WO1993021594A1 - Method of recognition of stereoscopic image - Google Patents
Method of recognition of stereoscopic image Download PDFInfo
- Publication number
- WO1993021594A1 WO1993021594A1 PCT/KR1992/000012 KR9200012W WO9321594A1 WO 1993021594 A1 WO1993021594 A1 WO 1993021594A1 KR 9200012 W KR9200012 W KR 9200012W WO 9321594 A1 WO9321594 A1 WO 9321594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- disk
- point
- contour
- sensor
- points
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/239—Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/593—Depth or shape recovery from multiple images from stereo images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/97—Determining parameters from multiple pictures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
- G06T2207/10012—Stereo images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0081—Depth or disparity estimation from stereoscopic image signals
Definitions
- the present invention relates to a new method for recognizing stereoscopic contours of an object from two directions of the object through sensors to obtain stereoscopic contours of the object.
- the present invention proposes a new geometrical method of searching for correspondence between a pair of signals of the stereoscopic contour linear elephant if3 ⁇ 4 in order to recognize a three-dimensional image of an object.
- This method can be applied not only to a video recognition system (System) through a vision sensor, but also to any device that can provide contour linear elephant information for an object.
- the present invention provides a method of reconstructing a stereoscopic contour elephant ff3 ⁇ 4 obtained from two directions of an object through a sensor for the recognition of the three-dimensional image.
- a sensor for the recognition of the three-dimensional image.
- Each of which is defined as a particular part of a particular sphere (88) that can be assumed to be inside the object, as represented by a Disk (90).
- Voronoi for points represented by a set of points on the contour The fast approximation method based on the Voronoi Diagram and the Delaunay Triangulation is based on DT ⁇ ee. J. Computer Information sci., Vol.9, no.3, pp.219-142, 1980).
- the maximum disk (18) is connected to the contour line (10) at each point of contact (12), (14) with the center point 6 ) of the maximum disk and the contact line.
- Each tangent (22), (24) force with the contour at the point; each has the property of being mutually perpendicular.
- the straight line from the center point 6 ) of this maximum disk 6 ) depends on the nature of R as well as the bisecting point (28) of the connecting straight line (26) of each contact point (1 2 ) and (U). This contact point connecting straight line (26) Match.
- each of the largest discs 8), ( 38 ) is a shape connected to each sensor coordinate when the sphere (88) is viewed from each direction. That way the center points of the maximum disk (16), (36) corresponds to the center point 6) in the sphere (88), each axis of symmetry (20), (40) shed points on 6), ( The corresponding points (12), (14) and ( 32 ), ( 34 ) on each contour line (10), (30) by sharing 36 are the points ( 52 ) on the outer edge of the disc ( 90 ). ), ( 54 ) and (72), (74).
- the connecting straight lines (26), (46) between the corresponding points (1 2 ), () and ( 32 ), ( 34 ) are located at the center point (76) of the disk (90), respectively.
- Points ( 52 ), ( 54 ), and ( 72 ), ( 74 ) can be made to correspond to straight lines (66), (86).
- the bisecting points (28) and (48) of the corresponding point connecting straight lines (26) and (46) correspond to the center point (76) of the disk (90) when viewed from the direction of each sensor. Is possible.
- the two contour linear elephant signals are specifically interpreted as follows.
- the center of the sphere and the disk at m_h and the size of the disk, etc. are the special points or characteristics, and the characteristics of each sensor and the sensing environment, such as the two sensor coordinate fields and the spatial coordinate field.
- the state for each disk assuming a three-dimensional image is derived through the following solution.
- the two bisecting points of the corresponding unit arrest straight line on the two contour lines of the corresponding unit are interpreted in consideration of the sensing environment to obtain the center point of the corresponding disk in the given spatial coordinate field.
- the orientation (Orientation) of the corresponding point connecting straight line on the two contour lines of the corresponding units in the two sensor coordinates in consideration of the sensor environment, the orientation of the corresponding disk in the spatial coordinate field is determined. You will understand.
- the size of the corresponding disk can be determined by interpreting the length of the corresponding point connecting straight line of both units in consideration of the sensing environment.
- the expressing means has the following characteristics.
- Fig. 1 is an illustration of Symmetric Axis Transform.
- Figure 2 is an explanatory diagram of a three-dimensional image reconstruction using the concept of a sphere and a disk.
- FIG. 3 is an explanatory diagram showing the relationship between one sensor coordinate and a spatial coordinate field in the embodiment.
- Fig. 4 is an explanatory diagram of the calculation of the disk orientation from the two sensor coordinate data.
- Figure 5 shows the determined shape of the disc on the spatial coordinate field.
- Fig. 6 shows the description of the shape of one disk on the spatial coordinate field. It is calculation explanatory drawing for restoring to the figure in which it is.
- FIG. 7 is a configuration diagram of the three-dimensional ⁇ yg system.
- Disc 9 Q center point is the intersection of straight lines 66 and 86, corresponding to 28 and 48
- the sensor characteristics have uniform characteristics to the sensor coordinate plane for convenience of calculation, and the value corresponding to the focal length (Focal Length) of each sensor is infinite and U-V and X (or: T )-Suppose the magnification between Y is 1.
- a point PO, y, z ) in the given spatial coordinate field is determined by the coordinates of the left and right sensors (PO, y, z ).
- point ⁇ is connected so that it is projected on the left sensor coordinate (100), and it is connected to the right sensor coordinate (102).
- V vi (or) ⁇ ⁇ (3) ui ⁇ cos ⁇ - u T
- the bisecting point of the corresponding point connecting straight line on the contour of the unity of the left sensor coordinate (100) in both units in the corresponding relation for example, the U and V axis values of the point (28) are (u,, ) in to the corresponding point of the right sensor coordinates (10 2), eg if its corresponding disk by substituting computation U point (48), the V-axis value (M r, in the t r) equation (3)
- the coordinates of the center point of, for example, the point (76) in this spatial coordinate field can be found.
- the size of the corresponding disk that is, the diameter d can be calculated, for example, by averaging the two values.
- the calculation method for calculating the position, orientation, and size, that is, the diameter, of the center point in the corresponding spatial coordinate system for a certain disk assumed to be a part of an object through the interpretation of J3 ⁇ 4_ is the sensing environment of this embodiment. Was sought. If these processes are applied to the whole correspondence unit of both contour line groups, it can be calculated for the whole set of disks representing the three-dimensional image.
- the disk (90) of order i among the disks constituting a certain object (94) can be represented on the corresponding space coordinate field as shown in FIG.
- the expression for this can be expressed as the expression in ( 6 ).
- yi is the corresponding spatial coordinate value of the center point of this disk, is the diameter of this disk and ⁇ , ⁇ , b ⁇ are the corresponding spatial coordinate fields X, Y, and z-axis directions, respectively. It has information about the orientation of this disc in the amount of vector per unit.
- the coordinate value meter ⁇ in the field is as follows. First, consider a disk (104) whose diameter is as shown in Fig. 6 (a) and whose center point is on the X-Z plane at the origin.
- Orientation of the disc is labeled same as r a and the Y-axis direction.
- the coordinate values on the outline of the disk (104) can be expressed as in equation (8). di wide
- ⁇ is a value from 0 to 360 degrees.
- the coordinate value (Xo Vo, Z 0 ) in the spatial coordinate field on the outer line considering the rotation Jl and the movement T of the disk (104) can be calculated as follows.
- a block diagram as shown in FIG. 7 can be considered as one configuration example for realizing such a method.
- a shape signal for a certain object in the sensing spatial coordinate field (110) is received through a stereo sensor (112), and a contour line is detected for each signal.
- the complex contours are decomposed into simple forms (116), and each is sequentially sent to the symmetric axis conversion system (118).
- a corresponding unit search (120), a corresponding unit interpretation (122), and a three-dimensional figure based on the interpreted information are expressed (124).
- the three-dimensional representation of each of the decomposed parts is synthesized (126) with reference to the composition relation information (146) between the composite contours from the composite contour decomposition system (116) and expressed. This way representable the sensing space coordinate field from the three-dimensional figure (110) and use space coordinates field (1 3 0) coordinates related interpretation ⁇ (128) the coordinate transformation information (144) with each use for purposes by between Available.
