WO1993020209A1 - Methods for producing substantially pure eg iii cellulase using alcohol - Google Patents
Methods for producing substantially pure eg iii cellulase using alcohol Download PDFInfo
- Publication number
- WO1993020209A1 WO1993020209A1 PCT/US1993/003255 US9303255W WO9320209A1 WO 1993020209 A1 WO1993020209 A1 WO 1993020209A1 US 9303255 W US9303255 W US 9303255W WO 9320209 A1 WO9320209 A1 WO 9320209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iii
- cellulase
- supernate
- alcohol
- molecular weight
- Prior art date
Links
- 108010059892 Cellulase Proteins 0.000 title claims abstract description 341
- 238000000034 method Methods 0.000 title claims abstract description 121
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 229940106157 cellulase Drugs 0.000 title claims abstract description 100
- 239000000203 mixture Substances 0.000 claims abstract description 102
- 150000003839 salts Chemical class 0.000 claims abstract description 26
- 239000007864 aqueous solution Substances 0.000 claims abstract description 15
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 claims description 27
- 239000002244 precipitate Substances 0.000 claims description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 14
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 11
- 239000001632 sodium acetate Substances 0.000 claims description 10
- 235000017281 sodium acetate Nutrition 0.000 claims description 10
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 8
- 239000004246 zinc acetate Substances 0.000 claims description 8
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 claims description 5
- 239000004299 sodium benzoate Substances 0.000 claims description 5
- 235000010234 sodium benzoate Nutrition 0.000 claims description 5
- 239000004280 Sodium formate Substances 0.000 claims description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 4
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 claims description 4
- 235000019254 sodium formate Nutrition 0.000 claims description 4
- 235000013904 zinc acetate Nutrition 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 150000003863 ammonium salts Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 37
- 102000004190 Enzymes Human genes 0.000 abstract description 22
- 108090000790 Enzymes Proteins 0.000 abstract description 22
- 229940088598 enzyme Drugs 0.000 abstract description 22
- 108090000623 proteins and genes Proteins 0.000 description 74
- 241000499912 Trichoderma reesei Species 0.000 description 65
- 102000004169 proteins and genes Human genes 0.000 description 46
- 239000012634 fragment Substances 0.000 description 38
- 101100382629 Schizosaccharomyces pombe (strain 972 / ATCC 24843) cbh1 gene Proteins 0.000 description 32
- 101150048033 cbh gene Proteins 0.000 description 32
- 108020004414 DNA Proteins 0.000 description 31
- 239000000499 gel Substances 0.000 description 31
- 239000000523 sample Substances 0.000 description 24
- 241000223259 Trichoderma Species 0.000 description 22
- 101150089778 pyr-4 gene Proteins 0.000 description 22
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 20
- 238000001155 isoelectric focusing Methods 0.000 description 16
- 239000002609 medium Substances 0.000 description 16
- 239000013612 plasmid Substances 0.000 description 15
- 101150114858 cbh2 gene Proteins 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 101710098247 Exoglucanase 1 Proteins 0.000 description 12
- 239000000706 filtrate Substances 0.000 description 12
- 210000001938 protoplast Anatomy 0.000 description 12
- 238000000746 purification Methods 0.000 description 11
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 10
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 239000003599 detergent Substances 0.000 description 10
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 10
- 229940045145 uridine Drugs 0.000 description 10
- 108010084185 Cellulases Proteins 0.000 description 9
- 102000005575 Cellulases Human genes 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 229920002678 cellulose Polymers 0.000 description 9
- 239000001913 cellulose Substances 0.000 description 9
- 239000004744 fabric Substances 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000012217 deletion Methods 0.000 description 8
- 230000037430 deletion Effects 0.000 description 8
- 238000005194 fractionation Methods 0.000 description 8
- 230000002538 fungal effect Effects 0.000 description 8
- 239000008187 granular material Substances 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 239000001509 sodium citrate Substances 0.000 description 8
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- SEHFUALWMUWDKS-UHFFFAOYSA-N 5-fluoroorotic acid Chemical compound OC(=O)C=1NC(=O)NC(=O)C=1F SEHFUALWMUWDKS-UHFFFAOYSA-N 0.000 description 7
- 108091026890 Coding region Proteins 0.000 description 7
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 7
- 101710098246 Exoglucanase 2 Proteins 0.000 description 7
- 229920005654 Sephadex Polymers 0.000 description 7
- 239000012507 Sephadex™ Substances 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000000600 sorbitol Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 241000223261 Trichoderma viride Species 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000001502 gel electrophoresis Methods 0.000 description 5
- 238000002523 gelfiltration Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- 101710126559 Endoglucanase EG-II Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 238000000246 agarose gel electrophoresis Methods 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 4
- 108010047754 beta-Glucosidase Proteins 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 239000007857 degradation product Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 101710112457 Exoglucanase Proteins 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000002105 Southern blotting Methods 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 101150069003 amdS gene Proteins 0.000 description 3
- 239000003957 anion exchange resin Substances 0.000 description 3
- 102000006995 beta-Glucosidase Human genes 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003729 cation exchange resin Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 239000012064 sodium phosphate buffer Substances 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- 101150090724 3 gene Proteins 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 108010091371 endoglucanase 1 Proteins 0.000 description 2
- 108010091384 endoglucanase 2 Proteins 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000003223 protective agent Substances 0.000 description 2
- 101150054232 pyrG gene Proteins 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 239000012146 running buffer Substances 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- -1 sodium benzoate Chemical class 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 101150084750 1 gene Proteins 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 101000899859 Acetivibrio thermocellus (strain ATCC 27405 / DSM 1237 / JCM 9322 / NBRC 103400 / NCIMB 10682 / NRRL B-4536 / VPI 7372) Endoglucanase 1 Proteins 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 1
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 description 1
- 108010022172 Chitinases Proteins 0.000 description 1
- 102000012286 Chitinases Human genes 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 108010022769 Glucan 1,3-beta-Glucosidase Proteins 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 101150098499 III gene Proteins 0.000 description 1
- 102100024319 Intestinal-type alkaline phosphatase Human genes 0.000 description 1
- 101710184243 Intestinal-type alkaline phosphatase Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 101100032401 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pyr-4 gene Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 241001643667 Orpha Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- HIWPGCMGAMJNRG-ACCAVRKYSA-N Sophorose Natural products O([C@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HIWPGCMGAMJNRG-ACCAVRKYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- KYOBSHFOBAOFBF-UHFFFAOYSA-N UMP Natural products OC1C(O)C(COP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1C(O)=O KYOBSHFOBAOFBF-UHFFFAOYSA-N 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 229940040526 anhydrous sodium acetate Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- HIWPGCMGAMJNRG-UHFFFAOYSA-N beta-sophorose Natural products OC1C(O)C(CO)OC(O)C1OC1C(O)C(O)C(O)C(CO)O1 HIWPGCMGAMJNRG-UHFFFAOYSA-N 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 108010092450 endoglucanase Z Proteins 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 108010000165 exo-1,3-alpha-glucanase Proteins 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- KYOBSHFOBAOFBF-ZAKLUEHWSA-N orotidine-5'-monophosphate Chemical compound O[C@@H]1[C@@H](O)[C@H](COP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1C(O)=O KYOBSHFOBAOFBF-ZAKLUEHWSA-N 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- KUIXZSYWBHSYCN-UHFFFAOYSA-L remazol brilliant blue r Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=C2C(=O)C3=CC=CC=C3C(=O)C2=C1NC1=CC=CC(S(=O)(=O)CCOS([O-])(=O)=O)=C1 KUIXZSYWBHSYCN-UHFFFAOYSA-L 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000004460 silage Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940083575 sodium dodecyl sulfate Drugs 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000013042 solid detergent Substances 0.000 description 1
- PZDOWFGHCNHPQD-VNNZMYODSA-N sophorose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PZDOWFGHCNHPQD-VNNZMYODSA-N 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01004—Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/814—Enzyme separation or purification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/814—Enzyme separation or purification
- Y10S435/816—Enzyme separation or purification by solubility
Definitions
- the present invention is directed to methods for producing an aqueous solution containing a substantially pure EG III cellulase component.
- the methods of the present invention are directed, in part, to the removal of cellulase proteins, except the EG III cellulase component, from an aqueous mixture of cellulase proteins containing EG III by the addition of a low molecular weight alcohol to the aqueous mixture in the presence of an organic salt.
- an inorganic salt is added to the EG III- rich supernate to precipitate the remaining contaminating proteins resulting in a substantially pure EG III composition.
- the methods of the present invention are also directed in part to the enrichment of xylanase from an aqueous solution containing xylanase.
- Cellulases are known in the art as enzymes that hydrolyze cellulose ( ⁇ -l,4-glucan linkages) thereby resulting in the formation of glucose, cellobiose, cellooligosaccharides, and the like. While cellulases are produced (expressed) in fungi, bacteria and the like, cellulase produced by certain fungi and, in particular by the fungus class Trichoderma spp.
- CBH exo-cellobiohydrolases
- EG endoglucanases
- BG ⁇ -glucosidases
- the complete cellulase system comprising CBH, EG and BG components is required to efficiently convert crystalline cellulose to glucose. Isolated components are far less effective, if at all, in hydrolyzing crystalline cellulose. Moreover, a synergistic relationship is observed between the cellulase components particularly if they are of different classifications.
- cellulases and components thereof, used either singularly or in combination, are also known in the art to be useful in detergent compositions.
- endoglucanase components of fungal cellulases have been used for the purposes of enhancing the cleaning ability of detergent compositions, for use as a softening agent, and for use in improving the feel of cotton fabrics, and the like.
- EG I and EG II components derived from Trichoderma spp. and especially Trichoderma reesei in detergent compositions have their maximal activity at acidic pHs whereas most laundry detergent compositions are formulated for use at neutral or alkaline (pH >7 to about 10) conditions. While it is disclosed in U.S.
- the EG III cellulase component has been found to possess significant enzymatic activity under alkaline conditions and is particularly suited for use in laundry conditions where a neutral or alkaline detergent wash medium is employed.
- the substantially pure EG III cellulase component described herein can additionally be used in a pre-washing step in the appropriate solution at an intermediate pH where sufficient activity exists to provide desired improvements in color retention/restoration, softening and feel as disclosed in U.S. Serial No. 07/707,647 filed May 30, 1991 and incorporated herein by reference.
- the substantially pure EG III cellulase component described herein can be used in home use as a stand alone composition suitable for restoring color to faded fabrics (see, for example, U.S. Patent No. 4,738,682, which is incorporated herein by reference in its entirety) as well as used in a spot-remover.
- the high activity under neutral to alkaline conditions of the EG III cellulase component would be beneficial in textile processes for treating cotton-containing fabrics (see U.S. Serial Nos. 07/677,385 and 07/678,865 which are incorporated herein by reference in their entirety) as well as in silage and/or composting processes.
- this invention is directed to efficient processes for the separation and purification of the EG III cellulase component from aqueous enzyme mixtures, particularly from a complete cellulase composition and particularly for commercial scale production of the EG III cellulase component.
- the present invention is directed to a method for producing an aqueous solution containing substantially pure EG III cellulase component from an aqueous mixture containing cellulase proteins including EG III cellulase component. Accordingly, in one of its method aspects, the present invention is directed to a method for selectively removing substantially all of the cellulase proteins, other than the EG III component, from the aqueous mixture containing cellulase proteins including EG III cellulase which method comprises the addition to the aqueous mixture of an effective amount of a low molecular weight alcohol in the presence of an organic salt under conditions wherein substantially all of the other cellulase proteins are precipitated from solution, and removing the precipitate.
- an inorganic salt is added to the EG Ill-rich supernate and all remaining cellulase proteins, other than EG III, are precipitated.
- the methods of the present invention are also directed in part, to the isolation of an aqueous solution containing substantially pure xylanase from Trichoderma SPP.
- the aqueous mixture can be a filtered whole cell extract or, more preferably, a whole cellulase composition from a wild-type Trichoderma SPP. strain, a genetically modified Trichoderma SPP. strain, or any other aqueous mixture, compatible with the methods of this invention and containing cellulase proteins including EG III.
- FIG. 1 illustrates the RBB-CMC activity profile over a pH range at 40°C for an EG enriched fungal cellulase composition derived from a strain of Trichoderma reesei transformed so as to be incapable of expressing CBH I and CBH II; as well as the activity profile of an enriched EG III cellulase composition derived from Trichoderma reesei over a pH range at 40°C.
- FIG. 1 illustrates the RBB-CMC activity profile over a pH range at 40°C for an EG enriched fungal cellulase composition derived from a strain of Trichoderma reesei transformed so as to be incapable of expressing CBH I and CBH II; as well as the activity profile of an enriched EG III cellulase composition derived from Trichoderma reesei over a pH range at 40°C.
- FIG. 1 illustrates the RBB-CMC activity profile over a pH range at 40°C for an EG enriched fungal
- Lane 2 is an isoelectric focusing gel which, in Lane 1 displays the proteins expressed by a wild type Trichoderma reesei , in Lane 2 displays the proteins expressed by a strain of Trichoderma reesei transformed so as to be incapable of expressing EG I and EG II components; and in Lane 3 displays the proteins found in substantially pure EG III cellulase. The right hand margin of this figure is marked so as to identify the bands attributable to CBH I, CBH II, EG I, EG II EG III and xylanase.
- FIG. 3 is the amino acid sequence obtained from two fragments of EG III.
- FIG. 4 is an SDS-PAGE gel which in Lane 11 displays the proteins expressed by a strain of Trichoderma reesei transformed so as to be incapable of expressing EG I and EG II components; in Lane 2 displays the proteins found in substantially pure EG III cellulase obtained by the method of Part A in Example I; and in Lane 12 displays pure EG III obtained by the method of Example 2.
- FIG. 5 is an outline of the construction of P ⁇ CBHIPVT4.
- FIG. 6 illustrates deletion of the T. reesei gene by integration of the larger EcoRI fragment from p ⁇ CBHlpyr4 at the cbhl locus on one of the T. reesei chromosomes.
- FIG. 7 is an autoradiograph of DNA from T. reesei strain GC69 transformed with EcoRI digested p ⁇ CBHIpyr4 after Southern blot analysis using a 32 P-labelled p ⁇ CBHIp_yr4 as the probe. The sizes of molecular weight markers are shown in kilobase pairs to the left of the Figure.
- FIG. 8 is an autoradiograph of DNA from a T. reesei strain GC69 transformed with EcoRI digested P ⁇ CBHIPV ⁇ 4 using a 32 P labelled plntCBHI as the probe.
- the sizes of molecular weight markers are shown in kilobase pairs to the left of the Figure.
- FIG. 9 is an isoelectric focusing gel displaying the proteins secreted by the wild type and by transformed strains of T. reesei. Specifically, in
- Lane A of the isoelectric focusing gel employs partially purified CBHI from T. reesei; Lane B employs a wild type T. reesei : Lane C employs protein from a T. reesei strain with the cbhl gene deleted; and Lane D employs protein from a T. reesei strain with the cbhl and cbh2 genes deleted.
- FIG. 9 the right hand side of the figure is marked to indicate the location of the single proteins found in one or more of the secreted proteins.
- BG refers to the ⁇ - glucosidase.
- El refers to endoglucanase I
- E2 refers to endoglucanase II
- E3 refers to endoglucanase III
- Cl refers to exo-cellobiohydrolase I
- C2 refers to exo- cellobiohydrolase II.
- FIG. 10A is a representation of the T. reesei cbh2 locus, cloned as a 4.1 kb EcoRI fragment on genomic DNA and FIG. 10B is a representation of the cbh2 gene deletion vector pP ⁇ CBHII.
- FIG. 11 is an autoradiograph of DNA from T. reesei strain P37P ⁇ CBHIPyr"26 transformed with EcoRI digested pP ⁇ CBHII after Southern blot analysis using a ⁇ P labelled pP ⁇ CBHII as the probe.
