool, hemp or asbestos.
TEST METHODS
Tensile Strength
The bulk tensile strength of the fibers are determined using the method described in ASTM D882-81. The test performed varied from the test as published with respect to the material tested. ASTM D882-81 is for testing thin plastic sheeting and not fibers. The difference is due to the dimensions of the sample. The thickness of the fibers is determined through a snap gauge. Care is taken not to crush the sample with the presser foot of the snap gauge tσ obtain an accurate thickness. Width of the sample is determined through measurement on an optical microscope.
The samples are tested on a constant rate of grip separation machine to break. Force at maximum load samples is determined.
Volume Resistivity
The volume resistivity of the fibers are determined using the method described in ASTM D257-90, "Standard Test Methods for D-C Resistance or Conductance of Insulating Material".
The following examples are provided for illustrative purposes only and are not limitative.
EXAMPLES
Example 1
A fiber of the present invention was produced in the following manner.
A dry mixture of 85% by weight of a fine powder PTFE resin and 15% by weight of a conductive carbon black (Vulcan XC-72R available from Cabot Corporation, Boston, MA) was combined in a blender with an amount of an odorless mineral spirit (Isopar K available from Exxon Corporation) until a compound was obtained. The compound was compressed into a billet and extruded through a 6.4 mm gap die attached to a ram-type extruder to form a coherent extrudate. The coherent extrudate was passed between a pair of calender rolls gapped to reduce the thickness of the coherent extrudate to 4.1 mm.
Subsequently, the odorless mineral spirit was volatilized and removed, and the dry coherent calendered extrudate was expanded uniaxially in the longitudinal direction twice (2x) its original length by passing the dry coherent calendered extrudate over a series of rotating heated rollers. The dry coherent calendered extrudate was slit to 6.4 mm widths by passing the coherent extrudate between a set of gapped blades. The slit coherent extrudate was expanded uniaxially in the longitudinal direction at a ratio of 21.3 to 1 to form the fiber of the instant invention. The inventive fiber was subsequently subjected to an amorphous locking step by exposing the fiber to a temperature in excess of 342°C for a period of time.
The fiber was subsequently twisted at various amounts about its longitudinal axis to compress the instant fiber. Twisting of the instant fiber was accomplished on a standard fiber twisting machine at room temperature. The physical properties and the effect of twisting on the properties of the fiber of Example 1 are found in Table 1.
Table 1
Figure imgf000011_0001
Example 2
A fiber of the present invention was produced in the following manner.
A mixture of 75% by weight of a fine powder PTFE resin in an aqueous dispersion and 25% by weight of a conductive carbon black (Ketjenblack 300-J available from Akzo Chemical) was made. First a slurry was made of carbon black in deionized water, and agitated with a rotating impeller. Fine powder PTFE aqueous dispersion (AD- 059, ICI Americas Inc.) was added, and the carbon black and PTFE co-coagulated. After drying, the coagulum was combined in a blender with an amount of an odorless mineral spirit forming a compound, the compound was compressed into a billet, and the billet extruded to form a coherent extrudate similar to the steps followed in Example 1.
The coherent extrudate was compressed between calender rolls and the odorless mineral spirit was removed in a method similar to the steps followed in Example 1. The dry coherent calendered extrudate was subsequently expanded at a ratio of 2:1 at a temperature of 270°C.
The dry coherent calendered extrudate had an average thickness of 0.38 mm and a density of 0.374 g/cc. The dry coherent calendered extrudate was slit to 14.7 mm widths by passing the dry coherent calendered extrudate between a set of gapped blades. The slit coherent extrudate was expanded uniaxially in the longitudinal direction at a ratio of 14.35 to 1 and subsequently subjected to an amorphous locking step as in Example 1.
The fiber was subsequently twisted as in Example 1. The physical properties and the effect of twisting on the properties of the fiber of this Example are found in Table 2.
Table 2
Figure imgf000012_0001