- the fields of use that can be generally considered include a wide range, such as reconstruction of three-dimensional figures (132), recognition of three-dimensional figures (134), and inspection of three-dimensional figures (136).
- the method according to the present invention can be applied to stereoscopic image recognition. It requires only simple preprocessing for the sensor input signal because only the contour linear elephant information for the input signal is required.Also, detailed representation of the target object is possible, and only one It has a unique output (Unique), and the basic units (Primitives) for expressing the three-dimensional image are simple and can be sufficiently expressed by synthesizing it. It has important advantages for application to recognition systems.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Abstract
This invention relates to a technical field of computer stereovision. To recognize a stereoscopic image, the present invention relates to a novel method of interpretation and description of stereoscopic profile data of a certain article obtained from two directions through sensors. To accomplish this object, the present invention postulates that the stereoscopic image is constituted in such a manner that a certain cut plane of the object article is expressed by a disk assumed as a specific portion of a specific sphere which is in turn assumed to exist inside this article. On the basis of this assumption, the present invention utilizes the characteristics of the sphere and disk, sets and interprets the relation of correspondence between the two profile data, and describes the object article in the form of an aggregate of disks defined completely in the space coordinates. The present invention can be applied to apparatus for recognizing, restoring and inspecting stereoscopic images. Particularly because only the data on the profile line of the object article is necessary for the input signal, pre-processing is easy. Therefore, the present invention has the advantage that its application is easy.
Description
明細〕 Statement)
立体形象の認識方法 Recognition method of three-dimensional figure
技術分野 Technical field
本発明は物体の立体形象を認識するに於いて、 センサー(Sensor) を通じ物体の二つの方向から得たステレオ(Stereo)輪郭線形象情報 に対する新しい解 ¾び立体形象言 方法に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new method for recognizing stereoscopic contours of an object from two directions of the object through sensors to obtain stereoscopic contours of the object.
これは、 主に両眼を通じ立体形象認識に関する研究分野である コンピュータステレオビジョン (Computer Stereo Vision)に関連 するもので B.K.RHornが著した,,口ボッ トビジヨ ン " (Rob.ot. Vision, MIT Press, 1986)によればこの研究分野に於いての最大課 題は一方の映像信号のある点に対する相手方の映像信号からの対応 性を探すことである。 今までこれのためにあらゆる方法が開発され たが主に対象物体表面に対する一対の映像信号間の明るさ(Brightness)の解釈に依存してきた。 このような方法は必然的に伴う映像 処理における複雑な前処理過程と多様に変わる照明環境に対する解 釈の難点等から実用化には根本的な難しさをもつている。 This is mainly related to Computer Stereo Vision, which is a research field of 3D image recognition through both eyes, and is written by BKRHorn, “Robot Bottom Vision” (Rob.ot. Vision, MIT Press According to, 1986), the biggest challenge in this field of research is to find the correspondence between a certain point in one video signal and the other's video signal. However, it has mainly relied on the interpretation of the brightness between a pair of video signals on the surface of the target object. Due to difficulties in interpretation, it has fundamental difficulties in practical application.
発明の開示 Disclosure of the invention
本発明に於いては人間の両眼を通じての物体の立体形象理解及
び認識のための諸要素中で物体の輪郭線形象情報が^!!素の一つ でありながら工学的にもこれを抽出するための前処理過程が比較的 に容易であり、環境の変化に対しても比較的安定な要素であること に注目するようになった。 それ故、本発明では物体の立体形象認識 のためそのステレ才輪郭線形象 if¾の一対の信号間の対応性探索の 新しい幾何学的方法を提示する。 この方法はビジョンセンサー を通じての映像認識システム(System)だけでなく物体に対する輪 郭線形象情報を提供できる全ての装置に適用が可能である。以上の ようにステレオ輪郭線形象情報に対する新しい解釈方法と、 さらに 立体形象の表現のための新しい記述方法も提示するため、本発明が 実際的に立体形象認識のための有用なる方法論であることを示す。 本発明は、 センサーを通じある物体の二つの方向から見て得たステ レオ輪郭線形象 ff¾からその立体形象の認識のため 再構成するに 於いて、 この物体 (94,96等)のある切断面が各々その物体内部に存 在するものと仮定できるある特定な球(Sphere)(88)の特定な部分 であると定義されるあるディスク(Disk)(90)で表されるようにその 物体の立体形象ができているという仮定より出発する。 In the present invention, the understanding of the three-dimensional shape of an object through both human eyes Although the contour linear elephant information of the object is one of the elements in the elements for recognition and recognition, it is relatively easy to preprocess to extract it from an engineering point of view. We have come to note that is a relatively stable element for. Therefore, the present invention proposes a new geometrical method of searching for correspondence between a pair of signals of the stereoscopic contour linear elephant if¾ in order to recognize a three-dimensional image of an object. This method can be applied not only to a video recognition system (System) through a vision sensor, but also to any device that can provide contour linear elephant information for an object. As described above, a new interpretation method for the stereo contour linear elephant information and a new description method for expressing the three-dimensional image are also presented, so that the present invention is actually a useful methodology for recognizing the three-dimensional image. Show. The present invention provides a method of reconstructing a stereoscopic contour elephant ff¾ obtained from two directions of an object through a sensor for the recognition of the three-dimensional image. Each of which is defined as a particular part of a particular sphere (88) that can be assumed to be inside the object, as represented by a Disk (90). We start from the assumption that a three-dimensional figure is made.
以上の仮定を基礎に、各センサー座標にとらわれた二つの輪郭線形 象 に対し各々対 ¾ ^変換 (Symmetric Axis Transform)を適用 する。対称軸変換の特性等は M.Bradyが著した "形象表現の評価 ¾ί (Criteria ior representations of shape. Human and Machine " ision, ed. A Rosenfeld and J. Beck, New York: Academic Press inc,1983)という論文によれば次のようた'。 1図に於いての ようなある輪郭線形象(10)に対する対称軸変換の適用は結果的に
その輪郭線(10)と二つ以上の(12),( )のような接触点をもつ輪郭 線形象内部の最大ディスク(Maximal Disk)(l8)の中心点(1 の集 まりをつくりだすようになる。 このような諸中心点の集まりが対称 軸変換を通じて得られる該当輪郭線に対する対称軸 (Symmetric Axis) (20)であり、 もとは平面形象に対する表現手段 (Descriptor) の一つで H.Blumに依って "新しい形象表現手段抽出のための変 換 ( A transform ior extracting new descriptor of shape. Models for perception of speech and visual form, ed. W. \Vathen- Dunn, MIT press, 1967)という論文に発表された。 この対称軸変 換の計算のためのいろいろな方法が知られているが、 その中の一つ、 デジタルセンサー(Digital Sensor)を通じた信号に対する適用に適 合するように輪郭線上の点の集合で表現する状態にしてその諸点に 対するボロノィダイアグラム (Voronoi Diagram) とディ口"ネ一 三角形(Delaunay Triangulation)に依る近似高速計算法が D.T丄 ee に依って"ディローネー三角形構成の二つのアルゴリズム,, (Two algorithms ior constructing a Delaunav tnangulation. Int. J. Computer Information sci., vol.9, no.3, pp.219-142, 1980)に発 表された。 Based on the above assumptions, we apply a Symmetric Axis Transform to each of the two contour linear ele- ments captured by each sensor coordinate. For the characteristics of the symmetry axis transformation, see "Evaluation of Shape Representation ¾ί (Criteria ior representations of shape.Human and Machine" ision, ed. According to the thesis, The application of the symmetry axis transformation to a contour linear elephant (10) as shown in Fig. 1 results in A contour having the contour (10) and two or more contact points such as (1 2 ) and (). The center of the maximum disk (Maximal Disk) (l 8 ) inside the linear elephant (creates a set of 1) Such a collection of center points is the symmetry axis (20) for the relevant contour obtained through the symmetry axis transformation, and was originally one of the means of expression (descriptor) for the plane figure. According to H. Blum, "A transform ior extracting new descriptor of shape.Models for perception of speech and visual form, ed.W. \ Vathen- Dunn, MIT press, 1967" Various methods are known for calculating this symmetry transformation, one of which is to be adapted to the application to signals through a digital sensor. Voronoi for points represented by a set of points on the contour The fast approximation method based on the Voronoi Diagram and the Delaunay Triangulation is based on DT 丄 ee. J. Computer Information sci., Vol.9, no.3, pp.219-142, 1980).