- the sizes of molecular weight markers are shown in kilobase pairs to the left of the Figure.
- FIG. 12 is an outline of the construction of p ⁇ EGIpyrG-3.
- FIG. 13 illustrates deletion of the eqj.1 gene by integration of the Hindlll fragment from p ⁇ EGIpyrG-3 at the e ll locus on one of the ⁇ . reesei chromosomes.
- FIG. 14 is an outline of the construction of pA ⁇ EGII-1.
- the present invention generally relates to methods for producing substantially pure EG III cellulase component whether in an aqueous solution or as a recovered protein.
- EG III cellulase refers to the endoglucanase component derived from Trichoderma spp. or any microorganism producing a protein equivalent to EG III produced by Trichoderma spp. characterized by a pH optimum of about 5.5 to 6.0, an isoelectric point (pi) of from about 7.2 to 8.0, and a molecular weight of about 23 to 28 daltons.
- EG III cellulase is derived from either Trichoderma reesei or from Trichoderma viride.
- EG III cellulase derived from Trichoderma reesei has a pH optimum of about 5.5 to 6.0, an isoelectric point (pi) of about 7.4 and a molecular weight of about 25 to 28 Kdaltons.
- EG III cellulase derived from Trichoderma viride has a pH optimum of about 5.5, an isoelectric point (pi) of about 7.7 and a molecular weight of about 23.5 Kdaltons.
- the amino acid sequence of the EG III cellulase may be altered. Alteration of the active sites on this enzyme may lead to a variety of different changes such as different pH optima, different temperature optima or altered affinities for the substrate.
- the EG III component is found in a region of an isoelectric focusing gel where high pi xylanases and other high pi components expressed by Trichoderma spp. are generally found.
- the band identified as EG III in FIG. 2 was a degradation product of either EG I or II.
- gel isoelectric focusing gels of EG I and EG II deleted cellulase prepared in the manner of U.S. Serial Nos. 07/770,049 and 07/668,640 and as described in Examples 18 and 19 hereinbelow
- this band was not attributable to a degradation product of either EG I or II. (See also FIG. 2) .
- EG II has been previously referred to by the nomenclature “EG III” by some authors but current nomenclature uses the term "EG II".
- the EG II protein is substantially different from the EG III protein in its molecular weight, pi, and pH optimum as evidenced by Table I of Example 2 presented below.
- “Substantially pure EG III component” refers to a an aqueous solution or composition of cellulase proteins containing at least 50 weight percent, more preferably at least 70 weight percent and most preferably at least 90 weight percent of EG III cellulase component based on the total weight of the cellulase proteins in the composition.
- Substantially free of other cellulase proteins refers to a composition in which at least 50 weight percent, more preferably 60 weight percent and most preferably at least 90 weight percent of the cellulase proteins, other than EG III, have been removed from the original aqueous mixture of cellulase proteins.
- “Enriched in xylanase” refers to an aqueous solution or composition containing an increase in xylanase concentration by the processes of this invention by at least a factor of 4, more preferably by at least a factor of 10.
- Cellulase proteins refers to cellulase proteins which contain any and all exo-cellobiohydrolase (CBH) proteins, endoglucanase (EG) proteins and ⁇ -glucosidase (BG) proteins derived from fungal sources or microorganisms genetically modified so as to incorporate and express all or a part of the cellulase genes obtained from a fungal source.
- CBH exo-cellobiohydrolase
- EG endoglucanase
- BG ⁇ -glucosidase
- cellulase proteins i.e. CBH, EG and BG proteins
- CBH CBH, EG and BG proteins
- cellulase proteins do not include other proteins expressed by Trichoderma spp. including xylanases, proteases, amylases, etc.
- Endoglucanase (EG) components refer to the EG components of Trichoderma spp. including the EG I, EG II and/or EG III components of Trichoderma reesei.
- the endoglucanase components of Trichoderma spp e.g., the EG I, EG II, EG III components of Trichoderma reesei. and the like
- EG III possesses substantial activity at alkaline pHs where many detergent compositions are employed.
- Exo-cellobiohydrolase (“CBH”) components refer to the CBH components of Trichoderma spp. including the CBH I and CBH II components of Trichoderma reesei. When used in the absence of the EG components of Trichoderma spp. the CBH components of Trichoderma spp. alone do not impart significant color retention/restoration and improved feel to the so- treated cotton-containing fabrics. Additionally, when used in combination with such EG components, the CBH I component of Trichoderma reesei can impart enhanced strength loss and incremental cleaning benefits to cotton-containing fabrics.
- ⁇ -Glucosidase (BG) components refer to those components of cellulase which exhibit BG activity; that is to say that such components will act from the non- reducing end of cellobiose and other soluble cellooligosaccharides (“cellobiose”) and give glucose as the sole product.
- BG components do not adsorb onto or react with cellulose polymers. Furthermore, such BG components are competitively inhibited by glucose (K j approximately lmM) .
- BG components are not literally cellulases because they cannot degrade cellulose, such BG components are included within the definition of the cellulase system because these enzymes facilitate the overall degradation of cellulose by further degrading the inhibitory cellulose degradation products (particularly cellobiose) produced by the combined action of CBH components and EG components. Without the presence of BG components, moderate or little hydrolysis of crystalline cellulose will occur.
- BG components are often characterized on aryl substrates such as p- nitrophenol B-D-glucoside (PNPG) and thus are often called aryl-glucosidases. It should be noted that not all aryl-glucosidases are BG components, in that some do not hydrolyze cellobiose.
- PNPG p- nitrophenol B-D-glucoside
- the present invention is directed in part, to the discovery that an aqueous solution containing EG III, and substantially free of other cellulase proteins can be obtained from an aqueous enzyme mixture by the addition of a low molecular weight alcohol.
- substantially all of the cellulase proteins, other than EG III precipitate from solution leaving the solution containing EG III substantially free of other cellulase proteins. It has also been found that, under these conditions, substantially all of the cellulase proteins, except EG III precipitate leaving a solution enriched in xylanase.
- an aqueous mixture containing cellulase was filtered to remove cell debris and other solids and produced a liquid filtrate containing a mixture of enzymes including cellulase proteins. More preferably, a cell free cellulase composition, such as CYTOLASE 123 (commercially available from Genencor International, Inc., South San Francisco, CA) is used.
- the aqueous mixture could be obtained from any aqueous source including aqueous mixtures already enriched for EG III. More particularly the resulting EG III solution described in concurrently filed application, U.S. Serial No. , filed as Attorney Docket No. 010055-106, entitled METHODS FOR PRODUCING SUBSTANTIALLY PURE EG III USING POLYETHYLENE GLYCOL, which is incorporated herein in its entirety by reference.
- organic salts may be added to the filtrate before contacting the filtrate with the alcohol. Without being limited to any theory, it is believed that in some cases, the addition of an organic salt may enhance the retention of the EG III component in solution.
- the enzymes other than the EG III component are precipitated out of solution and the EG III component is preferentially retained in solution.
- the low molecular weight alcohol is added to the aqueous mixture under conditions which result in the precipitation of cellulase proteins other than EG III with the retention of EG III in the aqueous solution.
- the specific time and temperature constraints employed in this step are not critical but depend on the degree of purity and the amount of recovery desired. For example, longer holding time will lead to higher degrees of purity as will lower temperatures.
- the specific combination of time and temperature employed is within the skill of the art. In a preferred embodiment, such conditions would include a temperature range from about 10°C to 30°C, more preferably from about 15°C to 25°C.
- the low molecular weight alcohol is mixed with the aqueous mixture in a preferred embodiment or about 1 minute to 5 hours, more preferably from 1 minute to 1 hour.
- the aqueous solution is then centrifuged and filtered to remove the precipitated contaminating enzymes resulting in a first supernate.
- the amount of EG III comprises at least approximately 50% of the total cellulase protein in the first supernate as determined by the gel electrophoresis method of Example 7.
- the EG III component can then be purified from the first supernate by a variety of methods.
- an equal volume of cold ethanol is then added to the first supernate and the precipitate containing EG III is collected by centrifugation.
- the EG III component can be purified by ionic exchange chromatography (e.g., by methods described in the examples hereinbelow) .
- the EG III component is then resuspended in a suitable buffer.
- a compatible inorganic salt is added to the first supernate.
- the addition of a sufficient amount of a compatible inorganic salt to the first supernate results in the precipitation of substantially all cellulase proteins and xylanase remaining in solution, other than the EG III component.
- This mixture is then centrifuged and filtered to remove the precipitated contaminating proteins resulting in a second supernate.
- EG III comprises at least 80% of the total cellulase protein in the second supernate, as determined by gel electrophoresis.
- the EG III can be further purified from the second supernate by a variety of methods as disclosed above.
- low molecular weight alcohol means a C, to C 3 alcohol [eg. ethanol, methanol, propanol and reagent alcohol (about 95% ethanol and about 5% methanol)] or a mixture of the same.
- an "effective amount of a low molecular weight alcohol” is that amount added to the aqueous mixture which is necessary to selectively precipitate a sufficient amount of the cellulase proteins, except the EG III component, from the aqueous mixture to provide a substantially pure EG III component once the precipitated proteins are removed.
- the amount of a low molecular weight alcohol added is from about 1.5 to about 2.5 parts (v/v) of alcohol per volume of aqueous mixture, more preferably the amount is 2.0 to about 2.4 parts (v/v), most preferably the amount is about 2.2 parts (v/v).
- the low molecular weight alcohol has been ound to be particularly useful in separating the EG III cellulase component from an aqueous mixture of cellulase proteins because the aqueous mixture contains a high percentage of other cellulase proteins relative to the percentage of EG III.
- the normal distribution of cellulase components in the CYTOLASE 123 cellulase system is believed to be as follows:
- Useful quantities of EG III component are obtained by the method of this invention.
- the loss of recovery of EG III component by the method of this invention, as compared to other methods, is compensated for by the speed of recovery of the EG III component.
- the procedure does not require extensive fractionation steps for purification, although such steps can be followed for further purification if desired. Further, the cost of the starting material is negligible as compared to the high value of the purified EG III component.
- organic salt as it is used in this application means an organic salt containing at least one carbon atom and preferably 1 to 7 carbon atoms which when used in conjunction with the low molecular weight alcohol facilitates the purification of EG III.
- organic salts include, by way of example, sodium acetate, zinc acetate, sodium formate and sodium benzoate and the like.
- concentration of the organic salt in the aqueous mixture can be varied to provide the desired result.
- the amount of organic salt used is less than about 30% (w/v) per original volume of aqueous mixture, more preferably the amount is between about 5% to 20% (w/v) , most preferably the amount is 10% (w/v) .
- organic salt means a compatible inorganic salt which when used in conjunction with a low molecular weight alcohol facilitates the purification of EG III without denaturing the enzyme.
- Suitable inorganic salts include salts having a sulfate or ammonium ion, more preferably, ammonium sulfate.
- an "effective amount of a inorganic salt” is that amount which when added to an aqueous mixture containing alcohol will result in the precipitation of proteins other than the EG III component from the solution to provide a substantially pure EG III component after removal of the precipitate.
- the amount of a inorganic salt added is an amount which creates a saturated solution.
- the EG III cellulase component can be purified from the first filtered supernate or the second filtered supernate by methods known in the art. For example, the addition of an equal volume of cold ethanol to the supernate causes the precipitation of the Eg III component. The precipitate is collected and resuspended in an appropriate buffer. Suitable buffers are known in the art, for example 10 mM sodium acetate pH 4.5 and 10 mM sodium citrate pH 4.0. Alternatively, the EG III component can be purified by ionic exchange chromatography methods known in the art. In another embodiment, the inorganic salt may be added to the original aqueous mixture containing cellulase.
- a low molecular weight alcohol to this aqueous mixture will result in the precipitation of ' enzymes, other than EG III.
- This mixture is then centrifuged and filtered to remove the precipitated contaminating enzymes.
- the EG III component can be purified from the supernate by a variety of methods as disclosed above.
- the EG III component obtained from either of the three methods described above, removed from the supernate and resuspended in an appropriate buffer can be further purified by fractionation.
- the solution will be desalted using a Sephadex G-25 gel filtration resin column with 10 mM sodium phosphate buffer at pH 6.8.
- the desalted solution would then be loaded onto a QA Trisacryl M anion exchange resin column.
- the fraction not bound on this column would contain EG III.
- This fraction will be desalted using a Sephadex G-25 gel filtration resin column equilibrated with 10 mM sodium citrate, pH 4.5.
- the EG III sample obtained from the cation exchange column can be further fractionated.
- the EG III sample will be desalted with a Sephadex G-25 column which had been previously equilibrated with 10 mM sodium citrate pH 4.
- the solution is then applied to a FPLC system using a Mono- S-HR 5/5 column (available from Pharmacia LKB Biotechnology, Piscataway, NJ) .
- the column will be eluted with 0-200 mM aqueous gradient of sodium chloride at a rate of 0.5 ml/minute.
- EG III cellulase can be purified from any strain of Trichoderma spp. which produces EG III under suitable fermentation conditions or from any other microorganism producing cellulase proteins including EG III. While the particular source of EG III is not critical, preferred sources are Trichoderma reesei and Trichoderma viride. A particularly pre erred source of EG III from Trichoderma reesei is CYTOLASE 123 cellulase which is commercially available from Genencor International, Inc., 180 Kimball Way, South San Francisco, CA 94080.
- Trichoderma reesei genetically modified so as to overexpress EG III and/or to be incapable of producing one or more of EG I, EG II, CBH I and/or CBH II components or xylanase.
- This will necessarily lead to more efficient isolation of the EG III component by, for example, the alcohol extraction as described above.
- substantially pure EG III prepared by fractionation methods set forth in the Examples below was employed to determine the amino acid sequence of parts of the protein using known sequencing methods (Example 4) . This information can be used to prepare synthetic DNA probes in order to clone the gene encoding the EG III cellulase component.
- Trichoderma reesei can be genetically manipulated so as to produce EG III with or without other cellulase proteins. Moreover, the methods described in those applications create Trichoderma reesei strains which do not produce any heterologous proteins.
- EG Ill-encoding gene in other microorganisms, including, but not limited to, yeast species such as Saccharomvces cerevisiae. Pichia pastoris. Hansenula polv orpha. Kluweromyces lactis. Yarrowia lipolytica. Schanniomvces occidentalis. etc. See, for example, PCT application Publication No. WO 85/04672.
- yeast species such as Saccharomvces cerevisiae. Pichia pastoris. Hansenula polv orpha. Kluweromyces lactis. Yarrowia lipolytica. Schanniomvces occidentalis. etc. See, for example, PCT application Publication No. WO 85/04672.
- the substantially pure EG III cellulase described above can be further processed into a liquid diluent, granules, emulsions, gels, pastes, or the like. Such forms are well known to the skilled artisan.
- the cellulase composition is preferably formulated as granules.
- the granules can be formulated so as to contain a cellulase protecting agent. See, for instance, U.S. Serial No. 07/642,669 filed January 17, 1991 as Attorney Docket No.
- the granules can be formulated so as to contain materials to reduce the rate of dissolution of the granule into the wash medium. Such materials and granules are disclosed in U.S. Serial No. 07/642,596 filed on January 17, 1991 as Attorney Docket No. GCS-171-US1 and entitled “GRANULAR COMPOSITIONS” which application is incorporated herein by reference in its entirety.
- CYTOLASE 123 (commercially available from Genencor International, Inc., South San Francisco, CA, which is produced from wild type Trichoderma reesei) , was added 10% sodium acetate (w/v) . The pH was adjusted to 9.5 by the addition of 50% NaOH. After the acetate was dissolved, 2.2 parts (v/v) ethanol at room temperature were added with mixing to l part of the cellulase filtrate (volume based on the starting volume of the filtrate) . The ethanol filtrate mixture was centrifuged at 10,000 xg for 10 minutes and the primary supernate was collected and filtered. The primary supernate contains the EG III component. To this filtered supernate was added an equal volume of ethanol at -15 °C. This mixture was centrifuged at 10,000 xg for 10 minutes and the precipitate collected. This precipitate was resuspended in buffer.
- the cellulase filtrate of this example further contains xylanase whose concentration has been enriched by this process (i.e., an increase in xylanase concentration by at least 4 fold) and another unknown contaminating protein.
- the pH does not have to be adjusted after the addition of sodium acetate, but increasing the pH to about 9.5 improves the purification.
- the addition of the ammonium sulfate reduces the amount of EG III component recovered of the total EG III component present in the original cellulase filtrate but increases the level of purity of the Eg III component.
- the EG III component comprises at least 80% of the total cellulase protein in the precipitate, as determined by gel electrophoresis.
- EG III cellulase from other strains of Trichoderma spp. can be purified.
- EG III cellulase derived from Trichoderma viride has been described by Voragen et al. , Methods in Enzymology, 160:243-249. This reference describes the EG III cellulase as having a molecular weight of about 23.5 Kdaltons, a pH optimum of 5.5, and a pi of 7.7.
- Trichoderma reesei genetically modified so as to overexpress EG III and/or to be incapable of producing one or more EG I, EG II, CBHI and/or CBH II components or xylanase components.
- the substantially pure EG III component from the first supernate or second supernate obtained by in part a) of this example may be further purified by fractionation after precipitation and resuspension in an appropriate buffer. Additionally, the original cellulase filtrate can be purified by this method.
- fractionation is done using columns containing the following resins: Sephadex G-25 gel filtration resin from Sigma Chemical Company (St. Louis, MO) , QA Trisacryl M anion exchange resin and SP Trisacryl M cation exchange resin from IBF Bio echnics (Savage, MD) .
- This solution 200 ml, was then loaded onto a column of 20 ml of SP Trisacryl M cation exchange resin.
- the EG III was eluted with 100 mL of an aqueous solution of 200 mM sodium chloride.
- One particular method for further purifying EG III is by further fractionation of an EG III sample obtained in this Example 2. The further fraction was done on a FPLC system using a Mono-S-HR 5/5 column (available from Pharmacia LKB Biotechnology,
- the FPLC system consists of a liquid chromatography controller, 2 pumps, a dual path monitor, a fraction collector and a chart recorder (all of which are available from Pharmacia LKB Biotechnology, Piscataway, NJ) .
- the fractionation was conducted by desalting 5 ml of the EG III sample prepared in this Example 2 with a 20 ml Sephadex G-25 column which had been previously equilibrated with 10 mM sodium citrate pH 4.
- EG III was recovered in fractions 10 and 11 and was determined to be greater than 90% pure by gel electrophoresis. EG III of this purity is suitable for determining the N- terminal amino acid sequence by known techniques. Substantially pure EG III has the following characteristics which are compared to the other endo lucanases isolated om Trichoderma eese
- EG III cellulase from other strains of Trichoderma spp. can be purified.
- EG III cellulase derived from Trichoderma viride has been described by Voragen et al.. Methods in Enzymology, 160:243-249. This reference describes the EG III cellulase as having a molecular weight of about 23.5 Kdaltons, a pH optimum of 5.5, and a pi of 7.7.
- Trichoderma reesei genetically modified so as to overexpress EG III and/or to be incapable of producing one or more EG I, EG II, CBHI and/or CBH II components or xylanase components.
- the first cellulase composition was a CBH I and II deleted cellulase composition prepared from Trichoderma reesei genetically modified in a manner similar to that described below so as to be unable to produce CBH I and CBH II components.
- this cellulase composition does not contain CBH I and CBH II which generally comprise from about 58 to 70 percent of a cellulase composition derived from Trichoderma reesei.
- this cellulase composition is necessarily enriched in EG components. Since EG III is the most minor of the endoglucanase components of Trichoderma reesei, this composition predominates in EG I and EG II components.
- the second cellulase composition was an approximately 20-40% pure fraction of EG III isolated from a cellulase composition derived from Trichoderma reesei via purification methods similar to Example 2.
- the activity of these cellulase compositions was determined at 40°C and the determinations were made using the following procedures.
- FIG. 1 illustrates the relative activity of the CBH I and II deleted cellulase composition compared to the EG III cellulase composition. From this figure, it is seen that the cellulase composition deleted in CBH I and CBH II possesses optimum cellulolytic activity against RBB-CMC at near pH 5.5 and has some activity at alkaline pHs, i.e., at pHs from above 7 to 8. On the other hand, the cellulase composition enriched in EG III possesses optimum cellulolytic activity at about pH 5.5 - 6 and possesses significant activity at alkaline pHs.
- the purpose of this example is to illustrate isoelectric focusing gels of different EG III cellulase compositions.
- cellulase produced by a wild type Trichoderma reesei cellulase derived from a strain of Trichoderma reesei transformed so as to be incapable of expressing EG I and EG II cellulase proteins; and substantially pure EG III cellulase via purification methods similar to Example 2 were analyzed on isoelectric focusing gels.
- FIG. 2 illustrates the isoelectric focusing gel of cellulase derived from a wild strain of Trichoderma reesei; Lane 2 illustrates the isoelectric focusing gel of cellulase derived from a strain of Trichoderma reesei so as to be incapable of expressing EG I and II; and Lane 3 illustrates the isoelectric focusing gel of substantially pure EG III cellulase obtained using the method of Example 2.
- the margin adjacent to Lane 1 is marked to identify the bands corresponding to cellulase proteins so as to permit identification of the proteins.
- the substantially pure EG III component obtained by the purification method of Example 2 was precipitated by the addition of 0.9 ml of acetone to 0.1 ml of protein solution (at a concentration of 1 mg/ml) and incubation at -20°C for 10 minutes.
- the protein was collected by centrifugation and the pellet dried and resuspended in 0.01 ml of 8 M urea in 88% formic acid and 0.01 ml of cyanogen bromide (200 mg ⁇ ml) in 88% formic acid. The mixture was incubated at room temperature for four hours.
- the samples were diluted such that their activity fell within the standard range of 1.5 to 6.0 Units/ml. Samples were run in duplicate.
- the standard was Genencor CYTOLASE 123 lot 87111. This is defined as containing 1000 RBB-CMC Units/ml. Appropriate dilutions were made to make standard solutions containing 0, 1.5, 3.0, 4.5 and 6.0 Units/ml. Standards were run in duplicate.
- the substrate was prepared by adding 2 gms dry RBB-CMC (Azo-CM-Cellulose, obtained from MegaZyme, Ltd.) to 80 ml just boiled deionized water. The mixture is stirred vigorously as it cooled to room temperature until all of the substrate had solubilized.
- the precipitate was prepared by adding 33 grams anhydrous sodium acetate and.4 grams zinc acetate to 150 ml distilled water. The pH of the solution was adjusted to 5.0 with 5 M HCl and the volume was adjusted to 200 ml and 800 ml of ethanol was added.
- EG III is believed to have a specific activity of 15 to 20 RBB units per mg of protein.
- Samples to be run are diluted to contain approximately 1 to 3 mg of protein per ml. 100 ⁇ l of sample is placed in an eppendorf tube with 25 ⁇ l of 5X PDS, vortexed and heated at 98°C for 5 minutes. Next, 12 ⁇ l of each sample is removed and loaded into a well. The gel is run at 40 A with constant current for approximately 90 minutes in running buffer diluted to lx strength with distilled water. At completion the gel is removed from between the glass plates and immersed in a solution of Destaih for 30 minutes with mild agitation to fix the protein. The gel is next stained with Coomasie Blue Stain with glacial acetic acid for 1 hour with mild agitation.
- the background stain is removed in Destain solution for approximately 18 hours.
- Prepoured gels were obtained from Daiichi Pure Chemicals Co. , Ltd. A gel with a gradient of 10 to 20% acrylamide or a non-gradient of 12.5% acrylamide was used. The electrophoresis was carried out in a Daiichi electrophoresis box.
- 5XPDS contains 2.5 ml of 20% sodium dodecylsulfate; 1 ml glycerol; 0.5 ml of 0.5M sodium phosphate pH 6.6; 1 ml distilled water; 0.1 ml Deta ⁇ inercaptoethanol; and 10 mg bromophenol blue.
- the running buffer contains 30.25 g Tris base; 144.5 g ultra pure glycine; milli-Q H 2 0 to 1 liter; 5 mis 20% SDS.
- the Destain contains 82.5 ml glacial acetic acid, 200 ml ethanol and dH 2 0 to 1 liter.
- Stain contains brilliant blue (Sigma No. B-0630) 2.5 g; ethanol 250 ml; dH 2 0 to 1 liter. Before use mix 90 ml of coomasie blue stain with 10 ml glacial acetic acid. The results are indicated in FIG. 4 which illustrates in Lane 11 the proteins expressed by a strain of Trichoderma reesei transformed so as to be incapable of expressing EG I and EG II components; and in lane 2 the proteins found in substantially pure EG III cellulase obtained by the method of Example 1 from a strain of 2 ⁇ .
- the pyr4 gene encodes orotidine-5'-monophosphate decarboxylase, an enzyme required for the biosynthesis of uridine.
- the toxic inhibitor 5-fluoroorotic acid (FOA) is incorporated into uridine by wild-type cells and thus poisons the cells.
- FAA 5-fluoroorotic acid
- cells defective in the pyr4 gene are resistant to this inhibitor but require uridine for growth. It is, therefore, possible to select for pyr4 derivative strains using FOA.
- spores of T. reesei strain RL-P37 [Sheir- Neiss, G. and Montenecourt, B.S., Appl. Microbiol. Biotechnol. 20, p.
- a cbhl gene encoding the CBHI protein was cloned from the genomic DNA of T. reesei strain RL-P37 by hybridization with an oligonucleotide probe designed on the basis of the published sequence for this gene using known probe synthesis methods (Shoemaker et al. , 1983b) .
- the cbhl gene resides on a 6.5 kb Pstl fragment and was inserted into Pstl cut pUC4K (pur- cfeased from Pharmacia Inc. , Piscataway, NJ) replacing the Kan r gene of this vector using techniques known in the art, which techniques are set forth in Maniatis et al. , (1989) and incorporated herein by reference.
- pUC4K::cbhl was then cut with Hindlll and the larger fragment of about 6 kb was isolated and relegated to give pUC4K::cbhl ⁇ H/H (see FIG. 5) .
- This procedure removes the entire cbhl coding sequence and approximately 1.2 kb upstream and 1.5 kb downstream of flanking sequences. Approximately, 1 kb of flanking DNA from either end of the original Pstl fragment remains.
- the T. reesei pyr4 gene was cloned as a 6.5 kb Hindlll fragment of genomic DNA in pUC18 to form pTpyr2 (Smith et al. , 1991) following the methods of Maniatis et al., supra.
- the plasmid pUC4K: :cbhI ⁇ H/H was cut with Hindlll and the ends were dephosphorylated with calf intestinal alkaline phosphatase. This end dephosphorylated DNA was ligated with the 6.5 kb Hindlll fragment containing the T. reesei pyr4 gene to give p ⁇ CBHIpyr4.
- FIG. 5 illustrates the construction of this plasmid.
- Example 10 Isolation of Protoplasts
- Mycelium was obtained by inoculating 100 ml of YEG (0.5% yeast extract, 2% glucose) in a 500 ml flask with about 5 x 10 7 T. reesei GC69 spores (the pyr4 ⁇ derivative strain) . The flask was then incubated at 37°C with shaking for about 16 hours. The mycelium was harvested by centrifugation at 2,750 x g.
- the harvested mycelium was further washed in a 1.2 M sorbitol solution and resuspended in 40 ml of a solution containing 5 mg/ml Novozym R 234 solution (which is the trade name for a multi-component enzyme system containing 1,3-alpha-glucanase, 1,3-beta-glucanase, laminarinase, xylanase, chitinase and protease from Novo Biolabs, Danbury, CT) ; 5 mg/ml MgS0 4 .7H 2 0; 0.5 mg/ml bovine serum albumin; 1.2 M sorbitol.
- Novozym R 234 solution which is the trade name for a multi-component enzyme system containing 1,3-alpha-glucanase, 1,3-beta-glucanase, laminarinase, xylanase, chitinase and proteas
- the protoplasts were removed from the cellular debris by filtration through Miracloth (Calbiochem Corp, La Jolla, CA) and collected by centrifugation at 2,000 x g.
- the protoplasts were washed three times in 1.2 M sorbitol and once in 1.2 M sorbitol, 50 mM CaCl 2 , centrifuged and resuspended at a density of approximately 2 x 10 s protoplasts per ml of 1.2 M sorbitol, 50 mM CaCl 2 .
- Example 10 200 ⁇ l of the protoplast suspension prepared in Example 10 was added to 20 ⁇ l of EcoRI digested p ⁇ CBHlpyr4 (prepared in Example 9) in TE buffer (10 mM Tris, pH 7.4; 1 mM EDTA) and 50 ⁇ l of a polyethylene glycol (PEG) solution containing 25% PEG 4000, 0.6 M KC1 and 50 mM CaCl 2 .
- TE buffer 10 mM Tris, pH 7.4; 1 mM EDTA
- PEG polyethylene glycol
- the protoplast/medium mixture was then poured onto a solid medium containing the same Vogel's medium as stated above. No uridine was present in the medium and therefore only transformed colonies were able to grow as a result of complementation of the pyr4 mutation of strain GC69 by the wild type pyr4 gene insert in P ⁇ CBHIPVT4. These colonies were subsequently transferred and purified on a solid Vogel's medium N containing as an additive, 1% glucose and stable transformants were chosen for further analysis.
- DNA was isolated from the transformants obtained in Example 8 after they were grown in liquid Vogel's medium N containing 1% glucose. These transformant DNA samples were further cut with a Pstl restriction enzyme and subjected to agarose gel electrophoresis. The gel was then blotted onto a Nytran membrane filter and hybridized with a 32 P-labelled p ⁇ CBHIpyr4 probe. The probe was selected to identify the native cbhl gene as a 6.5 kb Pstl fragment, the native pyr4 gene and any DNA sequences derived from the transforming DNA fragment.
- the radioactive bands from the hybridization were visualized by autoradiography.
- the autoradiograph is seen in FIG. 7.
- Five samples were run as described above, hence samples A, B, C, D, and E.
- Lane E is the untransformed strain GC69 and was used as a control in the present analysis.
- Lanes A-D represent transformants obtained by the methods described above.
- the numbers on the side of the autoradiograph represent the sizes of molecular weight markers.
- lane D does not contain the 6.5 kb CBHI band, indicating that this gene has been totally deleted in the transformant by integration of the DNA fragment at the cbhl gene.
- the cbhl deleted strain is called P37P ⁇ CBHI.
- Figure 6 outlines the deletion of the T.
- Example 12 The same procedure was used in this example as in Example 12, except that the probe used was changed to a 32 P labelled plntCBHI probe.
- This probe is a pUC-type plasmid containing a 2 kb Bglll fragment from the cbhl locus within the region that was deleted in pUC4K: :cbhl ⁇ H/H.
- Two samples were run in this example including a control, sample A, which is the untrans ⁇ formed strain GC69 and the transformant P37P ⁇ CBHI, sample B. As can be seen in FIG.
- sample A contained the cbhl gene, as indicated by the band at 6.5 kb; however the transformant, sample B, does not contain this 6.5 kb band and therefore does not contain the cbhl gene and does not contain any sequences derived from the pUC plasmid.
- Lane C is the supernatant from strain P37P ⁇ CBHI produced according to the methods of the present invention.
- the position of various cellulase components are labelled CBHI, CBHII, EGI, EGII, and EGIII. Since CBHI constitutes 50% of the total extracellular protein, it is the major secreted protein and hence is the darkest band on the gel. This isoelectric focusing gel clearly shows depletion of the CBHI protein in the P37P ⁇ CBHI strain.
- the cbh2 gene of T. reesei. encoding the CBHII protein has been cloned as a 4.1 kb EcoRI fragment of genomic DNA which is shown diagrammatically in FIG. 10A (Chen et al. , 1987, Biotechnology. 5:274-278). This 4.1 kb fragment was inserted between the EcoRI sites of pUC4XL.
- the latter plasmid is a pUC derivative (constructed by R.M. Berka, Genencor International Inc.) which contains a multiple cloning site with a symmetrical pattern of restriction endonuclease sites arranged in the order shown here: EcoRI, BamHl. Sad. Smal. Hindlll. Xhol.
- the T. reesei pyr4 gene was excised from pTpyr2 (see Example 9) on a 1.6 kb Nhel-SphI fragment and inserted between the SphI and Xbal sites of pUC219 to create p219M (Smith et al., 1991, Curr. Genet 19 p. 27- 33) .
- the pyr4 gene was then removed as a Hindlll-Clal fragment having seven bp of DNA at one end and six bp of DNA at the other end derived from the pUC219 multiple cloning site and inserted into the Hindlll and Clal sites of the cbh2 gene to form the plasmid pP ⁇ CBHII (see FIG. 10B) .
- Protoplasts of strain P37P ⁇ CBHIPyr"26 were generated and transformed with EcoRI digested pP ⁇ CBHII according to the methods outlined in Examples 10 and 11. Purified stable transformants were cultured in shaker flasks as in Example 14 and the protein in the culture supernatants was examined by isoelectric focusing. One transformant (designated P37P ⁇ CBH67) was identified which did not produce any CBHII protein. Lane D of FIG. 9 shows the supernatant from a transformant deleted for both the cbhl and cbh2 genes produced according to the methods of the present invention. DNA was extracted from strain P37P ⁇ CBH67, digested with EcoRI and Asp718.
- FIG. 11 shows the hybridization pattern observed for DNA from an untransformed T. reesei strain. The 4.1 kb EcoRI fragment containing the wild-type cbh2 gene was observed. Lane B shows the hybridization pattern observed for strain P37P ⁇ CBH67. The single 4.1 kb band has been eliminated and replaced by two bands of approximately 0.9 and 3.1 kb. This is the expected pattern if a single copy of the EcoRI fragment from pP ⁇ CBHII had integrated precisely at the cbh2 locus.
- the ____ reesei ⁇ gll gene which encodes EGI has been cloned as a 4.2 kb Hindlll fragment of genomic DNA from strain RL-P37 by hybridization with oligonucleotides synthesized according to the published sequence (Pentilla et al. , 1986, Gene 45: 253-263; van Arsdell et al. , 1987, Bio Technology 5.: 60-64).
- This DNA fragment was inserted at the Hindlll site of pUClOO.
- An internal 1 kb EcoRV fragment which extended from a position close to the middle of the EGI coding sequence to a position beyond the 3' end of the coding sequence was removed by enzyme digestion and was replaced by ligation with a 2.2 kb BamHl - Hindlll fragment containing the cloned A. niger pyrG gene (Wilson et al., 1988, Nucl. Acids Res. 16 p. 2339) to give p ⁇ EGIpyrG-3 (FIG. 12) . Transformation of a pyr4 deficient strain of T.
- the eg!3 gene encoding EG II (previously also known as EG III) was cloned from T. reesei strain RL- P37 as a 4 kb Pstl genomic DNA fragment by hybridization with oligonucleotides synthesized according to the published sequence (Saloheimo et al., 1988, Gene j53_:11-21). This DNA fragment was inserted into the Pstl site of pUC18.
- This plasmid, pEGII was subsequently digested with EcoRV to remove the entire EG II coding region on an approximately 2 kb segment extending from a position approximately 180 bp 5' of the EGII coding region to a position a few hundred base pairs beyond the end of the coding region.
- This segment was replaced with an SSPI fragment of Aspergillus nidulans genomic DNA containing the amdS gene (Corrick et al., 1987, Gene ,52:63-71) to create plasmid PA ⁇ EGII-1 (See FIG. 14) . Wild-type strains of T. reesei are unable to grow on acetamide as a sole nitrogen source.
- Transformation with the amdS gene confers this ability and this is the basis for the selection system for transformants containing this gene.
- Protoplasts of strain ⁇ EGI-3 were transformed, by the methods described in Examples 10 and 11, with pA ⁇ EGII-1 which had been digested with Hindlll and EcoRI and transformants able to grow on acetamide were selected. Subsequently, DNA was extracted from stable transformants, digested with Pstl. subjected to agarose gel electrophoresis and blotted onto a membrane filter. The filter was hybridized with radiolabelled pA ⁇ EGII-1.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69333060T DE69333060T2 (en) | 1992-04-03 | 1993-04-05 | METHODS OF PRODUCING PRACTICALLY PURE EG III CELLULASE BY MEANS OF ALCOHOL |
EP93909275A EP0633938B1 (en) | 1992-04-03 | 1993-04-05 | Methods for producing substantially pure eg iii cellulase using alcohol |
FI944560A FI116529B (en) | 1992-04-03 | 1994-09-30 | Methods for producing substantially pure EG III cellulase using alcohol |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/862,641 US5320960A (en) | 1992-04-03 | 1992-04-03 | Method of preparing solution enriched in xylanase using low molecular weight alcohol, organic salt and inorganic salt |
US07/862,641 | 1992-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993020209A1 true WO1993020209A1 (en) | 1993-10-14 |
Family
ID=25338930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/003255 WO1993020209A1 (en) | 1992-04-03 | 1993-04-05 | Methods for producing substantially pure eg iii cellulase using alcohol |
Country Status (5)
Country | Link |
---|---|
US (2) | US5320960A (en) |
EP (1) | EP0633938B1 (en) |
DE (1) | DE69333060T2 (en) |
FI (1) | FI116529B (en) |
WO (1) | WO1993020209A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000037614A2 (en) * | 1998-12-18 | 2000-06-29 | Genencor International, Inc. | Variants of egiii-like cellulase and compositions thereof |
US6579841B1 (en) | 1998-12-18 | 2003-06-17 | Genencor International, Inc. | Variant EGIII-like cellulase compositions |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960016598B1 (en) * | 1989-05-16 | 1996-12-16 | 재단법인 한국화학연구소 | Biological de-inking method |
US5475101A (en) * | 1990-10-05 | 1995-12-12 | Genencor International, Inc. | DNA sequence encoding endoglucanase III cellulase |
US5786316A (en) * | 1994-10-27 | 1998-07-28 | The Procter & Gamble Company | Cleaning compositions comprising xylanases |
EP0709452A1 (en) * | 1994-10-27 | 1996-05-01 | The Procter & Gamble Company | Cleaning compositions comprising xylanases |
US6187732B1 (en) * | 1998-09-03 | 2001-02-13 | Genencor International, Inc. | Mutant EGIII cellulase, DNA encoding such EGIII compositions and methods for obtaining same |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1368599A (en) * | 1970-09-29 | 1974-10-02 | Unilever Ltd | Softening compositions |
US4275163A (en) * | 1978-11-20 | 1981-06-23 | The United States Of America As Represented By The Secretary Of The Army | Cellulase-producing microorganism |
DK187280A (en) * | 1980-04-30 | 1981-10-31 | Novo Industri As | RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY |
GB2095275B (en) * | 1981-03-05 | 1985-08-07 | Kao Corp | Enzyme detergent composition |
GB2094826B (en) * | 1981-03-05 | 1985-06-12 | Kao Corp | Cellulase enzyme detergent composition |
JPS5836217A (en) * | 1981-08-25 | 1983-03-03 | Asahi Chem Ind Co Ltd | Production of cellulosic fiber with improved touch |
JPS5854082A (en) * | 1981-09-22 | 1983-03-30 | 倉敷紡績株式会社 | Modification of cellulosic fiber |
US4487831A (en) * | 1982-05-19 | 1984-12-11 | Research Corporation | Process for the conversion of cellulose to glucose |
GB8306645D0 (en) * | 1983-03-10 | 1983-04-13 | Unilever Plc | Detergent compositions |
US4472504A (en) * | 1983-03-28 | 1984-09-18 | The United States Of America As Represented By The Secretary Of The Army | Hyperproducing cellulase microorganism |
CA1338400C (en) * | 1983-08-31 | 1996-06-18 | David H. Gelfand | Recombinant fungal cellulases |
US4797361A (en) * | 1983-10-24 | 1989-01-10 | Lehigh University | Microorganism and process |
FR2555603B1 (en) * | 1983-11-29 | 1986-10-03 | Inst Francais Du Petrole | PROCESS FOR PRODUCING CELLULOLYTIC ENZYMES |
FI841500A0 (en) * | 1984-04-13 | 1984-04-13 | Valtion Teknillinen | FOERFARANDE FOER UPPBYGNANDE AV CELLULOLYTISKA JAESTSTAMMAR. |
GB8421801D0 (en) * | 1984-08-29 | 1984-10-03 | Unilever Plc | Detergent composition |
GB8421800D0 (en) * | 1984-08-29 | 1984-10-03 | Unilever Plc | Detergent compositions |
DK163591C (en) * | 1985-10-08 | 1992-08-24 | Novo Nordisk As | PROCEDURE FOR TREATING A TEXTILE SUBSTANCE WITH A CELLULASE |
FI93859C (en) * | 1985-12-03 | 1995-06-12 | Gist Brocades Nv | Process for the production of glucose syrups and purified starches from pentosans containing starches of wheat and other cereal plants |
US4725544A (en) * | 1986-04-25 | 1988-02-16 | Tan Larry U | Method for purifying xylanase |
GB8610600D0 (en) * | 1986-04-30 | 1986-06-04 | Novo Industri As | Transformation of trichoderma |
ES2060590T3 (en) * | 1986-10-28 | 1994-12-01 | Kao Corp | ALKALINE CELLULASES AND MICROORGANISMS FOR ITS PRODUCTION. |
US4822516A (en) * | 1986-12-08 | 1989-04-18 | Kao Corporation | Detergent composition for clothing incorporating a cellulase |
JPH0240787B2 (en) * | 1987-08-07 | 1990-09-13 | Kanebo Ltd | FUAINOKAIRYOSARETASERUROOSUKEISENIKOZOBUTSUNOSEIZOHO |
US4832864A (en) * | 1987-09-15 | 1989-05-23 | Ecolab Inc. | Compositions and methods that introduce variations in color density into cellulosic fabrics, particularly indigo dyed denim |
US5116746A (en) * | 1988-03-04 | 1992-05-26 | Institut Armand Frappier | Cellulase-free endo-xylanase enzyme of use in pulp delignification |
WO1989009259A1 (en) * | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
JP2652871B2 (en) * | 1988-04-25 | 1997-09-10 | 花王株式会社 | Alkaline cellulase and method for producing the same |
US4954447A (en) * | 1988-07-22 | 1990-09-04 | The Regents Of The University Of California | Feraxanase, a highly specific enzyme for hydrolysis of complex polysaccharides |
US4952505A (en) * | 1988-08-08 | 1990-08-28 | Florida State University | Fermentation of trichoderma reesei and apparatus therefor |
US5006126A (en) * | 1988-09-15 | 1991-04-09 | Ecolab Inc. | Cellulase compositions and methods that introduce variations in color density into cellulosic fabrics, particularly indigo dyed denim |
US5120463A (en) * | 1989-10-19 | 1992-06-09 | Genencor International, Inc. | Degradation resistant detergent compositions based on cellulase enzymes |
DE69024499T2 (en) * | 1989-10-19 | 1996-07-11 | Genencor Int | DEGRADABLE CLEANING COMPOSITIONS |
AT394730B (en) * | 1990-05-08 | 1992-06-10 | Voest Alpine Ind Anlagen | METHOD FOR PRODUCING EXO- AND ENDOCELLULASE-FREE XYLANASE |
-
1992
- 1992-04-03 US US07/862,641 patent/US5320960A/en not_active Expired - Lifetime
-
1993
- 1993-04-05 DE DE69333060T patent/DE69333060T2/en not_active Expired - Lifetime
- 1993-04-05 EP EP93909275A patent/EP0633938B1/en not_active Expired - Lifetime
- 1993-04-05 WO PCT/US1993/003255 patent/WO1993020209A1/en active IP Right Grant
-
1994
- 1994-04-18 US US08/228,988 patent/US5434072A/en not_active Expired - Lifetime
- 1994-09-30 FI FI944560A patent/FI116529B/en not_active IP Right Cessation
Non-Patent Citations (2)
Title |
---|
DEUTSCHER M. P. 'METHODS IN ENZYMOLOGY vol 182 : guide to protein purification .' 1990 , ACADEMIC PRESS , INC.HARCOURT BRACE JOVANOVICH * |
METHODS IN ENZYMOLOGY vol. 160, 1988, pages 243 - 251 A. G. J. VORAGEN ET AL 'Cellulases of a mutant strain of Trichoderma viride QM9414' * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000037614A2 (en) * | 1998-12-18 | 2000-06-29 | Genencor International, Inc. | Variants of egiii-like cellulase and compositions thereof |
WO2000037614A3 (en) * | 1998-12-18 | 2000-08-03 | Genencor Int | Variants of egiii-like cellulase and compositions thereof |
US6268328B1 (en) | 1998-12-18 | 2001-07-31 | Genencor International, Inc. | Variant EGIII-like cellulase compositions |
US6579841B1 (en) | 1998-12-18 | 2003-06-17 | Genencor International, Inc. | Variant EGIII-like cellulase compositions |
Also Published As
Publication number | Publication date |
---|---|
US5434072A (en) | 1995-07-18 |
FI116529B (en) | 2005-12-15 |
EP0633938B1 (en) | 2003-06-25 |
EP0633938A1 (en) | 1995-01-18 |
FI944560A0 (en) | 1994-09-30 |
DE69333060T2 (en) | 2003-12-18 |
DE69333060D1 (en) | 2003-07-31 |
FI944560A (en) | 1994-09-30 |
US5320960A (en) | 1994-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0877077B1 (en) | Detergent composition containing cellulase compositions deficient in CBH I type components | |
EP0586375B1 (en) | Detergent compositions containing substantially pure eg iii cellulase | |
US5874276A (en) | Cellulase enzymes and systems for their expressions | |
CA2158357C (en) | Purification and molecular cloning of eg iii cellulase | |
EP0551386B1 (en) | Methods for treating cotton-containing fabrics with cellulase | |
US5328841A (en) | Methods for isolating EG III cellulase component and EG III cellulase in polyethylene glycol using inorganic salt and polyethylene glycol | |
WO2012106824A1 (en) | Cellulase enzyme mixtures for depilling and uses thereof | |
WO1992006183A1 (en) | Methods for treating cotton-containing fabrics with cellulase | |
US5320960A (en) | Method of preparing solution enriched in xylanase using low molecular weight alcohol, organic salt and inorganic salt | |
JPH06506829A (en) | Method for treating cotton-containing fabrics with cellulase | |
US5668009A (en) | Methods for treating cotton-containing fabrics with CBH I enriched cellulase | |
US5472864A (en) | Method of preparing solution enriched in EG III using low molecular weight alcohol, organic salt and inorganic salt | |
EP0580719A4 (en) | Methods for treating cotton-containing fabrics with cellulase. | |
JP3522272B6 (en) | Method for producing substantially pure EG (III) cellulase using polyethylene glycol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): FI |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 944560 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1993909275 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1993909275 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1993909275 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 944560 Country of ref document: FI |