Claims

WE CLAIM;
1. A fiber comprising an expanded porous polytetrafluoroethylene matrix, and a conductive particulate filler distributed within said matrix; wherein said fiber has a bulk tensile strength of 65,000 KPa or greater and a volume resistivity of lxlO9 ohm cm or less.
2. A fiber as in Claim 1 wherein the conductive particulate filler is a metal .
3. A fiber as in Claim 1 wherein the conductive particulate filler is a metal oxide.
4. A fiber as in Claim 1 wherein the conductive particulate filler is a carbon black.
5. A fiber as in Claim 1 wherein the fiber has a volume resistivity of lxlO3 ohm cm or less.
6. A fiber as in Claim 1 wherein the fiber has a volume resistivity of 10 ohm cm or less.
7. A fiber as in Claim 1 wherein the fiber has a bulk tensile strength of 200,000 KPa or greater and a volume resistivity of lxlO3 ohm cm or less.
8. A fiber as in Claim 1 wherein the fiber is twisted about its central longitudinal axis.
9. A fiber as in Claim 8 wherein the fiber has 1 to 19 twists per cm.
10. A fiber as in Claim 9 wherein the fiber has 4 to 11 twists per cm.
11. A fiber as in Claim 1 wherein the fiber is a continuous monofilament.
12. A fiber as in Claim 1 wherein the fiber is a tow.
13. A fiber as in Claim 1 wherein the fiber is a staple.
14. A fiber as in Claim 1 wherein the fiber is a flock.
15. A fabric comprising: a fiber comprising an expanded porous polytetrafluoroethylene matrix, and a conductive particulate filler distributed within said matrix; wherein said fiber has a bulk tensile strength of 65,000 KPa or greater and a volume resistivity of 1X109 ohm cm or less.
16. The fabric as described in Claim 15, wherein the fabric is in woven form.
17. The fabric as described in Claim 15, wherein the fabric is in noh-woven form.
18. The fabric as-described in Claim 15, wherein the fabric is in knitted form.
19. The fabric as described in Claim 15, further comprising a second fiber.
20. The fabric as described in Claim 19, wherein the second fiber is a synthetic fiber.
21. The fabric as described in Claim 19, wherein the second fiber is a natural fiber.
22. The fabric as described in Claim 15 wherein said fiber has a volume resistivity of 1X103 ohm cm or less.
23. The fabric as described in Claim 15 wherein said fiber has a bulk tensile strength of 200,000 KPa or greater and a volume resistivity of 1X103 ohm cm or less.
PCT/US1992/006661 1992-07-16 1992-08-10 Polytetrafluoroethylene fiber containing conductive filler WO1994002668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US915,484 1992-07-16
US07/915,484 US5262234A (en) 1991-10-17 1992-07-16 Polyetrafluoroethylene fiber containing conductive filler

Publications (1)

Publication Number Publication Date
WO1994002668A1 true WO1994002668A1 (en) 1994-02-03

Family

ID=25435826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1992/006661 WO1994002668A1 (en) 1992-07-16 1992-08-10 Polytetrafluoroethylene fiber containing conductive filler

Country Status (2)

