WO1993009463A1 - Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif - Google Patents

Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif Download PDF

Info

Publication number
WO1993009463A1
WO1993009463A1 PCT/FR1992/001039 FR9201039W WO9309463A1 WO 1993009463 A1 WO1993009463 A1 WO 1993009463A1 FR 9201039 W FR9201039 W FR 9201039W WO 9309463 A1 WO9309463 A1 WO 9309463A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
assembly
detector
axis
angle
Prior art date
Application number
PCT/FR1992/001039
Other languages
English (en)
Inventor
Pascal Joffre
Bertrand Remy
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Priority to EP93900234A priority Critical patent/EP0611454A1/fr
Publication of WO1993009463A1 publication Critical patent/WO1993009463A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • H04N3/08Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector
    • H04N3/09Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector for electromagnetic radiation in the invisible region, e.g. infrared
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene

Definitions

  • the invention relates to the field of infrared detection, more particularly to detection by infrared cameras using, as detectors, two-dimensional mosaics of elementary photosensitive cells.
  • the object of the invention is a micro-scanning device intended in particular for such infrared observation cameras.
  • Detectors with a two-dimensional mosaic made up of a large number of photosensitive cells have the advantage, compared to
  • a detection strip is made up of a very limited number of elementary cells, at least on one dimension, requiring the adapted scanning of a
  • the two-dimensional detectors constitute real electronic retinas, and the image of the scene projected on the detector having in this case dimensions equivalent to those of the detector.
  • the photosensitive cells of such mosaics are separated by non-sensitive zones which overall represent a large percentage of the total surface of the detector. For example, on a 128 x 128 mosaic of sensitive cells in the 3-5 ⁇ m band, the sensitive areas
  • the video signal supplied by two-dimensional detectors, is only obtained after multiplexing and reading charges delivered by the cells, proportional to the light flux received in a given infrared spectral band (for example in the 3-5 ⁇ or 8-12 ⁇ m band corresponding to atmospheric transmission windows).
  • the multiplexing and the reading of the charges are carried out conventionally through charge transfer circuits CCD (initials of Charge Coupled Device, in English terminology) or CID (Charge Injection Circuit) made up of charge integration and transfer zones whose dimensions cannot be reduced arbitrarily.
  • the invention aims to obtain spatial continuity of the detection surface of a two-dimensional detector, making it possible to increase the number of pixels in the final image formed from a video signal delivered by the detector, while overcome the disadvantages of the vibratory systems of the prior art.
  • the present invention proposes to carry out a mono or bidirectional microscanning using an assembly of thin blades, animated by a uniform rotational movement around an axis perpendicular to the convergent light beam coming from the scene observed.
  • the invention relates to a microscan device for periodically deflecting the direction of a convergent light beam, characterized in that it comprises an even number of optical blades 2 to 2 parallel associated dp so as to constitute an assembly of polygonal section around an axis of symmetry, perpendicular to the mean direction of the converging light beam.
  • the invention also relates to an infrared camera comprising such a micro-scanning device.
  • FIG. 2 an embodiment of the device according to the invention applied to a monodirectional microscan, this device being seen in section along a plane perpendicular to its axis of symmetry;
  • FIG. 3 an example of opto-electronic organization of an infrared camera with two-dimensional detector according to the invention;
  • This solution implements a polygonal refractive prism, such as that referenced 1 in Figures la and lb which represent it in horizontal section, respectively, according to a first and a second angular position.
  • a polygonal refractive prism such as that referenced 1 in Figures la and lb which represent it in horizontal section, respectively, according to a first and a second angular position.
  • Such a prism is described in the work of G. GAUSSORGUES entitled “The infrared thermography ", published by LAVOISIER (TEC and DOC).
  • a parallel beam FE coming from the scene to be observed, passes through a converging lens 2, of center 0, which forms a converging conjugate beam FC thereof, projected at a focal point occupying a position Po.
  • An average radius Rm of the beams FE then FC, defining their mean direction, is coincident with the optical axis AOP A 'shown in phantom.
  • the converging beam FC penetrates into the polygonal prism 1 and emerges from this prism according to a beam of the same convergence which finally focuses on a detection strip 3, placed precisely in the focusing plane of the lens 2-prism assembly 1.
  • the prism 1 is constituted by a refractive material cut according to a regular polygon comprising an even number of plane facets, for example 8 facets referenced 11 to 18.
  • each pair of opposite facets, such as 11 and 15 constitutes a blade with plane and parallel faces which does not modify the convergence of an incident beam.
  • the effect used to perform a large amplitude scan, shown in FIG. 1b, is the offset of the optical path of a light ray caused by the crossing of a blade with parallel faces inclined with respect to this ray.
  • the angle> . is defined as the angular difference between the optical axis AA ', and the normal to the opposite facets crossed by the converging beam.
  • the external beam FE which finally converges on the bar 3 is then inclined by an angle G and the beam FC, conjugated with FE, virtually converges at a point which then occupies a position P .. different from the position P.
  • the mean radius Rm is no longer confused with the optical axis AA r .
  • each elementary cell of the bar "sees" juxtaposed areas of space forming a strip of space called the "line" of the image of the observed scene.
  • a complete image of the observed scene is thus scanned by the bar.
  • the passage of the beam FC on an edge of the prism 1 separating two facets causes a discontinuity of the scanning which returns at the beginning of the image by passing from a pair of blades to the next, such as M-15 and 12 - 16 in FIG. .
  • the invention exploits this same possibility of obtaining a lateral deflection of a convergent beam by crossing an optical element with parallel faces and inclined with respect to the mean axis of this beam. But in order to cause only an angular scan of very low amplitude, also called microbay, opposite to the previous type of scan, the invention implements an assembly composed of thin blades. The thickness of these blades is very small compared to that of the prism 1 crossed, in order to greatly reduce the factor e of the formulas (I) and (II) and therefore to reduce the amplitude of the optical deflection obtained by the same amount.
  • the plates are made of a material transparent to the converging beam to be deflected, at least in a spectral band covering at least the range of sensitivity of the detector used in the main application envisaged below.
  • the assembly generally has a polygonal configuration such as that shown in horizontal section, by way of example in FIG. 2.