ところで、 1図に於いてのようにある最大ディスク(18)は、 輪郭線 (10) との各接触点 (12),(14)において最大ディスクの中心点 6)と の連結直線とその接触点での輪郭線との各接線(22),(24)力;、 各々 相互垂直に合う特性をもつ。 そして、 各接触点(12),(U)の連結直 線(26)の二等分点(28)は勿論、 Rの性質に依ってこの最大ディス クの中心点 6)からの直線とこの接触点連結直線 (26) が垂直に合
う点、と一致する。 By the way, as shown in Fig. 1, the maximum disk (18) is connected to the contour line (10) at each point of contact (12), (14) with the center point 6 ) of the maximum disk and the contact line. Each tangent (22), (24) force with the contour at the point; each has the property of being mutually perpendicular. The straight line from the center point 6 ) of this maximum disk 6 ) depends on the nature of R as well as the bisecting point (28) of the connecting straight line (26) of each contact point (1 2 ) and (U). This contact point connecting straight line (26) Match.
以上の対称軸変換においての最大ディスクの関連特性を、 上記で仮 定したある物体の立体形象と関連させて 2図においてのように考え てみよう。 R錐 (96) に対してはより明確でありえるが、任意の立 体形象 (94) に対し見よう。 立体形象 (94)を両眼のようにステレ ォセンサー(Stereo Sensor) (100),(102) で見たとき、 その立体形 象の一部を構成していると仮定したある特定の球(Sphere) (88) の特定部分であるディスク(Disk) (90) を 2図に於いてのように 表すことができる。 ところで、与えられた空間座標界内に存在する このようなディスクの,アイデンティフアイ (Identify)'は その空 間座標界内に於いてのこのディスクの中心点の位置、 ディスクの向 き(Orientation)及びその大きさに依って可能である。 これらはそ のディスクが属する球の中心点の位置、 その球の大きさ及びその球 内におけるディスク中心点の位置によっても可能である。 勿論後者 の場合、 球とディスクの中心点の位置が同じならば別途にディスク の向きに対する も必要である。 Let us consider the related characteristics of the largest disk in the above symmetric axis transformation in relation to the three-dimensional image of an object assumed above as shown in FIG. It can be more explicit for the R-cone (96), but let's look at any morphological figure (94). When a stereoscopic image (94) is viewed with stereo sensors (100) and (102) like two eyes, a specific sphere (Sphere) is assumed to form a part of the stereoscopic image. Disk (90), which is a specific part of (88), can be represented as shown in Figure 2. By the way, the Identify 'of such a disk that exists in a given space coordinate field is the position of the center point of this disk in the space coordinate field, the orientation of the disk (Orientation ) And its size are possible. These are also possible depending on the position of the center point of the sphere to which the disk belongs, the size of the sphere, and the position of the center point of the disk within the sphere. Of course, in the latter case, if the position of the center point of the sphere is the same as that of the disk, it is necessary to separately apply the direction of the disk.
ここにおいて立体形象 (94) を両センサ一で見たときの各々センサー 座標で (100),(102) に結ばれた輪郭線 (10), (30) 形象に対し対称 軸変換を適用したとき、各々のある最大ディスク ひ 8),(38) が球 (88) を各方向から見たときの各々のセンサー座標に結ばれた形象だと思 う。 そうすれば各最大ディスクの中心点 (16),(36) は球 (88) の中 心点 6) に対応し、 各々の対称軸 (20),(40) 上の点 ひ6),(36) を共有するという «による各輪郭線 (10),(30)上の対応点 (12), (14) 及び(32),(34)は各々ディスク (90)の外郭 の点(52),(54)及び
(72),(74)に対応させることができる。 Here, when the three-dimensional image (94) is viewed by both sensors, the contour lines (10) and (30) connected to (100) and (102) at the sensor coordinates, and the symmetric axis transformation is applied to the image. It is assumed that each of the largest discs 8), ( 38 ) is a shape connected to each sensor coordinate when the sphere (88) is viewed from each direction. That way the center points of the maximum disk (16), (36) corresponds to the center point 6) in the sphere (88), each axis of symmetry (20), (40) shed points on 6), ( The corresponding points (12), (14) and ( 32 ), ( 34 ) on each contour line (10), (30) by sharing 36 are the points ( 52 ) on the outer edge of the disc ( 90 ). ), ( 54 ) and (72), (74).
また、 対応点 (12),( )及び (32),(34) 間の連結直線 (26), (46) は 各々ディスク(90)の中心点 (76)を) しながらディスク外郭線上 の点 (52),(54)及び (72),(74)を連結する直線 (66),(86)に対応さ せることができる。 そうすれば、 この対応点連結直線(26),(46)の 二等分点 (28),(48) は各センサーの方向から見たときのディスク (90) の中心点 (76)に対応が可能である。 のように,仮定した球,と ,ディスク,及び対称軸変換による各輪郭線形象に対する,最大ディ スク,の関係及び特性によって具体的に次のように二つの輪郭線形 象信号に対する解釈をする。 Also, the connecting straight lines (26), (46) between the corresponding points (1 2 ), () and ( 32 ), ( 34 ) are located at the center point (76) of the disk (90), respectively. Points ( 52 ), ( 54 ), and ( 72 ), ( 74 ) can be made to correspond to straight lines (66), (86). Then, the bisecting points (28) and (48) of the corresponding point connecting straight lines (26) and (46) correspond to the center point (76) of the disk (90) when viewed from the direction of each sensor. Is possible. According to the relationship and characteristics of the assumed sphere, the disk, and the maximum disk for each contour linear elephant by the symmetrical axis transformation as described above, the two contour linear elephant signals are specifically interpreted as follows.
まず、 両輪郭線形象に対し対称軸変換を適用すれば各輪郭線に対し 形成する対称軸上の,(16)のようなある点,とその点を共有すると いう事実に起因する輪郭線上の,(12),(14)のような二つの対応点, 等三つの点を一束にするュニッ ト(Unit)の両集団が二つの輪郭線 形象に対し形成される。 このように形成された両集団間に存在する ュニット間の対応関係を設定するに於いて、 各ュニッ トに対し対称 軸上の点を前述で仮定したある球の中心点をある一つの方向から見 た時のセンサー座標に結ばれた点であるとする。 また、 各ュニット の輪郭線上の二つの対応点を前述で仮定したある球内のあるデイス クをある一つの方向から見た時センサー座標に結ばれたそのディス クの両端点だと想定し、 その対応点の連結直線の二等分点をそのディ スクの中心点をある一つの方向から見たときのセンサー座標に結ばれ た点とする。 終わりに各ュニッ 卜の輪郭線上の対応点の連結直線を 前述で仮定したディスクをある一つの方向から見た時のそのディス
クの中心を通過しながら互いに見るディスク外郭線上の両端点の連 結直線であると見るため、結果的にディスクの大きさと関係がある ものと見る。 First, if the symmetry axis transformation is applied to both contour linear elephants, the point on the symmetry axis formed for each contour line, such as (16), and the point on the contour line due to the fact that the point is shared, Two groups of Units that unite three points, such as two corresponding points such as, (12) and (14), are formed for two contour shapes. In setting the correspondence between the units formed between the two groups formed in this way, the center point of a sphere is assumed from one direction, assuming the point on the axis of symmetry for each unit as described above. It is assumed that the point is connected to the sensor coordinates when viewed. Also, assuming that two corresponding points on the contour line of each unit, when a certain disk in a certain sphere assumed in the above is viewed from a certain direction, it is assumed to be both end points of the disk connected to sensor coordinates, The bisecting point of the connecting straight line of the corresponding point is the point connected to the sensor coordinates when the center point of the disk is viewed from one direction. At the end, the connecting line of the corresponding point on the contour line of each unit is drawn when the disk assumed above is viewed from one direction. It is considered to be related to the size of the disc because it is considered to be a connecting straight line between both end points on the disk outline that are viewed from each other while passing through the center of the disc.
m_hに於いての球及びディスクの中心点とディスクの大きさ等を特 徵点もしくは特徴事項として各センサーの特性と二つのセンサー座 標界及び空間座標界等の,センシング環境 '(Sensing Condition)を 考慮し解釈することによって両集団間のュニット間の一対一(Oiie- to-One)対応関係を設定する。 The center of the sphere and the disk at m_h and the size of the disk, etc. are the special points or characteristics, and the characteristics of each sensor and the sensing environment, such as the two sensor coordinate fields and the spatial coordinate field. By taking into account and interpreting, a one-to-one (Oiie-to-One) correspondence between units is set.
