WO1993023356A1 - Process for recovering 2,3-dihydroxy-1-chlorocyclohexa-4,6-diene from aqueous solutions using a solid sorbent - Google Patents

Process for recovering 2,3-dihydroxy-1-chlorocyclohexa-4,6-diene from aqueous solutions using a solid sorbent Download PDF

Info

Publication number
WO1993023356A1
WO1993023356A1 PCT/US1993/004354 US9304354W WO9323356A1 WO 1993023356 A1 WO1993023356 A1 WO 1993023356A1 US 9304354 W US9304354 W US 9304354W WO 9323356 A1 WO9323356 A1 WO 9323356A1
Authority
WO
WIPO (PCT)
Prior art keywords
polar
leaching
dhcd
oxygenated
procesε
Prior art date
Application number
PCT/US1993/004354
Other languages
French (fr)
Inventor
Antonio A. Garcia
Gregory M. Whited
Lawrence D. Kwart
Original Assignee
Genencor International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genencor International, Inc. filed Critical Genencor International, Inc.
Publication of WO1993023356A1 publication Critical patent/WO1993023356A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • This invention relates to recovery of polar uncharged oxygenated organic compounds from aqueous solutions using solid sorbents.
  • Traditional methods for recovering such compounds include liquid-liquid extraction, distillation and membrane filtration, which are often inefficient and not practical on an industrial scale.
  • US Patent 4,450,294 discloses a process for recovering an oxygenated organic compound from a dilute aqueous solution using a crosslinked polyvinylpyridine resin.
  • US Patent 4,064,043 discloses a process for separating an organic component from a non-body liquid medium using particles of a partially pyrolyzed macroporous synthetic polymer produced by the controlled thermal degradation of a macroporous synthetic polymer containing a carbon-fixing moiety and derived from one or more ethylenically unsaturated monomer( ⁇ ) .
  • US Patent 4,267,055 (Neely) describes a process for removing planar molecules from a mixture containing planar and non- planar molecules using a particulate adsorbent which is the product of controlled thermal degradation of a macroporous synthetic polymer.
  • the planar molecules removed using the described resin may be halogenated planar molecules.
  • US Patent 4,BS3,596 discloses a method for the removal of pyrogenic matter dissolved in water using a carbonaceous adsorbent prepared by carbonizing porous beads of a cross-linked polymer.
  • the carbonaceous resin described by Agui, et al. is comparable to AmbersortP resins, commercially available from Rohm and Haas Co.
  • the invention relates to a process for recovering polar uncharged organic oxygenated compounds from aqueous solution, the process comprising:
  • Figure 1 is a graph showing leaching of DHCD from XEN-575 using various solvents at various temperatures.
  • Figure 2 is a graph showing leaching of DHCD from XEN-575 using acetonitrile at various temperatures.
  • Biocatalytic transformations such as lipase resolutions, hydroxylations, reductions, and oxygenations often result in the formation of polar oxygenated organic compounds as products.
  • a common problem with biocatalytic reactions is that they are conducted in aqueous media and, therefore, when polar products are formed as reaction products, separation of the products from the reaction media is problematic.
  • separations are generally accomplished by liquid-liquid extraction. These extractions may be inefficient and have process limitations due to the formation of emulsions.
  • whole cells are contained in the aqueous medium to be extracted, cell lysis occurring during the biotransformation or from solvent contact may form an emulsion which cannot be processed.
  • polar oxygenated organic compounds recovered by the processes described herein may be useful in synthesis of pesticides, herbicides, pharmaceuticals and other therapeutic agents.
  • Preferred polar compounds are those having at least one hydroxyl group and at least one double bond, although it is understood that any polar oxygenated compound having no double bond or hydroxyl or more than one double-bond or hydroxyl are also useful in this invention.
  • polar uncharged oxygenated organic compounds including, but are not limited to, halogenated oxygenated cyclohexadienes such as described in PCT applications WO 91/12257 and WO 91/16290, which are incorporated herein by reference. Because of the polarity of these compounds and the fact that they are uncharged, it is unexpected that they will be attracted to any resin, preferring to remain in solution.
  • Useful sorbents in the present invention are high surface area (>100m2/g) , porous polymer adsorbents or high surface area, porous pyrolyzed polymers.