  • the polygonal assembly 20 is formed of 8 identical thin blades 21 to 28 of thickness _, with rectangular, planar and parallel external faces.
  • the traces of two successive blades form in the plane of the figure a dihedral with an apex angle equal to 135 °, so as to form an octagon overall, the sides of which are formed by thin blades 21 to 28 two by two opposite, and whose axis of symmetry A is perpendicular to the plane of the figure.
  • this assembly 20 When this assembly 20 is driven by a uniform rotational movement around the axis _X, it causes a lateral deviation ⁇ x d focal point of the converging beam FC.
  • the expressions of ⁇ x, introduced previously, are still applicable in the case of the deviation obtained using the thin-blade assembly 20. More precisely, the thickness e used in the expressions I or II is then equal to the sum of the thicknesses of the two opposite blades traversed, such as the blades 21 and 25 of FIG. 2.
  • this equivalent blade representing a fraction of the thickness of the large amplitude scanning prism 1, described with reference to FIGS. 1 a and 1 b, by example a few percent, the amplitude of the lateral deviation, proportional to the thickness crossed according to formulas I or II, will be reduced in the same proportions.
  • the arbitrarily as small as desired thickness of the blades of the assembly 20 according to the invention allows a sweep of amplitude almost as reduced as desired.
  • FIG. 3 represents an example of an opto-electronic organization of an infrared camera with a two-dimensional detector equipped with a micro-scanning device according to the invention.
  • the same references designate the same objects as in the previous figures.
  • a parallel beam F coming from the observed scene is made convergent according to a beam FC and projected onto an infrared detector 31, of the two-dimensional mosaic type, by passing through a focusing lens 2.
  • a polygonal microscan assembly 33 according to the invention composed of six thin blades in the example shown, is interposed in the path of the convergent beam FC, that is to say between the focusing lens 2 and the detector 31, the axis of symmetry ⁇ of the assembly 33 being perpendicular to the direction of the converging beam FC.
  • the assembly 33 is driven in rotation by the action of a motor M, the speed of rotation being linked to the multiplexing times (integration, transfer and reading) of the charges released in the detector 31 in proportion to the light flux received and multiplexed conventionally in a CCD circuit integrated into the detector 31.
  • the reading rate is managed by a sequencer 32 which also adjusts the speed of rotation of the motor M through an angular encoder 34.
  • the signal formed by the multiplexed charges, at the output of the detector 31, is processed in a circuit 35 which delivers, in connection with this sequencer 32 a video signal SV according to a TV standard adapted to a display monitor (not shown).
  • the rotation of the polygonal assembly 33 gives the FE beam, as explained above, a movement of horizontal microscanning in one direction Dx on the detector 31.
  • a micro-sweep in two directions for example in the directions Dx and Dy indicated in FIG. 3, an alternative embodiment of the polygonal assembly according to the invention is described below with reference to FIGS. 4 and 5.
  • FIG. 4 illustrates a schematic representation of the beginnings of the first and of the second row of photosensitive cells, C .., ⁇ TO ' ⁇ 13' ⁇ 21 ' C 22' C 23 of a two-dimensional mosaic detector comprising nxp cells
  • Cij distributed over a matrix of n rows and p columns, i varying from 1 to n, and j from 1 to p.
  • the cells represented have for example a square shape of 25 ⁇ m on a side and are separated, according to the horizontal direction Dx, from 100 ⁇ m and, according to the vertical direction Dy, from 70 ⁇ m.
  • Dx horizontal direction
  • Dy vertical direction
  • the additional cells C. .. ... VS .. . ,- , CC. ..,.
  • the microlines, such as Ml and M2 are scanned identically 2 N times per rotation of an assembly with 2 N identical blades forming N pairs of blades opposite two by two.
  • a bidirectional microscan assembly according to the invention is, globally, approximately like the monodirectional assembly 3 shown in FIG. 3.
  • these assemblies have been shown in FIG. 5, in section along a plane passing through the axis of rotation ___ of FIG. 3 and the median lines of a couple of opposing blades.
  • the traces of the blades of the unidirectional microscan assembly 33 appear in dotted lines and that of a bidirectional microscan assembly 50 appear in solid lines.
  • the thin blades of the assembly 50, such as 51 and 54 have a prismatic profile with an angle at the apex A, the interior faces of these blades, such as FI. and F4.
  • the converging beam FC from the focusing lens 2 has also been shown in section. It is well known to the laws of light propagation that the passage from a light ray to through a slightly prismatic plate with an angle at the apex A, such as 51 or 54, causes an angular deviation approximately equal to (n-1) A. This angular deviation results, for the focal point P5 of the convergent beam, by a vertical offset A y of approximate value:
  • l being the distance between the prismatic plate and the focal point
  • n the refractive index of the optical material constituting the plate.
  • the prismatic angles are different from one pair of blades opposite to another, the vertical offset produced by each of these couples, successively intercepting the converging beam during the rotation of the assembly j is different and the corresponding scanned microline s 'is shifted by as much.
  • the different values of the prismatic angles can form a progression such that the successive shifts of the corresponding microlines form a progression of constant pitch.
  • an assembly comprising N pairs of opposite blades, ie 2N blades, causes the scanning of N microlines when each of the N couples consists of prismatic blades of the same angle at the top, this angle being different from one couple to the other.
  • the N microlines are scanned twice at each rotation of the assembly since the same pair of opposite prismatic blades causes the same offset twice per rotation, the blades coming to the beam converge in a certain order and an inverted order for two positions of the assembly angularly separated by 180 °.
  • angles at the top of the 3 pairs of blades of assembly 50 are, respectively, 0 ° (blades of constant thickness), A 0 and 2A °, two additional microlines are created since a couple opposite blades, such as 51 and 54, causes the same microline offset twice per rotation, respectively (nl) A (1 1 + 1 4 ) and (nl) A (_ 4 + l.).
  • angles at the top of the prismatic plates being very small, a few degrees at most, the distortion on the scanning which results from the prismatic effect, caused by the presence of a variable deflection of a light ray as a function of the thickness crossed by this radius, remains negligible.
  • the assembly of the thin blades can be achieved by any known means, for example by gluing or by fusion between two machined flanges;
  • the offset ⁇ y shown in FIG. 5 can also be achieved by assembling thin blades with flat and parallel faces such as the blades of the assembly 33 but with different values of inclination of the blades relative to the axis ⁇ , l the angle of inclination of a pair of opposite blades being identical and the different values of the angles forming a progression such that the successive shifts of the Corresponding microlines form a constant step progression.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Radiation Pyrometers (AREA)