このように設定された両集団間の対応する二つのュニットに対し次 のような解 ^程を経て、立体形象を成していると仮定した各ディ スクに対する状態を導出する。 まず、対応関係にある両ュニットの 二つの輪郭線上の対応点逮結直線に対する両二等分点を、 センシン グ環境を考慮し解釈することによって該当ディスクの中心点の与え られた空間座標界における座標値を計算する。 そして対応関係にあ る両ュニットの二つの輪郭線上の対応点連結直線の両センサー座標 における向き(Orientation)をセンシンク環境を考慮し解釈するこ とにょづて、該当ディスクの空間座標界における向きがわかること になる。終わりに、両ュニッ トの対応点連結直線の長さをセンシン グ環境を考慮して解釈することによつて該当ディスクの大きさがわ かる。 Jithの過程を全体対応ュニットに適用して得た大きさと空間 座標界においての中心点の位置および向き等によって定義されるディ スクの集まりの形態で対象物体の立体形象を再構成及び記述するこ とによつてそれの立体形象を認識する方法とする。 With respect to the two units corresponding to the two groups thus set, the state for each disk assuming a three-dimensional image is derived through the following solution. First, the two bisecting points of the corresponding unit arrest straight line on the two contour lines of the corresponding unit are interpreted in consideration of the sensing environment to obtain the center point of the corresponding disk in the given spatial coordinate field. Calculate coordinate values. By interpreting the orientation (Orientation) of the corresponding point connecting straight line on the two contour lines of the corresponding units in the two sensor coordinates in consideration of the sensor environment, the orientation of the corresponding disk in the spatial coordinate field is determined. You will understand. Finally, the size of the corresponding disk can be determined by interpreting the length of the corresponding point connecting straight line of both units in consideration of the sensing environment. Reconstruct and describe the 3D figure of the target object in the form of a set of disks defined by the position and orientation of the center point in the space and coordinate space obtained by applying the Jith process to the overall correspondence unit. And a method for recognizing the three-dimensional image of the object.
対称由変換 (Symmetric Axis Transform)による平面輪郭線形象に
対する表現手段は次のような特性をもつ。 Planar contour linear elephant by Symmetric Axis Transform The expressing means has the following characteristics.
•重ならなく (複合しない)単純な輪郭線力一ブ(Simple Contour Curve)の対称軸抽出に効果的である。 • It is effective for extracting the symmetry axis of a simple contour curve without overlapping (not compounding).
•局部対称(Local Symmetry)の定義を含蓄しているので形象 の細かい部分にまで忠実な表現が可能である。 • Since the definition of Local Symmetry is implied, it is possible to express faithfully even in the details of the shape.
•一つの形象に対しては一つの対称軸しか存在しない。即ち固有 の再生的な (Uniquely Recoverable)特性を持つ。 本発明は基本的に対称軸変換を基礎とするので立体形象に対し本発 明の特性も ΰϋιの対称軸変換特性をそのままもっているといえる。 • There is only one axis of symmetry for one shape. In other words, it has a unique reproducible (Uniquely Recoverable) characteristic. Since the present invention is basically based on the symmetry axis conversion, it can be said that the characteristics of the present invention have the same symmetry axis conversion characteristics of ΰϋι for a three-dimensional image.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
1図は、 対称軸変換 (Symmetric Axis Transform)の説明図で る o Fig. 1 is an illustration of Symmetric Axis Transform.
2図は、 球(sphere) とディスク (disk)の概念を利用した立体形象 再構成の説明図である。 Figure 2 is an explanatory diagram of a three-dimensional image reconstruction using the concept of a sphere and a disk.
3図は、 実施例に於いての二つのセンサ一座標及び空間座標界の関 係説明図である。 FIG. 3 is an explanatory diagram showing the relationship between one sensor coordinate and a spatial coordinate field in the embodiment.
4図は、 二つのセンサー座標データからのディスクの向きの計算説 明図である。 Fig. 4 is an explanatory diagram of the calculation of the disk orientation from the two sensor coordinate data.
5図は、 求められたあるディスクの空間座標界上における姿(Shape) である。 Figure 5 shows the determined shape of the disc on the spatial coordinate field.
6図は、 ある一つのディスクの形象表現の記述から空間座標界上に
おける姿に復元するための計算説明図である。 Fig. 6 shows the description of the shape of one disk on the spatial coordinate field. It is calculation explanatory drawing for restoring to the figure in which it is.
7図は、立体形^ ygシステムの構成ダイアグラムである。 FIG. 7 is a configuration diagram of the three-dimensional ^ yg system.
*符号の説明 * Explanation of sign
12, 1 (32, 34) :対称軸 20 (40)上にある点 16 (36)を 共有する輪郭線 10 (30)上の二つの対応点 12, 1 (32, 34): Two corresponding points on contour 10 (30) sharing point 16 (36) on symmetry axis 20 (40)
18 (38) :対応点 12, 14 (32, 34)に同時に接する最大ディス ク 18 (38): Maximum disk that touches the corresponding points 12, 14 (32, 34) at the same time
26 (46) :対応点 12, 14 (32, 34)の連結直線 26 (46): Connected straight line of corresponding points 12, 14 (32, 34)
28 (48) :対応点連結直線 26 (46)の二等分点 28 (48): Bisection point of the corresponding point connecting straight line 26 (46)
16 (36) :最大ディスク 18 (38)の中心点 16 (36): The center point of the maximum disc 18 (38)
22 (24) :点 12 (14),の上の輪郭線に対する接線 22 (24): tangent to the contour above point 12 (14)
9 :ある立体形象の例 9: An example of a solid figure
96 :円錐の例 - 96: Example of a cone-
88 :球 (sphere) 88 : sphere
90 :ディスク(disk) 90: Disk
56 :球 88の中心点 56: The center point of the sphere 88
100 (102) :左側(右側) センサー及びセンサー座標 100 (102): Left (right) sensor and sensor coordinates
52、 54 (72、 74) :センサ一座標 100 (102)に形成された 点 12, 14 (32, 34)に対応するディスク 90の両端点 52, 54 (72, 74): Both end points of the disc 90 corresponding to the points 12, 14 (32, 34) formed at the sensor one coordinate 100 (102).