Country Link
IL (1) IL102795A (en)
WO (1) WO1994002668A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052238A1 (en) * 1999-02-26 2000-09-08 Manegro Administração E Participações Ltda. A process for the manufacture of filaments, particularly ptfe filaments, and an installation for carrying it out
WO2015195598A1 (en) * 2014-06-16 2015-12-23 W. L. Gore & Associates, Inc. Fabrics containing expanded polytetrafluoroethylene fibers
WO2017106237A3 (en) * 2015-12-14 2017-10-12 W.L. Gore & Associates, Inc. Fabrics containing expanded polytetrafluoroethylene fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1384016A (en) * 1971-06-18 1974-02-12 Hoechst Ag Polytetrafluoroethylene fibres and filaments having reduced electrical resistance
US4187390A (en) * 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
EP0344689A1 (en) * 1988-06-03 1989-12-06 Asahi Glass Company Ltd. Method for molding a filler - containing polytetrafluoroethylene
US4985296A (en) * 1989-03-16 1991-01-15 W. L. Gore & Associates, Inc. Polytetrafluoroethylene film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187390A (en) * 1970-05-21 1980-02-05 W. L. Gore & Associates, Inc. Porous products and process therefor
GB1384016A (en) * 1971-06-18 1974-02-12 Hoechst Ag Polytetrafluoroethylene fibres and filaments having reduced electrical resistance
EP0344689A1 (en) * 1988-06-03 1989-12-06 Asahi Glass Company Ltd. Method for molding a filler - containing polytetrafluoroethylene
US4985296A (en) * 1989-03-16 1991-01-15 W. L. Gore & Associates, Inc. Polytetrafluoroethylene film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052238A1 (en) * 1999-02-26 2000-09-08 Manegro Administração E Participações Ltda. A process for the manufacture of filaments, particularly ptfe filaments, and an installation for carrying it out
WO2015195598A1 (en) * 2014-06-16 2015-12-23 W. L. Gore & Associates, Inc. Fabrics containing expanded polytetrafluoroethylene fibers
KR20170020435A (en) * 2014-06-16 2017-02-22 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Fabrics containing expanded polytetrafluoroethylene fibers
JP2017519126A (en) * 2014-06-16 2017-07-13 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Fabric containing stretched polytetrafluoroethylene fibers
KR102009493B1 (en) * 2014-06-16 2019-08-26 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Fabrics containing expanded polytetrafluoroethylene fibers
US9988758B2 (en) 2015-06-15 2018-06-05 W. L. Gore & Associates, Inc. Fabrics containing expanded polytetrafluoroethylene fibers
WO2017106237A3 (en) * 2015-12-14 2017-10-12 W.L. Gore & Associates, Inc. Fabrics containing expanded polytetrafluoroethylene fibers
KR20180085027A (en) * 2015-12-14 2018-07-25 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Fabrics comprising expandable polytetrafluoroethylene fibers
CN108367528A (en) * 2015-12-14 2018-08-03 W.L.戈尔及同仁股份有限公司 Fabric containing expanded polytetrafluoroethyl,ne fiber
KR102082592B1 (en) * 2015-12-14 2020-02-27 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Fabrics Including Expandable Polytetrafluoroethylene Fibers

Also Published As

Publication number Publication date
IL102795A (en) 1995-12-31
IL102795A0 (en) 1993-01-31

Similar Documents

Publication Publication Date Title
US5262234A (en) Polyetrafluoroethylene fiber containing conductive filler
AU662948B2 (en) Static dissipative nonwoven textile material
US5213882A (en) Static dissipative nonwoven textile material
EP0463106B1 (en) Polytetrafluoroethylene film
US5560986A (en) Porous polytetrafluoroethylene sheet composition
US3217083A (en) Abrasion resistant polymeric fluorocarbons and conductor insulated therewith
JP3486905B2 (en) Mixed cotton-like material, non-woven fabric obtained therefrom and method for producing them
AU7334696A (en) Electrically conductive polymer composition
JP2001521834A (en) Method of filling fibers or filament networks with powders, especially for the production of composites
EP0526556B1 (en) Electrical insulating material
US5614312A (en) Wet-laid sheet material and composites thereof
Moulart et al. Polymeric composites for use in electronic and microwave devices
WO1994002668A1 (en) Polytetrafluoroethylene fiber containing conductive filler
JP2005500409A (en) Polyvinylidene fluoride composite material and production method thereof
CA2158922C (en) Wet-laid sheet material and composites thereof
DE2152546A1 (en) COMPRESSIBLE, ELECTRICALLY CONDUCTIVE AND / OR MAGNETIC MATERIAL MADE FROM ELASTIC, CELLULAR POLYMER AND PROCESS FOR ITS MANUFACTURING
GB2262101A (en) Insulating material
KR960003010B1 (en) The preparation of conductivity sheet
Wu et al. Conductivity stability of carbon nanofiber/unsaturated polyester nanocomposites
Mamunya et al. Structure‐dependent conductivity and microhardness of metal‐filled PVC composites
KR101005984B1 (en) Conducting Composition for conductive ply yarn and conductive ply yarn thereof
WO2024005669A1 (en) Electrically conductive composite fibre and method for producing and using same
Jiménez et al. Electrically conductive monofilaments for smart textiles
KR20120077262A (en) Method for manufacturing polyester fiber with modified cross-section comprising carbon nano-tube and polyester fiber made thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB JP SE

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
122 Ep: pct application non-entry in european phase