  • sorbents as described by Kolman, et al., in US Patent 4,064,063, and carbonaceous adsorbents, such as described by Agui, et al., in US Patent 4,883,596, and those commercially available, such as Ameberlite® XAD and AmbersorkP XE-347 or XE-348 (now called Ambersor s>575) , which are commercially available from Rohm and Haas.
  • Preferred sorbents are the porous pyrolyzed polymer adsorbents commercially available from Rohm and Haas, particularly Ambersorb XE-347 and XE-348 (Amber ⁇ orkP575) .
  • Useful solvents or solvent mixtures for the present invention are those fully miscible in water.
  • the solvent to be used for a particular adsorbate will depend on the chemical nature of the absorbed species.
  • the polar solvents may include but are not limited to: methanol, ethanol, acetonitrile, acetone, tetrahydrofuran (THF), propanol, isopropanol, or water immiscible compounds, such as butanols and ethyl acetate when used in combination with an appropriate solvent( ⁇ ) , such that the mixture is miscible in water.
  • a mixture of ethyl acetate and ethanol such that the mixture is miscible in water.
  • a mixture of ethyl acetate and ethanol such that the mixture is miscible in water.
  • Preferred solvent ⁇ for recovery of a halogenated oxygenated cyclohexadiene are mixtures of ethyl acetate and ethanol or methanol.
  • the polar uncharged oxygenated compounds recovered by the proces ⁇ e ⁇ of the present invention may be synthesized by fermentation as described in D.T. Gibson and V. Subramanian, 1984, Microbial Degradation of Aromatic Hydrocarbons, pp. 181- 252; in Microbial Degradation of Organic Compounds, ed. D.T. Gibson, Marcel Dekker, Inc., or in non-growing cell suspensions as reported by A.J. Brazier, M.D. Lilly and A.B. Herbert, 1990, Enzyme Microb. Technol., 12:90-94.
  • product concentration in fermentation broths for the production of such organic compound ⁇ are low and these low concentrations, coupled with the fact that media components, buffers, proteins and metabolites can remain in solution after cell separation, usually dictate a multistage product recovery operation.
  • a commercial process for recovery of such compounds would typically include the following steps: 1) synthesi ⁇ compri ⁇ ing fermentation, tissue culture and/or immobilized enzymes; 2) isolation compri ⁇ ing homogenization, centrifugation, filtration, and/or extraction; 3) gross purification comprising adsorption, precipitation and/or extraction; 4) polishing comprising chromatography, adsorption and/or extraction; 5) solvent removal comprising evaporation and/or crystallization; and 6) drying.
  • Such processes are cumbersome and cost inefficient on an industrial scale.
  • DHCD 2,3-dihydroxy-l- chlorocyclohexa-4,6-diene
  • the fermentation medium was a mineral salts medium containing potassium phosphate, ammonium sulfate, ferrou ⁇ sulfate, magnesium sulfate, trace minerals and fructose.
  • the microorganism was a mutant strain of Pseudomonas putida which oxidizes chlorobenzene to DHCD. Gibson, D.T., et al., 1984 Microbial Degradation of Aromatic Hydrocarbons, pp. 181-252. This whole fermentation broth (including cells) contained approximately 22 g/1 DHCD.
  • DHCD 2,3-dihydroxy-l- chlorocyclohexa-4,6-diene
  • the fermentation medium was a mineral salt ⁇ medium containing potassium phosphate, ammonium sulfate, ferrous sulfate, magnesium sulfate, trace minerals and glucose.
  • the microorganism was a recombinant strain of Escherichia coli expre ⁇ ing the neces ⁇ ary enzyme ⁇ to oxidize chlorobenzene to DHCD (Zyl ⁇ tera, G.J. ; Gibson, D.T. (1989) J. Bio. Chem. 264:14940-14946). This whole fermentation broth (including cells) contained approximately 103 g/1 DHCD.
  • DHCD 2,3- dihydroxy-l-chlorocyclohexa-4,6-diene
  • Example 3 The same experiment as set forth in Example 3 was carried out except that a total of five leachings were performed using five batches of ethanol (95%) of about 24ml each. The three initial leachings were carried out at 22"C. The fourth leaching was performed at 44 ⁇ C and a fifth leaching was performed at 61°C. Result ⁇ of the leaching are provided in Table IV.
  • Example 3 Similar experiments to Example 3 were carried out using various solvents or mixtures of solvents in the leaching phase as well as under various temperature conditions.
  • the solvents, temperatures and number of leachings used in this example are set forth in tabular form below in Table V. Results showing percent recovery are provided in Figure 1.
  • adsorption and leaching was performed using XEN-575 and acetonitrile with four leachings at a temperature of 22°C, 40°C and 60°C. Percentage recovery of DHCD is provided in Figure 2.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