66 (86) :点 52, 54 (72, 74)の連結直線であり 26 (46)に対応 66 (86): Connected straight line of points 52, 54 (72, 74), corresponding to 26 (46)
76 :ディスク 9 Qの中心点で直線 66, 86の交点であり 28, 48に 対応 76: Disc 9 Q center point is the intersection of straight lines 66 and 86, corresponding to 28 and 48
104 :直径情報を持ち原点に中心をもつ X - z平面座標 のディ スク
1 10 :センシング (sensing)空間座標界 104: Disk in X-z plane coordinates with diameter information and center at origin 1 10: Sensing space coordinate field
1 12 : ステレオセンサー及びその座標界 1 12: Stereo sensor and its coordinate field
1 14 :輪郭線検出システム(System) 1 14: Contour detection system (System)
1 16 :複合輪郭線分解システム 1 16: Composite contour decomposition system
1 18 :対,変換システム 1 18: Pair, conversion system
120 :対応ュニット探索システム 120: Compatible unit search system
122 :対応ュニット解析システム 122: Supported unit analysis system
124 :立体形象表現システム 124: 3D image representation system
126 :立体形象合成システム 126: 3D figure synthesis system
128 :座標解析システム 128: Coordinate analysis system
130 :使用空間座標界 130: Coordinate field of use space
132 :立体形象復元システム 132: 3D image restoration system
134 :立体形象認識システム 134: Recognition system for 3D objects
136 :立体形象検査システム 136: 3D image inspection system
140 : センシング環境に関する情報140: Information on sensing environment
42 :使用空間座標情報 42: Use space coordinate information
144 : 110、 130間の座標変換関係†S¾ 144: Coordinate transformation relation between 110 and 130 † S¾
1 6 :複合輪郭線の構成関係情報 16: Configuration information of composite contour
ステレオ輪郭線形象情報から物体の立体形象を認識するに於い て本発明の一つの具体的実施例として次のようなセンシング環境へ
の適用に対し調べてみょう。 In recognizing a three-dimensional image of an object from stereo contour linear elephant information, as one specific embodiment of the present invention, the following sensing environment is used. Check the application of.
まず、 3図に於いてのように左側センサー座標 (loo)を gi とし設 定したある空間座標界(World Coordinate)を考えてみょう。 First, consider a certain spatial coordinate field (World Coordinate) in which the left sensor coordinate (loo) is set to gi as shown in Fig. 3 .
センサー座標 (100)の 2次元平面 U - V座標界に対し U軸に平行し 同じ方向の X軸と、 V軸に平行し同じ方向の Y軸を設定し、 センサー (100)が Z軸のマイナス(Minus)方向に無限大(Infinity)点に向かつ ているとしょう。 また、 センサー(100)と 6>度に Y軸を中心に反時 計方向に回転した位置に同じ特性のセンサー(102)が位置している としょう。 それゆえ 3図で見えるようにセンサー(102)座標の平面 u - V座標界に対し U軸に平行し同じ方向の X,軸と V軸に平行し 同じ方向にセンサー(ioo)に於けるのと同じく γ軸を考えることが でき、 センサー(102)が 軸のマイナス方向に無限大の点に向かつ ているとしょう。 Set the X axis in the same direction parallel to the U axis and the Y axis in the same direction parallel to the V axis with respect to the two-dimensional plane U-V coordinate field of the sensor coordinates (100). Let's say you are pointing towards the Infinity point in the Minus direction. Also, let's assume that the sensor (102) with the same characteristics is located at a position rotated counterclockwise around the Y axis 6 degrees from the sensor (100). Therefore, as can be seen in Fig. 3, the plane of the sensor (102) coordinate is parallel to the U-axis with respect to the u-V coordinate field and in the same direction. Let's assume that the sensor (10 2 ) points to the point of infinity in the minus direction of the axis.
ここに於いて、 センシング環境のキヤリブレーション (Calibration) のため両センサ一間の角度を Θ度回転させるとき空間座標界の回転 の中心として Y軸と思つた IftJのある適切な空間上の一つの点に対 し各センサ一座檫 (100),(102)の U - V座標界の該当点を各 U - Vセ ンサー座標の原点として、 この空間上の点をこの空間座標界の X - Y - Z軸の原点とする。 すれば、 JT及び ^軸は各々 X及び Z軸に 対し Y軸を中心に Θ度反時計方向に回転したとみることができる。 また、 センサー特性として計算の便宜のためニ^センサー座標平 面に対し均一な特性をもち、 各センサーの焦点距離 (Focal Length) に該当する値が無限大で U - Vと X (もしくは: T ) - Y間の倍率が 1であると仮定する。
このようなセンシング環境で二つの輪郭線形象に対する両集団間の ュニット間の一対一対応関係設定のための望ましい条件を調べてみ よう。 Here, when the angle between the two sensors is rotated by の た め ° due to calibration of the sensing environment, one point on the appropriate space with IftJ which is thought to be the Y axis as the center of rotation of the space coordinate field For each point, the corresponding point in the U-V coordinate field of each sensor locator 檫 (100), (102) is set as the origin of each U-V sensor coordinate, and a point in this space is defined as X- Set to the origin of the Y-Z axis. Then, it can be seen that the JT and ^ axes have rotated counterclockwise by about Θ degrees about the Y axis with respect to the X and Z axes, respectively. In addition, the sensor characteristics have uniform characteristics to the sensor coordinate plane for convenience of calculation, and the value corresponding to the focal length (Focal Length) of each sensor is infinite and U-V and X (or: T )-Suppose the magnification between Y is 1. Let us examine the desirable conditions for establishing a one-to-one correspondence between units between two groups for two contour linear elephants in such a sensing environment.
•特徴点であるある仮定した球の中心点と関連して、両集団間ュ ニット間の対称軸上の点に対する両センサー座標上におけるそ の V軸値を比較して原則的に同じかを調査する。 • In relation to the center point of a hypothetical sphere that is a feature point, comparing the V-axis values on both sensor coordinates with respect to the point on the symmetry axis between the two groups, it is basically determined whether they are the same. investigate.
•他の特徴点であるある仮定したディスクの中心点と関連して、 両集団間のュニット間の対応点連結直線の二等分点に対する両 センサー座標上においてのその V軸値を比較して原則的に同じ かを調査する。 • Compare the V-axis value on both sensor coordinates to the bisecting point of the corresponding point connecting straight line between the units, in relation to the center point of the assumed disk, which is another feature point. Investigate whether they are the same in principle.
•残った特徴事項であるある仮定したディスクの大きさと関連し て、両集団間ュニット間の対応点連結直線の長さが原則的に同 じかを調査する。 以上の三つの望ましい条件外でも三つの条件を全て満たした両集団 間ュニットがー対一ではなく複数の対応関係が生じた場合、 このセ ンシング環境においてセンサーシステムキヤリブレーションと関連 して両集団間のュニット間の対称軸上の点の両センサー座標上にお けるその u軸値を調査してその値が比較して相対的に近いュニット を一対一対応関係にする。即ち、二つのセンサーが大体対象物体(Object)に焦点を合わせていれば各々仮定したある球の中心点の両セ ンサー座標上の U軸値も大差がおこらない故である。 このためには、 対象物体を出来るだけ空間座標界の Y軸近くに位置するようにする 必要性があるといえる。
前述の対応関係設定過程に於いて定められた一対一対応関係にある 両集団間の対応する両ュニットに対し与えられたセンシング環境を 考慮して解釈すれば次のようである。 • Investigate whether the length of the straight line connecting the corresponding points between the two groups is essentially the same, in relation to the remaining feature, the assumed disk size. If there is not one-to-one unity relationship between the two groups that satisfy all three conditions outside of the above three desirable conditions, and there are multiple correspondences in this sensing environment, both groups will be related to the sensor system calibration. The u-axis values of the points on the symmetry axis between the units in the two sensor coordinates are examined, and the values are compared to form a unit that is relatively close to one-to-one correspondence. That is, if the two sensors are focused on the object, the U-axis values on both sensor coordinates of the assumed center point of a certain sphere do not differ greatly. To this end, it is necessary to position the target object as close as possible to the Y-axis of the spatial coordinate field. The interpretation is as follows, taking into account the sensing environment given to both corresponding units between the two groups in the one-to-one correspondence defined in the above-described correspondence setting process.
