WO1993025234A1 - Methods and compositions for targeting specific tissue - Google Patents
Methods and compositions for targeting specific tissue Download PDFInfo
- Publication number
- WO1993025234A1 WO1993025234A1 PCT/US1993/005260 US9305260W WO9325234A1 WO 1993025234 A1 WO1993025234 A1 WO 1993025234A1 US 9305260 W US9305260 W US 9305260W WO 9325234 A1 WO9325234 A1 WO 9325234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- cells
- population
- sub
- viral
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6901—Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
Definitions
- the invention is directed to methods and compositions for preferentially targeting the delivery of a substance, such as a nucleic acid, to specific tissue.
- cancers originate from one cell type.
- chemotherapy is the most widely-used approach to control cancer.
- Such chemotherapy is not tissue specific in terms of delivery of the chemotherapeutic agent. Rather, the adverse effects imparted upon the rapidly dividing cancer cells are also imposed upon normal cells.
- the invention includes a vehicle for preferentially targeting the delivery of a substance to a sub-population of mammalian cells.
- the cell sub-population is characterized by the presence of a sub-population-specific first member of a binding pair on the surface of the cells.
- the vehicle comprises an envelope comprising a recombinant targeting moiety defining a compartment and a substance contained in the compartment.
- the recombinant targeting moiety comprises first and second domains.
- the first domain is capable of forming or associating with the envelope of the vehicle whereas the second domain is capable interacting with the first binding member on the surface of the sub- population of cells.
- the invention also includes methods for preferentially targeting the delivery of a substance to the above sub- population of mammalian cells comprising contacting a population of mammalian cells containing the sub-population with the above vehicle.
- FIG. 1 depicts the construction of a hybrid erythropoietin-viral envelope gene.
- FIG. 2 depicts the Western blot analysis of packaging cell sub-clones including the detection of the erythropoietin sequence.
- FIG. 3 depicts the flow cytometric analysis of packaging cell lines based upon a detection of cell surface EPO epitopes by polyclonal anti-EPO antibodies.
- FIG. 4 depicts the survivability of HeLa cells (wild- type or expressing the erythropoietin receptor) which have been exposed to neomycin or the retroviral vector encoding a neomycin resistant gene containing the EPO-env protein followed by a treatment with neomycin.
- FIG. 5 depicts a similar experiment with NIH3T3 cells.
- a virus containing a hybrid viral envelope protein containing an amino acid sequence corresponding to a portion of the sequence of erythropoietin is capable of preferentially infecting cells displaying the erythropoietin receptor on their surface.
- a "vehicle" of the invention is defined as any composition comprising an envelope defining a compartment and a substance contained therein that is capable of preferentially targeting the delivery of the substance to a specific sub-population of mammalian cells.
- the sub-population of mammalian cells is characterized by the presence of a first member of a binding pair on the surface of the sub-population.
- the vehicle is further defined by the envelope which comprises a "recombinant targeting moiety" capable of forming or associating with the envelope and which imparts cell specificity to the vehicle.
- the targeting moiety contains at least two domains .
- the first domain is capable of forming or associating with the envelope of the vehicle whereas the second domain is capable of interacting with the first member of the binding pair on the surface of the sub- population of mammalian cells.
- the vehicle comprises a "viral vehicle”.
- the vehicle comprises a "liposome vehicle”.
- the viral vehicles of the invention are generally formed from naturally occurring viruses and in particular those viruses capable of infecting eukaryotic cells, such as mammalian cells.
- viruses contain a genome comprising either RNA or DNA which encode a variety of genes necessary for viral transfection and reproduction. Included within the viral genome are nucleic acid sequences encoding various enzymes, e.g., DNA or RNA polymerases and the like and structural proteins which surround the viral genome referred to as "viral coat proteins".
- capsid protein makes up that part of the virus particle known as the capsid.
- some viruses further contain a lipid bilayer surrounding the capsid which often contains viral envelope proteins.
- the capsid protein or envelope protein is used to form the targeting moiety for the viral vehicle of the invention.
- the targeting moiety contains a domain which is capable of forming or associating with the envelope of the virus vehicle, all or part of the viral coat protein is used to construct the recombinant target moiety. When only a portion of the coat protein is used, that portion of the coat protein which is necessary and sufficient for envelope formation is used.
- viral envelope proteins such necessary and essential features include the anchoring region and transmembrane region utilized by the envelope protein to display the envelope protein on an infected cell. When a virus containing an envelope protein is used, it is preferred that the targeting moiety contain such anchor and transmembrane regions .
- the second domain of the target moiety is capable of interacting with the first member of a binding pair which is on the surface of a sub-population of mammalian cells.
- a binding pair includes receptor-ligand complexes, antigen-antibody complexes, enzyme-substrate complexes and the like.
- a sub-population of cells can be defined by the presence of one of the binding pairs on the surface of the cells of the population.
- those cells containing an erythropoietin receptor define a cellular sub-population that can be targeted by utilizing erythropoietin (ligand) in the targeting moiety of the invention as the second domain capable of interacting with the erythropoietin receptor.
- the receptor can be used in the targeting moiety and the ligand displayed on the surface of the cells of the sub-population.
- a sub-population of cells can be defined by the presence of an antigen or antibody on the surface of the cells contained within that population.
- a surface marker contained on the surface of a sub- population of cells can be used to generate monoclonal antibodies by methods well known to those ' skilled in the art.
- Monoclonal antibodies (especially those containing anchor and transmembrane regions or engineered through cloning and modification of cDNA to contain such sequences) can be used either as the targeting moiety alone (e.g., in a liposome vehicle) or in combination with a protein capable of associating with a viral surface.
- the targeting moiety essentially comprises a chimeric antibody containing an anchoring and transmembrane region from a viral envelope protein coupled to at least the variable region of a heavy chain Ig molecule which is also associated with the light chain from the antibody.
- the vehicle of the invention can target a sub-population of lymphoid cells displaying a membrane bound form of an immunoglobulin.
- the antigen to the membrane bound antibody is used to form the second domain of the targeting moiety.
- the recombinant targeting moiety used to form the vehicle of the invention contains all or part of the second member of the binding pair.
- the interaction between binding pairs is based upon an interaction involving a continuous epitope.
- the minimal component of the second member of the binding pair that can be used in forming a targeting moiety consists of that epitope.
- the interaction involves a discontinuous epitope.
- two or more regions within the primary amino acid sequence of the protein are brought into close physical proximity in the tertiary structure of the protein to form the binding epitope.
- targeting moiety When only a portion of such a protein is used to form the targeting moiety, that portion of the primary amino acid sequence which encompasses such binding regions are preferably included in the targeting moiety so as to provide the strongest possible interaction with the other member of the binding pair located on the sub-population of mammalian cells.
- the vehicle of the invention preferentially targets the delivery of substance to a sub-population of mammalian cells.
- Such preferential targeting is defined by comparing delivery of the substance to the sub-population of mammalian cells containing the first member of a binding pair as compared to a different population of a mammalian cell of the same species which does not display the first member of the binding pair.
- the increase in delivery as measured by binding of the vehicle to the sub-population or transferral of the substance of the vehicle into the sub- population cells is generally greater than two-fold.
- an increase in efficiency in infection by the viral vehicle disclosed therein ranged from 10-fold to about 30- to 40-fold as compared to wild-type cells not containing the receptor used in that experiment .
- the recombinant targeting moiety comprises a carboxy terminal portion of the envelope protein of Moloney murine leukemia virus (MoMLV) .
- the second domain comprises an amino terminal portion of erythropoietin.
- a viral vehicle of the invention is formed.
- the recombinant targeting moiety is associated with the envelope (corresponding to the membrane and MoMLV envelope protein) defining a compartment that contains the remainder of the virus particle.
- the substance contained within the viral compartment can comprise protein surrounding the viral genome or the genome itself.
- preformed proteins capable of being packaged with viral capsid proteins can comprise the substance contained in the compartment.
- the substance of interest contained within such a viral vehicle is a recombinant DNA sequence introduced into the genome of the virus.
- Viral vehicles are preferred when the substance to be delivered to a sub-population of cells is a nucleic acid.
- the viral vehicle of the invention is then designed to contain a recombinant targeting moiety capable of forming or associating with the envelope of a selected virus such that the thus modified virus is capable of recognizing and binding the selected surface marker.
- a recombinant targeting moiety capable of forming or associating with the envelope of a selected virus such that the thus modified virus is capable of recognizing and binding the selected surface marker.
- the size of the recombinant nucleic acid to be incorporated into the viral genome is determined to facilitate the choice of virus to be used.
- the genome of the virus must be such that it can either accommodate the selected recombinant nucleic acid or be modified to delete nonessential sequences such that the recombinant nucleic acid can be incorporated into the viral genome and still be packaged to form an intact viral particle containing the recombinant targeting moiety.
- the genome of the wild type virus be modified not only to accommodate the recombinant nucleic acid to be incorporated but further to attenuate the virulence of the modified virus.
- modifications include but are not limited to the deletion of the viral genes encoding one or more DNA or RNA polymerases .
- viruses which can be used in practicing the invention include retroviruses, adenoviruses and adeno-associated viruses (Berkner, K.L. (1988) BioTechni ues 6 . :616-629) .
- the Examples describe viral vehicles that demonstrate preferential targeting to cultured mammalian cells expressing the erythropoietin receptor.
- the viral vehicle targets those cells within the organism expressing the erythropoietin receptor.
- a specific utility for such a vehicle is the treatment of hemoglobinopathies such as sickle cell anemia and ⁇ - thalassemia. These diseases involve a genetic defect wherein either an abnormal globin chain is made or little if any /3-globin chain is produced.
- the resulting virus vehicle is capable of preferentially recognizing not only red blood cells but also those precursors of red blood cells derived from hematopoietic stem cells that have committed to erythroid differentiation as evidenced by the display of the erythropoietin receptor.
- the virus transfects such erythroid progenitor cells, the /3-globin gene is integrated into the genome of the progenitor cells.
- a normal /3-globin gene becomes integrated into the genome and is capable of modulating the disease by producing either normal amounts of /3-globin or the wild type /3-globin protein.
- the viral vehicles of the invention can also be used to target the delivery of therapeutic agents to diseased cells such as cancer cells.
- diseased cells such as cancer cells.
- an appropriate targeting moiety can be used to target a viral vehicle to bind to such preferentially expressed markers.
- the genome of the viral vehicle is recombined with a nucleic acid expression unit capable of expressing for example toxic polypeptides such as ricin, diphtheria toxin and the like. Upon recognition, binding and transfection into the cancer cell, the expression unit produces the toxic polypeptide to preferentially kill the cancer cell.
- the expression unit comprises nucleic acid encoding the toxic polypeptide and one or more expression regulation sequences that are operably linked to the nucleic acid such that the nucleic acid is expressed in the transfected cancer cell so as to produce the toxic polypeptide.
- expression regulation sequences are preferably those which demonstrate tissue specific specificity to the cell type from which the cancer cell differentiated, more preferably an expression regulation sequence expressed exclusively by the cancer cell and most preferably the expression regulation sequence controlling the expression of the preferentially expressed surface marker.
- the preferred virus of choice is selected from the retrovirus family. Retroviruses are preferred because they require an actively dividing cell to efficiently integrate into the genome of its host. If non- cancerous cells also express the surface marker preferentially displayed on a cancer cell, the viral vehicle of the invention is also capable of recognizing, binding and transfecting such cells. This background level depends upon the amount of the surface marker found on such normal cells and the environment within which the marker is displayed. Further, to the extent that the viral vehicle contains a normal viral coat protein, e.g., envelope protein, present in combination with the recombinant targeting moiety, the viral vehicle may also have the ability to non-specifically transfect cells independent of the presence of the surface marker utilized for recognition by the targeting moiety. When a retrovirus is used to practice the invention to treat cancer cells, however, such background infections in non-cancer cells are less likely to cause damage to normal cells that are not rapidly dividing since viral integration and expression of the toxic gene is less likely to occur.
- retrovirus is used to practice the invention to treat cancer cells, however, such background
- oncogenes The overexpression of oncogenes is often associated with the onset and development of cancer.
- the oncogenes expressed encode receptors which are located on the surface of the cancer cell .
- the proto- oncogene HER2 encodes a transmembrane tyrosine kinase whose overexpression has been correlated with several human malignancies, including breast, ovarian, gastric and endometrial cancers as well as non-small cell lung adeno carcinoma. See Holmes, et al. (1992) Science 256.
- the protein heregulin-o has a single affinity binding site for tumor cell lines expressing the HER2 oncogene.
- the heregulin- ⁇ . protein is therefore a candidate for use in treating the above identified cancers according to the teachings disclosed herein.
- T-cell mediated autoimmune disease is characterized by a sub- population of T-cells containing a T-cell antigen receptor
- mice which is capable of recognizing and interacting with a self-antigen to elicit the autoimmune response.
- Experimental autoimmune encephalomyelitis is a myelin basic protein induced demyelinating disease in mice. Recently, it has been shown that this disease is based, in part, upon the presence of a sub-population of T-cells containing well-defined variable regions containing specific segment subsets from the T-cell antigen receptor repertoire. It has also been recently reported that mice treated with monoclonal antibodies specific to epitopes contained within the /3-chain of the TCAR of the sub- population of T-cells responsible for the autoimmune disease is capable of preventing onset of the disease when the animal is challenged with myelin basic protein.
- the vehicle of the invention can be used as an alternate approach to treating or preventing such autoimmune diseases.
- a monoclonal antibody specific for the TCAR responsible for the autoimmune disease is used to form the vehicle of the invention.
- the substance contained within the virus is preferably a toxic gene capable of being expressed when transfected into those T- cells containing the autoimmune inducing TCAR.
- the substance contained therein can be a nucleic acid containing an expressible gene encoding a toxic polypeptide or a therapeutic agent such as a chemotherapeutic agent capable of killing the cell, e.g., the ricin or diphtheria toxin proteins.
- liposome vehicles can be used to practice the invention.
- Liposomes are well known to those skilled in the art and generally comprise membranous vesicles containing lipid bilayers which are capable of encapsulating various drugs or other chemicals. See, e.g., U.S. Pat. Nos. 4,053,585; 4,397,846; 4,411,894; 4,427,649, and Papahadjopolous, et al . (1967) Biochem. Biophvs. Acta. 135 :639; Bangham, J. et al . (1965) J. Mol. Biol. 12:238, 252; Bapzri and Korn (1973) Biochem. Biophys . Acta. 298 :1015; and Miyamato, et al . (1971) "Preparation and Characteristics of Lipid Vesicles", J. Membrane Biol. 4:252-269.
- a drug or other chemical When a drug or other chemical is incorporated into a liposome, that substance is generally included in the reaction mixture used to synthesize the liposome. Accordingly, in practicing the invention to form liposome vehicles, the substance to be contained in the compartment of the liposome vehicle, e.g., nucleic acid, drug or therapeutic agent, is included during liposome synthesis. Further, the targeting moiety of the invention is also included during the formation of the liposome.
- the targeting moiety When using a liposome, the targeting moiety preferably contains a anchoring region and a transmembrane region, e.g., from immunoglobulin or other membrane bound protein, so as to associate with the lipid bilayer of the liposome. It, of course, also contains the domain capable of interacting with the first member of the binding pair contained on the sub-population of mammalian cells.
- a preferred targeting moiety comprises a monoclonal antibody (preferably IgM) specific for a cell surface antigen or an antibody that has been engineered through cloning and modification to contain an anchoring and transmembrane region.
- the thus formed liposome contains targeting moiety wherein the domain capable of interacting with the first binding member is displayed on the inner and outer surface of the liposome membrane.
- This example describes the construction of hybrid erythropoietin + viral envelope (EPO-env) genes in eukaryotic expression vectors.
- EPO-env erythropoietin + viral envelope
- LTR 5' -MoMLV-long terminal repeat sequence
- gag and pol structural genes which are normally spliced out of the env message (Weiss, R., N. Teich, H. Varmus, J. Coffin, eds. (1984) "RNA Tumor Viruses: Molecular Biology of Tumor Viruses", 2d edition, Cold Springs Harbor Laboratory, Cold Springs Harbor, NY) , were deleted, thus leaving only a small sequence in between the splicing signals remaining to be spliced.
- Portions of the envelope were then selected for removal and replaced with the EPO coding sequence.
- gp70 In the center of the outer protein subunit (gp70) of the envelope lies a proline-rich region which is a likely candidate domain for cell receptor recognition (Koch, W. et al . (1983) J. Virol. 4 . 5:1-9) .
- Other sites include two regions which flank a region of homology in the amino-terminal portion of the molecule (Mark, G.E. et al . (1984) J. Virol. 49:530-539) , and sites at which point mutations give rise to a paralytogenic mutant of MoMLV (Szurek, P.F. et al . (1988) J. Virol. 6_2 .
- EPO-env hybrid was also constructed to insert the EPO sequence in a more central location, directly overlapping the proline-rich region. Since no convenient restriction sites exist in this region, unique sites were created at positions 6250 and 6750 by means of PCR-mediated mutagenesis. These new restriction sites were used to delete the intervening env sequence and insert the EPO sequence.
- the EPO-env constructs were transfected into the cell line PA317 (Mann, R. et al . (1983) Cell 3_3:153-159; and
- the PA317 cell line is a derivative of NIH3T3 cells into which MoMLV genes have been stably integrated; the PA317 cells possess the gag and pol genes as well as the amphotropic env gene, but the psi packaging signal sequence is deleted. Thus, these cells produce viral proteins without assembling them into wild type
- EPO-env plasmids were co-transfected into the PA317 cell line, along with a methotrexate-resistant dihydrofolate reductase (DHFR) gene as a selectable marker (Simonsen, C.S. et al . (1988) Nucleic Acids Res. 16:2235- 2246) , using the calcium phosphate precipitation method (Wigler, M. et al. (1979) Cell 16:77) .
- DHFR methotrexate-resistant dihydrofolate reductase
- the cells were selected for stable integration of the env sequences in medium containing methotrexate.
- Cells which had stably integrated the sequence into their genomes were methotrexate-resistant and therefore survived in this medium, growing as isolated colonies when the plating density was low enough. Stable clones were picked in this manner and grown in separate wells.
- polyclonal anti-EPO-antiserum and fluorescein-labeled secondary antibodies were used to detect EPO expression on the cell surface of hybrid EPO-env-containing cell lines by flow cytometry ( Figure 3) .
- Example 3 Packaging of retroviral vectors This Example discloses the use of the cell lines of Example 2 to package replication-defective retroviral vectors containing the neomycin-resistance (neo R ) gene and the /3-galactosidase (/3-gal) gene.
- neo R neomycin-resistance
- /3-gal /3-galactosidase
- Stable transfectants producing high levels of recombinant envelope proteins were transfected, by means of the calcium phosphate precipitation method, with replication-defective retroviral vectors which contain the psi-packaging signal, but whose gag, pol , and env genes have been deleted and replaced with genes encoding neomycin resistance (neo R ) and /3-galactosidase (/3-gal) .
- neo R neomycin resistance
- /3-galactosidase /3-gal
- the target cells consisted of four types: (1) wild type HeLa cells, which are non-murine and do not express the EPO receptor (D'Andrea, A. et al. (1989) Cell 57:277- 285) , (2) HeLa cells which have been stably transfected with the EPO receptor, (3) wild type NIH3T3 cells, which are murine fibroblasts and do not express the EPO receptor, and (4) NIH3T3 cells which have been stably transfected with the EPO receptor.
- HeLa and NIH3T3 cells were co-transfected with the EPO receptor cDNA cloned into an appropriate eukaryotic expression vector containing a methotrexate-resistant DHFR gene (Simonsen, C.S. et al . (1988) Nucleic Acids Res. 16 . :2235-2246) . After selection with methotrexate, the surviving colonies were isolated and expression of the EPO receptor was determined by a radioligand ( 125 I-EPO) binding assay (D'Andrea, A. et al . (1989) Cell 57:277-285) .