There are described processes for the removal and recovery of polar oxygenated organic compounds (e.g. 2,3-dihydroxy-1-chlorocyclohexa-4,6-diene) from aqueous solutions. Such processes comprise sorption/leaching processes whereby polar oxygenated uncharged organic compounds can be removed from aqueous solution and recovered from the sorbent.

Description

PROCESS FOR RECOVERING 2,3-DIHYDR0XY-l-CHL0R0CYCL0HEXA-4,6-DIENE FROM AQUEOUS SOLUTIONS USING A SOLID SORBENT
FIELD OF THE INVENTION:
This invention relates to recovery of polar uncharged oxygenated organic compounds from aqueous solutions using solid sorbents. Traditional methods for recovering such compounds include liquid-liquid extraction, distillation and membrane filtration, which are often inefficient and not practical on an industrial scale.
BACKGROUND OF THE INVENTION:
Several sorbents or resins have been used to remove certain types of compounds from aqueous medium, however such known resins have not successfully been employed in removal and recovery of polar uncharged compounds such as those described in the present invention. Furthermore, although some resins have been used to remove certain organic compounds from aqueous solutions, often the organic compounds are quite difficult or impossible to recover from the resin on which they are adsorbed.
US Patent 4,450,294 (Feldman) discloses a process for recovering an oxygenated organic compound from a dilute aqueous solution using a crosslinked polyvinylpyridine resin. US Patent 4,064,043 (Kollman) discloses a process for separating an organic component from a non-body liquid medium using particles of a partially pyrolyzed macroporous synthetic polymer produced by the controlled thermal degradation of a macroporous synthetic polymer containing a carbon-fixing moiety and derived from one or more ethylenically unsaturated monomer(ε) .
US Patent 4,267,055 (Neely) describes a process for removing planar molecules from a mixture containing planar and non- planar molecules using a particulate adsorbent which is the product of controlled thermal degradation of a macroporous synthetic polymer. The planar molecules removed using the described resin, may be halogenated planar molecules.
US Patent 4,BS3,596 (Agui, et al.) discloses a method for the removal of pyrogenic matter dissolved in water using a carbonaceous adsorbent prepared by carbonizing porous beads of a cross-linked polymer. The carbonaceous resin described by Agui, et al., is comparable to AmbersortP resins, commercially available from Rohm and Haas Co.
The cited art is illustrative of the use of particular resins or adsorbents to remove certain organic compounds from aqueous solutions, however, none of the references describe a useful resin or sorbent for removal and recovery of the compounds of interest in the present invention. It is an object of this invention therefore to provide acceptable processes for the recovery of certain compounds from aqueous solution such as from a fermentation broth.
SUMMARY OF THE INVENTION:
In accordance therewith, it has been discovered that the recovery of polar uncharged oxygenated organic compounds from aqueous solutions can be done using the processes described herein. The invention relates to a process for recovering polar uncharged organic oxygenated compounds from aqueous solution, the process comprising:
a) contacting the organic compound with a solid sorbent; and
b) leaching with one or more polar solvents or mixtures of polar solvents.
BRIEF DESCRIPTION OF THE DRAWINGS:
Figure 1 is a graph showing leaching of DHCD from XEN-575 using various solvents at various temperatures.
Figure 2 is a graph showing leaching of DHCD from XEN-575 using acetonitrile at various temperatures. DETAILED DESCRIPTION OF THE INVENTION:
Biocatalytic transformations such as lipase resolutions, hydroxylations, reductions, and oxygenations often result in the formation of polar oxygenated organic compounds as products. A common problem with biocatalytic reactions is that they are conducted in aqueous media and, therefore, when polar products are formed as reaction products, separation of the products from the reaction media is problematic. When polar reaction products are not charged (i.e., nonionic) , separations are generally accomplished by liquid-liquid extraction. These extractions may be inefficient and have process limitations due to the formation of emulsions. When whole cells are contained in the aqueous medium to be extracted, cell lysis occurring during the biotransformation or from solvent contact may form an emulsion which cannot be processed.
Another problem with the recovery of many of these compounds is that they are unstable to extremes of pH and temperature which could facilitate extraction or distillation respectively.