まず、該当ディスクの中心点の空間座標界に於いての位置計算のた め 3図に関し考えてみょう o与えられた空間座標界のある点 PO, y, z) が左右の各センサ一座標(100),(102)に各々! Pr{Ur,Vr)と 結ばれたとすれば ρ点が左側センサー座標 (100)には投影されるよ う結ばれ、 右側センサー座標(102) に対しては Y軸を中心に 0度 時計方向に回転した状態で投影されるように結ばれ,《が零 (zero)で なければ、 First, consider the diagram in Fig. 3 to calculate the position of the center point of the disk in the spatial coordinate field. O A point PO, y, z ) in the given spatial coordinate field is determined by the coordinates of the left and right sensors (PO, y, z ). Assuming that Pr (Ur, V r ) is connected to (100) and (10 2 ), respectively, point ρ is connected so that it is projected on the left sensor coordinate (100), and it is connected to the right sensor coordinate (102). Are connected so that they are projected in a state of being rotated clockwise by 0 degrees about the Y axis, and if 《is not zero,
(ΜΓ, υΓ, ΐϋΓ, 1) (Μ Γ , υ Γ , ΐϋ Γ , 1)
(2)
に表すことができる。式(1),(2)で f, wrはダミ一(dummy)変数で ある。 センサ一の焦点距離に該当する値 f が無限大だと仮定したの で空間上の点 rc, y, z)のこの空間座標界での各座標値は (2) Can be expressed as In equations (1) and (2), f and w r are dummy variables. Assuming that the value f corresponding to the focal length of one sensor is infinite, each coordinate value in the space coordinate field of the point rc, y, z) in space is
X = Ui X = Ui
V = vi (or) ντ (3) ui · cos θ— uT V = vi (or) ν τ (3) ui · cos θ- u T
sin O
に表されることができる。 ' sin O Can be represented by '
それ故に対応関係にある両ュニッ ト中の左側センサー座標(100)の ュニッ ドの輪郭線上の対応点連結直線の二等分点、 例えば点(28)の U, V軸値を(u, ,)にして、 右側センサー座標(102)の該当点、 例 えば、 点 (48) の U, V軸値を (Mr, t r)にして式 (3) に代入計算 すればその該当ディスクの中心点、 例えば、 (76) 点のこの空間座 標界に於いての座標値をわかることができる。 Therefore, the bisecting point of the corresponding point connecting straight line on the contour of the unity of the left sensor coordinate (100) in both units in the corresponding relation, for example, the U and V axis values of the point (28) are (u,, ) in to the corresponding point of the right sensor coordinates (10 2), eg if its corresponding disk by substituting computation U point (48), the V-axis value (M r, in the t r) equation (3) For example, the coordinates of the center point of, for example, the point (76) in this spatial coordinate field can be found.
又、 対応する両ュニッ トにおける二つの対応点連結直線の長さを考 慮し、例えば、 二つの値を平均する等、 該当ディスクの大きさ、 即 ち直径 dを計算することができる。 Also, taking into account the length of the two corresponding point connecting straight lines in both corresponding units, the size of the corresponding disk, that is, the diameter d can be calculated, for example, by averaging the two values.
終わりに残りの一つの要素であるディスクの空間座標界においての 向きは次のように計算される。 4図のようにある対応する両ュニッ ト中、 左側センサー座標のュニッ トの輪郭線上の対応点の連結直線 のこの座標界 (100) においての向きを 、 右側ュニッ 卜の対応点 の連結直線の 右側センサー座標界 (102) においての向きを と すれば r, = at + (4) ra = a'l + b't に表示が可能で、 このセンシング環境では& = 6' といえる。 そ して該当ディスクの向き rは 7 と のべク トル (vector)合成によつ て該当空間座標界に対し次のように求められる。 r = at + b + ck (5)
4図力ら式 (5)において α = s b = cosa At the end, the remaining element, the orientation of the disc in the spatial coordinate field, is calculated as follows: 4 As shown in Fig. 4, the direction of the connecting line of the corresponding point on the contour of the unit on the left sensor coordinate in this coordinate field (100) in both corresponding units is the line of the connecting line of the corresponding point on the right unit. If the direction in the right sensor coordinate field (102) is taken as r, = at + (4) r a = a'l + b't, it can be said that & = 6 'in this sensing environment. Then, the direction r of the relevant disk is obtained as follows for the relevant spatial coordinate field by vector synthesis of 7 and. r = at + b + ck (5) 4 In equation (5), α = sb = cosa
sm a - oos ^― cosひ ·■ tan β sm a-oos ^-cos hi
c = c =
81Ώ.Θ ここで o:, ?は a - tan-l Pfl(t?)-P"(u) 81Ώ.Θ where o :,? Is a-tan- l Pfl (t?) - P " (u)
=tan.1^^ l = tan . 1 ^^ l
Pr2(")-Prl(") ここで式 ( ),(5)及び 4図における i fc及び 各々この空間座標 界の X, Y, Z及び X'軸の単位ベクトルである。 P r2 (") -P rl (") where i fc in equations (), (5) and 4 and the unit vector of the X, Y, Z and X 'axes of this spatial coordinate field, respectively.
J¾_ の解釈を通じある物体の一部分を成していると仮定したあるディ スクに対する該当空間座標系での中心点の位置、 向き、及び大きさ、 即ち直径を求める計算法がこの実施例のセンシング環境に対して求 められた。 これら過程を両輪郭線集団の全体対応関係ユニットに対 し適用すれば、立体形象を表現する全体のディスクの集まりに対し て計算することができる。 The calculation method for calculating the position, orientation, and size, that is, the diameter, of the center point in the corresponding spatial coordinate system for a certain disk assumed to be a part of an object through the interpretation of J¾_ is the sensing environment of this embodiment. Was sought. If these processes are applied to the whole correspondence unit of both contour line groups, it can be calculated for the whole set of disks representing the three-dimensional image.
このように求められた一つのディスク、例えば、 ある物体(94)を 構成するディスク中順番 iのディスク (90) は 5図のように該当空 間座標界上に表すことができる。又、 これに対する表現は(6)の表 現式のように表すことができる。 One disk determined in this way, for example, the disk (90) of order i among the disks constituting a certain object (94) can be represented on the corresponding space coordinate field as shown in FIG. The expression for this can be expressed as the expression in ( 6 ).
X{ yi Z{ d{ a{ b{ ί 6)
表現式 (6) に於いて , yi, はこのディスクの中心点の該当空間 座標値であり, はこのディスクの直径そして α,·, b αは各々該当 空間座標界 X, Y, z軸方向に対する単位べクトルの量でこのディ スクの向きに関する情報をもっている。 X {yi Z {d {a {b {ί 6) In expression (6), yi , is the corresponding spatial coordinate value of the center point of this disk, is the diameter of this disk and α, ·, b α are the corresponding spatial coordinate fields X, Y, and z-axis directions, respectively. It has information about the orientation of this disc in the amount of vector per unit.
又、 ある立体形象が n個の特定ディスクの集まりで構成されていれ ば次のような表現式 (7) によって表されることができよう。
If a certain three-dimensional figure is composed of a set of n specific disks, it can be represented by the following expression (7).
\ (7) Xi yi Zi di , も,' c, \ (7) Xi yi Zi di, also, 'c,
d„ だが、 このような表現式において該当ディスクの中心点の位置に関 する , ', 及びその向きに関する ひ &,, = 1〜 は絶対的 な値でない該当空間座標界に対する 相対的な値であつて空間座標 界の変化によって相対的 に変わる値である。 しかし一つの物体に 対してこのディスクの相互間の相対的な値は一定である。 However, in such an expression,, 'regarding the position of the center point of the disc and ひ & ,, = 1 ~ regarding the direction of the disc are relative values to the corresponding spatial coordinate field which are not absolute values. It is a value that changes relative to the change in the spatial coordinate field, but the relative value of this disc to one object is constant.
表現式 (6) のような立体形象を構成する一つのディスクの表現式 からの形象復元のための立体形象表面の一つの部分と思われる一つ のディスク (90) の外郭線上の該当空間座標界においての座標値計 箅は次のようである。 まず 6 (a)図においてのように直径が であ り、 その中心点を原点において X - Z平面上に存在するディスク(104) に対し考えてみょう。 The corresponding spatial coordinates on the outline of one disk (90), which is considered to be one part of the three-dimensional image surface for reconstruction of the three-dimensional image from the expression of one disk constituting the three-dimensional image as in Expression (6) The coordinate value meter 界 in the field is as follows. First, consider a disk (104) whose diameter is as shown in Fig. 6 (a) and whose center point is on the X-Z plane at the origin.