- a radioligand 125 I-EPO binding assay
- the sub-clone showing the highest levels of EPO receptor expression was selected and further grown in medium containing increasing concentrations of methotrexate, in order to further amplify the expression of EPO receptor.
- Receptor levels in these cells was calculated to be on the order of about 1000 receptors per cell.
- the Neo R //3-gal vector alone, (unpackaged) was transfected into both cell types by calcium phosphate precipitation, to confirm that the neomycin-resistance gene, whose expression is directed by the MoMLV LTR, is expressed efficiently in these cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Virology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Methods and compositions for preferentially targeting the delivery of a substance to a sub-population of mammalian cells. The vehicle of the invention includes a targeting moiety capable of associating with or forming an envelope defining a compartment that contains the substance to be delivered to the sub-population of cells. The targeting moiety also contains a domain capable of interacting with a member of a binding pair located on the surface of the sub-population of cells.
Description
METHODS AND COMPOSITIONS FOR TARGETING SPECIFIC TISSUE
This invention was made with Government support under Grant No. AM-16666, awarded by the National Institute of Health. The Government has certain rights in this invention.
FIELD OF THE INVENTION
The invention is directed to methods and compositions for preferentially targeting the delivery of a substance, such as a nucleic acid, to specific tissue.
BACKGROUND OF THE INVENTION
In the field of gene therapy, viral vectors and liposomes have been proposed to introduce genes into cells (Williams, D.A. (1988) Hematoloαv/Oncolo v Clinics of North America 2 : 211-281; and Mannino, R.J. et al . (1988) BioTechniques 6_:682-690) . Although such approaches may in some instances result in a localized administration of the vector or liposome, e.g., a viral vector administered via inhalation for localized delivery to lung tissue, a major drawback to such approaches is that there is no tissue- specific tropism. Thus, the DNA contained in the viral vector or liposome can be delivered non-specifically into many different types of cells.
Many genetic diseases are manifested in one tissue type and inserting genes non-specifically into many different cell types is not only unnecessary, but may be harmful under certain circumstances (Selden, R.F. et al . (1987) New Enσl. J. Med. 317:1067-1076) .
In addition, it is believed that most cancers originate from one cell type. At present, chemotherapy is the most widely-used approach to control cancer. Such chemotherapy, however, is not tissue specific in terms of delivery of the chemotherapeutic agent. Rather, the adverse effects
imparted upon the rapidly dividing cancer cells are also imposed upon normal cells.
Although one recent publication reported the use of a protein covalently coupled to DNA to target liver cells, this approach resulted in low efficiency in DNA uptake compared to the higher efficiency attainable with viral vectors (Wu, G.Y. et al . (1988) J. Biol . Chem 263:14621-
14624) .
Given the state of the art, it is apparent that a need exists for methods and compositions for targeting the delivery of various substances to specific cell types.
Accordingly, it is an object of the invention herein to provide vehicles for targeting the delivery of a substance to specific cell types. More particularly, it is an object of the invention to provide methods and compositions for targeting the delivery of a substance such as a nucleic acid or a therapeutic agent to a sub-population of mammalian cells contained within a living organism.
SUMMARY OF THE INVENTION
In accordance with the foregoing objects, the invention includes a vehicle for preferentially targeting the delivery of a substance to a sub-population of mammalian cells. The cell sub-population is characterized by the presence of a sub-population-specific first member of a binding pair on the surface of the cells. The vehicle comprises an envelope comprising a recombinant targeting moiety defining a compartment and a substance contained in the compartment. The recombinant targeting moiety comprises first and second domains. The first domain is capable of forming or associating with the envelope of the vehicle whereas the second domain is capable interacting with the first binding member on the surface of the sub- population of cells. The invention also includes methods for preferentially targeting the delivery of a substance to the above sub- population of mammalian cells comprising contacting a
population of mammalian cells containing the sub-population with the above vehicle.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts the construction of a hybrid erythropoietin-viral envelope gene.
FIG. 2 depicts the Western blot analysis of packaging cell sub-clones including the detection of the erythropoietin sequence.
FIG. 3 depicts the flow cytometric analysis of packaging cell lines based upon a detection of cell surface EPO epitopes by polyclonal anti-EPO antibodies.
FIG. 4 depicts the survivability of HeLa cells (wild- type or expressing the erythropoietin receptor) which have been exposed to neomycin or the retroviral vector encoding a neomycin resistant gene containing the EPO-env protein followed by a treatment with neomycin.
FIG. 5 depicts a similar experiment with NIH3T3 cells.
DETAILED DESCRIPTION OF THE INVENTION
The invention is based upon a discovery that a virus containing a hybrid viral envelope protein containing an amino acid sequence corresponding to a portion of the sequence of erythropoietin is capable of preferentially infecting cells displaying the erythropoietin receptor on their surface. As used herein, a "vehicle" of the invention is defined as any composition comprising an envelope defining a compartment and a substance contained therein that is capable of preferentially targeting the delivery of the substance to a specific sub-population of mammalian cells. The sub-population of mammalian cells is characterized by the presence of a first member of a binding pair on the surface of the sub-population. The vehicle is further defined by the envelope which comprises a "recombinant targeting moiety" capable of forming or associating with the envelope and which imparts cell specificity to the vehicle. In this regard, the targeting moiety contains at
least two domains . The first domain is capable of forming or associating with the envelope of the vehicle whereas the second domain is capable of interacting with the first member of the binding pair on the surface of the sub- population of mammalian cells.
In one embodiment of the invention the vehicle comprises a "viral vehicle". In an alternate embodiment the vehicle comprises a "liposome vehicle". The viral vehicles of the invention are generally formed from naturally occurring viruses and in particular those viruses capable of infecting eukaryotic cells, such as mammalian cells. As is well known, viruses contain a genome comprising either RNA or DNA which encode a variety of genes necessary for viral transfection and reproduction. Included within the viral genome are nucleic acid sequences encoding various enzymes, e.g., DNA or RNA polymerases and the like and structural proteins which surround the viral genome referred to as "viral coat proteins".
Some viral coat proteins make up that part of the virus particle known as the capsid. In addition, some viruses further contain a lipid bilayer surrounding the capsid which often contains viral envelope proteins. Depending upon the virus used and its envelope structure, i.e., capsid proteins only or capsid proteins in combination with membrane and envelope protein, the capsid protein or envelope protein is used to form the targeting moiety for the viral vehicle of the invention.
Since the targeting moiety contains a domain which is capable of forming or associating with the envelope of the virus vehicle, all or part of the viral coat protein is used to construct the recombinant target moiety. When only a portion of the coat protein is used, that portion of the coat protein which is necessary and sufficient for envelope formation is used. For viral envelope proteins, such necessary and essential features include the anchoring region and transmembrane region utilized by the envelope protein to display the envelope protein on an infected cell. When a virus containing an envelope protein is used,
it is preferred that the targeting moiety contain such anchor and transmembrane regions .
The second domain of the target moiety is capable of interacting with the first member of a binding pair which is on the surface of a sub-population of mammalian cells. As used herein, a "binding pair" includes receptor-ligand complexes, antigen-antibody complexes, enzyme-substrate complexes and the like. Thus, a sub-population of cells can be defined by the presence of one of the binding pairs on the surface of the cells of the population. For example, those cells containing an erythropoietin receptor define a cellular sub-population that can be targeted by utilizing erythropoietin (ligand) in the targeting moiety of the invention as the second domain capable of interacting with the erythropoietin receptor. Alternatively, the receptor can be used in the targeting moiety and the ligand displayed on the surface of the cells of the sub-population.
Similarly, a sub-population of cells can be defined by the presence of an antigen or antibody on the surface of the cells contained within that population. For example, a surface marker contained on the surface of a sub- population of cells can be used to generate monoclonal antibodies by methods well known to those' skilled in the art. Monoclonal antibodies (especially those containing anchor and transmembrane regions or engineered through cloning and modification of cDNA to contain such sequences) can be used either as the targeting moiety alone (e.g., in a liposome vehicle) or in combination with a protein capable of associating with a viral surface. In an example of the latter case, the targeting moiety essentially comprises a chimeric antibody containing an anchoring and transmembrane region from a viral envelope protein coupled to at least the variable region of a heavy chain Ig molecule which is also associated with the light chain from the antibody. Alternatively, the vehicle of the invention can target a sub-population of lymphoid cells displaying a membrane bound form of an immunoglobulin. In such cases,
the antigen to the membrane bound antibody is used to form the second domain of the targeting moiety.
In general, the recombinant targeting moiety used to form the vehicle of the invention contains all or part of the second member of the binding pair. In some instances, the interaction between binding pairs is based upon an interaction involving a continuous epitope. In such cases, the minimal component of the second member of the binding pair that can be used in forming a targeting moiety consists of that epitope. In many instances, however, the interaction involves a discontinuous epitope. For example, in the case of proteins, two or more regions within the primary amino acid sequence of the protein are brought into close physical proximity in the tertiary structure of the protein to form the binding epitope. When only a portion of such a protein is used to form the targeting moiety, that portion of the primary amino acid sequence which encompasses such binding regions are preferably included in the targeting moiety so as to provide the strongest possible interaction with the other member of the binding pair located on the sub-population of mammalian cells.
The vehicle of the invention preferentially targets the delivery of substance to a sub-population of mammalian cells. Such preferential targeting is defined by comparing delivery of the substance to the sub-population of mammalian cells containing the first member of a binding pair as compared to a different population of a mammalian cell of the same species which does not display the first member of the binding pair. The increase in delivery as measured by binding of the vehicle to the sub-population or transferral of the substance of the vehicle into the sub- population cells, is generally greater than two-fold. However, as indicated in the examples, an increase in efficiency in infection by the viral vehicle disclosed therein ranged from 10-fold to about 30- to 40-fold as compared to wild-type cells not containing the receptor used in that experiment .
In an example herein, the recombinant targeting moiety comprises a carboxy terminal portion of the envelope protein of Moloney murine leukemia virus (MoMLV) . The second domain comprises an amino terminal portion of erythropoietin. When the plasmid encoding this construct is expressed in a packaging cell line also capable of expressing the full length MoMLV envelope protein under conditions which provide for the formation of virus particles, a viral vehicle of the invention is formed. In this particular case, the recombinant targeting moiety is associated with the envelope (corresponding to the membrane and MoMLV envelope protein) defining a compartment that contains the remainder of the virus particle. As thus formed, the substance contained within the viral compartment can comprise protein surrounding the viral genome or the genome itself. In the former case, preformed proteins capable of being packaged with viral capsid proteins can comprise the substance contained in the compartment. In most embodiments, however, the substance of interest contained within such a viral vehicle is a recombinant DNA sequence introduced into the genome of the virus. Viral vehicles are preferred when the substance to be delivered to a sub-population of cells is a nucleic acid. Thus, when used to treat a genetic disease, the skilled artisan identifies the defective gene and the cell type that expresses the normal wild type gene. Then, a surface marker is identified on the cell type normally expressing the wild type gene. The viral vehicle of the invention is then designed to contain a recombinant targeting moiety capable of forming or associating with the envelope of a selected virus such that the thus modified virus is capable of recognizing and binding the selected surface marker. In conjunction with the selection of the virus to be used in practicing the invention, the size of the recombinant nucleic acid to be incorporated into the viral genome is determined to facilitate the choice of virus to be used. The genome of the virus must be such that it can either
accommodate the selected recombinant nucleic acid or be modified to delete nonessential sequences such that the recombinant nucleic acid can be incorporated into the viral genome and still be packaged to form an intact viral particle containing the recombinant targeting moiety. In this regard, it is preferred that the genome of the wild type virus be modified not only to accommodate the recombinant nucleic acid to be incorporated but further to attenuate the virulence of the modified virus. Such modifications include but are not limited to the deletion of the viral genes encoding one or more DNA or RNA polymerases . Examples of viruses which can be used in practicing the invention include retroviruses, adenoviruses and adeno-associated viruses (Berkner, K.L. (1988) BioTechni ues 6.:616-629) .
The Examples describe viral vehicles that demonstrate preferential targeting to cultured mammalian cells expressing the erythropoietin receptor. Thus, when used in vivo, the viral vehicle targets those cells within the organism expressing the erythropoietin receptor. A specific utility for such a vehicle is the treatment of hemoglobinopathies such as sickle cell anemia and β- thalassemia. These diseases involve a genetic defect wherein either an abnormal globin chain is made or little if any /3-globin chain is produced. If a genomic clone encoding the /3-globin gene is inserted into the genome of the virus vehicle in the Examples, the resulting virus vehicle is capable of preferentially recognizing not only red blood cells but also those precursors of red blood cells derived from hematopoietic stem cells that have committed to erythroid differentiation as evidenced by the display of the erythropoietin receptor. When the virus transfects such erythroid progenitor cells, the /3-globin gene is integrated into the genome of the progenitor cells. As a consequence, a normal /3-globin gene becomes integrated into the genome and is capable of modulating the disease by producing either normal amounts of /3-globin or the wild type /3-globin protein.
The viral vehicles of the invention can also be used to target the delivery of therapeutic agents to diseased cells such as cancer cells. For example, to the extent a surface marker is preferentially expressed on a cancer cell (i.e., solely on the surface of the cancer cell or at a level higher than that found on non-cancerous cell-types) , an appropriate targeting moiety can be used to target a viral vehicle to bind to such preferentially expressed markers. The genome of the viral vehicle is recombined with a nucleic acid expression unit capable of expressing for example toxic polypeptides such as ricin, diphtheria toxin and the like. Upon recognition, binding and transfection into the cancer cell, the expression unit produces the toxic polypeptide to preferentially kill the cancer cell. In this regard, the expression unit comprises nucleic acid encoding the toxic polypeptide and one or more expression regulation sequences that are operably linked to the nucleic acid such that the nucleic acid is expressed in the transfected cancer cell so as to produce the toxic polypeptide. Such expression regulation sequences are preferably those which demonstrate tissue specific specificity to the cell type from which the cancer cell differentiated, more preferably an expression regulation sequence expressed exclusively by the cancer cell and most preferably the expression regulation sequence controlling the expression of the preferentially expressed surface marker.
In such embodiments, the preferred virus of choice is selected from the retrovirus family. Retroviruses are preferred because they require an actively dividing cell to efficiently integrate into the genome of its host. If non- cancerous cells also express the surface marker preferentially displayed on a cancer cell, the viral vehicle of the invention is also capable of recognizing, binding and transfecting such cells. This background level depends upon the amount of the surface marker found on such normal cells and the environment within which the marker is displayed. Further, to the extent that the viral vehicle
contains a normal viral coat protein, e.g., envelope protein, present in combination with the recombinant targeting moiety, the viral vehicle may also have the ability to non-specifically transfect cells independent of the presence of the surface marker utilized for recognition by the targeting moiety. When a retrovirus is used to practice the invention to treat cancer cells, however, such background infections in non-cancer cells are less likely to cause damage to normal cells that are not rapidly dividing since viral integration and expression of the toxic gene is less likely to occur.
The overexpression of oncogenes is often associated with the onset and development of cancer. In many instances, the oncogenes expressed encode receptors which are located on the surface of the cancer cell . For example, it has been recently disclosed that the proto- oncogene HER2 encodes a transmembrane tyrosine kinase whose overexpression has been correlated with several human malignancies, including breast, ovarian, gastric and endometrial cancers as well as non-small cell lung adeno carcinoma. See Holmes, et al. (1992) Science 256. As further disclosed, the protein heregulin-o; has a single affinity binding site for tumor cell lines expressing the HER2 oncogene. The heregulin-α. protein is therefore a candidate for use in treating the above identified cancers according to the teachings disclosed herein.
In addition to cancer cells, the invention can be used for treating autoimmune disease. For example, T-cell mediated autoimmune disease is characterized by a sub- population of T-cells containing a T-cell antigen receptor
(TCAR) which is capable of recognizing and interacting with a self-antigen to elicit the autoimmune response. Experimental autoimmune encephalomyelitis (EAE) is a myelin basic protein induced demyelinating disease in mice. Recently, it has been shown that this disease is based, in part, upon the presence of a sub-population of T-cells containing well-defined variable regions containing specific segment subsets from the T-cell antigen receptor
repertoire. It has also been recently reported that mice treated with monoclonal antibodies specific to epitopes contained within the /3-chain of the TCAR of the sub- population of T-cells responsible for the autoimmune disease is capable of preventing onset of the disease when the animal is challenged with myelin basic protein.
Since other T-cell-mediated autoimmune diseases are believed to form the basis of various autoimmune diseases, especially in humans, the vehicle of the invention can be used as an alternate approach to treating or preventing such autoimmune diseases. In such cases, a monoclonal antibody specific for the TCAR responsible for the autoimmune disease is used to form the vehicle of the invention. When a viral vehicle is used, the substance contained within the virus is preferably a toxic gene capable of being expressed when transfected into those T- cells containing the autoimmune inducing TCAR. Alternatively, when a liposome is used, the substance contained therein can be a nucleic acid containing an expressible gene encoding a toxic polypeptide or a therapeutic agent such as a chemotherapeutic agent capable of killing the cell, e.g., the ricin or diphtheria toxin proteins.
In addition to viral vehicles, liposome vehicles can be used to practice the invention. Liposomes are well known to those skilled in the art and generally comprise membranous vesicles containing lipid bilayers which are capable of encapsulating various drugs or other chemicals. See, e.g., U.S. Pat. Nos. 4,053,585; 4,397,846; 4,411,894; 4,427,649, and Papahadjopolous, et al . (1967) Biochem. Biophvs. Acta. 135 :639; Bangham, J. et al . (1965) J. Mol. Biol. 12:238, 252; Bapzri and Korn (1973) Biochem. Biophys . Acta. 298 :1015; and Miyamato, et al . (1971) "Preparation and Characteristics of Lipid Vesicles", J. Membrane Biol. 4:252-269.
When a drug or other chemical is incorporated into a liposome, that substance is generally included in the reaction mixture used to synthesize the liposome.
Accordingly, in practicing the invention to form liposome vehicles, the substance to be contained in the compartment of the liposome vehicle, e.g., nucleic acid, drug or therapeutic agent, is included during liposome synthesis. Further, the targeting moiety of the invention is also included during the formation of the liposome.
When using a liposome, the targeting moiety preferably contains a anchoring region and a transmembrane region, e.g., from immunoglobulin or other membrane bound protein, so as to associate with the lipid bilayer of the liposome. It, of course, also contains the domain capable of interacting with the first member of the binding pair contained on the sub-population of mammalian cells. A preferred targeting moiety comprises a monoclonal antibody (preferably IgM) specific for a cell surface antigen or an antibody that has been engineered through cloning and modification to contain an anchoring and transmembrane region.
Since the targeting moiety is not produced within the liposome but rather is incorporated into the liposome membrane during liposome formation, the thus formed liposome contains targeting moiety wherein the domain capable of interacting with the first binding member is displayed on the inner and outer surface of the liposome membrane.
The following is presented by way of examples and is not to be construed as limitation of the scope of the claims appended hereto.
Example 1 Construction of hybrid EPO-env genes
This example describes the construction of hybrid erythropoietin + viral envelope (EPO-env) genes in eukaryotic expression vectors.
The entire wild type moloney murine leukemia virus (MoMLV) envelope gene { env gene; from position 5760 to position 7820 of the retroviral genome; Shinnick, T.M. et al. (1981) Nature 293 :543-548) was cloned into a pBR322-
based plasmid vector. Transcription of the env gene is driven by the 5' -MoMLV-long terminal repeat sequence (LTR) . The psi (packaging signal) sequence was deleted, but the vector retained the 5' and 3' splicing signals for the env mRNA. The intervening gag and pol structural genes, which are normally spliced out of the env message (Weiss, R., N. Teich, H. Varmus, J. Coffin, eds. (1984) "RNA Tumor Viruses: Molecular Biology of Tumor Viruses", 2d edition, Cold Springs Harbor Laboratory, Cold Springs Harbor, NY) , were deleted, thus leaving only a small sequence in between the splicing signals remaining to be spliced.