The polar oxygenated organic compounds recovered by the processes described herein may be useful in synthesis of pesticides, herbicides, pharmaceuticals and other therapeutic agents. Preferred polar compounds are those having at least one hydroxyl group and at least one double bond, although it is understood that any polar oxygenated compound having no double bond or hydroxyl or more than one double-bond or hydroxyl are also useful in this invention.
More preferred are polar uncharged oxygenated organic compounds including, but are not limited to, halogenated oxygenated cyclohexadienes such as described in PCT applications WO 91/12257 and WO 91/16290, which are incorporated herein by reference. Because of the polarity of these compounds and the fact that they are uncharged, it is unexpected that they will be attracted to any resin, preferring to remain in solution.
Useful sorbents in the present invention are high surface area (>100m2/g) , porous polymer adsorbents or high surface area, porous pyrolyzed polymers. For example, sorbents, as described by Kolman, et al., in US Patent 4,064,063, and carbonaceous adsorbents, such as described by Agui, et al., in US Patent 4,883,596, and those commercially available, such as Ameberlite® XAD and AmbersorkP XE-347 or XE-348 (now called Ambersor s>575) , which are commercially available from Rohm and Haas. Preferred sorbents are the porous pyrolyzed polymer adsorbents commercially available from Rohm and Haas, particularly Ambersorb XE-347 and XE-348 (AmberεorkP575) .
Useful solvents or solvent mixtures for the present invention are those fully miscible in water. The solvent to be used for a particular adsorbate will depend on the chemical nature of the absorbed species. The polar solvents may include but are not limited to: methanol, ethanol, acetonitrile, acetone, tetrahydrofuran (THF), propanol, isopropanol, or water immiscible compounds, such as butanols and ethyl acetate when used in combination with an appropriate solvent(ε) , such that the mixture is miscible in water. For example, a mixture of ethyl acetate and ethanol.
Preferred solventε for recovery of a halogenated oxygenated cyclohexadiene are mixtures of ethyl acetate and ethanol or methanol.
The polar uncharged oxygenated compounds recovered by the procesεeε of the present invention may be synthesized by fermentation as described in D.T. Gibson and V. Subramanian, 1984, Microbial Degradation of Aromatic Hydrocarbons, pp. 181- 252; in Microbial Degradation of Organic Compounds, ed. D.T. Gibson, Marcel Dekker, Inc., or in non-growing cell suspensions as reported by A.J. Brazier, M.D. Lilly and A.B. Herbert, 1990, Enzyme Microb. Technol., 12:90-94. Typically, product concentration in fermentation broths for the production of such organic compoundε are low and these low concentrations, coupled with the fact that media components, buffers, proteins and metabolites can remain in solution after cell separation, usually dictate a multistage product recovery operation. For example, a commercial process for recovery of such compounds would typically include the following steps: 1) synthesiε compriεing fermentation, tissue culture and/or immobilized enzymes; 2) isolation compriεing homogenization, centrifugation, filtration, and/or extraction; 3) gross purification comprising adsorption, precipitation and/or extraction; 4) polishing comprising chromatography, adsorption and/or extraction; 5) solvent removal comprising evaporation and/or crystallization; and 6) drying. Such processes are cumbersome and cost inefficient on an industrial scale.
It has been found that using the processes of the present invention, certain organic compounds, as described herein, can be recovered by a much easier and much more efficient process, whereby one or more of the steps listed above (1-6) are eliminated. Specifically, the isolation and polishing steps, which are often very rate limiting and costly, have been eliminated from the present recovery process. EXPERIMENTAL:
Example 1 Binding
A whole fermentation broth containing 2,3-dihydroxy-l- chlorocyclohexa-4,6-diene (DHCD) was used in this experiment. The fermentation medium was a mineral salts medium containing potassium phosphate, ammonium sulfate, ferrouε sulfate, magnesium sulfate, trace minerals and fructose. The microorganism was a mutant strain of Pseudomonas putida which oxidizes chlorobenzene to DHCD. Gibson, D.T., et al., 1984 Microbial Degradation of Aromatic Hydrocarbons, pp. 181-252. This whole fermentation broth (including cells) contained approximately 22 g/1 DHCD. 100 ml of whole fermentation broth was contacted with 20 grams (dry weight) of once-used XEN-575 (commercially available from Rohm and Haas) in a vesεel with paddle εtirring. Samples were taken at the intervals indicated and assayed for DHCD, the results are summarized in Table I.