このディスクの向きは Y軸方向と同じで raと表示されている。
ディスク (104) の外郭線上の座標値は式(8)のように表すことが できる。 di 广 Orientation of the disc is labeled same as r a and the Y-axis direction. The coordinate values on the outline of the disk (104) can be expressed as in equation (8). di wide
— — · cos ς y = 0.0 (8) z = ― · sin ς 式(8)で ζは 0から 360度までの値である。 — — · Cos ς y = 0.0 (8) z = ― · sin で In equation (8), ζ is a value from 0 to 360 degrees.
そして現在の向き raは表現式 (6) によって式(9 )の rに 6(b)図 のように変換されるべきである。
And should the current orientation r a is translated as r in 6 (b) view of the Formula (9) by expression (6).
6(b)図から From Figure 6 (b)
6; 6;
a = cos a = cos
a,' a, '
β = cos β = cos
Ci Ci
7 = cos 7 = cos
i,- i + a ^ 但し, if a,=6,=0 then a =0 °, =90。 and 7=0 ° , if at=c,=0 then a =0 ° =0 ° and 7=90 ° , if
° . であ1 &ひ i,-i + a ^ where if a, = 6, = 0 then a = 0 °, = 90. and 7 = 0 °, if a t = c, = 0 then a = 0 ° = 0 ° and 7 = 90 °, if °. Der 1 & shed
J^JLhからディスク (104) の回転 Jl及び移動 Tを考慮したその外郭 線上の空間座標界においての座標値 {Xo Vo, Z0)は次のように計算で きる。 From J ^ JLh, the coordinate value (Xo Vo, Z 0 ) in the spatial coordinate field on the outer line considering the rotation Jl and the movement T of the disk (104) can be calculated as follows.
0 = IR + T (10)
式(10)で O = ( x0, yD, z0j 1)で、式(8)から J = ( a;, y, z, 1), 表現式(6)から T = ( Xi, , 2 1)で、 0 = IR + T (10) O = (x 0, y D , z 0j 1) , the equation (8) from J = (a ;, y, z , 1), T = (Xi from expression (6), the formula (10), 2 1)
である。 ただし、 7' =90。 - 7, It is. However, 7 '= 90. -7,
産業上利用可能性 前述の実施例においては一つの特定したセンシング環境 (Sensing Condition)に対する本発明の実現を言 した。 しかし球(Sphere) とディスク(Disk)の特性を利用した本発明の適用はこの実施例に 限らないのは勿論である。 Industrial Applicability In the above embodiment, the realization of the present invention for one specified sensing environment (Sensing Condition) has been described. However, it goes without saying that the application of the present invention utilizing the characteristics of a sphere and a disk is not limited to this embodiment.
即ち、 前述に列挙した,球とディスクの特性,を利用した二つの輪 郭線集団間のュニッ ト間一対一対応関係設定及び対応関係にあるよ うに設定された両ュニッ トの解釈のため、 二つのセンサーの特性及 び二つのセンサー座標と空間座標界との関係等と関連してセンシン
グ環境設定の め適切なキヤリブレーシヨ ン(Calibration)が必要 である。 このようなキヤリブレーションのための各々の場合におけ る方法は一般的に多ぐの文献を通じ十分に することができる。 故に、 このようなキヤリブレーションの実施と共にステレオ輪郭線 形象情報を得ることができる全ての■のセンサー及びその搆成シ ステムに対し本発明精神の実現が可能である。 That is, in order to set the one-to-one correspondence between the units between the two contour groups using the characteristics of the sphere and the disk, and to interpret both units set to be in the correspondence described above, In relation to the characteristics of the two sensors and the relationship between the coordinates of the two sensors and the spatial coordinate field, etc. An appropriate calibration is required to set the environment. The method in each case for such a calibration can generally be adequately documented in the extensive literature. Therefore, the spirit of the present invention can be realized for all sensors that can obtain stereo contour information together with the execution of such a calibration, and for all the sensors and their systems.
又、 このような方法の実現のための一つの構成例として 7図のよう なブロックダイアグラムを考えることができる。 まず、 センシング (Sensing)空間座標界(110) にある、 ある対象物体に対する形象信 号をステレオセンサー (112) を通じ受け入れ各々の信号に対し輪 郭線を検出† (114) した後、重なっている複合輪郭線に対しては 単純な形態に分解† (116) し、 その各々を順次に対称軸変換シス テム (118) に送り対 変換後、 センシング環境 (140) を考慮し 両輪郭線間の対応ュニット探索 (120)、対応ュニット解釈 (122) 及び解釈された情報による立体形象を表現 (124)する。 In addition, a block diagram as shown in FIG. 7 can be considered as one configuration example for realizing such a method. First, a shape signal for a certain object in the sensing spatial coordinate field (110) is received through a stereo sensor (112), and a contour line is detected for each signal. The complex contours are decomposed into simple forms (116), and each is sequentially sent to the symmetric axis conversion system (118). A corresponding unit search (120), a corresponding unit interpretation (122), and a three-dimensional figure based on the interpreted information are expressed (124).
このような各分解された部分に対する立体形象表現を複合輪郭線分 解システム (116) からの複合輪郭線間の構成関係情報(146)を参 考にして合成†(126)し表現する。 このように立体形象に関する表 現はセンシング空間座標界 (110) と使用空間座標界 (130)間の座 標関係解釈†(128) による座標変換情報 (144) とともに各々の使 用目的に利用できる。一般的に考えられる使用可能分野は大体立体 形象の復元(132)、立体形象の認識 (134)及び立体形象の検査 (136) 等の広い範囲をもつ。 The three-dimensional representation of each of the decomposed parts is synthesized (126) with reference to the composition relation information (146) between the composite contours from the composite contour decomposition system (116) and expressed. This way representable the sensing space coordinate field from the three-dimensional figure (110) and use space coordinates field (1 3 0) coordinates related interpretation † (128) the coordinate transformation information (144) with each use for purposes by between Available. The fields of use that can be generally considered include a wide range, such as reconstruction of three-dimensional figures (132), recognition of three-dimensional figures (134), and inspection of three-dimensional figures (136).
前述のように本発明における方法は立体形象の認識においてステレ
ォ入力信号に対する輪郭線形象情報だけを必要とするためセンサー 入力信号に対する比較的簡単な前処理 (Preprocessing)だけを必要 とし、 また対象物体に対する詳細な表現も可能で、 与えられた入力 信号に対する唯一な(Unique)出力をも持ち、 立体形象の表現のた めの基本単位(Primitives)も簡単でこれを合成すれば十分な表現が できるディスクの形としてもつと大きな有用性を持つ等の立体形象 認識システムに適用するために重要な利点をもつ。 As described above, the method according to the present invention can be applied to stereoscopic image recognition. It requires only simple preprocessing for the sensor input signal because only the contour linear elephant information for the input signal is required.Also, detailed representation of the target object is possible, and only one It has a unique output (Unique), and the basic units (Primitives) for expressing the three-dimensional image are simple and can be sufficiently expressed by synthesizing it. It has important advantages for application to recognition systems.
†この方法は公知の技術により十分達成可能0
† This method can be sufficiently achieved by known techniques.