Portions of the envelope were then selected for removal and replaced with the EPO coding sequence. In the center of the outer protein subunit (gp70) of the envelope lies a proline-rich region which is a likely candidate domain for cell receptor recognition (Koch, W. et al . (1983) J. Virol. 4.5:1-9) . Other sites include two regions which flank a region of homology in the amino-terminal portion of the molecule (Mark, G.E. et al . (1984) J. Virol. 49:530-539) , and sites at which point mutations give rise to a paralytogenic mutant of MoMLV (Szurek, P.F. et al . (1988) J. Virol. 6_2.:357-360) . These regions are target sites for replacement with EPO. At the same time, portions of the gp70 sequence which encode the env signal peptide at the amino terminus, as well as the cysteine residues in the carboxyl-terminal region which participate in sulfhydryl bonding with the inner envelope subunit (pl5) , were left intact (Shinnick, T.M. et al . (1981) Nature 293:543-548) . Unique restriction sites exist at position 5923 (BstEII) and position 6537 (BamHI) . Deletion of the envelope sequence between these two sites preserves the env signal sequence and allows the EPO sequence (approximately 500 base pairs in length) to be inserted at the amino-terminal end of gp70. A second EPO-env hybrid was also constructed to insert the EPO sequence in a more central location, directly overlapping the proline-rich region. Since no convenient restriction sites exist in this region, unique sites were
created at positions 6250 and 6750 by means of PCR-mediated mutagenesis. These new restriction sites were used to delete the intervening env sequence and insert the EPO sequence. The EPO cDNA sequence coding for the mature 166-amino acid peptide hormone without the 27 amino acid signal peptide (Jacobs, K. et al. (1985) Nature 313:806-810; and Lin, F.K. et al. (1985) Proc. Natl . Acad. Sci. USA 82:7580- 7584) , was used to replace the MoMLV env sequences (Shinnick, T.M. et al. (1981) Nature 293:543-548) which had been deleted in the amino-terminal end and the central region of the envelope protein. PCR-mediated mutagenesis (Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., eds. (1990) "PCR Protocols: A Guide to Methods and Applications", Academic Press, San Diego, CA) was used to create compatible ends on the EPO sequence, so that it could be inserted via the appropriate restriction sites while maintaining the proper reading frame (Figure 1) .
Example 2 Construction of packaging cell lines containing the EPO-env genes
The EPO-env constructs were transfected into the cell line PA317 (Mann, R. et al . (1983) Cell 3_3:153-159; and
Cone, R.D. et al. (1984) Proc. Natl. Acad. Sci. USA .81:6349-6353) . The PA317 cell line is a derivative of NIH3T3 cells into which MoMLV genes have been stably integrated; the PA317 cells possess the gag and pol genes as well as the amphotropic env gene, but the psi packaging signal sequence is deleted. Thus, these cells produce viral proteins without assembling them into wild type
(endogenous) virus, and can be used to package exogenous viral vectors which do contain the psi sequence into virions with an amphotropic (i.e., capable of infecting both murine and non-murine cells) . The EPO-env plasmids were co-transfected into the PA317 cell line, along with a methotrexate-resistant dihydrofolate reductase (DHFR) gene as a selectable marker
(Simonsen, C.S. et al . (1988) Nucleic Acids Res. 16:2235- 2246) , using the calcium phosphate precipitation method (Wigler, M. et al. (1979) Cell 16:77) . After transfection, the cells were selected for stable integration of the env sequences in medium containing methotrexate. Cells which had stably integrated the sequence into their genomes were methotrexate-resistant and therefore survived in this medium, growing as isolated colonies when the plating density was low enough. Stable clones were picked in this manner and grown in separate wells.
After stably transfected sub-clones were isolated, Western blot and flow cytometric analyses were performed to confirm that the recombinant envelope proteins were being expressed and that they were reaching the surface of the packaging cell. Monoclonal anti-EPO antibodies and biotinylated secondary antibodies were used to detect expression in Western blots using a chemiluminescence-based technique (Linscott, W.D. (1990) Linscott's Directory of Immunological and Biological Reagents, 6th ed. , Mill Valley, CA) , and the EPO-env hybrid protein was detected as an intact 70 kiloDalton band in some sub-clones, but seemed to have been deleted or rearranged in others (Figure 2) . Using the parental cell line PA317 as a negative control, polyclonal anti-EPO-antiserum and fluorescein-labeled secondary antibodies were used to detect EPO expression on the cell surface of hybrid EPO-env-containing cell lines by flow cytometry (Figure 3) .
Example 3 Packaging of retroviral vectors This Example discloses the use of the cell lines of Example 2 to package replication-defective retroviral vectors containing the neomycin-resistance (neoR) gene and the /3-galactosidase (/3-gal) gene.
Stable transfectants producing high levels of recombinant envelope proteins were transfected, by means of the calcium phosphate precipitation method, with replication-defective retroviral vectors which contain the
psi-packaging signal, but whose gag, pol , and env genes have been deleted and replaced with genes encoding neomycin resistance (neoR) and /3-galactosidase (/3-gal) . These vectors were also transfected into the parental wild type amphotropic packaging cell line PA317 as a control. The cell culture supernatant containing these transiently expressed viruses was harvested, filtered to remove cellular debris, and used to infect target cells with or without the EPO receptor.
Example 4
Tissue specificity and infection efficiency of the packaged virus
The target cells consisted of four types: (1) wild type HeLa cells, which are non-murine and do not express the EPO receptor (D'Andrea, A. et al. (1989) Cell 57:277- 285) , (2) HeLa cells which have been stably transfected with the EPO receptor, (3) wild type NIH3T3 cells, which are murine fibroblasts and do not express the EPO receptor, and (4) NIH3T3 cells which have been stably transfected with the EPO receptor.
HeLa and NIH3T3 cells were co-transfected with the EPO receptor cDNA cloned into an appropriate eukaryotic expression vector containing a methotrexate-resistant DHFR gene (Simonsen, C.S. et al . (1988) Nucleic Acids Res. 16.:2235-2246) . After selection with methotrexate, the surviving colonies were isolated and expression of the EPO receptor was determined by a radioligand (125I-EPO) binding assay (D'Andrea, A. et al . (1989) Cell 57:277-285) . The sub-clone showing the highest levels of EPO receptor expression was selected and further grown in medium containing increasing concentrations of methotrexate, in order to further amplify the expression of EPO receptor. Receptor levels in these cells was calculated to be on the order of about 1000 receptors per cell. As an additional positive control prior to the infection experiments, the NeoR//3-gal vector alone, (unpackaged) was transfected into both cell types by calcium phosphate precipitation, to
confirm that the neomycin-resistance gene, whose expression is directed by the MoMLV LTR, is expressed efficiently in these cells.
All cells exposed to virus were subjected to selection with neomycin, and the surviving colonies were examined and counted after Giemsa staining. There proved to be an increased efficiency of infection when viruses expressing the recombinant EPO-env protein were contacted with cells bearing the EPO receptor, as compared to cells without the receptor. This increased efficiency was about 10-fold in the case of HeLa cells with EPO receptor (Figure 4) , and 30- to 40-fold in the case of NIH3T3 cells with EPO receptor (Figure 5) , compared to their respective wild type cells without the receptor. Having described the preferred embodiments, it will be apparent to those skilled in the art that various modifications can be made to the embodiments disclosed herein and that such modifications are intended to be within the scope of the invention.
Claims
1. A vehicle for preferentially targeting the delivery of a substance to a sub-population of mammalian cells characterized by the presence of a first member of a binding pair on the surface of said sub-population, said vehicle comprising an envelope comprising a recombinant targeting moiety defining a compartment and a substance contained in said compartment, wherein said targeting moiety comprises first and second domains not naturally associated with each other and wherein said first domain forms or associates with the envelope defining said compartment and said second domain comprises a second member of said binding pair or portion thereof which targets said vehicle to said sub-population of mammalian cells.
2. The vehicle of Claim 1 wherein said vehicle is capable of transferring said substance into said cell.
3. The vehicle of Claim 1 wherein said substance is a therapeutic agent.
4. the vehicle of Claim 3 wherein said therapeutic agent is a nucleic acid.
5. The vehicle of Claim 2 wherein said substance comprises a recombinant viral genome.
6. The vehicle of Claim 1 wherein said envelope comprises a membrane.
7. The vehicle of Claim 1 wherein said envelope comprises a viral coat protein.
8. The vehicle of Claim 7 wherein said viral coat protein comprises a viral envelope protein.
9. The vehicle of Claim 7 wherein said first domain of said targeting moiety comprises a portion of a viral coat protein.
10. The vehicle of Claim 9 wherein said viral coat protein comprises a viral envelope protein.
11. A method for preferentially targeting the delivery of a substance to a sub-population of mammalian cells characterized by the presence of a specific surface receptor for a ligand, said method comprising contacting a population of mammalian cells containing said sub- population with any one of the vehicles of Claims 1 through 10 and 12 wherein said receptor and said ligand comprise said first and said second members of said binding pair.
12. The vehicle of Claim 1 wherein said binding pair comprises erythropoietin and erythropoietin receptor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93914334A EP0650370A4 (en) | 1992-06-08 | 1993-06-03 | Methods and compositions for targeting specific tissue. |
JP6501565A JPH07507689A (en) | 1992-06-08 | 1993-06-03 | Specific tissue targeting methods and compositions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90609292A | 1992-06-08 | 1992-06-08 | |
US07/906,092 | 1992-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993025234A1 true WO1993025234A1 (en) | 1993-12-23 |
Family
ID=25421920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/005260 WO1993025234A1 (en) | 1992-06-08 | 1993-06-03 | Methods and compositions for targeting specific tissue |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0650370A4 (en) |
JP (1) | JPH07507689A (en) |
WO (1) | WO1993025234A1 (en) |
Cited By (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996000294A1 (en) * | 1994-06-27 | 1996-01-04 | Medical Research Council | Improvements in or relating to delivery of nucleic acids |
WO1997005266A1 (en) * | 1995-07-25 | 1997-02-13 | Introgene B.V. | Methods and means for targeted gene delivery |
WO1997012049A1 (en) * | 1995-09-28 | 1997-04-03 | Medical Research Council | Materials and methods relating to the transfer of nucleic acid into quiescent cells |
WO1997024453A1 (en) * | 1995-12-28 | 1997-07-10 | Chiron Corporation | Receptor specific chimeric viral surface polypeptides for viral and particle incorporation and internalization in target cells |
DE19605279A1 (en) * | 1996-02-13 | 1997-08-14 | Hoechst Ag | Target cell-specific vectors for the introduction of genes into cells, drugs containing such vectors and their use |
US5942434A (en) * | 1994-02-15 | 1999-08-24 | Oxford Biomedica (Uk) Limited | Nucleic acid constructs comprising hypoxia response elements |
US5985655A (en) * | 1992-11-09 | 1999-11-16 | The United States Of America As Represented By The Department Of Health And Human Sevices | Targetable vector particles |
EP0959135A1 (en) * | 1998-05-20 | 1999-11-24 | Introgene B.V. | Display of viral proteins and targeted delivery to cellular receptor |
EP0959136A1 (en) * | 1998-05-20 | 1999-11-24 | Introgene B.V. | Targeted delivery through a cationic amino acid transporter |
EP0960942A2 (en) * | 1998-05-20 | 1999-12-01 | Introgene B.V. | Targeted delivery through a cationic amino acid transporter |
US6004798A (en) * | 1997-05-14 | 1999-12-21 | University Of Southern California | Retroviral envelopes having modified hypervariable polyproline regions |
EP0972841A1 (en) * | 1998-05-20 | 2000-01-19 | Introgene B.V. | Display of viral proteins as ligands for cell-surface receptor |
US6057155A (en) * | 1995-11-28 | 2000-05-02 | Genvec, Inc. | Targeting adenovirus with use of constrained peptide motifs |
WO2000032773A1 (en) | 1998-11-27 | 2000-06-08 | Darwin Discovery Ltd. | Compositions and methods for increasing bone mineralization |
US6153435A (en) * | 1995-02-21 | 2000-11-28 | Cornell Research Foundation, Inc. | Nucleic acid that encodes a chimeric adenoviral coat protein |
US6162641A (en) * | 1997-06-06 | 2000-12-19 | The Regents Of The University Of Michigan | Neuregulin response element and uses therefor |
US6465253B1 (en) | 1994-09-08 | 2002-10-15 | Genvec, Inc. | Vectors and methods for gene transfer to cells |
US6576456B2 (en) | 1995-02-21 | 2003-06-10 | Cornell Research Foundation, Inc. | Chimeric adenovirus fiber protein |
WO2005017148A1 (en) | 2003-07-26 | 2005-02-24 | Trubion Pharmaceuticals, Inc. | Binding constructs and methods for use thereof |
US6864235B1 (en) | 1999-04-01 | 2005-03-08 | Eva A. Turley | Compositions and methods for treating cellular response to injury and other proliferating cell disorders regulated by hyaladherin and hyaluronans |
US6864082B2 (en) | 1997-04-10 | 2005-03-08 | University Of Southern California | Modified viral surface proteins for binding to extracellular matrix components |
US6867189B2 (en) | 2001-07-26 | 2005-03-15 | Genset S.A. | Use of adipsin/complement factor D in the treatment of metabolic related disorders |
EP1514931A1 (en) | 1994-05-27 | 2005-03-16 | Ariad Gene Therapeutics, Inc. | Immunosuppressant target proteins |
US6875588B2 (en) | 2001-11-30 | 2005-04-05 | Avigenics, Inc. | Ovomucoid promoter and methods of use |
US6911429B2 (en) | 1999-04-01 | 2005-06-28 | Transition Therapeutics Inc. | Compositions and methods for treating cellular response to injury and other proliferating cell disorders regulated by hyaladherin and hyaluronans |
US6916918B2 (en) | 1997-08-04 | 2005-07-12 | Cell Genesys, Inc. | Human glandular kallikrein enhancer, vectors comprising the enhancer and methods of use thereof |
US6951839B1 (en) | 1999-11-30 | 2005-10-04 | Curis, Inc. | Methods and compositions for regulating lymphocyte activity |
WO2005093064A1 (en) | 2004-03-29 | 2005-10-06 | Galpharma Co., Ltd. | Novel galectin 9 modification protein and use thereof |
US7063850B1 (en) | 1998-12-22 | 2006-06-20 | University Of Tennessee Research Foundation | Protective antigen of group A Streptococci |
US7078483B2 (en) | 1998-04-29 | 2006-07-18 | University Of Southern California | Retroviral vectors including modified envelope escort proteins |
WO2006085979A2 (en) | 2004-07-09 | 2006-08-17 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Soluble forms of hendra and nipah virus g glycoprotein |
US7135562B2 (en) | 2002-03-14 | 2006-11-14 | University Of Cincinnati | Avian iFABP gene expression controlling region |
US7176300B2 (en) | 2001-03-30 | 2007-02-13 | Avigenics, Inc. | Avian lysozyme promoter |
US7199279B2 (en) | 2001-03-30 | 2007-04-03 | Avigenics, Inc. | Recombinant promoters in avian cells |
US7244565B2 (en) | 2002-04-10 | 2007-07-17 | Georgetown University | Gene shinc-3 and diagnostic and therapeutic uses thereof |
US7253272B2 (en) | 2001-04-06 | 2007-08-07 | Georgetown University | Gene BRCC-2 and diagnostic and therapeutic uses thereof |
US7270827B2 (en) | 2001-10-26 | 2007-09-18 | University Of Tennessee Research Foundation | Multivalent streptococcal vaccine compositions and methods for use |
US7294507B2 (en) | 2001-11-30 | 2007-11-13 | Avigenics, Inc. | Ovomucoid promoters and methods of use |
EP1854476A2 (en) | 2000-02-09 | 2007-11-14 | Bas Medical, Inc. | Use of relaxin to treat diseases related to vasoconstriction |
WO2008020335A2 (en) | 2006-06-09 | 2008-02-21 | Novartis Ag | Immunogenic compositions for streptococcus agalactiae |
US7335761B2 (en) | 2001-11-30 | 2008-02-26 | Avigenics, Inc. | Avian gene expression controlling regions |
US7351811B2 (en) | 2001-04-06 | 2008-04-01 | Georgetown University | Gene SCC-112 and diagnostic and therapeutic uses thereof |
EP1935979A2 (en) | 1999-07-14 | 2008-06-25 | Novartis Vaccines and Diagnostics S.r.l. | Antigenic meningococcal peptides |
US7396905B1 (en) | 1999-05-21 | 2008-07-08 | Mckeon Frank | Calcipressins: endogenous inhibitors of calcineurin, uses and reagents related thereto |
EP1950297A2 (en) | 2000-05-31 | 2008-07-30 | Novartis Vaccines and Diagnostics, Inc. | Compositions and methods for treating neoplastic disease using chemotherapy and radiation sensitizers |
EP1953229A2 (en) | 1998-10-15 | 2008-08-06 | Novartis Vaccines and Diagnostics, Inc. | Metastatic breast and colon cancer regulated genes |
EP1953243A2 (en) | 2000-06-15 | 2008-08-06 | Novartis Vaccines and Diagnostics, Inc. | Polynucleotides related to colon cancer |
EP1961813A2 (en) | 1998-12-16 | 2008-08-27 | Novartis Vaccines and Diagnostics, Inc. | Human cyclin-dependent kinase (hPNQALRE) |
EP1967525A2 (en) | 2001-05-08 | 2008-09-10 | Darwin Molecular Corporation | A method for regulating immune function in primates using the foxp3 protein |
WO2008124176A2 (en) | 2007-04-10 | 2008-10-16 | The Administrators Of The Tulane Educational Fund | Soluble and membrane-anchored forms of lassa virus subunit proteins |
US7442520B2 (en) | 2001-04-06 | 2008-10-28 | Georgetown University | Gene BRCC-3 and diagnostic and therapeutic uses thereof |
US7462698B2 (en) | 2005-07-22 | 2008-12-09 | Y's Therapeutics Co., Ltd. | Anti-CD26 antibodies and methods of use thereof |
US7498407B2 (en) | 2001-11-09 | 2009-03-03 | Georgetown University | Vascular endothelial cell growth inhibitor, VEGI-192a |
EP2039768A1 (en) | 1996-11-13 | 2009-03-25 | Novartis Vaccines and Diagnostics, Inc. | Mutant forms of Fas ligand and uses thereof |
EP2058408A2 (en) | 2003-02-14 | 2009-05-13 | Sagres Discovery, Inc. | Therapeutic GPCR targets in cancer |
EP2062591A1 (en) | 2005-04-07 | 2009-05-27 | Novartis Vaccines and Diagnostics, Inc. | CACNA1E in cancer diagnosis detection and treatment |
US7541512B2 (en) | 2001-03-30 | 2009-06-02 | Synageva Biopharma Corp. | Avians containing a lysozyme promoter transgene |
US7550650B2 (en) | 2001-09-18 | 2009-06-23 | Synageva Biopharma Corp. | Production of a transgenic avian by cytoplasmic injection |
WO2009079649A1 (en) | 2007-12-18 | 2009-06-25 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same |
EP2075346A2 (en) | 2002-01-08 | 2009-07-01 | Novartis Vaccines and Diagnostics, Inc. | Gene products differentially expressed in cancerous breast cells and their methods of use |
EP2075255A1 (en) | 2000-03-08 | 2009-07-01 | Novartis Vaccines and Diagnostics, Inc. | Human FGF-23 gene and gene expression products |
EP2083088A2 (en) | 2005-04-07 | 2009-07-29 | Novartis Vaccines and Diagnostics, Inc. | Cancer-related genes |
EP2093233A1 (en) | 2002-03-21 | 2009-08-26 | Sagres Discovery, Inc. | Novel compositions and methods in cancer |
EP2100902A1 (en) | 2002-10-08 | 2009-09-16 | Rinat Neuroscience Corp. | Methods for treating pain by administering an antagonist antibody against the nerve growth factor and an opioid analgesic, and compositions containing the same |
US7615229B2 (en) | 2002-03-15 | 2009-11-10 | Wyeth Holdings Corporation | Mutants of the P4 protein of nontypable Haemophilus influenzae with reduced enzymatic activity |
US7674605B2 (en) | 2006-06-07 | 2010-03-09 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same |
EP2163626A1 (en) | 1999-11-18 | 2010-03-17 | Novartis Vaccines and Diagnostics, Inc. | Human FGF-21 gene and gene expression products |
WO2010029513A2 (en) | 2008-09-12 | 2010-03-18 | Rinat Neuroscience Corporation | Pcsk9 antagonists |
WO2010039536A2 (en) | 2008-09-23 | 2010-04-08 | President And Fellows Of Harvard College | Sirt4 and uses thereof |
US7700359B2 (en) | 2000-06-02 | 2010-04-20 | Novartis Vaccines And Diagnostics, Inc. | Gene products differentially expressed in cancerous cells |
EP2191846A1 (en) | 2003-02-19 | 2010-06-02 | Rinat Neuroscience Corp. | Method for treating pain by administering a nerve growth factor antagonist and an NSAID and composition containing the same |
EP2204376A2 (en) | 2004-07-20 | 2010-07-07 | Sagres Discovery, Inc. | Novel therapeutic targets in cancer |
EP2206785A1 (en) | 1998-12-31 | 2010-07-14 | Novartis Vaccines and Diagnostics, Inc. | Improved expression of HIV polypeptides and production of virus-like particles |
EP2206728A1 (en) | 2004-04-07 | 2010-07-14 | Rinat Neuroscience Corp. | Methods for treating bone cancer pain by administering a nerve growth factor antagonistic antibody |
WO2010080985A1 (en) | 2009-01-08 | 2010-07-15 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for induced brown fat differentiation |
EP2210945A2 (en) | 1998-01-14 | 2010-07-28 | Novartis Vaccines and Diagnostics S.r.l. | Neisseria meningitidis antigens |
WO2010084488A1 (en) | 2009-01-20 | 2010-07-29 | Ramot At Tel-Aviv University Ltd. | Mir-21 promoter driven targeted cancer therapy |
US7767387B2 (en) | 2003-06-13 | 2010-08-03 | Sagres Discovery, Inc. | Therapeutic targets in cancer |
WO2010086828A2 (en) | 2009-02-02 | 2010-08-05 | Rinat Neuroscience Corporation | Agonist anti-trkb monoclonal antibodies |
US7776523B2 (en) | 2000-12-07 | 2010-08-17 | Novartis Vaccines And Diagnostics, Inc. | Endogenous retroviruses up-regulated in prostate cancer |
WO2010100632A2 (en) | 2009-03-06 | 2010-09-10 | Novartis Ag | Chlamydia antigens |
WO2010118243A2 (en) | 2009-04-08 | 2010-10-14 | Genentech, Inc. | Use of il-27 antagonists to treat lupus |
US7816076B2 (en) | 2003-02-14 | 2010-10-19 | Sagres Discovery, Inc. | Therapeutic targets in cancer |
WO2010124365A1 (en) | 2009-04-27 | 2010-11-04 | Ottawa Hospital Research Institute | Compositions and methods for modulating stem cells and uses thereof |
EP2251424A1 (en) | 1999-05-19 | 2010-11-17 | Novartis Vaccines and Diagnostics S.r.l. | Antigenic neisserial peptides |
WO2010141861A1 (en) | 2009-06-05 | 2010-12-09 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
EP2261348A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2263692A1 (en) | 2002-12-24 | 2010-12-22 | Rinat Neuroscience Corp. | Anti-NGF antibodies and methods using same |
WO2010146511A1 (en) | 2009-06-17 | 2010-12-23 | Pfizer Limited | Treatment of overactive bladder |
EP2267005A1 (en) | 2003-04-09 | 2010-12-29 | Novartis Vaccines and Diagnostics S.r.l. | ADP-ribosylating toxin from Listeria monocytogenes |
EP2270176A1 (en) | 2001-03-27 | 2011-01-05 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
EP2275553A2 (en) | 1999-10-29 | 2011-01-19 | Novartis Vaccines and Diagnostics S.r.l. | Neisserial antigenic peptides |
EP2275129A2 (en) | 2000-01-17 | 2011-01-19 | Novartis Vaccines and Diagnostics S.r.l. | Outer membrane vesicle (OMV) vaccine comprising N. meningitidis serogroup B outer membrane proteins |
WO2011007257A1 (en) | 2009-07-16 | 2011-01-20 | Novartis Ag | Detoxified escherichia coli immunogens |
US7875275B2 (en) | 2004-06-16 | 2011-01-25 | The General Hospital Corporation | Use of Bridge-1 and activators and inhibitors thereof in the treatment of insulin deficiency and diabetes |
EP2277894A1 (en) | 2000-10-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A & B |
EP2278007A1 (en) | 1999-04-30 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Conserved neisserial antigens |
EP2278006A2 (en) | 1997-11-06 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Neisserial antigens |
EP2281832A2 (en) | 2000-07-05 | 2011-02-09 | Novartis Vaccines and Diagnostics, Inc. | Polynucleotides encoding antigenic HIV type C polypeptides, polypeptides and uses thereof |
EP2292772A1 (en) | 2001-07-05 | 2011-03-09 | Novartis Vaccines and Diagnostics, Inc. | HIV vaccination with a DNA encoding a HIV polypeptide and a HIV polypeptide |
EP2298900A1 (en) | 1996-09-17 | 2011-03-23 | Novartis Vaccines and Diagnostics, Inc. | Compositions and methods for treating intracellular diseases |
EP2298795A1 (en) | 2005-02-18 | 2011-03-23 | Novartis Vaccines and Diagnostics, Inc. | Immunogens from uropathogenic escherichia coli |
EP2298796A2 (en) | 2001-03-27 | 2011-03-23 | Novartis Vaccines and Diagnostics S.r.l. | Staphylococcus aureus proteins and nucleic acids |
EP2298807A2 (en) | 2004-07-30 | 2011-03-23 | Rinat Neuroscience Corp. | Antibodies directed against amyloid-beta peptide and methods using same |
EP2302039A1 (en) | 2002-06-13 | 2011-03-30 | Novartis Vaccines and Diagnostics, Inc. | Virus-like particles comprising HML-2 gag polypeptide |
WO2011038063A1 (en) | 2009-09-28 | 2011-03-31 | The Trustees Of The University Of Pennsylvania | Method of diagnosing and treating interstitial cystitis |
EP2305711A2 (en) | 2005-04-11 | 2011-04-06 | Rinat Neuroscience Corp. | Methods for treating osteoarthitis pain by administering a nerve growth factor antagonist and compositions containing the same |
US7928189B2 (en) | 2008-05-05 | 2011-04-19 | Ottawa Health Research Institute | PCSK9 polypeptide fragment |
US7935342B2 (en) | 2006-02-02 | 2011-05-03 | Rinat Neuroscience Corp. | Methods for treating obesity by administering a trkB antagonist |
EP2316951A1 (en) | 2001-01-17 | 2011-05-04 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
WO2011058302A1 (en) | 2009-11-10 | 2011-05-19 | Guy's And St Thomas's Nhs Foundation Trust | Bacteremia-associated antigen from staphylococcus aureus |
EP2335724A1 (en) | 2001-12-12 | 2011-06-22 | Novartis Vaccines and Diagnostics S.r.l. | Immunisation against chlamydia trachomatis |
US7968690B2 (en) | 2003-12-23 | 2011-06-28 | Rinat Neuroscience Corp. | Agonist anti-trkC antibodies and methods using same |
EP2338906A1 (en) | 2003-06-16 | 2011-06-29 | UCB Manufacturing, Inc. | Compostion and methods for increasing bone mineralization |
WO2011091272A1 (en) | 2010-01-21 | 2011-07-28 | Dana-Farber Cancer Institute, Inc. | Context specific genetic screen platform to aid in gene discovery and target validation |
EP2353389A1 (en) | 2003-04-21 | 2011-08-10 | Epeius Biotechnologies Corporation | Methods and compositions for treating disorders |
EP2359842A1 (en) | 2004-07-14 | 2011-08-24 | University of Utah Research Foundation | Netrin-related compositions and uses |
EP2362226A1 (en) | 2005-03-07 | 2011-08-31 | The President and Fellows of Harvard College | Diagnostic method for neurodegenerative diseases based on measurement of SIRT1 levels or activity |
WO2011104687A1 (en) | 2010-02-24 | 2011-09-01 | Rinat Neuroscience Corporation | Antagonist anti-il-7 receptor antibodies and methods |
WO2011104632A1 (en) | 2010-02-26 | 2011-09-01 | Novartis Ag | Immunogenic proteins and compositions |
WO2011111007A2 (en) | 2010-03-11 | 2011-09-15 | Rinat Neuroscience Corporation | ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING |
WO2011121576A2 (en) | 2010-04-01 | 2011-10-06 | Novartis Ag | Immunogenic proteins and compositions |
EP2380592A2 (en) | 2005-11-14 | 2011-10-26 | Rinat Neuroscience Corp. | Antagonist antibodies directed against calcitonin gene-related peptide and methods using same |
WO2011133931A1 (en) | 2010-04-22 | 2011-10-27 | Genentech, Inc. | Use of il-27 antagonists for treating inflammatory bowel disease |
EP2386630A1 (en) | 1997-10-14 | 2011-11-16 | Darwin Molecular Corporation | Thymidine kinase mutants and fusion proteins having thymidine kinase and guanylate kinase activities |
EP2412242A2 (en) | 2001-07-05 | 2012-02-01 | Novartis Vaccines and Diagnostics, Inc. | Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof |
WO2012015758A2 (en) | 2010-07-30 | 2012-02-02 | Saint Louis University | Methods of treating pain |
EP2418223A2 (en) | 2006-06-12 | 2012-02-15 | Emergent Product Development Seattle, LLC | Single-chain multivalent binding proteins with effector function |
EP2431480A2 (en) | 2002-08-09 | 2012-03-21 | The President and Fellows of Harvard College | Methods and compositions for increasing the stress resistance of cells and organisms |
US8168178B2 (en) | 1999-11-30 | 2012-05-01 | Curis, Inc. | Methods and compositions for regulating lymphocyte activity |
WO2012072769A1 (en) | 2010-12-01 | 2012-06-07 | Novartis Ag | Pneumococcal rrgb epitopes and clade combinations |
WO2012075243A2 (en) | 2010-12-01 | 2012-06-07 | The University Of North Carolina At Chapel Hill | Methods and compositions for targeting sites of neovascular growth |
EP2486938A1 (en) | 2006-09-26 | 2012-08-15 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
EP2510947A1 (en) | 2009-04-14 | 2012-10-17 | Novartis AG | Compositions for immunising against Staphylococcus aureus |
WO2013028740A1 (en) | 2011-08-22 | 2013-02-28 | Saint Louis University | Compositions and methods for treating inflammation |
WO2013028527A1 (en) | 2011-08-23 | 2013-02-28 | Indiana University Research And Technology Corporation | Compositions and methods for treating cancer |
WO2013039996A1 (en) | 2011-09-13 | 2013-03-21 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for brown fat induction and activity using fndc5 |
EP2572726A1 (en) | 2007-08-01 | 2013-03-27 | Novartis AG | Compositions comprising pneumococcal antigens |
WO2013055911A1 (en) | 2011-10-14 | 2013-04-18 | Dana-Farber Cancer Institute, Inc. | Znf365/zfp365 biomarker predictive of anti-cancer response |
EP2586790A2 (en) | 2006-08-16 | 2013-05-01 | Novartis AG | Immunogens from uropathogenic Escherichia coli |
WO2013068946A2 (en) | 2011-11-11 | 2013-05-16 | Rinat Neuroscience Corp. | Antibodies specific for trop-2 and their uses |
WO2013093707A1 (en) | 2011-12-22 | 2013-06-27 | Rinat Neuroscience Corp. | Human growth hormone receptor antagonist antibodies and methods of use thereof |
WO2013093693A1 (en) | 2011-12-22 | 2013-06-27 | Rinat Neuroscience Corp. | Staphylococcus aureus specific antibodies and uses thereof |
WO2013119856A1 (en) | 2012-02-07 | 2013-08-15 | Infectious Disease Research Institute | Improved adjuvant formulations comprising tlr4 agonists and methods of using the same |
EP2629094A1 (en) | 2007-01-24 | 2013-08-21 | Carnegie Mellon University | Optical biosensors |
WO2013164754A2 (en) | 2012-05-04 | 2013-11-07 | Pfizer Inc. | Prostate-associated antigens and vaccine-based immunotherapy regimens |
WO2014025767A1 (en) | 2012-08-07 | 2014-02-13 | National Cheng Kung University | Use of il-20 antagonists for treating liver diseases |
US8673859B2 (en) | 2007-03-20 | 2014-03-18 | New York University | GM-CSF cosmeceutical compositions and methods of use thereof |
WO2014072876A1 (en) | 2012-11-09 | 2014-05-15 | Pfizer Inc. | Platelet-derived growth factor b specific antibodies and compositions and uses thereof |
WO2014153258A2 (en) | 2013-03-14 | 2014-09-25 | Epeius Biotechnologies Corporation | Improved thymidine kinase gene |
US8853366B2 (en) | 2001-01-17 | 2014-10-07 | Emergent Product Development Seattle, Llc | Binding domain-immunoglobulin fusion proteins |
WO2014181229A2 (en) | 2013-05-07 | 2014-11-13 | Rinat Neuroscience Corp. | Anti-glucagon receptor antibodies and methods of use thereof |
WO2015015401A2 (en) | 2013-08-02 | 2015-02-05 | Pfizer Inc. | Anti-cxcr4 antibodies and antibody-drug conjugates |
US8957047B2 (en) | 2013-04-18 | 2015-02-17 | Immune Design Corp. | GLA monotherapy for use in cancer treatment |
US9017659B2 (en) | 2006-11-03 | 2015-04-28 | Epeius Biotechnologies Corporation | Pathotropic targeted gene delivery system for cancer and other disorders |
WO2015073580A1 (en) | 2013-11-13 | 2015-05-21 | Pfizer Inc. | Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof |
US9044420B2 (en) | 2011-04-08 | 2015-06-02 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
WO2015087187A1 (en) | 2013-12-10 | 2015-06-18 | Rinat Neuroscience Corp. | Anti-sclerostin antibodies |
WO2015109212A1 (en) | 2014-01-17 | 2015-07-23 | Pfizer Inc. | Anti-il-2 antibodies and compositions and uses thereof |
US9101609B2 (en) | 2008-04-11 | 2015-08-11 | Emergent Product Development Seattle, Llc | CD37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof |
WO2015164743A2 (en) | 2014-04-24 | 2015-10-29 | Dana-Farber Cancer Institute, Inc. | Tumor suppressor and oncogene biomarkers predictive of anti-immune checkpoint inhibitor response |
WO2015168474A1 (en) | 2014-04-30 | 2015-11-05 | President And Fellows Of Harvard College | Fusion proteins for treating cancer and related methods |
WO2015175375A1 (en) | 2014-05-13 | 2015-11-19 | Short Jay M | Conditionally active biological proteins |
WO2016033331A1 (en) | 2014-08-28 | 2016-03-03 | Bioatla, Llc | Conditionally active chimeric antigen receptors for modified t-cells |
WO2016040441A1 (en) | 2014-09-09 | 2016-03-17 | Unum Therapeutics | Chimeric receptors and uses thereof in immune therapy |
WO2016057367A1 (en) | 2014-10-06 | 2016-04-14 | Dana-Farber Cancer Institute, Inc. | Angiopoietin-2 biomarkers predictive of anti-immune checkpoint response |
WO2016057651A1 (en) | 2014-10-09 | 2016-04-14 | Dana-Farber Cancer Institute, Inc. | Multiple-variable il-2 dose regimen for treating immune disorders |
EP3023502A1 (en) | 2008-04-10 | 2016-05-25 | Cell Signaling Technology, Inc. | Compositions and methods for detecting egfr mutations in cancer |
EP3026432A2 (en) | 2010-12-27 | 2016-06-01 | Brown University | Method for predicting patient's response to biglycan treatment |
WO2016092419A1 (en) | 2014-12-09 | 2016-06-16 | Rinat Neuroscience Corp. | Anti-pd-1 antibodies and methods of use thereof |
WO2016144917A1 (en) | 2015-03-10 | 2016-09-15 | University Of Massachusetts | Targeting gdf6 and bmp signaling for anti-melanoma therapy |
WO2016144673A1 (en) | 2015-03-06 | 2016-09-15 | Dana-Farber Cancer Institute, Inc. | Pd-l2 biomarkers predictive of pd-1 pathway inhibitor responses in esophagogastric cancers |
US9463198B2 (en) | 2013-06-04 | 2016-10-11 | Infectious Disease Research Institute | Compositions and methods for reducing or preventing metastasis |
WO2016164405A1 (en) | 2015-04-06 | 2016-10-13 | Yung Shin Pharmaceutical Industrial Co. Ltd. | Antibodies binding to canine vascular endothelial growth factor and uses thereof in treating canine angiogenesis-related diseases |
WO2016166629A1 (en) | 2015-04-13 | 2016-10-20 | Pfizer Inc. | Therapeutic antibodies and their uses |
US9526737B2 (en) | 2007-12-03 | 2016-12-27 | The Regents Of The University Of California | Oxysterols for activation of hedgehog signaling, osteoinduction, antiadipogenesis, and Wnt signaling |
US9532994B2 (en) | 2003-08-29 | 2017-01-03 | The Regents Of The University Of California | Agents and methods for enhancing bone formation by oxysterols in combination with bone morphogenic proteins |
US9539427B2 (en) | 2010-11-08 | 2017-01-10 | The Johns Hopkins University | Methods for improving heart function |
WO2017015431A1 (en) | 2015-07-21 | 2017-01-26 | Dyax Corp. | A monoclonal antibody inhibitor of factor xiia |
WO2017015619A1 (en) | 2015-07-23 | 2017-01-26 | The Regents Of The University Of California | Antibodies to coagulation factor xia and uses thereof |
WO2017029583A2 (en) | 2015-08-19 | 2017-02-23 | Pfizer Inc. | Tissue factor pathway inhibitor antibodies and uses thereof |
WO2017049011A1 (en) | 2015-09-15 | 2017-03-23 | Scholar Rock, Inc. | Anti-pro/latent-myostatin antibodies and uses thereof |
WO2017066561A2 (en) | 2015-10-16 | 2017-04-20 | President And Fellows Of Harvard College | Regulatory t cell pd-1 modulation for regulating t cell effector immune responses |
WO2017066760A1 (en) | 2015-10-16 | 2017-04-20 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for inhibition of lineage specific antigens |
WO2017070561A1 (en) | 2015-10-23 | 2017-04-27 | Pfizer Inc. | Anti-il-2 antibodies and compositions and uses thereof |
WO2017075329A2 (en) | 2015-10-29 | 2017-05-04 | Dana-Farber Cancer Institute, Inc. | Methods for identification, assessment, prevention, and treatment of metabolic disorders using pm20d1 and n-lipidated amino acids |
WO2017075037A1 (en) | 2015-10-27 | 2017-05-04 | Scholar Rock, Inc. | Primed growth factors and uses thereof |
WO2017087599A1 (en) | 2015-11-18 | 2017-05-26 | Lyvgen Biopharma Holdings Limited | Anti-pd-1 antibodies and therapeutic uses thereof |
US9670244B2 (en) | 2006-02-27 | 2017-06-06 | The Regents Of The University Of California | Oxysterol compounds and the hedgehog pathway |
US9683009B2 (en) | 2013-05-02 | 2017-06-20 | The Regents Of The University Of California | Bone-selective osteogenic oxysterol-bone targeting agents |
WO2017125831A1 (en) | 2016-01-21 | 2017-07-27 | Pfizer Inc. | Mono and bispecific antibodies for epidermal growth factor receptor variant iii and cd3 and their uses |
US9717742B2 (en) | 2012-05-07 | 2017-08-01 | The Regents Of The University Of California | Oxysterol analogue OXY133 induces osteogenesis and hedgehog signaling and inhibits adipogenesis |
US9719069B2 (en) | 2009-01-27 | 2017-08-01 | University Of Utah Research Foundation | Methods and compositions relating to viral latency |
US9730928B2 (en) | 2013-06-14 | 2017-08-15 | Univeristy Of Utah Research Foundation | Trizol-1-OL analogs anti-retroviral latency drugs |
WO2017165412A2 (en) | 2016-03-21 | 2017-09-28 | Dana-Farber Cancer Institute, Inc. | T-cell exhaustion state-specific gene expression regulators and uses thereof |
WO2017200852A1 (en) | 2016-05-16 | 2017-11-23 | Infectious Disease Research Institute | Formulation containing tlr agonist and methods of use |
EP3251680A1 (en) | 2008-05-22 | 2017-12-06 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
WO2017210364A1 (en) | 2016-06-01 | 2017-12-07 | Infectious Disease Research Institute | Nanoalum particles containing a sizing agent |
WO2018005975A1 (en) | 2016-07-01 | 2018-01-04 | Research Development Foundation | Elimination of proliferating cells from stem cell-derived grafts |
US9895435B2 (en) | 2012-05-16 | 2018-02-20 | Immune Design Corp. | Vaccines for HSV-2 |
EP3293257A1 (en) | 2009-03-20 | 2018-03-14 | Mesoblast, Inc. | Production of reprogrammed pluripotent cells |
WO2018057618A1 (en) | 2016-09-20 | 2018-03-29 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for identification, assessment, prevention, and treatment of aml using usp10 biomarkers and modulators |
WO2018080573A1 (en) | 2016-10-28 | 2018-05-03 | Massachusetts Institute Of Technology | Crispr/cas global regulator screening platform |
EP3321283A1 (en) | 2008-06-13 | 2018-05-16 | Pfizer Inc | Treatment of chronic prostatitis |
WO2018148246A1 (en) | 2017-02-07 | 2018-08-16 | Massachusetts Institute Of Technology | Methods and compositions for rna-guided genetic circuits |
WO2018158658A1 (en) | 2017-03-03 | 2018-09-07 | Rinat Neuroscience Corp. | Anti-gitr antibodies and methods of use thereof |
WO2018167621A1 (en) | 2017-03-16 | 2018-09-20 | Pfizer Inc. | Tyrosine prototrophy |
US10143748B2 (en) | 2005-07-25 | 2018-12-04 | Aptevo Research And Development Llc | B-cell reduction using CD37-specific and CD20-specific binding molecules |
WO2018220584A1 (en) | 2017-06-02 | 2018-12-06 | Pfizer Inc. | Antibodies specific for flt3 and their uses |
WO2018231772A1 (en) | 2017-06-13 | 2018-12-20 | Bostongene Corporation | Systems and methods for identifying responders and non-responders to immune checkpoint blockade therapy |
WO2019016784A1 (en) | 2017-07-21 | 2019-01-24 | Universidade De Coimbra | Anti-nucleolin antibody |
WO2019070161A2 (en) | 2017-10-04 | 2019-04-11 | Opko Pharmaceuticals, Llc | Articles and methods directed to personalized therapy of cancer |
US10323086B2 (en) | 2002-12-24 | 2019-06-18 | Rinat Neuroscience Corp. | Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same |
WO2019152705A1 (en) | 2018-02-01 | 2019-08-08 | Pfizer Inc. | Antibodies specific for cd70 and their uses |
WO2019166946A1 (en) | 2018-02-28 | 2019-09-06 | Pfizer Inc. | Il-15 variants and uses thereof |
WO2019224716A2 (en) | 2018-05-23 | 2019-11-28 | Pfizer Inc. | Antibodies specific for gucy2c and uses thereof |
WO2019224715A1 (en) | 2018-05-23 | 2019-11-28 | Pfizer Inc. | Antibodies specific for cd3 and uses thereof |
US10513699B2 (en) | 2014-09-03 | 2019-12-24 | Bioatla, Llc | Discovering and producing conditionally active biologic proteins in the same eukaryotic cell production hosts |
EP3587450A1 (en) | 2007-12-17 | 2020-01-01 | Pfizer Limited | Treatment of interstitial cystitis with ngf inhibitors |
WO2020010110A1 (en) | 2018-07-03 | 2020-01-09 | Unum Therapeutics Inc. | Chimeric receptors in combination with trans metabolism molecules enhancing glucose import and therapeutic uses thereof |
EP3594244A1 (en) | 2013-03-15 | 2020-01-15 | Dyax Corp. | Anti-plasma kallikrein antibodies |
WO2020047164A1 (en) | 2018-08-28 | 2020-03-05 | Vor Biopharma, Inc | Genetically engineered hematopoietic stem cells and uses thereof |
US10711275B2 (en) | 2013-07-12 | 2020-07-14 | Zhen Huang | Methods and compositions for interference with DNA polymerase and DNA synthesis |
EP3699200A1 (en) | 2013-07-15 | 2020-08-26 | Cell Signaling Technology, Inc. | Anti-mucin 1 binding agents and uses thereof |
EP3721896A1 (en) | 2019-04-08 | 2020-10-14 | Giuseppe Scalabrino | Epidermal growth factor (egf) and variants thereof for medical uses in neuro-de/regeneration |
WO2020223121A1 (en) | 2019-04-30 | 2020-11-05 | Dana-Farber Cancer Institute, Inc. | Methods for treating cancer using combinations of anti-cx3cr1 and immune checkpoint blockade agents |
US10877045B2 (en) | 2015-07-21 | 2020-12-29 | Saint Louis University | Compositions and methods for diagnosing and treating endometriosis-related infertility |
WO2021028726A2 (en) | 2019-07-03 | 2021-02-18 | Bostongene Corporation | Systems and methods for sample preparation, sample sequencing, and sequencing data bias correction and quality control |
WO2021071830A1 (en) | 2019-10-07 | 2021-04-15 | University Of Virginia Patent Foundation | Modulating lymphatic vessels in neurological disease |
WO2021072244A1 (en) | 2019-10-11 | 2021-04-15 | Beth Israel Deaconess Medical Center, Inc. | Anti-tn antibodies and uses thereof |
US11066465B2 (en) | 2015-12-30 | 2021-07-20 | Kodiak Sciences Inc. | Antibodies and conjugates thereof |
WO2021151079A1 (en) | 2020-01-24 | 2021-07-29 | University Of Virginia Patent Foundation | Modulating lymphatic vessels in neurological disease |
US11111288B2 (en) | 2014-08-28 | 2021-09-07 | Bioatla, Inc. | Conditionally active chimeric antigen receptors for modified t-cells |
WO2021205325A1 (en) | 2020-04-08 | 2021-10-14 | Pfizer Inc. | Anti-gucy2c antibodies and uses thereof |
US11155610B2 (en) | 2014-06-28 | 2021-10-26 | Kodiak Sciences Inc. | Dual PDGF/VEGF antagonists |
WO2021224850A1 (en) | 2020-05-06 | 2021-11-11 | Crispr Therapeutics Ag | Mask peptides and masked anti-ptk7 antibodies comprising such |
WO2022013775A1 (en) | 2020-07-17 | 2022-01-20 | Pfizer Inc. | Therapeutic antibodies and their uses |
WO2022023972A1 (en) | 2020-07-30 | 2022-02-03 | Pfizer Inc. | Cells having gene duplications and uses thereof |
WO2022086852A2 (en) | 2020-10-19 | 2022-04-28 | Dana-Farber Cancer Institute, Inc. | Germline biomarkers of clinical response and benefit to immune checkpoint inhibitor therapy |
WO2022104104A2 (en) | 2020-11-13 | 2022-05-19 | Dana-Farber Cancer Institute, Inc. | Personalized fusion cell vaccines |
US11352426B2 (en) | 2015-09-21 | 2022-06-07 | Aptevo Research And Development Llc | CD3 binding polypeptides |
WO2022120256A2 (en) | 2020-12-04 | 2022-06-09 | Bostongene Corporation | Hierarchical machine learning techniques for identifying molecular categories from expression data |
US11396551B2 (en) | 2018-02-01 | 2022-07-26 | Pfizer Inc. | Chimeric antigen receptors targeting CD70 |
WO2022159793A2 (en) | 2021-01-25 | 2022-07-28 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for identifying neuroendocrine prostate cancer |
WO2022232615A1 (en) | 2021-04-29 | 2022-11-03 | Bostongene Corporation | Machine learning techniques for estimating tumor cell expression complex tumor tissue |
WO2022261183A2 (en) | 2021-06-08 | 2022-12-15 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating and/or identifying an agent for treating intestinal cancers |
WO2023012627A1 (en) | 2021-08-02 | 2023-02-09 | Pfizer Inc. | Improved expression vectors and uses thereof |
US11584790B2 (en) | 2017-04-14 | 2023-02-21 | Kodiak Sciences Inc. | Complement factor D antagonist antibodies and conjugates thereof |
WO2023049933A1 (en) | 2021-09-27 | 2023-03-30 | Sotio Biotech Inc. | Chimeric receptor polypeptides in combination with trans metabolism molecules that re-direct glucose metabolites out of the glycolysis pathway and therapeutic uses thereof |
WO2023091909A1 (en) | 2021-11-16 | 2023-05-25 | Sotio Biotech Inc. | Treatment of myxoid/round cell liposarcoma patients |
WO2023097119A2 (en) | 2021-11-29 | 2023-06-01 | Dana-Farber Cancer Institute, Inc. | Methods and compositions to modulate riok2 |
WO2023147177A1 (en) | 2022-01-31 | 2023-08-03 | Bostongene Corporation | Machine learning techniques for cytometry |
WO2023148598A1 (en) | 2022-02-02 | 2023-08-10 | Pfizer Inc. | Cysteine prototrophy |
WO2023158732A1 (en) | 2022-02-16 | 2023-08-24 | Dana-Farber Cancer Institute, Inc. | Methods for decreasing pathologic alpha-synuclein using agents that modulate fndc5 or biologically active fragments thereof |
US11820822B2 (en) | 2017-06-06 | 2023-11-21 | Dana-Farber Cancer Institute, Inc. | Methods for sensitizing cancer cells to T cell-mediated killing by modulating molecular pathways |
WO2024015561A1 (en) | 2022-07-15 | 2024-01-18 | Bostongene Corporation | Techniques for detecting homologous recombination deficiency (hrd) |
US11879011B2 (en) | 2016-05-13 | 2024-01-23 | Bioatla, Inc. | Anti-ROR2 antibodies, antibody fragments, their immunoconjucates and uses thereof |
EP4324481A2 (en) | 2014-03-21 | 2024-02-21 | Teva Pharmaceuticals International GmbH | Antagonist antibodies directed against calcitonin gene-related peptide and methods using same |
WO2024040208A1 (en) | 2022-08-19 | 2024-02-22 | Sotio Biotech Inc. | Genetically engineered immune cells with chimeric receptor polypeptides in combination with multiple trans metabolism molecules and therapeutic uses thereof |
WO2024040207A1 (en) | 2022-08-19 | 2024-02-22 | Sotio Biotech Inc. | Genetically engineered natural killer (nk) cells with chimeric receptor polypeptides in combination with trans metabolism molecules and therapeutic uses thereof |
US11912784B2 (en) | 2019-10-10 | 2024-02-27 | Kodiak Sciences Inc. | Methods of treating an eye disorder |
US11970707B2 (en) | 2017-09-18 | 2024-04-30 | Children's Hospital Medical Center | Strong insulator and uses thereof in gene delivery |
US12071476B2 (en) | 2018-03-02 | 2024-08-27 | Kodiak Sciences Inc. | IL-6 antibodies and fusion constructs and conjugates thereof |
US12077785B2 (en) | 2018-08-14 | 2024-09-03 | Sotio Biotech Inc. | Chimeric antigen receptor polypeptides in combination with trans metabolism molecules modulating Krebs cycle and therapeutic uses thereof |
EP4434541A2 (en) | 2019-01-23 | 2024-09-25 | New York University | Antibodies specific to delta 1 chain of t cell receptor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993000103A1 (en) * | 1991-06-21 | 1993-01-07 | The Wistar Institute Of Anatomy And Biology | Chimeric envelope proteins for viral targeting |
WO1993022433A2 (en) * | 1992-04-28 | 1993-11-11 | Frank Andreas Harald Meyer | Medicament for the gene-therapeutic treatment of human beings, animals and plants, especially to block virus multiplication and carcinogenes and process for producing the medicament |
-
1993
- 1993-06-03 JP JP6501565A patent/JPH07507689A/en active Pending
- 1993-06-03 WO PCT/US1993/005260 patent/WO1993025234A1/en not_active Application Discontinuation
- 1993-06-03 EP EP93914334A patent/EP0650370A4/en not_active Withdrawn
Non-Patent Citations (4)
Title |
---|
Nature, Volume 313, issued 28 February 1985, JACOBS et al., "Isolation and Characterization of Genomic and cDNA Clones of Human Erythropoietin", pages 806-810, especially pages 806-807. * |
Nature, Volume 339, issued 01 June 1989, EVANS et al., "An Engineered Poliovirus Chimaera Elicits Broadly Reactive HIV-1 Neutralizing Antibodies", pages 385-388, see entire article. * |
Proceedings National Academy of Sciences, Volume 82, issued November 1985, LIN et al., "Cloning and Expression of the Human Erythropoietin Gene", pages 7580-7584, especially page 7581. * |
See also references of EP0650370A4 * |
Cited By (415)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6503501B1 (en) | 1992-11-09 | 2003-01-07 | W. French Anderson | Targetable vector particles |
US5985655A (en) * | 1992-11-09 | 1999-11-16 | The United States Of America As Represented By The Department Of Health And Human Sevices | Targetable vector particles |
US6265390B1 (en) | 1994-02-15 | 2001-07-24 | Oxford Biomedica (Uk) Limited | Methods for expressing nucleic acid sequences using nucleic acid constructs comprising hypoxia response elements |
US5942434A (en) * | 1994-02-15 | 1999-08-24 | Oxford Biomedica (Uk) Limited | Nucleic acid constructs comprising hypoxia response elements |
EP1514931A1 (en) | 1994-05-27 | 2005-03-16 | Ariad Gene Therapeutics, Inc. | Immunosuppressant target proteins |
US5858743A (en) * | 1994-06-27 | 1999-01-12 | Medical Research Council | Delivery of nucleic acids |
WO1996000294A1 (en) * | 1994-06-27 | 1996-01-04 | Medical Research Council | Improvements in or relating to delivery of nucleic acids |
US6465253B1 (en) | 1994-09-08 | 2002-10-15 | Genvec, Inc. | Vectors and methods for gene transfer to cells |
US6951755B2 (en) | 1994-09-08 | 2005-10-04 | Genvec, Inc. | Vectors and methods for gene transfer |
US6576456B2 (en) | 1995-02-21 | 2003-06-10 | Cornell Research Foundation, Inc. | Chimeric adenovirus fiber protein |
US6153435A (en) * | 1995-02-21 | 2000-11-28 | Cornell Research Foundation, Inc. | Nucleic acid that encodes a chimeric adenoviral coat protein |
WO1997005266A1 (en) * | 1995-07-25 | 1997-02-13 | Introgene B.V. | Methods and means for targeted gene delivery |
WO1997012049A1 (en) * | 1995-09-28 | 1997-04-03 | Medical Research Council | Materials and methods relating to the transfer of nucleic acid into quiescent cells |
US6723561B2 (en) | 1995-09-28 | 2004-04-20 | Mayo Foundation For Medical Education And Research | Materials and methods relating to the transfer of nucleic acid into quiescent cells |
US6649407B2 (en) | 1995-11-28 | 2003-11-18 | Genvec, Inc. | Targeting adenovirus with use of constrained peptide motifs |
US6057155A (en) * | 1995-11-28 | 2000-05-02 | Genvec, Inc. | Targeting adenovirus with use of constrained peptide motifs |
US6329190B1 (en) | 1995-11-28 | 2001-12-11 | Genvec, Inc. | Targetting adenovirus with use of constrained peptide motifs |
WO1997024453A1 (en) * | 1995-12-28 | 1997-07-10 | Chiron Corporation | Receptor specific chimeric viral surface polypeptides for viral and particle incorporation and internalization in target cells |
US5916803A (en) * | 1996-02-13 | 1999-06-29 | Hoechst Aktiengesellshaft | Target cell-specific non-viral vectors for inserting genes into cells, pharmaceutical compositions comprising such vectors and their use |
US6358524B1 (en) | 1996-02-13 | 2002-03-19 | Aventis Pharma Deutschland Gmbh | Target cell-specific non-viral vectors for inserting genes into cells, pharmaceutical compositions comprising such vectors and their use |
DE19605279A1 (en) * | 1996-02-13 | 1997-08-14 | Hoechst Ag | Target cell-specific vectors for the introduction of genes into cells, drugs containing such vectors and their use |
EP2298900A1 (en) | 1996-09-17 | 2011-03-23 | Novartis Vaccines and Diagnostics, Inc. | Compositions and methods for treating intracellular diseases |
EP2039768A1 (en) | 1996-11-13 | 2009-03-25 | Novartis Vaccines and Diagnostics, Inc. | Mutant forms of Fas ligand and uses thereof |
US7820157B2 (en) | 1997-04-10 | 2010-10-26 | University Of Southern California | Transgene delivering retrovirus targeting collagen exposed at site of tissue injury |
US6864082B2 (en) | 1997-04-10 | 2005-03-08 | University Of Southern California | Modified viral surface proteins for binding to extracellular matrix components |
US8148509B2 (en) | 1997-04-10 | 2012-04-03 | University Of Southern California | Transgene delivering retrovirus targeting collagen exposed at site of tissue injury |
US8530441B2 (en) | 1997-04-10 | 2013-09-10 | University Of Southern California | Transgene delivering retrovirus targeting collagen exposed at site of tissue injury |
US7347998B2 (en) | 1997-04-10 | 2008-03-25 | University Of Southern California | Method of delivering therapeutic agents to site of tissue injury |
US8871734B2 (en) | 1997-04-10 | 2014-10-28 | The University Of Southern California | Transgene delivering retrovirus targeting collagen exposed at site of tissue injury |
US6004798A (en) * | 1997-05-14 | 1999-12-21 | University Of Southern California | Retroviral envelopes having modified hypervariable polyproline regions |
US6162641A (en) * | 1997-06-06 | 2000-12-19 | The Regents Of The University Of Michigan | Neuregulin response element and uses therefor |
US6916918B2 (en) | 1997-08-04 | 2005-07-12 | Cell Genesys, Inc. | Human glandular kallikrein enhancer, vectors comprising the enhancer and methods of use thereof |
EP2386629A1 (en) | 1997-10-14 | 2011-11-16 | Darwin Molecular Corporation | Thymidine kinase mutants and fusion proteins having thymidine kinase and guanylate kinase activities |
EP2386630A1 (en) | 1997-10-14 | 2011-11-16 | Darwin Molecular Corporation | Thymidine kinase mutants and fusion proteins having thymidine kinase and guanylate kinase activities |
EP2278006A2 (en) | 1997-11-06 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Neisserial antigens |
EP2278011A2 (en) | 1998-01-14 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Neisseria meningitidis antigens |
EP2210945A2 (en) | 1998-01-14 | 2010-07-28 | Novartis Vaccines and Diagnostics S.r.l. | Neisseria meningitidis antigens |
US7078483B2 (en) | 1998-04-29 | 2006-07-18 | University Of Southern California | Retroviral vectors including modified envelope escort proteins |
EP2261351A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261340A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261356A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261352A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261355A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261345A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261354A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261353A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261338A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261346A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261342A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261343A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261350A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261347A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261357A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261348A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261341A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261349A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261344A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
EP2261339A2 (en) | 1998-05-01 | 2010-12-15 | Novartis Vaccines and Diagnostics, Inc. | Neisseria meningitidis antigens and compositions |
WO1999060148A3 (en) * | 1998-05-20 | 2000-01-13 | Introgene Bv | Display of viral proteins as ligands for cell-surface receptor |
EP0972841A1 (en) * | 1998-05-20 | 2000-01-19 | Introgene B.V. | Display of viral proteins as ligands for cell-surface receptor |
EP0959135A1 (en) * | 1998-05-20 | 1999-11-24 | Introgene B.V. | Display of viral proteins and targeted delivery to cellular receptor |
EP0960942A2 (en) * | 1998-05-20 | 1999-12-01 | Introgene B.V. | Targeted delivery through a cationic amino acid transporter |
WO1999060148A2 (en) * | 1998-05-20 | 1999-11-25 | Introgene B.V. | Display of viral proteins as ligands for cell-surface receptor |
WO1999060147A3 (en) * | 1998-05-20 | 1999-12-29 | Introgene Bv | Targeted delivery through a cationic amino acid transporter |
WO1999060147A2 (en) * | 1998-05-20 | 1999-11-25 | Introgene B.V. | Targeted delivery through a cationic amino acid transporter |
EP0959136A1 (en) * | 1998-05-20 | 1999-11-24 | Introgene B.V. | Targeted delivery through a cationic amino acid transporter |
EP0960942A3 (en) * | 1998-05-20 | 2000-01-12 | Introgene B.V. | Targeted delivery through a cationic amino acid transporter |
EP1953229A2 (en) | 1998-10-15 | 2008-08-06 | Novartis Vaccines and Diagnostics, Inc. | Metastatic breast and colon cancer regulated genes |
EP2261335A1 (en) | 1998-11-27 | 2010-12-15 | UCB Pharma S.A. | Compositions and methods for increasing bone mineralisation |
WO2000032773A1 (en) | 1998-11-27 | 2000-06-08 | Darwin Discovery Ltd. | Compositions and methods for increasing bone mineralization |
EP1961813A2 (en) | 1998-12-16 | 2008-08-27 | Novartis Vaccines and Diagnostics, Inc. | Human cyclin-dependent kinase (hPNQALRE) |
US7063850B1 (en) | 1998-12-22 | 2006-06-20 | University Of Tennessee Research Foundation | Protective antigen of group A Streptococci |
EP2206785A1 (en) | 1998-12-31 | 2010-07-14 | Novartis Vaccines and Diagnostics, Inc. | Improved expression of HIV polypeptides and production of virus-like particles |
US6864235B1 (en) | 1999-04-01 | 2005-03-08 | Eva A. Turley | Compositions and methods for treating cellular response to injury and other proliferating cell disorders regulated by hyaladherin and hyaluronans |
US6911429B2 (en) | 1999-04-01 | 2005-06-28 | Transition Therapeutics Inc. | Compositions and methods for treating cellular response to injury and other proliferating cell disorders regulated by hyaladherin and hyaluronans |
EP2278007A1 (en) | 1999-04-30 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Conserved neisserial antigens |
EP2290083A1 (en) | 1999-04-30 | 2011-03-02 | Novartis Vaccines and Diagnostics S.r.l. | Conserved neisserial antigens |
EP2251424A1 (en) | 1999-05-19 | 2010-11-17 | Novartis Vaccines and Diagnostics S.r.l. | Antigenic neisserial peptides |
US7396905B1 (en) | 1999-05-21 | 2008-07-08 | Mckeon Frank | Calcipressins: endogenous inhibitors of calcineurin, uses and reagents related thereto |
EP1935979A2 (en) | 1999-07-14 | 2008-06-25 | Novartis Vaccines and Diagnostics S.r.l. | Antigenic meningococcal peptides |
EP2275551A2 (en) | 1999-10-29 | 2011-01-19 | Novartis Vaccines and Diagnostics S.r.l. | Neisserial antigenic peptides |
EP2275553A2 (en) | 1999-10-29 | 2011-01-19 | Novartis Vaccines and Diagnostics S.r.l. | Neisserial antigenic peptides |
EP2275552A2 (en) | 1999-10-29 | 2011-01-19 | Novartis Vaccines and Diagnostics S.r.l. | Neisserial antigenic peptides |
EP2275554A2 (en) | 1999-10-29 | 2011-01-19 | Novartis Vaccines and Diagnostics S.r.l. | Neisserial antigenic peptides |
EP2975127A1 (en) | 1999-10-29 | 2016-01-20 | GlaxoSmithKline Biologicals SA | Neisserial antigenic peptides |
EP2163626A1 (en) | 1999-11-18 | 2010-03-17 | Novartis Vaccines and Diagnostics, Inc. | Human FGF-21 gene and gene expression products |
US8168178B2 (en) | 1999-11-30 | 2012-05-01 | Curis, Inc. | Methods and compositions for regulating lymphocyte activity |
US6951839B1 (en) | 1999-11-30 | 2005-10-04 | Curis, Inc. | Methods and compositions for regulating lymphocyte activity |
EP2281570A2 (en) | 2000-01-17 | 2011-02-09 | Novartis Vaccines and Diagnostics S.r.l. | Outer membrane vesicle (OMV) vaccine comprising n. meningitidis serogroup B outer membrane proteins |
EP2275129A2 (en) | 2000-01-17 | 2011-01-19 | Novartis Vaccines and Diagnostics S.r.l. | Outer membrane vesicle (OMV) vaccine comprising N. meningitidis serogroup B outer membrane proteins |
EP2289545A2 (en) | 2000-01-17 | 2011-03-02 | Novartis Vaccines and Diagnostics S.r.l. | Supplemented OMV vaccine against meningococcus |
EP2281571A2 (en) | 2000-01-17 | 2011-02-09 | Novartis Vaccines and Diagnostics S.r.l. | Outer membrane vesicle (omv) vaccine comprising n. meningitidids serogroup b outer membrane proteins |
EP1854476A2 (en) | 2000-02-09 | 2007-11-14 | Bas Medical, Inc. | Use of relaxin to treat diseases related to vasoconstriction |
EP2075255A1 (en) | 2000-03-08 | 2009-07-01 | Novartis Vaccines and Diagnostics, Inc. | Human FGF-23 gene and gene expression products |
EP1950297A2 (en) | 2000-05-31 | 2008-07-30 | Novartis Vaccines and Diagnostics, Inc. | Compositions and methods for treating neoplastic disease using chemotherapy and radiation sensitizers |
US7700359B2 (en) | 2000-06-02 | 2010-04-20 | Novartis Vaccines And Diagnostics, Inc. | Gene products differentially expressed in cancerous cells |
US8221983B2 (en) | 2000-06-02 | 2012-07-17 | Novartis Vaccines And Diagnostics, Inc. | Gene products differentially expressed in cancerous cells |
EP1953243A2 (en) | 2000-06-15 | 2008-08-06 | Novartis Vaccines and Diagnostics, Inc. | Polynucleotides related to colon cancer |
EP2311958A2 (en) | 2000-07-05 | 2011-04-20 | Novartis Vaccines and Diagnostics, Inc. | Polynucleotides encoding antigenic HIV type C polypeptides, polypeptides and uses thereof |
EP2281832A2 (en) | 2000-07-05 | 2011-02-09 | Novartis Vaccines and Diagnostics, Inc. | Polynucleotides encoding antigenic HIV type C polypeptides, polypeptides and uses thereof |
EP2284181A1 (en) | 2000-10-27 | 2011-02-16 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A and B |
EP2277894A1 (en) | 2000-10-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A & B |
EP2277895A1 (en) | 2000-10-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A & B |
EP2896629A1 (en) | 2000-10-27 | 2015-07-22 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus group A & B |
EP2277896A1 (en) | 2000-10-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A & B |
EP2284183A1 (en) | 2000-10-27 | 2011-02-16 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A and B |
EP2284182A1 (en) | 2000-10-27 | 2011-02-16 | Novartis Vaccines and Diagnostics S.r.l. | Nucleic acids and proteins from streptococcus groups A and B |
EP2339035A1 (en) | 2000-12-07 | 2011-06-29 | Novartis Vaccines and Diagnostics, Inc. | Endogenous retroviruses up-regulated in prostate cancer |
US7776523B2 (en) | 2000-12-07 | 2010-08-17 | Novartis Vaccines And Diagnostics, Inc. | Endogenous retroviruses up-regulated in prostate cancer |
EP2336368A1 (en) | 2000-12-07 | 2011-06-22 | Novartis Vaccines and Diagnostics, Inc. | Endogenous retroviruses up-regulated in prostate cancer |
EP2706116A1 (en) | 2001-01-17 | 2014-03-12 | Emergent Product Development Seattle, LLC | Binding domain-immunoglobulin fusion proteins |
US8853366B2 (en) | 2001-01-17 | 2014-10-07 | Emergent Product Development Seattle, Llc | Binding domain-immunoglobulin fusion proteins |
EP2316951A1 (en) | 2001-01-17 | 2011-05-04 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
EP2314697A1 (en) | 2001-03-27 | 2011-04-27 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
EP2270175A1 (en) | 2001-03-27 | 2011-01-05 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
EP2298796A2 (en) | 2001-03-27 | 2011-03-23 | Novartis Vaccines and Diagnostics S.r.l. | Staphylococcus aureus proteins and nucleic acids |
EP2270176A1 (en) | 2001-03-27 | 2011-01-05 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
EP2278008A2 (en) | 2001-03-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
EP2270177A1 (en) | 2001-03-27 | 2011-01-05 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
EP2278010A1 (en) | 2001-03-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
EP2278009A1 (en) | 2001-03-27 | 2011-01-26 | Novartis Vaccines and Diagnostics S.r.l. | Streptococcus pneumoniae proteins and nucleic acids |
US7541512B2 (en) | 2001-03-30 | 2009-06-02 | Synageva Biopharma Corp. | Avians containing a lysozyme promoter transgene |
US7176300B2 (en) | 2001-03-30 | 2007-02-13 | Avigenics, Inc. | Avian lysozyme promoter |
US7199279B2 (en) | 2001-03-30 | 2007-04-03 | Avigenics, Inc. | Recombinant promoters in avian cells |
US7442520B2 (en) | 2001-04-06 | 2008-10-28 | Georgetown University | Gene BRCC-3 and diagnostic and therapeutic uses thereof |
US7253272B2 (en) | 2001-04-06 | 2007-08-07 | Georgetown University | Gene BRCC-2 and diagnostic and therapeutic uses thereof |
US7351811B2 (en) | 2001-04-06 | 2008-04-01 | Georgetown University | Gene SCC-112 and diagnostic and therapeutic uses thereof |
EP1967525A2 (en) | 2001-05-08 | 2008-09-10 | Darwin Molecular Corporation | A method for regulating immune function in primates using the foxp3 protein |
EP2412242A2 (en) | 2001-07-05 | 2012-02-01 | Novartis Vaccines and Diagnostics, Inc. | Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof |
EP2292772A1 (en) | 2001-07-05 | 2011-03-09 | Novartis Vaccines and Diagnostics, Inc. | HIV vaccination with a DNA encoding a HIV polypeptide and a HIV polypeptide |
US6867189B2 (en) | 2001-07-26 | 2005-03-15 | Genset S.A. | Use of adipsin/complement factor D in the treatment of metabolic related disorders |
US7550650B2 (en) | 2001-09-18 | 2009-06-23 | Synageva Biopharma Corp. | Production of a transgenic avian by cytoplasmic injection |
US7270827B2 (en) | 2001-10-26 | 2007-09-18 | University Of Tennessee Research Foundation | Multivalent streptococcal vaccine compositions and methods for use |
US7750133B2 (en) | 2001-11-09 | 2010-07-06 | Georgetown University | Vascular endothelial cell growth inhibitor, VEGI-192a |
US7498407B2 (en) | 2001-11-09 | 2009-03-03 | Georgetown University | Vascular endothelial cell growth inhibitor, VEGI-192a |
US7335761B2 (en) | 2001-11-30 | 2008-02-26 | Avigenics, Inc. | Avian gene expression controlling regions |
US7507873B2 (en) | 2001-11-30 | 2009-03-24 | Avigenics, Inc. | Transgenic avians containing recombinant ovomucoid promoters |
US7294507B2 (en) | 2001-11-30 | 2007-11-13 | Avigenics, Inc. | Ovomucoid promoters and methods of use |
US6875588B2 (en) | 2001-11-30 | 2005-04-05 | Avigenics, Inc. | Ovomucoid promoter and methods of use |
US7375258B2 (en) | 2001-11-30 | 2008-05-20 | Avigenics, Inc. | Transgenic avians with an ovomucoid gene expression control region linked to a nucleotide sequence encoding a heterologous polypeptide |
US7812215B2 (en) | 2001-11-30 | 2010-10-12 | Synageva Biopharma Corp. | Methods and protein production using ovomucoid promoters |
EP2335723A1 (en) | 2001-12-12 | 2011-06-22 | Novartis Vaccines and Diagnostics S.r.l. | Immunisation against chlamydia trachomatis |
EP2335724A1 (en) | 2001-12-12 | 2011-06-22 | Novartis Vaccines and Diagnostics S.r.l. | Immunisation against chlamydia trachomatis |
EP2075346A2 (en) | 2002-01-08 | 2009-07-01 | Novartis Vaccines and Diagnostics, Inc. | Gene products differentially expressed in cancerous breast cells and their methods of use |
US7135562B2 (en) | 2002-03-14 | 2006-11-14 | University Of Cincinnati | Avian iFABP gene expression controlling region |
US7666626B2 (en) | 2002-03-15 | 2010-02-23 | Wyeth Holdings Corporation | Mutants of the P4 protein of nontypable Haemophilus influenzae with reduced enzymatic activity |
US7615229B2 (en) | 2002-03-15 | 2009-11-10 | Wyeth Holdings Corporation | Mutants of the P4 protein of nontypable Haemophilus influenzae with reduced enzymatic activity |
EP2093233A1 (en) | 2002-03-21 | 2009-08-26 | Sagres Discovery, Inc. | Novel compositions and methods in cancer |
US7244565B2 (en) | 2002-04-10 | 2007-07-17 | Georgetown University | Gene shinc-3 and diagnostic and therapeutic uses thereof |
US8518694B2 (en) | 2002-06-13 | 2013-08-27 | Novartis Vaccines And Diagnostics, Inc. | Nucleic acid vector comprising a promoter and a sequence encoding a polypeptide from the endogenous retrovirus PCAV |
EP2302039A1 (en) | 2002-06-13 | 2011-03-30 | Novartis Vaccines and Diagnostics, Inc. | Virus-like particles comprising HML-2 gag polypeptide |
EP2431480A2 (en) | 2002-08-09 | 2012-03-21 | The President and Fellows of Harvard College | Methods and compositions for increasing the stress resistance of cells and organisms |
EP2100902A1 (en) | 2002-10-08 | 2009-09-16 | Rinat Neuroscience Corp. | Methods for treating pain by administering an antagonist antibody against the nerve growth factor and an opioid analgesic, and compositions containing the same |
US10323086B2 (en) | 2002-12-24 | 2019-06-18 | Rinat Neuroscience Corp. | Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same |
EP2263692A1 (en) | 2002-12-24 | 2010-12-22 | Rinat Neuroscience Corp. | Anti-NGF antibodies and methods using same |
US11008386B2 (en) | 2002-12-24 | 2021-05-18 | Rinat Neuroscience Corp. | Anti-NGF antibodies and methods using same |
EP2270048A2 (en) | 2002-12-24 | 2011-01-05 | Rinat Neuroscience Corp. | Anti-NGF antibodies and methods using same |
US7816076B2 (en) | 2003-02-14 | 2010-10-19 | Sagres Discovery, Inc. | Therapeutic targets in cancer |
EP2058408A2 (en) | 2003-02-14 | 2009-05-13 | Sagres Discovery, Inc. | Therapeutic GPCR targets in cancer |
EP2191846A1 (en) | 2003-02-19 | 2010-06-02 | Rinat Neuroscience Corp. | Method for treating pain by administering a nerve growth factor antagonist and an NSAID and composition containing the same |
EP2267005A1 (en) | 2003-04-09 | 2010-12-29 | Novartis Vaccines and Diagnostics S.r.l. | ADP-ribosylating toxin from Listeria monocytogenes |
EP2353389A1 (en) | 2003-04-21 | 2011-08-10 | Epeius Biotechnologies Corporation | Methods and compositions for treating disorders |
US7767387B2 (en) | 2003-06-13 | 2010-08-03 | Sagres Discovery, Inc. | Therapeutic targets in cancer |
EP2341071A1 (en) | 2003-06-16 | 2011-07-06 | UCB Manufacturing, Inc. | Compostion and methods for increasing bone mineralization |
EP2338906A1 (en) | 2003-06-16 | 2011-06-29 | UCB Manufacturing, Inc. | Compostion and methods for increasing bone mineralization |
WO2005017148A1 (en) | 2003-07-26 | 2005-02-24 | Trubion Pharmaceuticals, Inc. | Binding constructs and methods for use thereof |
US9532994B2 (en) | 2003-08-29 | 2017-01-03 | The Regents Of The University Of California | Agents and methods for enhancing bone formation by oxysterols in combination with bone morphogenic proteins |
EP2402756A2 (en) | 2003-12-23 | 2012-01-04 | Rinat Neuroscience Corp. | Agonist anti-trkC antibodies and methods using same |
US7968690B2 (en) | 2003-12-23 | 2011-06-28 | Rinat Neuroscience Corp. | Agonist anti-trkC antibodies and methods using same |
WO2005093064A1 (en) | 2004-03-29 | 2005-10-06 | Galpharma Co., Ltd. | Novel galectin 9 modification protein and use thereof |
EP2206728A1 (en) | 2004-04-07 | 2010-07-14 | Rinat Neuroscience Corp. | Methods for treating bone cancer pain by administering a nerve growth factor antagonistic antibody |
EP3372614A1 (en) | 2004-04-07 | 2018-09-12 | Rinat Neuroscience Corp. | Methods for treating bone cancer pain by administering a nerve growth factor antagonist |
US7875275B2 (en) | 2004-06-16 | 2011-01-25 | The General Hospital Corporation | Use of Bridge-1 and activators and inhibitors thereof in the treatment of insulin deficiency and diabetes |
WO2006085979A2 (en) | 2004-07-09 | 2006-08-17 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Soluble forms of hendra and nipah virus g glycoprotein |
EP3381930A1 (en) | 2004-07-09 | 2018-10-03 | The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. | Soluble forms of hendra and nipah virus g glycoprotein |
EP2495252A2 (en) | 2004-07-09 | 2012-09-05 | The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. | Soluble forms of hendra and nipah virus G glycoprotein |
EP2359842A1 (en) | 2004-07-14 | 2011-08-24 | University of Utah Research Foundation | Netrin-related compositions and uses |
EP2204376A2 (en) | 2004-07-20 | 2010-07-07 | Sagres Discovery, Inc. | Novel therapeutic targets in cancer |
EP2298807A2 (en) | 2004-07-30 | 2011-03-23 | Rinat Neuroscience Corp. | Antibodies directed against amyloid-beta peptide and methods using same |
EP2298795A1 (en) | 2005-02-18 | 2011-03-23 | Novartis Vaccines and Diagnostics, Inc. | Immunogens from uropathogenic escherichia coli |
EP2362226A1 (en) | 2005-03-07 | 2011-08-31 | The President and Fellows of Harvard College | Diagnostic method for neurodegenerative diseases based on measurement of SIRT1 levels or activity |
EP2062591A1 (en) | 2005-04-07 | 2009-05-27 | Novartis Vaccines and Diagnostics, Inc. | CACNA1E in cancer diagnosis detection and treatment |
EP2083088A2 (en) | 2005-04-07 | 2009-07-29 | Novartis Vaccines and Diagnostics, Inc. | Cancer-related genes |
EP3272358A1 (en) | 2005-04-11 | 2018-01-24 | Rinat Neuroscience Corporation | Methods for treating osteoarthitis pain by administering a nerve growth factor antagonist and compositions containing the same |
EP2305711A2 (en) | 2005-04-11 | 2011-04-06 | Rinat Neuroscience Corp. | Methods for treating osteoarthitis pain by administering a nerve growth factor antagonist and compositions containing the same |
US7462698B2 (en) | 2005-07-22 | 2008-12-09 | Y's Therapeutics Co., Ltd. | Anti-CD26 antibodies and methods of use thereof |
US8030469B2 (en) | 2005-07-22 | 2011-10-04 | Sbi Incubation Co., Ltd. | Anti-CD26 antibodies and methods of use thereof |
US10307481B2 (en) | 2005-07-25 | 2019-06-04 | Aptevo Research And Development Llc | CD37 immunotherapeutics and uses thereof |
US10143748B2 (en) | 2005-07-25 | 2018-12-04 | Aptevo Research And Development Llc | B-cell reduction using CD37-specific and CD20-specific binding molecules |
EP3045182A1 (en) | 2005-11-14 | 2016-07-20 | Labrys Biologics Inc. | Antagonist antibodies directed against calcitonin gene-related peptide and methods using same |
EP2380592A2 (en) | 2005-11-14 | 2011-10-26 | Rinat Neuroscience Corp. | Antagonist antibodies directed against calcitonin gene-related peptide and methods using same |
EP3178493A1 (en) | 2005-11-14 | 2017-06-14 | Labrys Biologics Inc. | Antagonist antibodies directed against calcitonin gene-related peptide and methods using same |
EP3842458A1 (en) | 2005-11-14 | 2021-06-30 | Teva Pharmaceuticals International GmbH | Antagonist antibodies directed against calcitonin gene-related peptide |
EP3069731A1 (en) | 2005-11-14 | 2016-09-21 | Labrys Biologics Inc. | Antagonist antibodies directed against calcitonin gene-related peptide and methods using same |
US7935342B2 (en) | 2006-02-02 | 2011-05-03 | Rinat Neuroscience Corp. | Methods for treating obesity by administering a trkB antagonist |
US9670244B2 (en) | 2006-02-27 | 2017-06-06 | The Regents Of The University Of California | Oxysterol compounds and the hedgehog pathway |
US9193794B2 (en) | 2006-06-07 | 2015-11-24 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same |
US7674605B2 (en) | 2006-06-07 | 2010-03-09 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same |
WO2008020335A2 (en) | 2006-06-09 | 2008-02-21 | Novartis Ag | Immunogenic compositions for streptococcus agalactiae |
EP2418223A2 (en) | 2006-06-12 | 2012-02-15 | Emergent Product Development Seattle, LLC | Single-chain multivalent binding proteins with effector function |
US8409577B2 (en) | 2006-06-12 | 2013-04-02 | Emergent Product Development Seattle, Llc | Single chain multivalent binding proteins with effector function |
EP3805269A1 (en) | 2006-06-12 | 2021-04-14 | Aptevo Research and Development LLC | Single-chain multivalent binding proteins with effector function |
EP2586790A2 (en) | 2006-08-16 | 2013-05-01 | Novartis AG | Immunogens from uropathogenic Escherichia coli |
US8273361B2 (en) | 2006-09-26 | 2012-09-25 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
US9950063B2 (en) | 2006-09-26 | 2018-04-24 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
US10792359B2 (en) | 2006-09-26 | 2020-10-06 | Infectious Disease Research Institute | Methods of using a vaccine composition containing synthetic adjuvant |
EP3403667A1 (en) | 2006-09-26 | 2018-11-21 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
US8840908B2 (en) | 2006-09-26 | 2014-09-23 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
US9907845B2 (en) | 2006-09-26 | 2018-03-06 | Infectious Disease Research Institute | Methods of using a vaccine composition containing synthetic adjuvant |
EP3795173A1 (en) | 2006-09-26 | 2021-03-24 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
US10765736B2 (en) | 2006-09-26 | 2020-09-08 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
US9987355B2 (en) | 2006-09-26 | 2018-06-05 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
EP2486938A1 (en) | 2006-09-26 | 2012-08-15 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
US9017659B2 (en) | 2006-11-03 | 2015-04-28 | Epeius Biotechnologies Corporation | Pathotropic targeted gene delivery system for cancer and other disorders |
EP2629094A1 (en) | 2007-01-24 | 2013-08-21 | Carnegie Mellon University | Optical biosensors |
US8673859B2 (en) | 2007-03-20 | 2014-03-18 | New York University | GM-CSF cosmeceutical compositions and methods of use thereof |
WO2008124176A2 (en) | 2007-04-10 | 2008-10-16 | The Administrators Of The Tulane Educational Fund | Soluble and membrane-anchored forms of lassa virus subunit proteins |
EP2572726A1 (en) | 2007-08-01 | 2013-03-27 | Novartis AG | Compositions comprising pneumococcal antigens |
US9526737B2 (en) | 2007-12-03 | 2016-12-27 | The Regents Of The University Of California | Oxysterols for activation of hedgehog signaling, osteoinduction, antiadipogenesis, and Wnt signaling |
EP3587450A1 (en) | 2007-12-17 | 2020-01-01 | Pfizer Limited | Treatment of interstitial cystitis with ngf inhibitors |
US8568718B2 (en) | 2007-12-18 | 2013-10-29 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same |
US9334329B2 (en) | 2007-12-18 | 2016-05-10 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same |
US7982017B2 (en) | 2007-12-18 | 2011-07-19 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same |
WO2009079649A1 (en) | 2007-12-18 | 2009-06-25 | Bioalliance C.V. | Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same |
EP3023502A1 (en) | 2008-04-10 | 2016-05-25 | Cell Signaling Technology, Inc. | Compositions and methods for detecting egfr mutations in cancer |
US9101609B2 (en) | 2008-04-11 | 2015-08-11 | Emergent Product Development Seattle, Llc | CD37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof |
US7928189B2 (en) | 2008-05-05 | 2011-04-19 | Ottawa Health Research Institute | PCSK9 polypeptide fragment |
EP3251680A1 (en) | 2008-05-22 | 2017-12-06 | Infectious Disease Research Institute | Vaccine composition containing synthetic adjuvant |
EP3321283A1 (en) | 2008-06-13 | 2018-05-16 | Pfizer Inc | Treatment of chronic prostatitis |
WO2010029513A2 (en) | 2008-09-12 | 2010-03-18 | Rinat Neuroscience Corporation | Pcsk9 antagonists |
WO2010039536A2 (en) | 2008-09-23 | 2010-04-08 | President And Fellows Of Harvard College | Sirt4 and uses thereof |
WO2010080985A1 (en) | 2009-01-08 | 2010-07-15 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for induced brown fat differentiation |
WO2010084488A1 (en) | 2009-01-20 | 2010-07-29 | Ramot At Tel-Aviv University Ltd. | Mir-21 promoter driven targeted cancer therapy |
US11066651B2 (en) | 2009-01-27 | 2021-07-20 | University Of Utah Research Foundation | Methods and compositions relating to viral latency |
US9719069B2 (en) | 2009-01-27 | 2017-08-01 | University Of Utah Research Foundation | Methods and compositions relating to viral latency |
WO2010086828A2 (en) | 2009-02-02 | 2010-08-05 | Rinat Neuroscience Corporation | Agonist anti-trkb monoclonal antibodies |
WO2010100632A2 (en) | 2009-03-06 | 2010-09-10 | Novartis Ag | Chlamydia antigens |
EP3549602A1 (en) | 2009-03-06 | 2019-10-09 | GlaxoSmithKline Biologicals S.A. | Chlamydia antigens |
EP3293257A1 (en) | 2009-03-20 | 2018-03-14 | Mesoblast, Inc. | Production of reprogrammed pluripotent cells |
WO2010118243A2 (en) | 2009-04-08 | 2010-10-14 | Genentech, Inc. | Use of il-27 antagonists to treat lupus |
EP3263128A2 (en) | 2009-04-14 | 2018-01-03 | GlaxoSmithKline Biologicals S.A. | Compositions for immunising against staphylococcus aureus |
EP2510947A1 (en) | 2009-04-14 | 2012-10-17 | Novartis AG | Compositions for immunising against Staphylococcus aureus |
WO2010124365A1 (en) | 2009-04-27 | 2010-11-04 | Ottawa Hospital Research Institute | Compositions and methods for modulating stem cells and uses thereof |
US10632191B2 (en) | 2009-06-05 | 2020-04-28 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
US9814772B2 (en) | 2009-06-05 | 2017-11-14 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
US9480740B2 (en) | 2009-06-05 | 2016-11-01 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
US8722064B2 (en) | 2009-06-05 | 2014-05-13 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
EP3124491A1 (en) | 2009-06-05 | 2017-02-01 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants and vaccine compositions containing them |
WO2010141861A1 (en) | 2009-06-05 | 2010-12-09 | Infectious Disease Research Institute | Synthetic glucopyranosyl lipid adjuvants |
WO2010146511A1 (en) | 2009-06-17 | 2010-12-23 | Pfizer Limited | Treatment of overactive bladder |
EP2837386A1 (en) | 2009-07-16 | 2015-02-18 | Novartis AG | Detoxified Escherichia coli immunogens |
WO2011007257A1 (en) | 2009-07-16 | 2011-01-20 | Novartis Ag | Detoxified escherichia coli immunogens |
WO2011038063A1 (en) | 2009-09-28 | 2011-03-31 | The Trustees Of The University Of Pennsylvania | Method of diagnosing and treating interstitial cystitis |
WO2011058302A1 (en) | 2009-11-10 | 2011-05-19 | Guy's And St Thomas's Nhs Foundation Trust | Bacteremia-associated antigen from staphylococcus aureus |
WO2011091272A1 (en) | 2010-01-21 | 2011-07-28 | Dana-Farber Cancer Institute, Inc. | Context specific genetic screen platform to aid in gene discovery and target validation |
WO2011104687A1 (en) | 2010-02-24 | 2011-09-01 | Rinat Neuroscience Corporation | Antagonist anti-il-7 receptor antibodies and methods |
WO2011104632A1 (en) | 2010-02-26 | 2011-09-01 | Novartis Ag | Immunogenic proteins and compositions |
WO2011111007A2 (en) | 2010-03-11 | 2011-09-15 | Rinat Neuroscience Corporation | ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING |
WO2011121576A2 (en) | 2010-04-01 | 2011-10-06 | Novartis Ag | Immunogenic proteins and compositions |
WO2011133931A1 (en) | 2010-04-22 | 2011-10-27 | Genentech, Inc. | Use of il-27 antagonists for treating inflammatory bowel disease |
WO2012015758A2 (en) | 2010-07-30 | 2012-02-02 | Saint Louis University | Methods of treating pain |
US9539427B2 (en) | 2010-11-08 | 2017-01-10 | The Johns Hopkins University | Methods for improving heart function |
US11633606B2 (en) | 2010-11-08 | 2023-04-25 | The Johns Hopkins University | Methods for improving heart function |
US10525269B2 (en) | 2010-11-08 | 2020-01-07 | The Johns Hopkins University | Methods for improving heart function |
WO2012075243A2 (en) | 2010-12-01 | 2012-06-07 | The University Of North Carolina At Chapel Hill | Methods and compositions for targeting sites of neovascular growth |
WO2012072769A1 (en) | 2010-12-01 | 2012-06-07 | Novartis Ag | Pneumococcal rrgb epitopes and clade combinations |
EP2698635A2 (en) | 2010-12-01 | 2014-02-19 | The University Of North Carolina At Chapel Hill | Methods and compositions for targeting sites of neovascular growth |
EP3026432A2 (en) | 2010-12-27 | 2016-06-01 | Brown University | Method for predicting patient's response to biglycan treatment |
US9044420B2 (en) | 2011-04-08 | 2015-06-02 | Immune Design Corp. | Immunogenic compositions and methods of using the compositions for inducing humoral and cellular immune responses |
WO2013028740A1 (en) | 2011-08-22 | 2013-02-28 | Saint Louis University | Compositions and methods for treating inflammation |
WO2013028527A1 (en) | 2011-08-23 | 2013-02-28 | Indiana University Research And Technology Corporation | Compositions and methods for treating cancer |
WO2013039996A1 (en) | 2011-09-13 | 2013-03-21 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for brown fat induction and activity using fndc5 |
WO2013055911A1 (en) | 2011-10-14 | 2013-04-18 | Dana-Farber Cancer Institute, Inc. | Znf365/zfp365 biomarker predictive of anti-cancer response |
WO2013068946A2 (en) | 2011-11-11 | 2013-05-16 | Rinat Neuroscience Corp. | Antibodies specific for trop-2 and their uses |
WO2013093707A1 (en) | 2011-12-22 | 2013-06-27 | Rinat Neuroscience Corp. | Human growth hormone receptor antagonist antibodies and methods of use thereof |
WO2013093693A1 (en) | 2011-12-22 | 2013-06-27 | Rinat Neuroscience Corp. | Staphylococcus aureus specific antibodies and uses thereof |
US11510875B2 (en) | 2012-02-07 | 2022-11-29 | Access To Advanced Health Institute | Adjuvant formulations comprising TLR4 agonists and methods of using the same |
EP3563834A1 (en) | 2012-02-07 | 2019-11-06 | Infectious Disease Research Institute | Improved adjuvant formulations comprising tlr4 agonists and methods of using the same |
WO2013119856A1 (en) | 2012-02-07 | 2013-08-15 | Infectious Disease Research Institute | Improved adjuvant formulations comprising tlr4 agonists and methods of using the same |
EP3563865A2 (en) | 2012-05-04 | 2019-11-06 | Pfizer Inc | Prostate-associated antigens and vaccine-based immunotherapy regimens |
WO2013164754A2 (en) | 2012-05-04 | 2013-11-07 | Pfizer Inc. | Prostate-associated antigens and vaccine-based immunotherapy regimens |
US9717742B2 (en) | 2012-05-07 | 2017-08-01 | The Regents Of The University Of California | Oxysterol analogue OXY133 induces osteogenesis and hedgehog signaling and inhibits adipogenesis |
US9895435B2 (en) | 2012-05-16 | 2018-02-20 | Immune Design Corp. | Vaccines for HSV-2 |
WO2014025767A1 (en) | 2012-08-07 | 2014-02-13 | National Cheng Kung University | Use of il-20 antagonists for treating liver diseases |
WO2014072876A1 (en) | 2012-11-09 | 2014-05-15 | Pfizer Inc. | Platelet-derived growth factor b specific antibodies and compositions and uses thereof |
US9925276B2 (en) | 2013-03-14 | 2018-03-27 | Epeius Biotechnologies Corporation | Thymidine kinase gene |
WO2014153258A2 (en) | 2013-03-14 | 2014-09-25 | Epeius Biotechnologies Corporation | Improved thymidine kinase gene |
US11364307B2 (en) | 2013-03-14 | 2022-06-21 | Genvivo, Inc. | Thymidine kinase gene |
US11253611B2 (en) | 2013-03-14 | 2022-02-22 | Genvivo, Inc. | Thymidine kinase diagnostic assay for gene therapy applications |
US10610603B2 (en) | 2013-03-14 | 2020-04-07 | Genvivo, Inc. | Thymidine kinase gene |
US10350302B2 (en) | 2013-03-14 | 2019-07-16 | Genvivo, Inc. | Thymidine kinase diagnostic assay for gene therapy applications |
US9999683B2 (en) | 2013-03-14 | 2018-06-19 | Epeius Biotechnologies Corporation | Method for identifying and treating a patient having tumor lesions comprising administering a gene therapy retroviral vector particle comprising a mutated HSV-thymidine kinase (HSV-TK) polynucleotide |
EP3594244A1 (en) | 2013-03-15 | 2020-01-15 | Dyax Corp. | Anti-plasma kallikrein antibodies |
US8962593B2 (en) | 2013-04-18 | 2015-02-24 | Immune Design Corp. | GLA monotherapy for use in cancer treatment |
US8957047B2 (en) | 2013-04-18 | 2015-02-17 | Immune Design Corp. | GLA monotherapy for use in cancer treatment |
US10342815B2 (en) | 2013-04-18 | 2019-07-09 | Immune Design Corp. | GLA monotherapy for use in cancer treatment |
US10993956B2 (en) | 2013-04-18 | 2021-05-04 | Immune Design Corp. | GLA monotherapy for use in cancer treatment |
US9683009B2 (en) | 2013-05-02 | 2017-06-20 | The Regents Of The University Of California | Bone-selective osteogenic oxysterol-bone targeting agents |
WO2014181229A2 (en) | 2013-05-07 | 2014-11-13 | Rinat Neuroscience Corp. | Anti-glucagon receptor antibodies and methods of use thereof |
US9463198B2 (en) | 2013-06-04 | 2016-10-11 | Infectious Disease Research Institute | Compositions and methods for reducing or preventing metastasis |
US9730928B2 (en) | 2013-06-14 | 2017-08-15 | Univeristy Of Utah Research Foundation | Trizol-1-OL analogs anti-retroviral latency drugs |
US10711275B2 (en) | 2013-07-12 | 2020-07-14 | Zhen Huang | Methods and compositions for interference with DNA polymerase and DNA synthesis |
EP3699200A1 (en) | 2013-07-15 | 2020-08-26 | Cell Signaling Technology, Inc. | Anti-mucin 1 binding agents and uses thereof |
EP4050033A1 (en) | 2013-08-02 | 2022-08-31 | Pfizer Inc. | Anti-cxcr4 antibodies and antibody-drug conjugates |
US9708405B2 (en) | 2013-08-02 | 2017-07-18 | Pfizer Inc. | Anti-CXCR4 antibodies and antibody-drug conjugates |
US10144781B2 (en) | 2013-08-02 | 2018-12-04 | Pfizer Inc. | Anti-CXCR4 antibodies and antibody-drug conjugates |
WO2015015401A2 (en) | 2013-08-02 | 2015-02-05 | Pfizer Inc. | Anti-cxcr4 antibodies and antibody-drug conjugates |
WO2015073580A1 (en) | 2013-11-13 | 2015-05-21 | Pfizer Inc. | Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof |
WO2015087187A1 (en) | 2013-12-10 | 2015-06-18 | Rinat Neuroscience Corp. | Anti-sclerostin antibodies |