Table I
Figure imgf000011_0001
Figure imgf000011_0002
Example 2 Binding
A whole fermentation broth containing 2,3-dihydroxy-l- chlorocyclohexa-4,6-diene (DHCD) was used in this experiment. The fermentation medium was a mineral saltε medium containing potassium phosphate, ammonium sulfate, ferrous sulfate, magnesium sulfate, trace minerals and glucose. The microorganism was a recombinant strain of Escherichia coli expreεεing the necesεary enzymeε to oxidize chlorobenzene to DHCD (Zylεtera, G.J. ; Gibson, D.T. (1989) J. Bio. Chem. 264:14940-14946). This whole fermentation broth (including cells) contained approximately 103 g/1 DHCD. 100 ml of whole fermentation broth was contacted with 100 grams (dry weight) of once-used XEN-575 (commercially available from Rohm and Haas) in a vesεel with paddle stirring. Samples were taken at the intervals indicated and assayed for DHCD, the results are summarized in Table II.
Figure imgf000012_0001
Example 3
56.7g of a whole cell fermentation broth containing 2,3- dihydroxy-l-chlorocyclohexa-4,6-diene (DHCD) was contacted with 6.8 grams (dry weight) of once-used XEN-575 (commercially available from Rohm and Haas) in a vesεel with gentle agitation with an "orbit-type" εhaker for about 1 hour at 22"C. After adεorption, the broth was decanted from the resin whereby 53.9g (47.6ml) of broth was collected. A first batch water wash of 25.3ml water was done on the resin, no measurable amount of DHCD was found. A second batch water wash with 24 ml water was done on the resin and again no measurable amount of DHCD was found. The DHCD was leached from the resiπ using three batches of ethanol (95%) of about 24ml each. The three leachings were performed at 61°C. Results of the leaching are shown in Table III below. TABLE III
Leaching Cumulative Recovery ( % )
1st 42.4% 2nd 67.8% 3rd 80.0%
Example 4
The same experiment as set forth in Example 3 was carried out except that a total of five leachings were performed using five batches of ethanol (95%) of about 24ml each. The three initial leachings were carried out at 22"C. The fourth leaching was performed at 44βC and a fifth leaching was performed at 61°C. Resultε of the leaching are provided in Table IV.
TABLE IV
Leaching Cumulative Recover % lεt
2nd
3rd
4th*
5th**
Figure imgf000013_0001
* Leaching performed at 44βC ** Leaching performed at 61βC Example 5
Similar experiments to Example 3 were carried out using various solvents or mixtures of solvents in the leaching phase as well as under various temperature conditions. The solvents, temperatures and number of leachings used in this example are set forth in tabular form below in Table V. Results showing percent recovery are provided in Figure 1.
TABLE V
Solvent em erature Number of Leachings
1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4
Figure imgf000014_0001
Following the process set forth in Example 3, 50ml of fermentation broth containing DHCD was contacted with 6.8g XEN-575 fresh (unused resin) for 1 hour with gentle stirring. After adsorption the broth was decanted off and the resin was washed with water and the leaching was performed with Ethyl Acetate at both 22 βC and 40"C. The percentage of recovery of DHCD from the broth is provided in Table VI.
TABLE VI
Leaching Cumulative Recovery f%)
1st 22'C 34.83% 2nd 22*C 52.61% 3rd 22'C 61.52% 4th 22°C 66.86% 1st 40βC* 14.24% 2nd 40°C 24.18% 3rd 40°C 26.62% 4th 40βC 27.99%
* Resin XEN-575 was reused for the second experiment run at 40°C, fresh XEN-575 was used for 22"C.
Example 7
Following the process set forth in Example 3 , adsorption and leaching was performed using XEN-575 and acetonitrile with four leachings at a temperature of 22°C, 40°C and 60°C. Percentage recovery of DHCD is provided in Figure 2.
Example 8
Approximately 100 grams of once used XEN-575 resin with approximately 7 grams of DHCD bound was washed with water and placed in a jacketed column operated at 65*C. The resin bed was about 22 x 2.6 cm. The DHCD was eluted from the resin with a solution of EtOH:EtOAc, 1:1; and collected in 25 ml aliquots. DHCD was quantified and the results are summarized in Table VII.
Figure imgf000016_0001
Aε expected, although batch elution iε quite good, elution of the resin when placed in a column is much more efficient than batch elution. Table VII showε that acceptable recovery is achieved with only a portion of the solvent used in a single batch leaching step.
In addition to the above examples we have also tried and obtained successful binding and leaching results from benzene dihydrodiol, toluene dihydrodiol, bromobenzene dihydrodiol and benzonitrile dihydrodiol.
The previous examples and disclosure are intended to serve as a repreεentation of embodiments herein and should not be construed as limiting the scope of this application.

Claims

WHAT IS CLAIMED IS:
1. A process for recovering polar uncharged oxygenated organic compounds from aqueous solutions, the procesε comprising:
a) contacting the polar oxygenated compound with a solid sorbent; and
b) leaching with one or more polar solvent or a mixture of polar εolventε in which the organic compound iε soluble.
2. A procesε of Claim 1 wherein the polar oxygenated organic compound comprises one or more hydroxyl groups and one or more double bond.
3. A process of Claim 2 wherein the organic compound is a halogenated oxygenated cyclohexadiene.
4. A process of Claim 1 wherein the polar solvent is selected from the group consiεting of: ethanol, methanol, ethyl acetate, acetonitrile or mixtures thereof.
5. A process of Claim 1 wherein the aqueous solution comprises fermentation broth, resuspended fermented cells or other biocatalysts.
6. A process of Claim 5 wherein the fermentation broth comprises cells or other impurities.
7. A process of Claim 1 wherein the polar organic compound is a product of a reaction catalyzed by a whole cell or cell free catalyst.
8. A process of Claim 7 wherein the catalyst is a mutant or recombinant organism or is derived from a recombinant Organism.
9. A process of Claim 8 wherein the recombinant organism is Escherichia coli.
10. A process of Claim 1 wherein the leaching is carried out at elevated temperatures, increaεing efficiency.
11. A process for recovering 2,3-dihydroxy-l-chlorocyclohexa- 4,6-diene (DHCD) the procesε comprising:
a) contacting a fermentation broth containing DHCD with a solid adsorbent; and
b) leaching the DHCD from the solid adsorbent using one or more polar solvent or mixtures of solvents.
12. A procesε of Claim 11 further compriεing batchwiεe adεorption.
13. A process of Claim 11 wherein the solid adsorbent is a carbonaceous adsorbent.
14. A process of Claim 11 wherein the polar solvent used in step (b) is selected from the group consiεting of: ethanol, methanol, ethyl acetate, acetonitrile or mixtures thereof.
15. A process of Claim 11 wherein the leaching is carried out at elevated temperatures, increasing efficiency.
PCT/US1993/004354 1992-05-12 1993-05-06 Process for recovering 2,3-dihydroxy-1-chlorocyclohexa-4,6-diene from aqueous solutions using a solid sorbent WO1993023356A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88198492A 1992-05-12 1992-05-12
US07/881,984 1992-05-12

Publications (1)

Publication Number Publication Date
WO1993023356A1 true WO1993023356A1 (en) 1993-11-25

Family

ID=25379644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/004354 WO1993023356A1 (en) 1992-05-12 1993-05-06 Process for recovering 2,3-dihydroxy-1-chlorocyclohexa-4,6-diene from aqueous solutions using a solid sorbent

Country Status (2)

Country Link
AU (1) AU4239793A (en)
WO (1) WO1993023356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306128A1 (en) * 2001-10-29 2003-05-02 Tenaxis Gmbh Sorptive composite materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319058A (en) * 1980-10-10 1982-03-09 Uop Inc. Process for the separation of ethanol from water
EP0247600A2 (en) * 1986-05-28 1987-12-02 Idemitsu Kosan Company Limited Benzene oxygenase gene
EP0268331A2 (en) * 1986-11-20 1988-05-25 Shell Internationale Researchmaatschappij B.V. Microbial preparation of catechols
GB2199324A (en) * 1986-12-16 1988-07-06 Shell Int Research Process for the preparation of catechols

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319058A (en) * 1980-10-10 1982-03-09 Uop Inc. Process for the separation of ethanol from water
EP0247600A2 (en) * 1986-05-28 1987-12-02 Idemitsu Kosan Company Limited Benzene oxygenase gene
EP0268331A2 (en) * 1986-11-20 1988-05-25 Shell Internationale Researchmaatschappij B.V. Microbial preparation of catechols
GB2199324A (en) * 1986-12-16 1988-07-06 Shell Int Research Process for the preparation of catechols

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306128A1 (en) * 2001-10-29 2003-05-02 Tenaxis Gmbh Sorptive composite materials
WO2003037505A1 (en) * 2001-10-29 2003-05-08 Preentec Ag Sorptive composite materials

Also Published As

Publication number Publication date
AU4239793A (en) 1993-12-13

Similar Documents

Publication Publication Date Title
Schlosser et al. Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA
Freeman et al. In situ product removal as a tool for bioprocessing
US4924027A (en) Separation of salts of citric acid from fermentation broth with a weakly basic anionic exchange resin adsorbent
JP6628604B2 (en) Purification of succinic acid
WO2013174911A1 (en) Carboxylic acid recovery from magnesium carboxylate mixture
WO1996033283A1 (en) Process for producing calcium d-pantothenate
JPH0767671A (en) Recovery of citric acid from coarse mixture low in purity by adding strong acid and its salt
US3960663A (en) Process for the continuous isomerization of dextrose
Davison et al. Simultaneous fermentation and separation of lactic acid in a biparticle fluidized-bed bioreactor
EP3564250B1 (en) Method for purifying allulose conversion reaction product
WO1993023356A1 (en) Process for recovering 2,3-dihydroxy-1-chlorocyclohexa-4,6-diene from aqueous solutions using a solid sorbent
JPH06237777A (en) Preparation of citric acid and sodium citrate from molasses
EP0330217B1 (en) Process for the continuous biotechnological preparation of optical isomer S(+) of 2-(6-methoxy-2-naphthyl)propionic acid
KR20020022789A (en) Process for purifying 2-keto-l-gulonic acid
US6114157A (en) Method for increasing total production of 4-hydroxybenzoic acid by biofermentation
EP1720992B1 (en) Process for the production and recovery of hydrocarbons
EP2504302A1 (en) Method for isolating an alkanol from an aqueous biotransformation mixture
JP3891324B2 (en) Production of lebodia by microorganisms
Wang et al. On-line extraction fermentation processes
EP3645500A1 (en) Enzymes and methods for the stereoselective reduction of carbonyl compounds, oxidation and stereoselective reductive amination - for the enantioselective preparation of alcohol amine compounds
Rao et al. Basics of bioreaction engineering
US5859262A (en) Process for the production of erythorbic acid
AU2020375503B2 (en) Improved method for manufacturing allulose
GB2072670A (en) Process for separating and recovering coproporphyrin and uroporphyrin from a culture broth containing them
EP1074630A2 (en) Microbial production of levodione

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA