WO1993013213A1 - Fermentation process - Google Patents

Fermentation process Download PDF

Info

Publication number
WO1993013213A1
WO1993013213A1 PCT/JP1987/000156 JP8700156W WO9313213A1 WO 1993013213 A1 WO1993013213 A1 WO 1993013213A1 JP 8700156 W JP8700156 W JP 8700156W WO 9313213 A1 WO9313213 A1 WO 9313213A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction vessel
microorganisms
microorganism
methane
Prior art date
Application number
PCT/JP1987/000156
Other languages
French (fr)
Japanese (ja)
Inventor
Shinko Kitaura
Yoshimasa Takahara
Shiro Nagai
Naomichi Nishio
Original Assignee
Shinko Kitaura
Yoshimasa Takahara
Shiro Nagai
Naomichi Nishio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP61054696A external-priority patent/JPS62236489A/en
Priority claimed from JP61054697A external-priority patent/JPS62215395A/en
Application filed by Shinko Kitaura, Yoshimasa Takahara, Shiro Nagai, Naomichi Nishio filed Critical Shinko Kitaura
Priority to US07/093,497 priority Critical patent/US4921799A/en
Publication of WO1993013213A1 publication Critical patent/WO1993013213A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the present invention relates to a method for producing a substance using a microorganism, and more particularly, to a novel method for biosynthesizing a target substance from a gaseous raw material using an immobilized microorganism.
  • the present invention plays an important role in the technical field of biotechnology such as fermentation industry, microbial industry, enzyme industry, and food industry.
  • the present invention can also be used extensively in the technical field of the chemical industry, because methane, hydrogen cyanide, acetylene and other various organic industrial chemicals can be produced using the methane and the like obtained by this method as a raw material. Is what is done.
  • a system for producing methane using an apparatus as shown in Fig. 2 has been developed. It consists of methanotrophs in a liquid medium containing supplementary nutrients such as nitrogen sources and inorganic salts.
  • carbon dioxide gas and hydrogen gas are forcibly supplied from the outside of the fermenter 13 into the liquid medium, and mechanically stirred by the stirring blades 14 (aeration-stirred fermenter 15) or draft.
  • the air bubble 19 from the vent hole 18 is atomized by the air tube 16 (bubble column type fermenter 17) to increase the gas-liquid interface, and at the same time, the air bubble is retained in the culture medium for a long time, thereby increasing the culture medium.
  • This system accelerates the rate of dissolution of carbon dioxide and hydrogen gas into the gas and causes a biochemical reaction by the methane-producing bacteria to obtain a product gas.
  • This system also converts methane from the raw material gas. However, it cannot be biosynthesized by a direct gas phase reaction, and as described later, it cannot be used industrially because of its drawbacks such as low methane production rate.
  • This method also does not biosynthesize the desired substance directly from the raw material gas by a gas phase reaction, and has the disadvantage that the production rate of the desired substance is low. I can not do such a thing.
  • FIG. 1 shows an example of an apparatus for carrying out the present invention.
  • Fig. 2 shows a conventional methane fermentation apparatus.
  • FIG. 3 illustrates an example of an apparatus for producing formic acid in the present invention.
  • the present invention has been made for the purpose of developing an industrial system for directly producing a target product from a gaseous substrate, and firstly uses the above-described aeration type or bubble column type fermenter. We focused on the system.
  • Aeration-type fermenters require large power for mechanical stirring.
  • the present invention has been made to solve the above-mentioned drawbacks and to develop an industrial production method for producing the target substance in a large amount and economically.
  • Reactor l contains the surface-treated microorganisms. Immobilization of microorganisms is carried out by a conventional method, and any of the carrier binding methods can be used.
  • microorganisms are immobilized in a spherical, cylindrical, granular or other suitable shape and then filled into the reactor 1, fixed directly to the reactor wall, or immobilized on the inner and / or outer surface.
  • a large number of hollow fibers with immobilized microorganisms are filled into the reactor, and one or more (porous) plates with immobilized microorganisms are vertically or horizontally filled into the reactor.
  • the above-mentioned molded and immobilized cells are filled into a small column and then filled into a large number of reactors to constitute a reactor.
  • any microorganism can be used as long as it produces the target product using a gaseous substrate.
  • a methane-producing bacterium of a type utilizing carbon dioxide gas, hydrogen gas, or the like as a substrate can be advantageously used, but the present invention is not limited to only these microorganisms. All microorganisms can be used as long as the target product can be biosynthesized using the substrate.
  • the methane-producing bacterium is a gram-negative methane-producing bacterium HU strain isolated from digested sludge at a sewage treatment plant in Hiroshima City (a strain preserved in the Nagai Laboratory, Faculty of Engineering, Hiroshima University; freely available for sale). ,
  • Methanosaliina used alone or in combination it can.
  • bacteria sources such as culture solutions, wet cakes, activated sludge, and digested sludge and use them in the present invention.
  • An aqueous solution 2 containing supplementary nutrients such as a nitrogen source and inorganic salts is sprayed, dropped or dropped from a squirt tube 4 onto a carrier on which organisms or microorganisms are fixed by a control valve 3. If necessary, these nutrient solutions may be stored in a carrier in advance.
  • aqueous solution When the nutrient solution used in Examples 1 to 3 is used as the aqueous solution to be supplied to the microorganisms in the present invention, methane gas is generated, and when the solution in Example 4 is used, formic acid is generated. It is. At the same time when the aqueous solution 2 is dropped, a substrate gas having an appropriate composition is supplied from the lower pipe 5 of the reactor via the regulating valve 6 and brought into contact with the microorganisms and nutrient solution fixed on the carrier to produce the desired product. Is generated. Since the type and composition of the substrate gas used as a raw material differ depending on the bacterium used, it is necessary to select an optimum one according to the bacterium used.
  • the H 2 / CO 2 ratio is preferably larger than 1.
  • a gas analyzer (not shown) is installed at the product gas outlet 7 to analyze the product gas, It is preferable to operate the control valve 6 provided at the inlet so as to adjust the mixing ratio of the substrate gas and / or the supply amount and the supply speed thereof to the optimum values for the production of methane.
  • the control valve 6 is controlled according to the data of the gas analyzer to supply the substrate in accordance with the substrate consumption rate of the microorganism.
  • Reactor 1 is surrounded by a jacket for heating or keeping the temperature warm, in which hot water or temperature-adjusted gas is flown, and a heating wire is provided to conduct biosynthesis reaction. May be promoted. Conversely, it is also possible to supply the substrate gas from above the reactor and take out the generated gas from below the reactor. Also, the aqueous solution that has fallen into the liquid collecting tank 8 is not discarded as it is but is passed from the liquid outlet 9 to the aqueous solution tank 2 via a pump and a pipe (not shown). Recycling further increases its economic efficiency.
  • the product is a water-soluble substance such as formic acid
  • it is dissolved in the aqueous solution and falls into the liquid collecting tank 8, so that the aqueous solution is withdrawn from the liquid outlet 9 to recover the water-soluble substance.
  • pressurizing the inside of the reactor can increase the gas solubility and increase the reaction rate. If the reactor is kept airtight and the base gas content in the reactor is adjusted to the optimal value for the immobilized microorganisms, the production rate of the target product can be maximized.
  • the target substance thus generated is a gas
  • the target substance is collected in the gas storage 10 through the generation gas outlet 7.
  • the target substance If is a water-soluble substance, it is recovered from the liquid collection tank 8.
  • Zeolite, foam brick, and inorganic foam (particle size: 7.1 to 12.6 mm) were used as carriers, and the HU strain, which had been isolated in the laboratory of Hiroshima University's Faculty of Engineering, was used as the carrier. It was fixed by the adsorption method.
  • the methane-producing bacteria immobilized on the carrier in this manner are filled in the reactor shown in Fig. 1 (reactor capacity: 75 mJi), and the gaseous substrate is obtained using the equipment shown in Fig. 1 under the following specifications. Methane fermentation was performed. That is, in the reactor 1 filled with the carrier on which the microorganisms are immobilized, the nutrient solution 2 shown in Table 1 is dropped from the upper part of the carrier from the ejection pipe 4 by the control valve 3 onto the surface of the carrier, and the lower part of the reactor is An appropriate flow of the substrate gas was supplied from the pipe 5 by the control valve 6, and the gas generated by the microorganisms on the carrier was obtained from the upper outlet 7. A jacket was provided around the reactor, and the temperature was adjusted to the optimal temperature (37 ° C) for microbial reaction by passing temperature-controlled water.
  • Example 3 Inorganic foam 0.604g-dry cell
  • Substrate gas supply rate 4760mfi / day
  • a suspension of HU strain dry cell concentration of 10.86 g / ⁇
  • the resulting solution containing formic acid and the unreacted gas were recovered.
  • 115 is a formic acid-containing solution outlet
  • 116 is a gas outlet
  • 117 is a temperature control water inlet at 32
  • 118 is a temperature control water outlet
  • 119 is a jacket.
  • Methyl viologen 7.5 mMol / fi Table 3 shows the fermentation conditions for formic acid. Under these conditions 32 to 2 weeks anti The results are shown in Table 3.
  • the formic acid was quantified by the method of Lang et al. (Lang E, Lang H., Z. Anal. Chem., 260, 8-10 (1972)), and the gas composition was gas chromatograph, gas chromatograph. The flow rate was determined by the stone membrane method.

Abstract

A fermentation process of producing a product by fermenting a gaseous substrate using microorganisms, which comprises retaining a microorganism immobilized on a carrier in a reaction vessel, feeding an aqueous solution so that at least part of the surface of the microorganism is moistened and passing the gaseous substrate through the void of the aggregate of the microorganism to thereby directly react the microorganism with the gaseous substrate. Thus, methane, formic acid, or the like can be effectively biosynthesized.

Description

明 細 書  Specification
発明の名称  Title of invention
発酵方法  Fermentation method
産業上の利用分野  Industrial applications
本発明は微生物を用いる物質の製造方法に関し、 更に詳細 には、 固定化した微生物を用いて、 ガス状の原料から 目的物 質を生合成する新規な方法に関する。  The present invention relates to a method for producing a substance using a microorganism, and more particularly, to a novel method for biosynthesizing a target substance from a gaseous raw material using an immobilized microorganism.
したがって本発明は、 発酵工業、 微生物工業、 酵素工業、 食品工業といっ たバイオテク ノ ロ ジ一の技術分野において重 要な役割を果すものである。 また本法によって得られるメ タ ン等を原料と してメ タ ノール, シアン化水素、 アセチレ ンそ の他有機工業薬品を各種製造する こ とができるので、 本発明 は化学工業の技術分野でも広く重用されるものである。  Therefore, the present invention plays an important role in the technical field of biotechnology such as fermentation industry, microbial industry, enzyme industry, and food industry. The present invention can also be used extensively in the technical field of the chemical industry, because methane, hydrogen cyanide, acetylene and other various organic industrial chemicals can be produced using the methane and the like obtained by this method as a raw material. Is what is done.
従来の技術 Conventional technology
従来、 メ タ ンを微生物を用いて工業的に製造するシステム は存在せず、 屎尿、 下水処理における嫌気的消化法によ り、 あるいは堆肥その他の有機性廃棄物の腐敗等によって、 副生 成物と して副生する メ タ ンを利用 していたにすぎず、 し かも それは、 高分子有機物を汚泥等に含まれている微生物によつ て分解して低分子化合物化し最終的にメ タ ンとするものであ つて、 ガス状の低分子原料からメ タ ンを生合成するものでは ない。  Conventionally, there is no system for industrially producing methane using microorganisms.By-products are produced by anaerobic digestion in human waste and sewage treatment or by spoilage of compost and other organic waste. It merely used methane, a by-product of the process, to decompose high-molecular-weight organic matter by microorganisms contained in sludge and the like to convert it into low-molecular-weight compounds, and finally produce It is a tan and does not biosynthesize methane from gaseous low molecular weight raw materials.
最近になって、 第 2 図に図示したよ う な装置を用いてメ タ ンを製造するシステムが開発された。 それは、 窒素源、 無機 塩類などの補助的栄養源を含む液体培地 1 1中にメ タ ン生成菌 z Recently, a system for producing methane using an apparatus as shown in Fig. 2 has been developed. It consists of methanotrophs in a liquid medium containing supplementary nutrients such as nitrogen sources and inorganic salts. z
12を浮遊させ、 炭酸ガス、 水素ガスを発酵槽外部 13から液体 培地中に強制的に通気供耠する と ともに、 攪拌翼 14による機 械的提拌 (通気撹拌型発酵槽 15) あるいはドラ フ トチューブ 16 (気泡塔型発酵槽 17) によって, 通気孔 18からの気泡 19を 微粒化し、 気液界面を大きく させる と同時に、 培養液中に気 泡を長く滞留させる こ と によ り 、 培養液中への炭酸ガス、 水 素ガスの溶辉速度を促進させ、 メ タ ン生成菌による生化学的 反応を起させ、 生成ガスを得るものであって、 このシステム もメタ ンを、 原料ガスから、 直接気相反応によっ て生合成す るものではない し、 後記するよ う に、 メ タ ンの生成率が低い 等の欠点があるため工業的に使用する ことはできない。 In addition, carbon dioxide gas and hydrogen gas are forcibly supplied from the outside of the fermenter 13 into the liquid medium, and mechanically stirred by the stirring blades 14 (aeration-stirred fermenter 15) or draft. The air bubble 19 from the vent hole 18 is atomized by the air tube 16 (bubble column type fermenter 17) to increase the gas-liquid interface, and at the same time, the air bubble is retained in the culture medium for a long time, thereby increasing the culture medium. This system accelerates the rate of dissolution of carbon dioxide and hydrogen gas into the gas and causes a biochemical reaction by the methane-producing bacteria to obtain a product gas.This system also converts methane from the raw material gas. However, it cannot be biosynthesized by a direct gas phase reaction, and as described later, it cannot be used industrially because of its drawbacks such as low methane production rate.
また、 発酵法によって目的物質を製造するに際.し、 原料と 一 して、 ガス状の基質を固定化した微生物に直接作用させて、 目的物質を直接生産する工業的なシステムは全く確立されて いない。  Also, when producing a target substance by fermentation, an industrial system that directly produces the target substance by directly acting on microorganisms having a gaseous substrate immobilized as a raw material has been completely established. Not.
例えば、 菌体を溶液中に懸濁させ、 ガスを供給 してギ酸 を生成させる方法(S-Y*Eguchi et al. , Appl. Microbiol. Biotechnol. , 22., 148 ~ 151 (1985) )が提案されたが、 この方 法は生成したギ酸が溶液中に溶解して、 濃度の高いギ酸は得 られなかった。  For example, a method has been proposed in which cells are suspended in a solution and gas is supplied to generate formic acid (SY * Eguchi et al., Appl. Microbiol. Biotechnol., 22, 148-151 (1985)). However, in this method, the generated formic acid was dissolved in the solution, and a high concentration of formic acid could not be obtained.