Abstract

L'invention concerne un dispositif de microbalayage pour dévier périodiquement un faisceau convergent. Le dispositif selon l'invention se compose d'un assemblage (33) composé d'un nombre pair de lames minces (21 à 28) deux à deux opposées, formant un polygone régulier. L'assemblage possède un axe de symétrie (Δ), disposé perpendiculairement à la direction (Rm) du faisceau convergent (FC), et est animé d'un mouvement de rotation uniforme autour de l'axe (Δ). L'invention s'applique au microbalayage selon une ou deux directions, selon la forme du profil des lames minces, pour des détecteurs bidimensionnels des caméras infrarouges.

Description

DISPOSITIF DE MICROBALAYΛGE ET CAMERA INFRAROUGE EQUIPEE D'UN TEL DISPOSITIF .
L'invention concerne le domaine de la détection infrarouge , plus particulièrement de la détection par caméras infrarouges utilisant , comme détecteurs , des mosaïques bidimensionnelles de cellules photosensibles élémentaires .
5 L'objet de l'invention est un dispositif de microbalayage destiné notamment à de telles caméras d'observation infrarouge .
Les détecteurs à mosaïque bidimensionnelle constituée d'un grand nombre de cellules photosensibles (par exemple 256 x 256) possèdent l'avantage , par rapport aux barrettes de
10 détection , de pouvoir former directement un signal vidéo , sans nécessiter de balayage .
En effet, alors qu'une barrette de détection est constituée d'un nombre très limité de cellules élémentaires , au moins sur une dimension , nécessitant le balayage adapté d'une
15 image de la scène observée , les détecteurs bidimensionnels , plus récemment mis au point , constituent de véritables rétines électroniques , et l'image de la scène projetée sur le détecteur ayant dans ce cas des dimensions équivalentes à celles du détecteur .
-0 Cependant , les cellules photosensibles de telles mosaïques sont séparées par des zones non sensibles représentant globalement un pourcentage important de la surface totale du détecteur . Par exemple , sur une mosaïque de 128 x 128 cellules sensibles dans la bande 3-5 μm, les zones sensibles
25 n'occupent que 25 % de la surface totale . La présence nécessaire d'une "trame" aveugle , constituée par les zones non sensibles entre les cellules photosensibles disjointes , résulte des contraintes liées à la technologie des circuits intégrés au détecteur bidimensionnel .
30 En effet , le signal vidéo , fourni par les détecteurs bidimensionnels , n'est obtenu qu'après multiplexage et lecture des charges délivrées par les cellules , proportionnellement au flux lumineux reçu dans une bande spectrale infrarouge donnée (par exemple dans la bande 3-5 μ ou 8-12 μm correspondant à des fenêtres de transmission atmosphériques) . Le multiplexage et la lecture des charges sont effectués classiquement à travers des circuits à transfert de charges CCD (initiales de Charge Coupled Device , en terminologie anglosaxonne) ou CID (Circuit à Injection de Charges) constitués de zones d'intégration et de transfert de charges dont les dimensions ne peuvent être réduites arbitrairement.
Afin d'obtenir une continuité spatiale de détection malgré l'effet de "trame" produit par la présence de cette trame aveugle , un microbalayage du faisceau provenant de la scène est nécessaire . Selon l'art antérieur, un tel microbalayage est obtenu par la vibration d'une lame à faces parallèles, disposée entre un objectif de focalisation et le détecteur. Des solutions de ce types sont classiques et ont été proposées , par exemple dans les brevets EP 289 182 ou JP 61 236 282 (Patent Abstracts Vol. TI, n° 81 (E -488) [ 2528] ) . Mais ces dispositifs ne sont pas stables dans le temps du fait des problèmes inhérents à la vibration (effet de flou, déréglage, usure accélérée, . . . ) .
L'invention vise à obtenir une continuité spatiale de la surface de détection d'un détecteur bidimensionnel, permettant d'augmenter le nombre de pixels dans l'image finale formée à partir d'un signal vidéo délivré par le détecteur, tout en s'affranchissent des inconvénients des systèmes vibratoires de l'art antérieur. Pour atteindre cet objectif , la présente invention propose d'effectuer un microbalayage mono ou bidirectionnel à l'aide d'un assemblage de lames minces, animé d'un mouvement de rotation uniforme autour d'un axe perpendiculaire au faisceau lumineux convergent provenant de la scène observée .
Plus précisément, l'invention concerne un dispositif de microbalayage pour dévier périodiquement la direction d'un faisceau lumineux convergent, caractérisé en ce qu'il comporte un nombre pair de lames optiques 2 à 2 parallèles associées dp façon à constituer un assemblage à section polygonale autour d'un axe de symétrie , perpendiculaire à la direction moyenne du faisceau lumineux convergent . L'invention concerne également une caméra infrarouge comportant un tel dispositif de microbalayage .
D'autres caractéristiques et avantages apparaîtront à la lecture de la description qui suit , en référence aux figures annexées qui représentent , respectivement : - les figures la et lb , un dispositif classique pour l'obtention d'un balayage grande amplitude , disposé respectivement en coupe verticale selon une première et une seconde position angulaire ;
- la figure 2 , un exemple de réalisation du dispositif selon l'invention appliqué à un microbalayage monodirectionnel , ce dispositif étant vu en coupe selon un plan perpendiculaire à son axe de symétrie ; la figure 3 , un exemple d'organisation opto-électronique d'une caméra infrarouge à détecteur bidimensionnel selon l'invention ;
- la figure 4 , un schéma illustrant l'effet produit par un microbalayage selon deux directions ;
- la figure 5 , un exemple de réalisation du dispositif selon l'invention appliqué à un microbalayage bidirectionnel , le dispositif étant vu en coupe selon un plan de symétrie .
Afin de définir les bases de l'optique géométrique sur lesquelles s 'appuie la présente invention , il est intéressant de décrire, en premier lieu , une solution classiquement retenue pour obtenir un balayage de grande amplitude sur une barrette de détection .
Cette solution met en oeuvre un prisme réfringent polygonal, tel que celui référencé 1 sur les figures la et lb qui le représentent en coupe horizontale , respectivement , selon une première et une seconde position angulaire . Un tel prisme est décrit dans l'ouvrage de G. GAUSSORGUES intitulé " La thermographie infrarouge" , publié aux éditions LAVOISIER (TEC et DOC) .
Sur la figure la, un faisceau parallèle FE, issu de la scène à observer, traverse une lentille convergente 2 , de centre 0, qui en forme un faisceau conjugué convergent FC , projeté en un point de focalisation occupant une position Po . Un rayon moyen Rm des faisceaux FE puis FC, définissant leur direction moyenne, est confondu avec l'axe optique AOP A' représenté en traits mixtes . Le faisceau convergent FC pénètre dans le prisme polygonal 1 et ressort de ce prisme selon un faisceau de même convergence qui finalement focalise sur une barrette de détection 3 , disposée précisément dans le plan de focalisation de l'ensemble lentille 2-prisme 1. Le prisme 1 est constitué par un matériau réfringent taillé selon un polygone régulier comportant un nombre pair de facettes planes , par exemple 8 facettes référencées 11 à 18. Ainsi chaque couple de facettes opposées , telles que 11 et 15, constitue une lame à faces planes et parallèles qui ne modifie pas la convergence d'un faisceau incident. L'effet utilisé pour effectuer un balayage grande amplitude , mis en évidence par la figure lb, est le décalage du trajet optique d'un rayon lumineux provoqué par la traversée d'une lame à faces parallèles inclinées par rapport à ce rayon.
Sur la figure lb, le prisme 1 a tourné d'un angle par rapport à sa position occupée sur la figure la .
L'angle > . est défini comme l'écart angulaire entre l'axe optique AA' , et la normale aux facettes opposées traversées par le faisceau convergent. Le faisceau extérieur FE qui converge finalement sur la barrette 3 est alors incliné d'un angle G et le faisceau FC, conjugué de FE, converge virtuellement en un point qui occupe alors une position P.. différente de la position P . Le rayon moyen Rm n'est plus confondu avec l'axe optique AAr.
Le point de convergence est dévié latéralement de sa position Po occupée sur la figure la . Le calcul de la déviation latérale P . P , notée ci -après x , est conduit à partir du trajet suivi par le rayon moyen Rm du faisceau lumineux , en fonction de l'épaisseur . de prisme traversée , de l'indice de réfraction n du prisme et de l'angle . Cette déviation a pour expression :
Cos -. i_ x = e sin ( 1 - ) (D
\ v/n 2 - S _i•n 2 Λ
Pour de faibles valeurs de λ , exprimées en radian s , cette expression prend la forme simplifiée suivante :
Λ = e . -X . ( 1- 1/n ) ( II)
Ainsi , lorsque l'angle X. varie , chaque cellule élémentaire de la barrette "voit" des zones d'espace juxtaposées formant une bande d'espace appelée "ligne" d'image de la scène observée . Une image complète de la scène observée est ainsi balayée par la barrette . Le passage du faisceau FC sur une arête du prisme 1 séparant deux facettes entraîne une discontinuité du balayage qui revient en début d'image par passage d'un couple de lames au suivant , tels que M- 15 et 12 - 16 sur la figure la .
L'invention exploite cette même possibilité d'obtenir une déviation latérale d'un faisceau convergent par traversée d 'un élément optique à faces parallèles et inclinées par rapport à l'axe moyen de ce faisceau . Mais pour ne provoquer qu'un balayage angulaire de très faible amplitude , encore appelé microbalayage , opposé au type de balayage précédent , l'invention met en oeuvre un assemblage composé de lames minces . L'épaisseur de ces lames est très faible par rapport à celle du prisme 1 traversée , afin de diminuer fortement le facteur e des formules (I) et (II) et donc de réduire d'autant l'amplitude de la déviation optique obtenue . Les lames sont constituées d'un matériau transparent au faisceau convergent à dévier , au moins dans une bande spectrale couvrant au moins le domaine de sensibilité du détecteur utilisé dans l'application principale envisagée ci-après .
L'assemblage a globalement une configuration polygonale telle que celle représentée en coupe horizontale , à titre d'exemple sur la figure 2.
Sur cette figure l'assemblage polygonal 20 est formé de 8 lames minces identiques 21 à 28 d'épaisseur _ , à faces externes rectangulaires , planes et parallèles . Les traces de deux lames successives forment dans le plan de la figure un dièdre d'angle au sommet égal à 135° , de façon à constituer globalement un octogone , dont les côtés sont formés par les lames minces 21 à 28 deux à deux opposées , et dont l'axe de symétrie A est perpendiculaire au plan de la figure .
Sur la figure 2, les références identiques à celles des figures la et lb, telles que les faisceaux FE et FC et la lentille convergente 2 , désignent les mêmes objets . Lorsque cet assemblage 20 est animé d'un mouvement de rotation uniforme autour de l'axe _X , il provoque une déviation latérale Δ x d point de focalisation du faisceau convergent FC. Les expressions de Δ x, introduites précédemment, sont encore applicables dans le cas de la déviation obtenue à l'aide de l'assemblage à lames minces 20. Plus précisément, l'épaisseur e utilisée dans les expressions I ou II est alors égale à la somme des épaisseurs des deux lames opposées traversées, telles que les lames 21 et 25 de la figure 2. En effet, les calculs d'optique géométrique appliquées à la traversée d'une lame à faces parallèles montrent que les effets produits sur un faisceau lumineux donné ne dépendent pas de la position de la lame sur l'axe moyen de ce faisceau, qu'il soit convergent ou non . Un ensemble de deux lames opposées traversées, telles que les lames 21 et 25 , se comporte donc exactement comme une lame unique équivalente d'épaisseur 2 , double de celle de chacune de ces lames .
L'épaisseur de cette lame équivalente représentant une fraction de l'épaisseur du prisme de balayage grande amplitude 1, décrit en référence aux figures la et lb , par exemple quelques pour cent , l'amplitude de la déviation latérale , proportionnelle à l'épaisseur traversée d'après les formules I ou II , sera réduite dans les mêmes proportions . L'épaisseur arbitrairement aussi petite que souhaitée des lames de l'assemblage 20 selon l'invention , autorise un balayage d'amplitude quasiment aussi réduite que souhaitée .
La figure 3 représente un exemple d'organisation opto-électronique de caméra infrarouge à détecteur bidimensionnel équipée d'un dispositif de microbalayage selon l'invention . Les mêmes références désignent les mêmes objets que sur les figures précédentes .
Classiquement , un faisceau parallèle F provenant de la scène observée est rendu convergent selon un faisceau FC et projeté sur un détecteur infrarouge 31 , du type mosaïque bidimensionnelle , par passage à travers une lentille de focalisation 2 . Un assemblage polygonal de microbalayage 33 selon l'invention , composé de six lames minces dans l'exemple représenté , est interposé dans le trajet du faisceau convergent FC, c'est-à-dire entre la lentille de focalisation 2 et le détecteur 31 , l'axe de symétrie Δ de l'assemblage 33 étant perpendiculaire à la direction du faisceau convergent FC . L'assemblage 33 est entraîné en rotation par l'action d'un moteur M , la vitesse de rotation étant liée aux temps de multiplexage (intégration , transfert et lecture) des charges libérées dans le détecteur 31 proportionnellement au flux de lumière reçu et multiplexées classiquement dans un circuit CCD intégré au détecteur 31 . La cadence de lecture est gérée par un séquenceur 32 qui ajuste également la vitesse de rotation du moteur M à travers un codeur angulaire 34. Le signal formé par les charges multiplexées , en sortie du détecteur 31, est traité dans un circuit 35 qui délivre , en liaison avec ce séquenceur 32 un signal vidéo SV selon une norme TV adaptée à un moniteur de visualisation (non représenté) .
La rotation de l'assemblage polygonal 33 imprime au faisceau FE, comme expliqué précédemment, un mouvement de microbalayage horizontal selon une seule direction Dx sur le détecteur 31 . Afin de réaliser un microbalayage selon deux directions , par exemple selon les directions Dx et Dy indiquées sur la figure 3 , une variante de réalisation de l'assemblage polygonal selon l'invention est décrite ci-après en référence aux figures 4 et 5.
La figure 4 illustre une représentation schématisée des débuts de la première et de la deuxième ligne de cellules photosensibles, C.. , ^ T O ' ^13 ' ^21 ' C22 ' C23 d'un détecteur à mosaïque bidimensionnelle comprenant nxp cellules
Cij, réparties sur une matrice de n lignes et p colonnes , i variant de 1 à n , et j de 1 à p . Les cellules représentées ont par exemple une forme carrée de 25 μm de côté et sont séparées , selon la direction horizontale Dx, de 100 μm et, selon la direction verticale Dy, de 70 μm. Avec un microbalayage monodirectionnel selon la direction Dx, tel que celui décrit précédemment, tout se passe comme si des cellules photosensibles élémentaires supplémentaires sont "créées", c'est-à-dire apparaissent successivement dans le temps, entre les cellules du détecteur et donc sur les mêmes lignes que ces cellules. Sur la figure 4 , les cellules supplémentaires C . .. .. . C .. . ,- , CC. .. ,. , et C21 -ι , ^?i ' ^21 V orιt ^te représentées par leur centre, respectivement sur des microlignes Ml et M2 reliant les centres des cellules Cil et C12 d'une part et C21 et C22 d'autre part.
Or l'effet des couples de lames minces opposées et identiques étant identique, quel que soit le couple , les microlignes, telles que Ml et M2 , sont balayées identiquement 2 N fois par tour de rotation d'un assemblage à 2 N lames identiques formant N couples de lames opposées deux à deux .
Afin de réaliser un microbalayage bidirectionnel selon Dx et Dy , il convient de décaler successivement, selon la direction Dy , les microlignes balayées de façon à "créer" , successivement dans le temps, des microugnes supplémentaires entre ces microlignes telles que celles référencées Mil et M12 entre Ml et M2 sur la figure 4. Cette création pnt raîne la création d 'autant de cellules photosensibles élémentaires , représentées uniquement par leur centre pour ne pas surcharger la figure . Pour réaliser ce décalage des microlignes , il est nécessaire que chaque couple de lames minces , actif pendant toute la durée où il intercepte le faisceau à dévier , produise non seulement un décalage variable selon la direction Dx , de façon à décrire les microlignes , mais également un décalage de pas constant des microlignes selon la direction Dy , en passant d'un couple de lames actif au couple suivant . Un tel décalage est obtenu , dans le cadre de l'invention , en conférant aux lames minces de l 'assemblage de microbalayage un léger angle prismatique , différent d'un couple de lames à l'autre .
Un assemblage de microbalayage bidirectionnel selon l'invention se présente , globalement , approximativement comme l'assemblage 3 monodirectionnel représenté sur la figure 3 . Afin de bien faire ressortir les formes caractéristiques respectives des lames des assemblages mono et bidirectionnel , ces assemblages ont été représentés sur la figure 5 , en coupe selon un plan passant par l'axe de rotation ___ de la figure 3 et les lignes médianes d'un couple de lames opposées . Sur la figure 5 , les traces des lames de l'assemblage de microbalayage monodirectionnel 33 apparaissent en traits pointillés et celle d' un assemblage de microbalayage bidirectionnel 50 apparaissent en traits continus . Les lames minces de l'assemblage 50 , telles que 51 et 54 présentent un profil prismatique d'angle au sommet A , les faces intérieures de ces lames , telles que FI . et F4. , étant verticales et confondues avec celles des lames de l'assemblage 33 , les faces extérieures , telles que FI et F4 étant inclinées . Le profil prismatique de lames peut également être obtenu à l'aide de faces intérieures inclinées et de faces extérieures verticales . Sur la figure 5 , le faisceau convergent FC issu de la lentille de focalisation 2 a également été représenté en coupe . Il est bien connu des lois de la propagation lumineuse que le passage d'un rayon lumineux à travers une lame légèrement prismatique d'angle au sommet A, telle que 51 ou 54, provoque une déviation angulaire approximativement égale à (n-1) A. Cette déviation angulaire se traduit, pour le point de focalisation P5 du faisceau convergent, par un décalage vertical A y de valeur approximative :
A y = (n-l) A.l
l étant la distance entre la lame prismatique et le point de focalisation, et n l'indice de réfraction du matériau optique constituant la lame.
Sur la figure' 5, les distances des lames 51 et 54 au plan de focalisation contenant Ε-. sont notées , respectivement, i et 1.. L'épaisseur des lames, supposée faible, étant négligeable par rapport aux distances L et l. , les décalages verticaux, introduits par chacune de ces lames , s'ajoutent et le décalage vertical global a pour expression :
Figure imgf000012_0001
Si les angles prismatiques sont différents d'un couple de lames opposées à un autre, le décalage vertical produit par chacun de ces couples, interceptant successivement le faisceau convergent au cours de la rotation de l'assemblage j est différent et la microligne balayée correspondante s'en trouve décalée d'autant. Les différentes valeurs des angles prismatiques peuvent former une progression telle que les décalages successifs des microlignes correspondantes forment une progression de pas constant.
Ainsi, un assemblage comportant N couples de lames opposées, soit 2N lames, provoque le balayage de N microlignes lorsque chacun des N couples se compose de lames prismatiques de même angle au sommet, cet angle étant différent d'un couple à l'autre. En effet, les N microlignes sont balayées deux fois à chaque tour de rotation de l'assemblage puisqu'un même couple de lames prismatiques opposées provoque un même décalage deux fois par tour de rotation , les lames se présentant au faisceau convergent selon un certain ordre et un ordre inversé pour deux positions de l'assemblage séparées angulairement de 180° .
Par exemple , si les angles au sommet des 3 couples de lames de l'assemblage 50 sont , respectivement , de 0° ( lames d'épaisseur constante) , de A0 et de 2A° , deux microlignes supplémentaires sont créées puisqu'un couple de lames opposées , telles que 51 et 54 , provoque le même décalage de microligne deux fois par tour de rotation , respectivement (n-l) A (11 + 14) et (n-l)A (_4 + l. ) .
Les angles au sommet des lames prismatiques étant très faibles , quelques degrés au plus , la distorsion sur le balayage qui résulte de l'effet prismatique , provoquée par la présence d'une déviation variable d'un rayon lumineux en fonction de l'épaisseur traversée par ce rayon, reste négligeable .
L'invention n'est pas limitée aux modes de réalisation décrits et représentés . Par exemple :
- en ce qui concerne l'implantation de l'assemblage à lames minces selon l'invention, il peut être envisagé d'intégrer cet assemblage à la lentille de focalisation ; il peut également être envisagé d'introduire à l'intérieur de l'assemblage à lames minces des éléments optiques fixes , tels que des lentilles ;
- l'assemblage des lames minces peut être réalisé par tout moyen connu , par exemple par collage ou par fusion entre deux flasques usinés ;
- le décalage Δ y représenté figure 5 peut être réalisé également par un assemblage de lames minces à faces planes et parallèles telles que les lames de l'assemblage 33 mais avec différentes valeurs d'inclinaison des lames par rapport à l'axe \ , l'angle d'inclinaison d'un couple de lames opposées étant identique et les différentes valeurs des angles formant une progression telle que les décalages successifs des microlignes correspondantes forment une progression de pas constant.

Claims

REVENDICATIONS
1 . Dispositif de microbalayage pour dévier périodiquement la direction d'un faisceau lumineux convprgen t , caractérisé en ce qu 'il comporte un nombre pair de lames optiques 2 à 2 parallèles ( 21 à 28 ; 5 1 à 56 ) associées de façon à constituer un assemblage (33 , 50) à section polygonale autour d'un axe de symétrie (Δ) perpendiculaire à la direction moyenne du faisceau convergent ( FC ) .
2 . Dispositif de microbalayage selon la revendication 1 , caractérisé en ce que l'assemblage (33 , 50 ) est animé d'un mouvement de rotation uniforme autour de l'axe ( Λ ) produit par un moteur (M) .
3 . Dispositif selon les revendications 1 ou 2 . caractérisé en ce que l'assemblage (33 , 50) ) est constitué en un matériau transmettant la lumière dans une bande spectrale couvrant l'infrarouge .
4. Dispositif selon l'une des revendications précédentes appliqué à un microbalayage monodirectionnel , caractérisé en ce que les lames optiques ( 21 à 28 ) sont des lames minces à surfaces externes rectangulaires distantes d 'une épaisseur constante (£_) .
5 . Dispositif selon la revendication 4 , caractérisé en ce que les lames optiques ( 21 à 28) présentent un angle d'inclinaison par rapport à l'axe Δ .
6 . Dispositif selon la revendication. 5 , caractérisé en ce que les couples de lames minces opposées ( 21 , 25 ) ont un angle d'inclinaison constant par rapport à l'axe _ . cet angle étant différent d'un couple à l'autre .
7. Dispositif selon l'une des revendications 1 à 3 , appliqué à un microbalayage bidirectionnel , caractérisé en ce que les lames optiques sont des lames minces à surfaces externes rectangulaires distantes d'une épaisseur variable correspondant à un profil prismatique à angle au sommet (A) très faible.
8. Dispositif selon la revendication 5 , caractérisé en ce que les couples de lames minces opposées (51, 54) ont un profil prismatique identique, ayant un même angle au sommet, les angles de sommet des couples de lames minces étant différent d'un couple à l'autre .
9. Caméra infrarouge comportant un dispositif convergent (2) destiné à projeter l'image d'une scène à observer sur un détecteur infrarouge bidimensionnelle (31) constitué d'une matrice de p colonnes et n Lignes de cellules photosensibles élémentaires associée à un circuit de multiplexage et de lecture intégré au détecteur (31) , et un circuit de traitement (35) qui délivre un signal vidéo (SV) à partir du signal fourni par le détecteur (31) , caractérisé en ce que la caméra infrarouge comporte également un dispositif de microbalayage (33, 50) selon l'une des revendications précédentes, et en ce que la cadence de lecture des charges du détecteur (31) et la vitesse de rotation du dispositif de microbalayage (33, 50) sont synchronisées à l'aide d'un séquenceur (32) .
PCT/FR1992/001039 1991-11-08 1992-11-06 Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif WO1993009463A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93900234A EP0611454A1 (fr) 1991-11-08 1992-11-06 Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9113811A FR2683639B1 (fr) 1991-11-08 1991-11-08 Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif.
FR91/13811 1991-11-08

Publications (1)

Publication Number Publication Date
WO1993009463A1 true WO1993009463A1 (fr) 1993-05-13

Family

ID=9418765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/001039 WO1993009463A1 (fr) 1991-11-08 1992-11-06 Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif

Country Status (3)

Country Link
EP (1) EP0611454A1 (fr)
FR (1) FR2683639B1 (fr)
WO (1) WO1993009463A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680206A1 (fr) * 1994-04-29 1995-11-02 Thomson-Csf Caméra à détecteur matriciel munie d'un dispositif de microbalayage
FR2725101A1 (fr) * 1994-09-23 1996-03-29 Thomson Csf Camera thermique a matrice de detection
EP0713119A1 (fr) * 1994-11-18 1996-05-22 Thomson-Csf Dispositif de veille panoramique infrarouge statique à détecteurs matriciels multiples
GB2324168A (en) * 1997-04-11 1998-10-14 Geoffrey Owen Optical deflector and beam splitter
GB2336268A (en) * 1998-04-09 1999-10-13 Aeg Infrarot Module Gmbh Correction of grey values in IR imaging
GB2402751A (en) * 2003-06-10 2004-12-15 Xaar Technology Ltd Rotating attenuating structure for laser beam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9616027D0 (en) * 1996-07-31 1996-09-11 Crosfield Electronics Ltd Generating a representation of an original image

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626091A (en) * 1969-12-11 1971-12-07 Hughes Aircraft Co Image converter
US4204122A (en) * 1978-08-14 1980-05-20 Electro Optik GmbH & Co. KG Method of and device for scanning pictures
GB2047424A (en) * 1979-03-30 1980-11-26 Secr Defence Infra red imager having rotatable prism
US4273410A (en) * 1979-07-10 1981-06-16 Electro-Optik Gmbh & Co. K.G. Polygonal cylinder for use in optical picture scanning systems
DE3630739C1 (en) * 1986-09-10 1988-04-07 Zeiss Carl Fa Method for data pick-up by means of detector arrays and devices for carrying out the methods
EP0289182A2 (fr) * 1987-04-27 1988-11-02 GEC-Marconi Limited Système de formation d'image
US4795224A (en) * 1986-10-06 1989-01-03 Katsuchika Goto Optical scanning pattern generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236282A (ja) * 1985-04-12 1986-10-21 Matsushita Electric Ind Co Ltd テレビジヨンカメラ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626091A (en) * 1969-12-11 1971-12-07 Hughes Aircraft Co Image converter
US4204122A (en) * 1978-08-14 1980-05-20 Electro Optik GmbH & Co. KG Method of and device for scanning pictures
GB2047424A (en) * 1979-03-30 1980-11-26 Secr Defence Infra red imager having rotatable prism
US4273410A (en) * 1979-07-10 1981-06-16 Electro-Optik Gmbh & Co. K.G. Polygonal cylinder for use in optical picture scanning systems
DE3630739C1 (en) * 1986-09-10 1988-04-07 Zeiss Carl Fa Method for data pick-up by means of detector arrays and devices for carrying out the methods
US4795224A (en) * 1986-10-06 1989-01-03 Katsuchika Goto Optical scanning pattern generator
EP0289182A2 (fr) * 1987-04-27 1988-11-02 GEC-Marconi Limited Système de formation d'image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 11, no. 81 (E-488)12 Mars 1987 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0680206A1 (fr) * 1994-04-29 1995-11-02 Thomson-Csf Caméra à détecteur matriciel munie d'un dispositif de microbalayage
FR2719435A1 (fr) * 1994-04-29 1995-11-03 Thomson Csf Caméra à détecteur matriciel munie d'un dispositif de microbalayage.
FR2725101A1 (fr) * 1994-09-23 1996-03-29 Thomson Csf Camera thermique a matrice de detection
EP0713119A1 (fr) * 1994-11-18 1996-05-22 Thomson-Csf Dispositif de veille panoramique infrarouge statique à détecteurs matriciels multiples
FR2727215A1 (fr) * 1994-11-18 1996-05-24 Thomson Csf Dispositif de veille panoramique infrarouge statique a detecteurs matriciels multiples
US5627374A (en) * 1994-11-18 1997-05-06 Thomson-Csf Static infrared panoramic watching device with multiple matrix detectors
GB2324168A (en) * 1997-04-11 1998-10-14 Geoffrey Owen Optical deflector and beam splitter
GB2336268A (en) * 1998-04-09 1999-10-13 Aeg Infrarot Module Gmbh Correction of grey values in IR imaging
GB2336268B (en) * 1998-04-09 2003-01-15 Aeg Infrarot Module Gmbh Correcting grey values
US6591021B1 (en) 1998-04-09 2003-07-08 Aeg Infrarot-Module Gmbh Method and apparatus for correcting the gray levels of images of a digital infrared camera
GB2402751A (en) * 2003-06-10 2004-12-15 Xaar Technology Ltd Rotating attenuating structure for laser beam

Also Published As

Publication number Publication date
EP0611454A1 (fr) 1994-08-24
FR2683639B1 (fr) 1994-02-18
FR2683639A1 (fr) 1993-05-14

Similar Documents

Publication Publication Date Title
EP0475796B1 (fr) Dispositif de projection d'images utilisant deux composantes orthogonales de polarisation de la lumière
EP2277074B1 (fr) Lunettes informatives
EP0697118B1 (fr) Dispositif de formation d'image autostereoscopique
EP0645021B1 (fr) Dispositif de veille panoramique infrarouge a grande portee
WO1993009463A1 (fr) Dispositif de microbalayage et camera infrarouge equipee d'un tel dispositif
FR2739944A1 (fr) Systeme optique pour des vues a grand champ
WO1993025927A9 (fr) Dispositif de veille panoramique infrarouge a grande portee
EP0353138B1 (fr) Dispositif optique multispectral à miroirs
WO1993025926A1 (fr) Dispositif de veille omnidirectionnel a couverture optimale de l'espace environnant par jonction de champs
EP0127914B1 (fr) Viseur panoramique sans rotation d'image à plusieurs champs
EP0402194B1 (fr) Dispositif interférométrique notamment pour spectro-imageur par transformée de fourier multiplex à défilement, et spectro-imageur le comportant
EP0189217A1 (fr) Analyseur optico-mécanique ayant un champ de télémétrie fixe
FR2551890A1 (fr) Dispositif d'analyse de champ spatial pour la localisation angulaire d'objets rayonnants
EP0872752A1 (fr) Système de télescope interférmométrique
EP3899458B1 (fr) Instrument a plusieurs voies optiques
EP0696868B1 (fr) Dispositif de balayage en particulier pour système d'imagerie
FR2692375A1 (fr) Dispositif de veille omnidirectionnel à objectif grand angulaire couvrant tout l'espace environnement.
FR2690533A1 (fr) Capteur de type appareil de prise de vue.
FR3118201A1 (fr) Systeme optique imageur a trois miroirs
WO2020007795A1 (fr) Viseur optronique et plate-forme associée
WO1991009334A1 (fr) Systeme optique d'observation multidirectionnelle autorisant la selection d'une direction
EP0614103A1 (fr) Lunette à miroirs oscillants pour la vision infrarouge
FR2734375A1 (fr) Systeme optique catadioptrique multispectral
FR2718536A1 (fr) Dispositif de prise de vue permettant la visualisation en trois dimensions.
FR2647232A1 (fr) Camera astronomique a haute resolution et a grand champ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1993900234

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 240695

Date of ref document: 19940509

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1993900234

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993900234

Country of ref document: EP