WO2015109212A1 (en) | 2014-01-17 | 2015-07-23 | Pfizer Inc. | Anti-il-2 antibodies and compositions and uses thereof |
EP4324481A2 (en) | 2014-03-21 | 2024-02-21 | Teva Pharmaceuticals International GmbH | Antagonist antibodies directed against calcitonin gene-related peptide and methods using same |
WO2015164743A2 (en) | 2014-04-24 | 2015-10-29 | Dana-Farber Cancer Institute, Inc. | Tumor suppressor and oncogene biomarkers predictive of anti-immune checkpoint inhibitor response |
WO2015168474A1 (en) | 2014-04-30 | 2015-11-05 | President And Fellows Of Harvard College | Fusion proteins for treating cancer and related methods |
WO2015175375A1 (en) | 2014-05-13 | 2015-11-19 | Short Jay M | Conditionally active biological proteins |
US11155610B2 (en) | 2014-06-28 | 2021-10-26 | Kodiak Sciences Inc. | Dual PDGF/VEGF antagonists |
US11584927B2 (en) | 2014-08-28 | 2023-02-21 | Bioatla, Inc. | Conditionally active chimeric antigen receptors for modified T-cells |
EP4074735A1 (en) | 2014-08-28 | 2022-10-19 | BioAtla, Inc. | Conditionally active chimeric antigen receptors for modified t-cells |
WO2016033331A1 (en) | 2014-08-28 | 2016-03-03 | Bioatla, Llc | Conditionally active chimeric antigen receptors for modified t-cells |
US11111288B2 (en) | 2014-08-28 | 2021-09-07 | Bioatla, Inc. | Conditionally active chimeric antigen receptors for modified t-cells |
US10513699B2 (en) | 2014-09-03 | 2019-12-24 | Bioatla, Llc | Discovering and producing conditionally active biologic proteins in the same eukaryotic cell production hosts |
WO2016040441A1 (en) | 2014-09-09 | 2016-03-17 | Unum Therapeutics | Chimeric receptors and uses thereof in immune therapy |
WO2016057367A1 (en) | 2014-10-06 | 2016-04-14 | Dana-Farber Cancer Institute, Inc. | Angiopoietin-2 biomarkers predictive of anti-immune checkpoint response |
WO2016057651A1 (en) | 2014-10-09 | 2016-04-14 | Dana-Farber Cancer Institute, Inc. | Multiple-variable il-2 dose regimen for treating immune disorders |
EP4166572A1 (en) | 2014-12-09 | 2023-04-19 | Rinat Neuroscience Corp. | Anti-pd-1 antibodies and methods of use thereof |
WO2016092419A1 (en) | 2014-12-09 | 2016-06-16 | Rinat Neuroscience Corp. | Anti-pd-1 antibodies and methods of use thereof |
WO2016144673A1 (en) | 2015-03-06 | 2016-09-15 | Dana-Farber Cancer Institute, Inc. | Pd-l2 biomarkers predictive of pd-1 pathway inhibitor responses in esophagogastric cancers |
EP3735982A1 (en) | 2015-03-10 | 2020-11-11 | The University of Massachusetts | Targeting gdf6 and bmp signaling for anti-melanoma therapy |
WO2016144917A1 (en) | 2015-03-10 | 2016-09-15 | University Of Massachusetts | Targeting gdf6 and bmp signaling for anti-melanoma therapy |
WO2016164405A1 (en) | 2015-04-06 | 2016-10-13 | Yung Shin Pharmaceutical Industrial Co. Ltd. | Antibodies binding to canine vascular endothelial growth factor and uses thereof in treating canine angiogenesis-related diseases |
EP4234581A2 (en) | 2015-04-13 | 2023-08-30 | Pfizer Inc. | Therapeutic antibodies and their uses |
EP3988117A1 (en) | 2015-04-13 | 2022-04-27 | Pfizer Inc. | Therapeutic antibodies and their uses |
WO2016166629A1 (en) | 2015-04-13 | 2016-10-20 | Pfizer Inc. | Therapeutic antibodies and their uses |
US10877045B2 (en) | 2015-07-21 | 2020-12-29 | Saint Louis University | Compositions and methods for diagnosing and treating endometriosis-related infertility |
WO2017015431A1 (en) | 2015-07-21 | 2017-01-26 | Dyax Corp. | A monoclonal antibody inhibitor of factor xiia |
EP4011916A1 (en) | 2015-07-21 | 2022-06-15 | Takeda Pharmaceutical Company Limited | A monoclonal antibody inhibitor of factor xiia |
WO2017015619A1 (en) | 2015-07-23 | 2017-01-26 | The Regents Of The University Of California | Antibodies to coagulation factor xia and uses thereof |
WO2017029583A2 (en) | 2015-08-19 | 2017-02-23 | Pfizer Inc. | Tissue factor pathway inhibitor antibodies and uses thereof |
EP3922645A1 (en) | 2015-09-15 | 2021-12-15 | Scholar Rock, Inc. | Anti-pro/latent-myostatin antibodies and uses thereof |
WO2017049011A1 (en) | 2015-09-15 | 2017-03-23 | Scholar Rock, Inc. | Anti-pro/latent-myostatin antibodies and uses thereof |
US11352426B2 (en) | 2015-09-21 | 2022-06-07 | Aptevo Research And Development Llc | CD3 binding polypeptides |
WO2017066561A2 (en) | 2015-10-16 | 2017-04-20 | President And Fellows Of Harvard College | Regulatory t cell pd-1 modulation for regulating t cell effector immune responses |
WO2017066760A1 (en) | 2015-10-16 | 2017-04-20 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for inhibition of lineage specific antigens |
EP4265633A2 (en) | 2015-10-16 | 2023-10-25 | The Trustees Of Columbia University In The City Of New York | Compositions and methods for inhibition of lineage specific antigens |
WO2017070561A1 (en) | 2015-10-23 | 2017-04-27 | Pfizer Inc. | Anti-il-2 antibodies and compositions and uses thereof |
WO2017075037A1 (en) | 2015-10-27 | 2017-05-04 | Scholar Rock, Inc. | Primed growth factors and uses thereof |
WO2017075329A2 (en) | 2015-10-29 | 2017-05-04 | Dana-Farber Cancer Institute, Inc. | Methods for identification, assessment, prevention, and treatment of metabolic disorders using pm20d1 and n-lipidated amino acids |
WO2017087599A1 (en) | 2015-11-18 | 2017-05-26 | Lyvgen Biopharma Holdings Limited | Anti-pd-1 antibodies and therapeutic uses thereof |
US11066465B2 (en) | 2015-12-30 | 2021-07-20 | Kodiak Sciences Inc. | Antibodies and conjugates thereof |
WO2017125831A1 (en) | 2016-01-21 | 2017-07-27 | Pfizer Inc. | Mono and bispecific antibodies for epidermal growth factor receptor variant iii and cd3 and their uses |
WO2017165412A2 (en) | 2016-03-21 | 2017-09-28 | Dana-Farber Cancer Institute, Inc. | T-cell exhaustion state-specific gene expression regulators and uses thereof |
US11879011B2 (en) | 2016-05-13 | 2024-01-23 | Bioatla, Inc. | Anti-ROR2 antibodies, antibody fragments, their immunoconjucates and uses thereof |
EP4112638A1 (en) | 2016-05-16 | 2023-01-04 | Access to Advanced Health Institute | Formulation containing tlr agonist and methods of use |
WO2017200852A1 (en) | 2016-05-16 | 2017-11-23 | Infectious Disease Research Institute | Formulation containing tlr agonist and methods of use |
WO2017210364A1 (en) | 2016-06-01 | 2017-12-07 | Infectious Disease Research Institute | Nanoalum particles containing a sizing agent |
WO2018005975A1 (en) | 2016-07-01 | 2018-01-04 | Research Development Foundation | Elimination of proliferating cells from stem cell-derived grafts |
WO2018057618A1 (en) | 2016-09-20 | 2018-03-29 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for identification, assessment, prevention, and treatment of aml using usp10 biomarkers and modulators |
WO2018080573A1 (en) | 2016-10-28 | 2018-05-03 | Massachusetts Institute Of Technology | Crispr/cas global regulator screening platform |
WO2018148246A1 (en) | 2017-02-07 | 2018-08-16 | Massachusetts Institute Of Technology | Methods and compositions for rna-guided genetic circuits |
WO2018158658A1 (en) | 2017-03-03 | 2018-09-07 | Rinat Neuroscience Corp. | Anti-gitr antibodies and methods of use thereof |
WO2018167621A1 (en) | 2017-03-16 | 2018-09-20 | Pfizer Inc. | Tyrosine prototrophy |
US11584790B2 (en) | 2017-04-14 | 2023-02-21 | Kodiak Sciences Inc. | Complement factor D antagonist antibodies and conjugates thereof |
WO2018220584A1 (en) | 2017-06-02 | 2018-12-06 | Pfizer Inc. | Antibodies specific for flt3 and their uses |
US11820822B2 (en) | 2017-06-06 | 2023-11-21 | Dana-Farber Cancer Institute, Inc. | Methods for sensitizing cancer cells to T cell-mediated killing by modulating molecular pathways |
WO2018231772A1 (en) | 2017-06-13 | 2018-12-20 | Bostongene Corporation | Systems and methods for identifying responders and non-responders to immune checkpoint blockade therapy |
WO2018231771A1 (en) | 2017-06-13 | 2018-12-20 | Bostongene Corporation | Systems and methods for generating, visualizing and classifying molecular functional profiles |
EP4012713A1 (en) | 2017-06-13 | 2022-06-15 | BostonGene Corporation | Systems and methods for generating, visualizing and classifying molecular functional profiles |
WO2018231762A1 (en) | 2017-06-13 | 2018-12-20 | Bostongene, Corporation | Systems and methods for identifying cancer treatments from normalized biomarker scores |
EP3879535A1 (en) | 2017-06-13 | 2021-09-15 | BostonGene Corporation | Systems and methods for identifying cancer treatments from normalized biomarker scores |
WO2019016784A1 (en) | 2017-07-21 | 2019-01-24 | Universidade De Coimbra | Anti-nucleolin antibody |
US11970707B2 (en) | 2017-09-18 | 2024-04-30 | Children's Hospital Medical Center | Strong insulator and uses thereof in gene delivery |
WO2019070161A2 (en) | 2017-10-04 | 2019-04-11 | Opko Pharmaceuticals, Llc | Articles and methods directed to personalized therapy of cancer |
US11215618B2 (en) | 2017-10-04 | 2022-01-04 | Hesperix SA | Articles and methods directed to personalized therapy of cancer |
US11396551B2 (en) | 2018-02-01 | 2022-07-26 | Pfizer Inc. | Chimeric antigen receptors targeting CD70 |
US11987634B2 (en) | 2018-02-01 | 2024-05-21 | Pfizer Inc. | Antibodies specific for CD70 and their uses |
WO2019152705A1 (en) | 2018-02-01 | 2019-08-08 | Pfizer Inc. | Antibodies specific for cd70 and their uses |
US11377500B2 (en) | 2018-02-01 | 2022-07-05 | Pfizer Inc. | Antibodies specific for CD70 and their uses |
WO2019166946A1 (en) | 2018-02-28 | 2019-09-06 | Pfizer Inc. | Il-15 variants and uses thereof |
US12071476B2 (en) | 2018-03-02 | 2024-08-27 | Kodiak Sciences Inc. | IL-6 antibodies and fusion constructs and conjugates thereof |
US11525010B2 (en) | 2018-05-23 | 2022-12-13 | Pfizer Inc. | Antibodies specific for GUCY2c and uses thereof |
WO2019224716A2 (en) | 2018-05-23 | 2019-11-28 | Pfizer Inc. | Antibodies specific for gucy2c and uses thereof |
US11434292B2 (en) | 2018-05-23 | 2022-09-06 | Pfizer Inc. | Antibodies specific for CD3 and uses thereof |
WO2019224715A1 (en) | 2018-05-23 | 2019-11-28 | Pfizer Inc. | Antibodies specific for cd3 and uses thereof |
EP4414034A2 (en) | 2018-05-23 | 2024-08-14 | Pfizer Inc. | Antibodies specific for cd3 and uses thereof |
WO2020010110A1 (en) | 2018-07-03 | 2020-01-09 | Unum Therapeutics Inc. | Chimeric receptors in combination with trans metabolism molecules enhancing glucose import and therapeutic uses thereof |
US12077785B2 (en) | 2018-08-14 | 2024-09-03 | Sotio Biotech Inc. | Chimeric antigen receptor polypeptides in combination with trans metabolism molecules modulating Krebs cycle and therapeutic uses thereof |
WO2020047164A1 (en) | 2018-08-28 | 2020-03-05 | Vor Biopharma, Inc | Genetically engineered hematopoietic stem cells and uses thereof |
EP4434541A2 (en) | 2019-01-23 | 2024-09-25 | New York University | Antibodies specific to delta 1 chain of t cell receptor |
EP3721896A1 (en) | 2019-04-08 | 2020-10-14 | Giuseppe Scalabrino | Epidermal growth factor (egf) and variants thereof for medical uses in neuro-de/regeneration |
WO2020223121A1 (en) | 2019-04-30 | 2020-11-05 | Dana-Farber Cancer Institute, Inc. | Methods for treating cancer using combinations of anti-cx3cr1 and immune checkpoint blockade agents |
WO2021028726A2 (en) | 2019-07-03 | 2021-02-18 | Bostongene Corporation | Systems and methods for sample preparation, sample sequencing, and sequencing data bias correction and quality control |
WO2021071830A1 (en) | 2019-10-07 | 2021-04-15 | University Of Virginia Patent Foundation | Modulating lymphatic vessels in neurological disease |
US11912784B2 (en) | 2019-10-10 | 2024-02-27 | Kodiak Sciences Inc. | Methods of treating an eye disorder |
WO2021072244A1 (en) | 2019-10-11 | 2021-04-15 | Beth Israel Deaconess Medical Center, Inc. | Anti-tn antibodies and uses thereof |
WO2021151079A1 (en) | 2020-01-24 | 2021-07-29 | University Of Virginia Patent Foundation | Modulating lymphatic vessels in neurological disease |
WO2021205325A1 (en) | 2020-04-08 | 2021-10-14 | Pfizer Inc. | Anti-gucy2c antibodies and uses thereof |
WO2021224850A1 (en) | 2020-05-06 | 2021-11-11 | Crispr Therapeutics Ag | Mask peptides and masked anti-ptk7 antibodies comprising such |
WO2022013775A1 (en) | 2020-07-17 | 2022-01-20 | Pfizer Inc. | Therapeutic antibodies and their uses |
WO2022023972A1 (en) | 2020-07-30 | 2022-02-03 | Pfizer Inc. | Cells having gene duplications and uses thereof |
WO2022086852A2 (en) | 2020-10-19 | 2022-04-28 | Dana-Farber Cancer Institute, Inc. | Germline biomarkers of clinical response and benefit to immune checkpoint inhibitor therapy |
EP4343004A2 (en) | 2020-10-19 | 2024-03-27 | Dana-Farber Cancer Institute, Inc. | Germline biomarkers of clinical response and benefit to immune checkpoint inhibitor therapy |
WO2022104104A2 (en) | 2020-11-13 | 2022-05-19 | Dana-Farber Cancer Institute, Inc. | Personalized fusion cell vaccines |
WO2022120256A2 (en) | 2020-12-04 | 2022-06-09 | Bostongene Corporation | Hierarchical machine learning techniques for identifying molecular categories from expression data |
WO2022159793A2 (en) | 2021-01-25 | 2022-07-28 | Dana-Farber Cancer Institute, Inc. | Methods and compositions for identifying neuroendocrine prostate cancer |
WO2022232615A1 (en) | 2021-04-29 | 2022-11-03 | Bostongene Corporation | Machine learning techniques for estimating tumor cell expression complex tumor tissue |
WO2022261183A2 (en) | 2021-06-08 | 2022-12-15 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating and/or identifying an agent for treating intestinal cancers |
WO2023012627A1 (en) | 2021-08-02 | 2023-02-09 | Pfizer Inc. | Improved expression vectors and uses thereof |
WO2023049933A1 (en) | 2021-09-27 | 2023-03-30 | Sotio Biotech Inc. | Chimeric receptor polypeptides in combination with trans metabolism molecules that re-direct glucose metabolites out of the glycolysis pathway and therapeutic uses thereof |
WO2023091909A1 (en) | 2021-11-16 | 2023-05-25 | Sotio Biotech Inc. | Treatment of myxoid/round cell liposarcoma patients |
WO2023097119A2 (en) | 2021-11-29 | 2023-06-01 | Dana-Farber Cancer Institute, Inc. | Methods and compositions to modulate riok2 |
WO2023147177A1 (en) | 2022-01-31 | 2023-08-03 | Bostongene Corporation | Machine learning techniques for cytometry |
WO2023148598A1 (en) | 2022-02-02 | 2023-08-10 | Pfizer Inc. | Cysteine prototrophy |
WO2023158732A1 (en) | 2022-02-16 | 2023-08-24 | Dana-Farber Cancer Institute, Inc. | Methods for decreasing pathologic alpha-synuclein using agents that modulate fndc5 or biologically active fragments thereof |
WO2024015561A1 (en) | 2022-07-15 | 2024-01-18 | Bostongene Corporation | Techniques for detecting homologous recombination deficiency (hrd) |
WO2024040207A1 (en) | 2022-08-19 | 2024-02-22 | Sotio Biotech Inc. | Genetically engineered natural killer (nk) cells with chimeric receptor polypeptides in combination with trans metabolism molecules and therapeutic uses thereof |
WO2024040208A1 (en) | 2022-08-19 | 2024-02-22 | Sotio Biotech Inc. | Genetically engineered immune cells with chimeric receptor polypeptides in combination with multiple trans metabolism molecules and therapeutic uses thereof |
Also Published As
Publication number | Publication date |
---|---|
EP0650370A1 (en) | 1995-05-03 |
EP0650370A4 (en) | 1995-11-22 |
JPH07507689A (en) | 1995-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0650370A1 (en) | Methods and compositions for targeting specific tissue | |
EP0670905B1 (en) | Recombinant viruses displaying a nonviral polypeptide on their external surface | |
US7033834B2 (en) | Methods and means for targeted gene delivery | |
US7820157B2 (en) | Transgene delivering retrovirus targeting collagen exposed at site of tissue injury | |
Fielding et al. | Inverse targeting of retroviral vectors: selective gene transfer in a mixed population of hematopoietic and nonhematopoietic cells | |
JP5031921B2 (en) | Hyperproliferative combination therapy | |
EP0769968B1 (en) | Retroviral vectors produced by producer cell lines resistant to lysis by human serum | |
JP2009112314A (en) | Method and composition for treating disorder | |
JP2002522090A (en) | Cell type-specific gene transfer using a retroviral vector containing an antibody envelope fusion protein and a wild type envelope protein | |
Gleiter et al. | Cell-type specific targeting and gene expression using a variant of polyoma VP1 virus-like particles | |
EP1204761B1 (en) | Targeted artificial gene delivery | |
Lee et al. | Gene delivery using a receptor‐mediated gene transfer system targeted to hepatocellular carcinoma cells | |
AU693904B2 (en) | Improvements in or relating to delivery of nucleic acids | |
WO1997019180A2 (en) | Vector consisting of a transcriptional regulatory dna sequence linked to a dna sequence encoding beta-lactamase for enzyme prodrug therapy | |
JP4509780B2 (en) | Method for preparing virus particles with modified cell binding activity and use thereof | |
JPH10511551A (en) | Virus vector complex with an adapter with a predetermined valency | |
CN112876566A (en) | Construction and application of CD3 specific lentivirus | |
US20020164583A1 (en) | Targeting viral vectors to specific cells | |
Benedict et al. | Development of Retroviral Vectors that Target Hematopoietic Stem Cells | |
WO1997038119A1 (en) | Reagent and method for targeting retrovirus | |
Reddy | Folate-targeted gene delivery to cancers | |
Benedict | The murine leukemia virus envelope protein: engineering for vector targeting and analysis of interactions with viral core proteins | |
WO1998049335A1 (en) | Construct and expression of a retrovirus chimerical envelope by vectors, and pharmaceutical compositions containing same | |
AU2005202079A1 (en) | Targeted artificial gene delivery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1993914334 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1993914334 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993914334 Country of ref document: EP |