この方法も、 原料ガスから直接気相反応によっ て目的物貧 を生合成するものではない し、 目的物貧の生成率が低い等の 欠点があるために工業的に大規模に使用するこ とはできない。  This method also does not biosynthesize the desired substance directly from the raw material gas by a gas phase reaction, and has the disadvantage that the production rate of the desired substance is low. I can not do such a thing.
このように、 低分子の原料ガスを直接微生物に供給し 目的 物質を直接生合成する技術は全く知られていない し、 ま して や、 固定化微生物を用いて目的物質を生化学的に合成する技 術に至っては、 その技術課題そのものすら知られていないの が現状である。 As described above, there is no known technology for directly supplying low-molecular gas to microorganisms and directly biosynthesizing a target substance. At present, even the technology for biochemically synthesizing the target substance using immobilized microorganisms is not even known at all.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明を実施するための装置の 1例を図示したも のである。  FIG. 1 shows an example of an apparatus for carrying out the present invention.
第 2 図は従来から使用されているメ タ ン発酵装置を図示し たものである。  Fig. 2 shows a conventional methane fermentation apparatus.
第 3 図は本発明においてギ酸を製造するための装置の 1例 を図示したものである。  FIG. 3 illustrates an example of an apparatus for producing formic acid in the present invention.
発明が解決しょ う とする問題点 Problems the invention is trying to solve
本発明は、 ガス状の基質から直接目的生産物を製造するた めの工業的システムを開発する 目的でなされたものであって、 先ず、 上記した通気携拌式又は気泡塔式発酵槽を用いるシス テムに着目 した。  The present invention has been made for the purpose of developing an industrial system for directly producing a target product from a gaseous substrate, and firstly uses the above-described aeration type or bubble column type fermenter. We focused on the system.
しかしながら、 この既知のシステムは、 上記目的を達成す るには具体的に次のよ うな欠点を有している。  However, this known system has the following disadvantages in order to achieve the above object.
1 .通気携拌型発酵槽では機械的撹拌のために大きな動力を 必要とする。  1. Aeration-type fermenters require large power for mechanical stirring.
2 .基質ガスの溶解速度に限度があるために、 ガス供耠速度 をそれ以上にあげる と、 基質ガスの大部分が微生物に利 用されないまま、 液体表面に達して しまい、 撖生物との 接触効率が極めて悪く なる。  2.Because the dissolution rate of the substrate gas is limited, if the gas supply rate is increased further, most of the substrate gas will reach the liquid surface without being used by microorganisms, and contact with organisms will occur. The efficiency becomes extremely poor.
3 .微生物の基質消费速度に見合っ た基質ガスの供耠が出来 ないために、 連続化が難しい。 4.大量の液体、 大きな液深が必要であるため、 リ アクター が大型にならざる を得ず、 装置全体の小型化ができない。 3. Because it is not possible to supply the substrate gas that matches the substrate consumption rate of the microorganism, it is difficult to achieve continuous operation. 4. Since a large amount of liquid and a large liquid depth are required, the reactor must be large, and the entire device cannot be downsized.
しかも致命的なことに、 これら既知のシステムでは原 料ガスから直接目的物質を製造する ことができない。  And fatally, these known systems do not allow the production of the target substance directly from the source gas.
発明の搆成  Invention
本発明は、 上記欠点を解決して、 目的物質を履々 に、 大量 に且つ経済的に製造する工業的製法を開発するためになされ たものである。  The present invention has been made to solve the above-mentioned drawbacks and to develop an industrial production method for producing the target substance in a large amount and economically.
この 目的達成のために、 広く研究を行っ た結果、 目的物質 の収率を上げるためには、 原料ガス濃度を上げ、 且つ該物赏 生成菌との接触率を高める必要があるとの知見を得た。 従来 システムのよう に、 培養液中に原科ガスを溶解せしめたり気 一 泡状にして供給していたのではガス濃度を充分に高めること ができない。 そこで、 原料ガス濃度を髙めるためのシステム について完全に発想を転換して検討した結果、 原料ガスをガ ス状のまま直接供給して微生物と接触せしめ、 生合成を行わ しめる という従来夢想だにされなかった新規な技術思想を着 想するに到った。  As a result of extensive research to achieve this goal, it was found that in order to increase the yield of the target substance, it is necessary to increase the raw material gas concentration and increase the contact ratio with the substance producing bacteria. Obtained. As in the conventional system, the gas concentration cannot be sufficiently increased if the original gas is dissolved in the culture medium or supplied in the form of bubbles. Therefore, as a result of completely changing the idea of a system for increasing the concentration of the raw material gas and examining it, the conventional dream was to supply the raw material gas directly in gaseous form and contact it with microorganisms to perform biosynthesis. He came up with a new technical idea that was not taken into account.
そして、 この新規な着想を具体的に且つ工業的に実現する 方策について各方面から鋭意研究した結果、 固定化した橄生 物を利用すればそれが可能であるとの知見を得、 この有用な 新知見を基礎にして更に研究した結果、 本発明が完成された のである。  As a result of diligent research from various angles on measures for realizing this new idea concretely and industrially, we obtained the finding that it would be possible to use immobilized persimmons. As a result of further research based on the new findings, the present invention was completed.
以下本発明を、 本発明を実施するための装置の 1例と して 図示した第 1 図の装置を参照しながら詳細に説明する。 リ アク ター l 内には面定化した微生物を収容しておく 。 微 生物の固定化は常法によって行い、 担体結合法のいずれもが 使用でき る。 Hereinafter, the present invention will be described in detail with reference to the apparatus shown in FIG. 1 as an example of an apparatus for carrying out the present invention. Reactor l contains the surface-treated microorganisms. Immobilization of microorganisms is carried out by a conventional method, and any of the carrier binding methods can be used.
微生物は、 球形、 円筒形、 粒状その他適宜の形状に固定化 した後リ アク ター 1 内に充填した り、 リ アク タ一の器壁に直 接固定化した り、 内面及び/又は外面に微生物を固定化した ホロ一フ ァ イバーを多数リ アク ター内に充填したり、 微生物 を固定化した (多孔質) プレー 卜 を 1枚又はそれ以上垂直又 は水平に リ アク ター内に充填した り 、 上記した成形固定化菌 体を小さなカ ラムに充填した後これを多数リ アク ター内に充 填した り して、 リ アク タ ーを構成する。  The microorganisms are immobilized in a spherical, cylindrical, granular or other suitable shape and then filled into the reactor 1, fixed directly to the reactor wall, or immobilized on the inner and / or outer surface. A large number of hollow fibers with immobilized microorganisms are filled into the reactor, and one or more (porous) plates with immobilized microorganisms are vertically or horizontally filled into the reactor. The above-mentioned molded and immobilized cells are filled into a small column and then filled into a large number of reactors to constitute a reactor.
微生物と しては、 ガス状基質を利用 して 目的生産物を製造 し う るものであればすべての菌を使用する こ と ができる。 例えば、 炭酸ガス、 水素ガス等を基質と して利用するタ イ プのメタ ン生産菌その他が有利に使用できるが, 本発明はこ れらの微生物のみに限定されるものではな く 、 ガス状基質を 利用 して 目的生産物を生合成でき るものであれば、 すべての 微生物が使用できる。  As the microorganism, any microorganism can be used as long as it produces the target product using a gaseous substrate. For example, a methane-producing bacterium of a type utilizing carbon dioxide gas, hydrogen gas, or the like as a substrate can be advantageously used, but the present invention is not limited to only these microorganisms. All microorganisms can be used as long as the target product can be biosynthesized using the substrate.
具体的には、 メ タ ン生産菌と しては、 広島市下水処理場の 消化汚泥から単離したグラム陰性メ タ ン生成菌 H U株 (広島 大学工学部 永井研究室保存菌株、 自由分譲可)、  Specifically, the methane-producing bacterium is a gram-negative methane-producing bacterium HU strain isolated from digested sludge at a sewage treatment plant in Hiroshima City (a strain preserved in the Nagai Laboratory, Faculty of Engineering, Hiroshima University; freely available for sale). ,
Met hanobact eri um t hermoaut ot rophicum , π . ェ ormicicum と いったメ タ ノノ クテ リ ゥム属菌 ; Met hanococcu s vanie liiと いっ たメ タ ノコ ッカス属 ; Met hano sa ri cin a barkeriiと い つたメタ ノサリ シナ属菌が単独で又はこれら を混合して使用 できる。 また、 このよ う に菌を単離することなく 、 例えば培 養液、 ウエ ッ トケーキ、 活性汚泥、 消化汚泥といっ た菌源と なるものを直接固定して本発明に利用することも可能である 窒素源、 無機塩類といっ た補助的栄養源を含む水溶液 2 を 調節弁 3 によって噴出管 4 から撖生物ない し微生物群を固定 した担体上に噴霧、 滴下、 ない し流下せしめる。 必要がある 場合には、 これらの栄養液は予じめ担体に保持せしめておい てもよい。 また、 使用菌が目的化合物合成の際に、 C02、 H2、 CO 等のガス状原料のほかに特定の物質を要求する場合には、 これらの液状ないし固体原料は該栄養液 2の中に予じめ添加 しておけば充分に所期の目的が達成されるので、 本発明はす ベてのタ イプの微生物に適用するこ と ができ、 極めて有利で ある。 Met hanobact eri um t hermoaut ot rophicum, π. Methanosaliina used alone or in combination it can. In addition, without isolating the bacteria, it is also possible to directly fix bacteria sources such as culture solutions, wet cakes, activated sludge, and digested sludge and use them in the present invention. An aqueous solution 2 containing supplementary nutrients such as a nitrogen source and inorganic salts is sprayed, dropped or dropped from a squirt tube 4 onto a carrier on which organisms or microorganisms are fixed by a control valve 3. If necessary, these nutrient solutions may be stored in a carrier in advance. Also, when using bacteria of the objective compound synthesized, C0 2, to request a specific substance in addition to the gaseous feedstock of H 2, CO, etc., these liquid or solid raw material in the said nutrient solution 2 Since the intended purpose can be sufficiently achieved by adding it in advance, the present invention can be applied to all types of microorganisms, which is extremely advantageous.
本発明において微生物に供辁する水溶液と して、 例えば実 施例 1〜 3 に用いた栄養液を用いれば、 メタ ンガスを生成し、 また、 実施例 4の溶液を用いれば、 ギ酸を生成するのである。 水溶液 2の滴下と同時に、 リ アク ター下部パイプ 5 から調 節弁 6 を介して適当な組成と した基質ガスを供給し、 担体上 に固定した微生物及び栄養液と接触せしめて目的とする生産 物を生成せしめる。 原料となる基質ガスの種類及びその組成 は、 使用菌によって異るので、 使用菌に したがって最適なも のを選扳する必要がある。 例えばメ タ ン生産菌 HU株の場合は、 原料と して水素ガスと炭酸ガスを使用 し、 H 2 /C02比は 1 よ り も大きい方がよい。 このために、 生成ガス出口 7 にガス分析 計 (図示せず) を設けて生成ガスの分析を行って、 基質ガス 入口に設けた調節弁 6 を作動せしめ、 基質ガスの混合比及び /又はその供給量、 供給速度を、 メ タ ン生成の最適値に調節 するよ う にするのが好適である。 他の微生物の場合も同様で あって、 ガス分析計のデータ に したがって調接弁 6 をコン ト ロールして、 微生物の基質消费速度に見合っ た基質供給を行 Ό 。 When the nutrient solution used in Examples 1 to 3 is used as the aqueous solution to be supplied to the microorganisms in the present invention, methane gas is generated, and when the solution in Example 4 is used, formic acid is generated. It is. At the same time when the aqueous solution 2 is dropped, a substrate gas having an appropriate composition is supplied from the lower pipe 5 of the reactor via the regulating valve 6 and brought into contact with the microorganisms and nutrient solution fixed on the carrier to produce the desired product. Is generated. Since the type and composition of the substrate gas used as a raw material differ depending on the bacterium used, it is necessary to select an optimum one according to the bacterium used. For example, in the case of the methane-producing HU strain, hydrogen gas and carbon dioxide gas are used as raw materials, and the H 2 / CO 2 ratio is preferably larger than 1. For this purpose, a gas analyzer (not shown) is installed at the product gas outlet 7 to analyze the product gas, It is preferable to operate the control valve 6 provided at the inlet so as to adjust the mixing ratio of the substrate gas and / or the supply amount and the supply speed thereof to the optimum values for the production of methane. The same applies to the case of other microorganisms, and the control valve 6 is controlled according to the data of the gas analyzer to supply the substrate in accordance with the substrate consumption rate of the microorganism.
リ アク ター 1 は、 加温ない し保温のためにその周囲をジャ ケッ トで囲み、 その中に讕温水、 調温気体を流した り、 電熱 線を配設した り して、 生合成反応を促進するよ う に してもよ い。 また、 上記とは逆に、 基質ガスの供耠を、 リ アク タ ー上 方から行ない、 生成ガスを リ アク ター下部から取り 出すこ と も可能である。 そ してまた、 集液槽 8 内に落下してきた水溶 - 液は、 そのまま廃棄するこ とな く 、 液出口 9 よ りポンプ及び パイプを介して (図示せず) 水溶液タ ンク 2へ戾してやって 循環使用する と、 その経済性が更に高まる。 また、 生成物が ギ酸など水溶性物質の場合は水溶液中に溶解して集液槽 8 内 に落下 して く るので、 この水溶液を液出口 9 よ り抜き取り、 水溶性物質を回収する こ と ができる。 また必要ある場合には、 リ アク ター内を加圧下におく と、 ガスの溶解度が高まって反 応速度を増大させる こ と ができる。 リ アク ターは気密に して おき、 リ アク ター内の基貿ガス含有量を固定化した微生物の 最適値に調節してやれば、 目的生産物の生成率を最大値にす るこ と ができる。  Reactor 1 is surrounded by a jacket for heating or keeping the temperature warm, in which hot water or temperature-adjusted gas is flown, and a heating wire is provided to conduct biosynthesis reaction. May be promoted. Conversely, it is also possible to supply the substrate gas from above the reactor and take out the generated gas from below the reactor. Also, the aqueous solution that has fallen into the liquid collecting tank 8 is not discarded as it is but is passed from the liquid outlet 9 to the aqueous solution tank 2 via a pump and a pipe (not shown). Recycling further increases its economic efficiency. If the product is a water-soluble substance such as formic acid, it is dissolved in the aqueous solution and falls into the liquid collecting tank 8, so that the aqueous solution is withdrawn from the liquid outlet 9 to recover the water-soluble substance. Can be. If necessary, pressurizing the inside of the reactor can increase the gas solubility and increase the reaction rate. If the reactor is kept airtight and the base gas content in the reactor is adjusted to the optimal value for the immobilized microorganisms, the production rate of the target product can be maximized.
このよう に して生成した目的物質がガスの場合は、 生成ガ ス出口 7 を通って、 ガス貯蔵 10内に集める。 また、 目的物質 が水溶性物質の場合は集液槽 8内から回収する。 When the target substance thus generated is a gas, it is collected in the gas storage 10 through the generation gas outlet 7. Also, the target substance If is a water-soluble substance, it is recovered from the liquid collection tank 8.
実施例 1〜 3  Examples 1-3
担体と してゼォライ ト、 発泡レンガ、 無機発泡体(粒径 7 . 1 〜; 12. 6mm) をそれぞれ使用 し、 これに広島大学工学部永并研 究室で純粋分離した保存菌 H U株を担体吸着法によって固定 せしめた。  Zeolite, foam brick, and inorganic foam (particle size: 7.1 to 12.6 mm) were used as carriers, and the HU strain, which had been isolated in the laboratory of Hiroshima University's Faculty of Engineering, was used as the carrier. It was fixed by the adsorption method.
このよう にして担体に固定せしめたメ タ ン生成菌を第 1 図 の リアクター (リアクター容量 75mJi ) に充填し、 第 1 図に図 示した装置を用い、 以下の諸元にて、 ガス状基質からのメ タ ン発酵を行った。 すなわち、 微生物を固定化した担体を充填 したリアクター 1 において、 その上部よ り、 表 1 に示す栄養 液 2 を調節弁 3 によって噴出管 4 から、 担体の表面に滴下さ せると ともに、 リ アクター下部パイプ 5 から調節弁 6 にて適 当な流れと した基質ガスを供給させ、 担体上の微生物にょ リ 生成したガスを上部出口 7 よ り得た。 リアクターのまわ り に ジャケッ トを設け、 温調水を通すことによ り、 微生物反応に 最適な温度 (37 °C ) に維持した。  The methane-producing bacteria immobilized on the carrier in this manner are filled in the reactor shown in Fig. 1 (reactor capacity: 75 mJi), and the gaseous substrate is obtained using the equipment shown in Fig. 1 under the following specifications. Methane fermentation was performed. That is, in the reactor 1 filled with the carrier on which the microorganisms are immobilized, the nutrient solution 2 shown in Table 1 is dropped from the upper part of the carrier from the ejection pipe 4 by the control valve 3 onto the surface of the carrier, and the lower part of the reactor is An appropriate flow of the substrate gas was supplied from the pipe 5 by the control valve 6, and the gas generated by the microorganisms on the carrier was obtained from the upper outlet 7. A jacket was provided around the reactor, and the temperature was adjusted to the optimal temperature (37 ° C) for microbial reaction by passing temperature-controlled water.
リアクタ一実容量: 75πυί  Reactor actual capacity: 75πυί
発酵温度: 37  Fermentation temperature: 37
固定化菌体量:リアクターあたり  Immobilized bacterial mass: per reactor
実施例 1 ゼォライ卜 0.675g-dry cell  Example 1 Zeolite 0.675g-dry cell
実施例 2 発泡煉瓦 0.643g-dry cell  Example 2 Foam brick 0.643g-dry cell
実施例 3 無機発泡体 0.604g-dry cell  Example 3 Inorganic foam 0.604g-dry cell
栄養液の供耠速度:リアクターあたり 25〜30mfi/日  Supply rate of nutrient solution: 25-30mfi / day per reactor
基質ガス供耠速度: 4760mfi/日 基質ガス組成(%): H2 81.5%, C02 18.5% Substrate gas supply rate: 4760mfi / day Substrate gas composition (%): H 2 81.5% , C0 2 18.5%
表 1 table 1
栄 養 液 の 組 成  Composition of nutrient solution
NH C1 o.9gje 1) trace metal solution NH C1 o.9gje 1) trace metal solution
NaH2P04*2H20 3 EDTA 1 £NaH 2 P0 4 * 2H 2 0 3 EDTA 1 £
K2HPO4 7 " Fe3 (Ρθ4)2·8Η20 1.02K2HPO4 7 "Fe3 (Ρθ4) 2.8Η 2 0 1.02
MgCl ·6Η 0 0.36" HnCl2.4H20 0.1MgCl · 6Η 0 0.36 "HnCl2.4H20 0.1
Na S-9H 0 0.5 0ο0ΐ2·6¾0 0.17 trace metal solution 1) 9 mfi/£ ZnCl2 0.1 vitaniin solu ion 2) 5 " CaCl2 0.02 Na S-9H 0 0.5 0ο0ΐ2.6 · 0 0.17 trace metal solution 1) 9 mfi / £ ZnCl 2 0.1 vitaniin soluion 2) 5 "CaCl2 0.02
H3B03 0.019 a2Mo0 -2H20 0.01H 3 B0 3 0.019 a 2 Mo0 -2H 2 0 0.01
2) vitamin solution 2) vitamin solution
biotixi 2 mg/£ pyridoxine-HCl 10 folic acid 2 riboflavin 5 thiamine 5 nicotinic acid 5 biotixi 2 mg / £ pyridoxine-HCl 10 folic acid 2 riboflavin 5 thiamine 5 nicotinic acid 5
Ca - pantothenate 5 vitamin Bi2 0.1 α-lipoic acid 5Ca-pantothenate 5 vitamin Bi 2 0.1 α-lipoic acid 5
P-amiJiobenzoic acid 5 その結果、 次のよ う な結果が得られた P-amiJiobenzoic acid 5 As a result, the following results were obtained.
生成ガス組成 (% ) H2 co2 CH4 実施例 1 ゼォライ 卜 45. 2 0 54.8 実施例 2 発 泡 媒 瓦 46. 5 0.8 52.7 実施例 3 無機発泡体 43. 5 0 06.5 0 Generated gas composition (%) H 2 co 2 CH 4 Example 1 Zeolite 45.2 0 54.8 Example 2 Foaming media 46.5 5 0.8 52.7 Example 3 Inorganic foam 43.5 0 06.5 0
以上の結果からも明らかなよう に、 本発明によれば、 H2及 び C02からメタンガスを直接生合成する ことができ、 しかも 生成ガスからは原料基貧である と ころの C02 はほとんどない しはおずかしか検出されず、 巨的生産物であるメ タ ンガスが 高鈍度で非常に効率よく得られることが判る。 As is apparent from the above results, according to the present invention, it can be biosynthesized directly methane gas from H 2及beauty C0 2, yet little C0 2 of the roller and the raw material base poor from the product gas Only a small number is detected, indicating that methane gas, a huge product, can be obtained very efficiently at high dullness.
実施例 4 H2、 C02よ り ギ酸の生成 Example 4 Formation of formic acid from H 2 and C 0 2
第 3 図の装置を用い、 担体と して焼結ガラス玉(径 7.6〜 10.5mm) 112を充填したリ アク タ ー 111に、 H U株の懸濁液 (乾菌体濃度 10.86g/ β ) を嫌気的かつ無菌的に入れ、 24時間 静置させて、 菌体を ビーズ玉に付着させた後、 残液を静かに 下部よ り抜いた。 次に溶液入口 113 よ り表 2 に示す溶液を滴 下させる とともに、 H2 /C02の基賓ガスを、 ガス入口れ4から下 降流で供耠し、 下部よ リ生化学反応によリ生じたギ酸を含む 溶液及び未反応ガスを回収した。 Using the apparatus shown in Fig. 3, a suspension of HU strain (dry cell concentration of 10.86 g / β) was placed in a reactor 111 filled with sintered glass beads (diameter 7.6 to 10.5 mm) 112 as a carrier. Was placed anaerobically and aseptically, allowed to stand for 24 hours to allow the cells to adhere to the beads, and then the remaining liquid was gently drained from below. Then it causes please droplets of a solution as shown in the solution inlet 113 good Ri Table 2, the Moto賓gas H 2 / C0 2, and Kyo耠under downcomer from the gas inlet is 4, the bottom by Li biochemical reactions The resulting solution containing formic acid and the unreacted gas were recovered.
115はギ酸含有溶液出口で、 116はガス出口で、 117は 32で の温調水入口で、 118は温調水出口で、 119はジャケッ 卜であ る。  115 is a formic acid-containing solution outlet, 116 is a gas outlet, 117 is a temperature control water inlet at 32, 118 is a temperature control water outlet, and 119 is a jacket.
表 2 溶液の組成  Table 2 Composition of solution
リン酸緩銜液 (0.1M) pH 8.0  Phosphoric acid loose mouth liquid (0.1M) pH 8.0
N a HC03 40 g/fi Na HC0 3 40 g / fi
N a S · 9H20 0.1 " N a S · 9H 2 0 0.1 "
Tr i t o n X-l 00 2 "  Tr i t on X-l 00 2 "
メチルビオロゲン 7.5m mol/fi 表 3にギ酸の発酵条件を示す。 この条件で 32 で 2週間反 応させた結果は表 3 に示される。 Methyl viologen 7.5 mMol / fi Table 3 shows the fermentation conditions for formic acid. Under these conditions 32 to 2 weeks anti The results are shown in Table 3.
なお、 ギ酸の定量は Langらの方法 (Lang E, Lang H., Z. Anal. Chem. , 260, 8~ 10 ( 1972) )によ り、 また、 ガス組成は ガスク ロマ トグラ フィ ー、 ガス流量は、 石ゲン膜法によ り行 つ た。  The formic acid was quantified by the method of Lang et al. (Lang E, Lang H., Z. Anal. Chem., 260, 8-10 (1972)), and the gas composition was gas chromatograph, gas chromatograph. The flow rate was determined by the stone membrane method.
表 3  Table 3
リアクター内径 68mm  Reactor inner diameter 68mm
焼結ガラス玉容量 250ιηώ (みかけ容量) 髙さ約 70mm  Sintered glass ball capacity 250ιηώ (apparent capacity) Length about 70mm
入口ガス 供給速度 Inlet gas supply speed
Figure imgf000013_0001
Figure imgf000013_0001
C O, 1345.6 mil/day 溶液供給速度 18.0 mfi/day 出口ガス 排出速度  C O, 1345.6 mil / day Solution supply rate 18.0 mfi / day Outlet gas discharge rate
H2 6013.0 mfi/day CO: 1315.5 mfi/day 溶液中のギ酸濃度 104 m mol/£ H 2 6013.0 mfi / day CO: 1315.5 mfi / day Formic acid concentration in solution 104 mmol / £
表 3 から H2のギ酸への変換率は From Table 3, the conversion of H 2 to formic acid is
ギ酸中の H2H 2 content in formic acid
変換率: X 100  Conversion rate: X 100
消费112Consumption 11 2 quantity
によって求める と、 When asked by
(18.0/ 1000) (104/ 1000)  (18.0 / 1000) (104/1000)
変換率: X 100  Conversion rate: X 100
(6056.0 - 6013.0) / (22400) とな り、 極めて高い変換率を得る こ と ができた。 但し、 溶液 中に溶解している H2量については、 極めて少ないこ とから計 算上無視しすこ (6056.0-6013.0) / (22400), and an extremely high conversion rate could be obtained. However, the amount of H 2 dissolved in the solution was calculated because it was extremely small. Ignoring

Claims

/ 請 求 の 範 囲 / The scope of the claims
1 . ガス状基質を微生物によ り発酵させて物質を生成する に  1. For the production of substances by fermentation of gaseous substrates by microorganisms
あた り、 担体に固定化された微生物を反応容器内に保持し、 上記微生物の表面の少な く とも一部が湿るよ う に水溶液を 上記反応容器内に供給する と共に、 上記微生物の空隙に上 記ガス状基質を通過させる こ と によって微生物とガス状基 質と を直接反応させ、 上記物質を生合成する こ と を特徴と する発酵方法。  In the meantime, the microorganisms immobilized on the carrier are held in the reaction vessel, and an aqueous solution is supplied into the reaction vessel so that at least a part of the surface of the microorganisms is moistened. A fermentation method characterized by directly reacting a microorganism with a gaseous substrate by passing the gaseous substrate through the above to biosynthesize the substance.
2. 水溶液に対し難溶性を示すガス状基質を上記微生物に供 給するこ と を特徴とする請求の範囲第 1 項記載の発酵方法。 2. The fermentation method according to claim 1, wherein a gaseous substrate having low solubility in an aqueous solution is supplied to the microorganism.
3. 水素ガス、 二酸化炭素ガス、 一酸化炭素ガス、 酸素ガス、 , 窒素ガスの中から選択される一種又は二種以上のガスを含 むガス状基質を上記微生物に供耠する こ と を特徴とする請 求の範囲第 2項記載の発酵方法。 3. A gaseous substrate containing one or more gases selected from hydrogen gas, carbon dioxide gas, carbon monoxide gas, oxygen gas, and nitrogen gas is supplied to the microorganism. 3. The fermentation method according to claim 2, wherein the request is:
4. 水素ガスと二酸化炭素ガスの混合比が 4対 1以上である  4. The mixing ratio of hydrogen gas and carbon dioxide gas is 4: 1 or more
混合ガスを反応容器内に固定されたメ タ ン生成菌に供給し て、 メ タ ンガスを生合成するこ と を特徴とする請求の範囲 第 3項記載の発酵方法。  4. The fermentation method according to claim 3, wherein the mixed gas is supplied to the methane-producing bacteria fixed in the reaction vessel to biosynthesize methane gas.
5 . 水素ガス、 二酸化炭素ガス、 更に Trit on X- 100及びメチ  5. Hydrogen gas, carbon dioxide gas, Trit on X-100 and methyl
ルビオロゲンを含有する水溶液をメ タ ン生成菌に供給して ギ酸を生合成する こ と を特徴とする請求の範囲第 4項記載 の発酵方法。  5. The fermentation method according to claim 4, wherein an aqueous solution containing rubiologen is supplied to a methane-producing bacterium to biosynthesize formic acid.
6 . 担体に固定化された微生物、 ガス状基質供給手段、 水溶  6. Microorganisms immobilized on a carrier, gaseous substrate supply means, water-soluble
液供耠手段、 生合成物質収集手段、 及び、 反応容器を備え た発酵装置であって、 上記微生物は上記反応容器内に設置 ί Ί A fermentation apparatus comprising a liquid supply means, a biosynthetic substance collection means, and a reaction vessel, wherein the microorganism is installed in the reaction vessel. ί Ί
され、 上記ガス状基貧供給手段、 上記水溶液供袷手段、 上 記生合成钧質収集手段がそれぞれ上記反応容器内部と連結 されていることを特徴とする発酵装置。 And a means for supplying a poorly gaseous group, a means for supplying an aqueous solution, and a means for collecting biosynthetic materials, respectively, which are connected to the inside of the reaction vessel.
上記反応容器内の Ρ Ηを調節する手段が設置されている こ と を特徴とする請求の範囲第 6項記載の発酵装置。  7. The fermentation apparatus according to claim 6, wherein a means for adjusting the temperature in the reaction vessel is provided.
PCT/JP1987/000156 1986-03-14 1987-03-13 Fermentation process WO1993013213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/093,497 US4921799A (en) 1986-03-14 1987-03-13 Fermentation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP61/54696 1986-03-14
JP61054696A JPS62236489A (en) 1986-03-14 1986-03-14 Production of methane
JP61/54697 1986-03-14
JP61054697A JPS62215395A (en) 1986-03-14 1986-03-14 Fermentation process

Publications (1)

Publication Number Publication Date
WO1993013213A1 true WO1993013213A1 (en) 1993-07-08

Family

ID=26395495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000156 WO1993013213A1 (en) 1986-03-14 1987-03-13 Fermentation process

Country Status (1)

Country Link
WO (1) WO1993013213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438023C1 (en) * 1994-10-25 1995-12-07 Buna Gmbh Aerobic fermentation, improved by the supply of the substrate as an aerosol,

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223496A (en) * 1982-06-18 1983-12-26 Mitsubishi Heavy Ind Ltd Methane fermentation tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223496A (en) * 1982-06-18 1983-12-26 Mitsubishi Heavy Ind Ltd Methane fermentation tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438023C1 (en) * 1994-10-25 1995-12-07 Buna Gmbh Aerobic fermentation, improved by the supply of the substrate as an aerosol,

Similar Documents

Publication Publication Date Title
AU2018200574B2 (en) Method for producing compound and compound production system used in said production method
US4921799A (en) Fermentation method
US9222108B2 (en) Bioreactor process for production of hydrogen from biomass
JP2016538838A (en) Biohydrogen production method and reactor
Schügerl Biofluidization: application of the fluidization technique in biotechnology
US3969190A (en) Apparatus and method for microbial fermentation in a zero gravity environment
US20100291621A1 (en) Anaerobic process
KR20210042082A (en) Carbon dioxide bioconversion method
JP4416947B2 (en) Process for continuous microbial production of polyhydroxybutyric acid
CN104395476B (en) Tool and method for producing methane
Markov et al. Spiral tubular bioreactors for hydrogen production by photosynthetic microorganisms: design and operation
Beeftink et al. Novel anaerobic gas‐lift reactor (AGLR) with retention of biomass: Start‐up routine and establishment of hold up
WO1993013213A1 (en) Fermentation process
JPS6349999B2 (en)
EP0137688A2 (en) Microbial transformations
RU2673739C1 (en) Bioreactor and method of fermentation for production of hydrogen
JP2006217829A (en) Hydrogen-producing apparatus using microorganism, and fuel battery system using the same
JPH0566109B2 (en)
JP6828064B2 (en) Solid fermentation reactor with active support material
RU2051962C1 (en) Method of cultivation of hydrogen-oxidizing bacteria
JPH06277081A (en) Production of 5-aminolevulinic acid by methane-producing bacterium
JPS5813391A (en) Membrane of immobilized microorganism
CN115818829A (en) Supplemented with the preference for CO 2 Pressure-holding two-phase anaerobic digestion device for methane bacteria and use method
JPH044892A (en) Production of corrinoid using methane-forming bacterium and production device therefor
Selvaraj et al. Biodesulfurization of flue gases using synthesis gas delivered as microbubbles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: PAT.BUL.16/93 UNDER INID (51) "IPC" REPLACE THE EXISTING SYMBOLS BY "C12P 1/00,5/02,7/40,C12M 1/40,C02F 3/28"