Claims
特許請求の範囲 Claims
1 · 対象物体に対しセンサー(Sensor)を通じその物体の二つの方 向から得たステレオ(Stereo)輪郭線形象情報からその立体形象を認 識するに於いて a)対象物体のある切断面が各々その物体内部に存在するものと仮 定されるある!^な,球, (Sphere)の特定な部分として仮定さ れる,ディスク '(Disk)によって表されるようにその物体の立 体形象ができていると仮定して、二つの輪郭線形象に対し各々 対称軸変換 (Symmetric Axis Transform)を適用して、 その 結果各輪郭線形象に対し形成される対称軸(Symmetric Axis) 上のある点とその点を共有するという ¾ϋに起因する輪郭線上 の二つの対応点等三つの点を一束にするュニット(Unit)の両 集団が二つの輪郭線形象に対し形成され; b)前述で仮定した,球とディスクの特性,を利用し両集団間のュ 二ット間の一対一 (1:1)対応関係を設定し; c) このように設定された対応関係にある両集団間の両ュニットに 対し前述で仮定した,球とディスクの特性,を利用し解釈する ことによって各ディスクに対する設定された空間座標界におい ての状態を認知し; d) このようにして求められた大きさ、空間座標界においての中心 点の位置及び向き等によってその状態が定義されるディスクの 集まりになるように対象物体の立体形象を再構成する;
ような過程を含むことを特徴とする方法. 1 · Recognition of the three-dimensional object from the stereo contour information obtained from the two directions of the object through the sensor through the sensor. Something is assumed to exist inside the object! Assuming that a cubic representation of the object has been made, as represented by the disk '(Disk), assumed as a particular part of the sphere, (Sphere), two contour linear elephants Each of them applies a Symmetric Axis Transform, and as a result, two points on the contour line due to と い う share the point with a point on the Symmetric Axis formed for each contour linear elephant. Two groups of Units that unite three points, such as two corresponding points, are formed for the two contour linear elephants; b) Using the characteristics of the sphere and the disk assumed above, A one-to-one (1: 1) correspondence between units is set; c) The characteristics of the sphere and the disk, assumed above, for both units between the two groups in such a set correspondence. In the spatial coordinate field set for each disk by using and interpreting Recognizing the state; d) Reconstructing the three-dimensional shape of the target object so that it becomes a collection of disks whose state is defined by the size, the position and orientation of the center point in the spatial coordinate field obtained in this way. Constitute; A method characterized by including such a process.
2 · 1項において両集団間のュニッ ト間の一対一対応関係を設定す るにおいて a)各ュニッ トに対し対称軸上の点を前述で仮定した球の中心点を ある一方向から見た時センサー座標に結ばれた点とみなし; b)各ュニッ トに対し輪郭線上の二つの対応点を前述で仮定したあ るディスクをある一方向から見た時のセンサー座標に結ばれた そのディスクの両端点と思い、 その対応点連結直線の二等分点 をそのディスクの中心点をある一方向から見た時のセンサー座 標に結ばれた点とみなし; c)各ュニッ トに対し輪郭線上の二つの対応点の連結直線を上述で 仮定したディスクをある一方向から見た時のディスクの中心を 通過しながら互いに見るディスク両端点の連結直線と見て、 結 果的にそのディスクの大きさと関係があると見る等; d) J¾_hの球及びその内部のあるディスクの中心点とそのディスク の大きさ等を特徴点及び特徴事項とする,球とディスクの特性 ,を利用して、 各センサーの特性及び二つのセンサー座標と空 間座標界との関係等と関連したセンシング環境 (Sensing Condition)を考慮して解釈する; ような過程を含む方法 In setting the one-to-one correspondence between units between the two groups in Section 2.1, a) The point on the symmetry axis for each unit is viewed from a certain direction with respect to the center point of the sphere assumed above. B) Assuming two corresponding points on the contour line for each unit, the disk tied to the sensor coordinates when one disk is viewed from one direction And the bisecting point of the line connecting the corresponding points is regarded as the point connected to the sensor coordinates when the center point of the disk is viewed from one direction; c) The contour for each unit Assuming that the connecting straight line of the two corresponding points on the line is the connecting straight line between the two end points of the disk viewed from each other while passing through the center of the disk when the disk is viewed from one direction, assuming the above, See that it is related to the size, etc .; d) J¾_h The characteristics of each sensor and the coordinates of the two sensors and the spatial coordinate field using the characteristics of the sphere and the disk, with the characteristic points and characteristics such as the center point of the disk inside the disk and the size of the disk, etc. Interpretation taking into account the sensing environment (Sensing Condition) related to the relationship with
3 · 1項において対応関係にあるものと設定された両集団間の対応
する二つのュニットに対した情報から各該当ディスクの状態を計箅 するにおいて、 a)対応関係にある両ュニットの各輪郭線上の対応点連結直線の二 つの二等分点をセンシング環境を考慮し解釈することによって、 該当ディスクの中心点の該当空間座標界においての座標値を知 り; b)対応関係にある両ュニットの各輪郭線上の対応点連結直線の各 センサー座標界においての 向き (Orientation)をセンシング 環境を考慮し解釈することによって該当ディスクの該当空間座 標界においての向きを知り; c)対応関係にある両ュニットの二つの対応点連結直線の長さをセ ンシング環境を考慮し解釈することによって、該当ディスクの 大きさを知る; ような過程を含む方法
3 · Correspondence between the two groups set as corresponding in paragraph 1 In calculating the state of each corresponding disk from the information on the two units to be used, a) the two bisecting points of the corresponding point connecting straight line on each contour line of the corresponding units are considered in consideration of the sensing environment. By interpreting, the coordinate value of the center point of the relevant disk in the corresponding spatial coordinate field is known; b) The orientation of the corresponding point connecting straight line on each contour line of the corresponding unit in the sensor coordinate field of each sensor (Orientation) ) Is taken into account in consideration of the sensing environment to determine the orientation of the relevant disc in the corresponding spatial coordinate field; c) The length of the two corresponding points connecting straight line of both units in the corresponding relationship is considered in consideration of the sensing environment. Interpretation to determine the size of the disc; a method that includes such a process
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR1992/000012 WO1993021594A1 (en) | 1992-04-10 | 1992-04-10 | Method of recognition of stereoscopic image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR1992/000012 WO1993021594A1 (en) | 1992-04-10 | 1992-04-10 | Method of recognition of stereoscopic image |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993021594A1 true WO1993021594A1 (en) | 1993-10-28 |
Family
ID=19327535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR1992/000012 WO1993021594A1 (en) | 1992-04-10 | 1992-04-10 | Method of recognition of stereoscopic image |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1993021594A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61175778A (en) * | 1985-01-30 | 1986-08-07 | Fujitsu Ltd | Formation of form model |
JPH027174A (en) * | 1988-06-27 | 1990-01-11 | Hitachi Ltd | Graphic processing method |
-
1992
- 1992-04-10 WO PCT/KR1992/000012 patent/WO1993021594A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61175778A (en) * | 1985-01-30 | 1986-08-07 | Fujitsu Ltd | Formation of form model |
JPH027174A (en) * | 1988-06-27 | 1990-01-11 | Hitachi Ltd | Graphic processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102647351B1 (en) | Modeling method and modeling apparatus using 3d point cloud | |
Aggarwal et al. | On the computation of motion from sequences of images-a review | |
Wong et al. | Camera calibration from surfaces of revolution | |
Wang et al. | Computation of surface orientation and structure of objects using grid coding | |
Mendonca et al. | Epipolar geometry from profiles under circular motion | |
Adato et al. | Shape from specular flow | |
Sankaranarayanan et al. | Specular surface reconstruction from sparse reflection correspondences | |
US10559085B2 (en) | Devices, systems, and methods for reconstructing the three-dimensional shapes of objects | |
Schnieders et al. | Camera and light calibration from reflections on a sphere | |
Liu et al. | Near-light photometric stereo using circularly placed point light sources | |
GB2567245A (en) | Methods and apparatuses for depth rectification processing | |
Wang et al. | Facial feature extraction in an infrared image by proxy with a visible face image | |
EP3766045A1 (en) | Single view tracking of cylindrical objects | |
Delaunoy et al. | Towards full 3D Helmholtz stereovision algorithms | |
Wang et al. | A practical distortion correcting method from fisheye image to perspective projection image | |
Liu et al. | Free-form object reconstruction from silhouettes, occluding edges and texture edges: A unified and robust operator based on duality | |
Chen et al. | A 2-point algorithm for 3D reconstruction of horizontal lines from a single omni-directional image | |
WO1993021594A1 (en) | Method of recognition of stereoscopic image | |
Ervan et al. | Downsampling of a 3D LiDAR point cloud by a tensor voting based method | |
CN111148970A (en) | System and method for calibrating imaging and spatial orientation sensors | |
Labati et al. | Low-cost volume estimation by two-view acquisitions: A computational intelligence approach | |
Zhou et al. | A novel method for reconstructing general 3D curves from stereo images | |
Mitiche et al. | Tracking modelled objects using binocular images | |
Kim | Rotation Correction Method Using Depth-Value Symmetry of Human Skeletal Joints for Single RGB-D Camera System | |
Murmu et al. | Low cost distance estimation system using low resolution single camera and high radius convex mirrors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |