WO1993007457A1 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
WO1993007457A1
WO1993007457A1 PCT/DE1992/000761 DE9200761W WO9307457A1 WO 1993007457 A1 WO1993007457 A1 WO 1993007457A1 DE 9200761 W DE9200761 W DE 9200761W WO 9307457 A1 WO9307457 A1 WO 9307457A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
sensor according
measuring element
housing
pressure
Prior art date
Application number
PCT/DE1992/000761
Other languages
German (de)
French (fr)
Inventor
Jiri Marek
Kurt Weiblen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO1993007457A1 publication Critical patent/WO1993007457A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0084Electrical connection means to the outside of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0038Fluidic connecting means being part of the housing

Definitions

  • the invention relates to a pressure sensor according to the preamble of the main claim.
  • Pressure sensors are already known from US 36 97 919, in which the measuring element is protected from the influence of aggressive measuring media by a stainless steel membrane and an incompressible liquid. Particular emphasis is placed on the hermetically sealed packaging of the measuring element.
  • the measuring element is contacted through a hole in a glass carrier, which also leaves a reference pressure on the measuring element.
  • the firm connection of the glass carrier and the housing is achieved by a conical fit.
  • This pressure sensor is complex to manufacture.
  • the pressure sensor according to the invention with the characterizing features of the main claim has the advantage that the measuring element is protected in a very simple and inexpensive manner against the influence of aggressive media.
  • the specified in the main claim pressure sensor are possible before ⁇ some modifications and improvements.
  • the Ver ⁇ application of fluorocarbons, in particular PTFE as the mikropo ⁇ Rösen properties of these materials are particularly well and can be well controlled.
  • the measuring element By coating the measuring element with an elastomer, the measuring elements are additionally protected against the corrosive effect of gases. Silicone rubber has proven to be particularly well compatible with the measuring elements. Due to the separate production of cover with built-in porous plate and housing, optimized production techniques can be used in each case.
  • the use of injection molding for the production of the covers is particularly advantageous, since in this case the porous plates can be partially extrusion-coated during manufacture and particularly simple mass production is thus possible.
  • the design of the cover with air channels ensures that the porous plate is protected from direct liquid splashes and direct contact.
  • the thermal stresses between the measuring element and the housing are minimized because of the low thermal expansion coefficient of this material.
  • the pressure sensor can be designed as a differential pressure sensor.
  • the housing has electrical feedthroughs and the measuring element is connected by bonding wires.
  • the housing is provided with a shoulder for receiving the cover.
  • the pressure medium connection of the housing simplifies the use of the sensor as a differential pressure sensor.
  • FIG. 1 shows a pressure sensor according to the invention with a measuring element on a borosilicate glass base
  • FIG. 2 shows a pressure sensor according to the invention with a tubular borosilicate glass element.
  • 1 denotes a measuring element consisting of a silicon frame 2 and a membrane 3.
  • This measuring element 1 is mounted on a borosilicate glass element 10, 11. 4 with the housing and 8 with the lid.
  • a porous plate 5 is built into the cover 8.
  • the pressure of the medium 6 reaches z. B. the outside air on the porous plate 5 and so on the top of the measuring element 1.
  • a pressure passage 12, 13 of the borosilicate glass element 10, 11 and the housing 4 the underside of the membrane 3 with another Pressure loaded. As a result of this pressure difference, the membrane 3 is deformed.
  • the sensor can be used as an absolute pressure sensor, otherwise as a differential pressure sensor.
  • the measuring element 1 is connected by electrical leadthroughs 15 and by bond wires 18.
  • the cover 8 is glued into a shoulder 16 of the housing 4.
  • the housing 4 has a pressure medium connection 17.
  • the measuring element 1 is covered at the top with a thin silicone rubber layer 7.
  • the porous plate 5 is made of a fluorocarbon as in ⁇ game as PTFE.
  • the porous plate 5 has the property of liquid ⁇ speeds from the measuring element 1 and keep at the same time permit gas molecules through unhindered.
  • the measuring element 1 is protected from the corrosive influence of liquids such as gasoline, oil or water. Due to the gas permeability, however, there is an unimpeded pressure equalization between the predominantly gaseous medium 6 and the interior of the housing 4. The measuring element 1 is thus subjected to the pressure of the medium 6 without liquids being able to get onto the measuring element 1.
  • the layer of silicone rubber 7 covering the measuring element 1 has the function of preventing the attack of the measuring element 1 by gas molecules which have been let through by the porous plate. In contrast to previous concepts of pressure sensors, the measuring element 1 is no longer hermetically decoupled from the environment. The packaging of the measuring elements is therefore particularly inexpensive.
  • Dielectric layers such as silicon oxide or silicon nitride can be used as materials for the membrane 3, but membranes which also consist of single-crystal silicon can also be used. In the latter case, silicon frame 2 and silicon membrane 3 have different doping.
  • the detection of the membrane deformation due to the pressure difference on both sides of the membrane 3 can be carried out by means of applied piezoresistive strain gauges.
  • measuring elements with a capacitive measuring principle are conceivable.
  • the sensitivity of the measuring element is influenced only insignificantly by the silicone rubber layer 7.
  • This layer is produced particularly inexpensively on the finished pressure sensor by applying a drop of silicone rubber to the measuring element and heat treatment. In terms of production technology, this step is carried out particularly simply using an automatic metering device.
  • the measuring elements 1 are particularly low in stress because the coefficient of expansion of borosilicate glass comes very close to that of silicon.
  • the measuring element 1 is connected to the borosilicate glass element 10, 11 by anodic bonding.
  • the assembly shown in FIG. 2 on a tubular borosilicate glass element 11 additionally achieves mechanical decoupling of the measuring element 1 from the expansion coefficient of the housing 4.
  • the long tubular borosilicate glass element 11 reduces potential mechanical stresses between the housing 4 and the measuring element 1 in the borosilicate glass body.
  • the adjustment of the pressure passages 12, 13 of the borosilicate glass element 11 and of the housing 4 is achieved by the depression 14 of the housing 4.
  • the connection of borosilcat glass element 10, 11 and housing 4 is particularly simple by gluing.
  • the cover 8 is manufactured particularly inexpensively by injection molding.
  • the porous plate 5 is placed in an injection mold and, during the production of the cover 8, extrusion-coated with the liquid plastic, which then hardens. In this way, the installation of the porous plate 5 in the cover 8 is particularly inexpensive.
  • the porous plate 5 is held in the mold by metal parts. These metal parts also form the shape for the later air channels 9 and for the opening 19 directed towards the measuring element 1.
  • the air channels 9 are designed such that the transition from porous plate 5 and the material of the cover 8 is flush, ie without a step he follows. In this way it is achieved that no closed liquid film can remain on the surface of the porous plate 5.
  • the housing 4 is also expediently produced by injection molding of plastic.
  • the electrical feedthroughs 15 can also be cast in.
  • the housing 4 can also be easily provided with a pressure connection 17.

Abstract

Proposed is a pressure sensor in which the measuring element (1) is separated from the fluid (6) whose pressure is being measured by a porous panel (5). In addition, the measuring element can be covered by a thin film (7) of elastomeric material. The porous panel (5) protects the measuring element (1) from direct contact with liquids. The film (7) of elastomeric material protects the measuring element in addition from attack by corrosive gases. These features ensure particularly simple and inexpensive protection of the measuring element (1).

Description

DrucksensorPressure sensor
Stand der TechnikState of the art
Die Erfindung geht aus von einem Drucksensor nach der Gattung des Hauptanspruches. Aus der US 36 97 919 sind bereits Drucksensoren bekannt, bei denen das Meßelement durch eine Edelstahlmembrane und eine inkompressible Flüssigkeit vor dem Einfluß aggressiver Meßme¬ dien geschützt wird. Besonderen Wert wird dabei auf die hermetisch dichte Verpackung des Meßelementes gelegt. Das Meßelement wird durch eine Bohrung in einem Glasträger, die auch einen .Referenzdruck auf das Meßelement läßt, kontaktiert. Die feste Verbindung von Glas¬ träger und Gehäuse wird durch eine konische Passung erreicht. Dieser Drucksensor ist aufwendig in seiner Fertigung.The invention relates to a pressure sensor according to the preamble of the main claim. Pressure sensors are already known from US 36 97 919, in which the measuring element is protected from the influence of aggressive measuring media by a stainless steel membrane and an incompressible liquid. Particular emphasis is placed on the hermetically sealed packaging of the measuring element. The measuring element is contacted through a hole in a glass carrier, which also leaves a reference pressure on the measuring element. The firm connection of the glass carrier and the housing is achieved by a conical fit. This pressure sensor is complex to manufacture.
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemäße Drucksensor mit den kennzeichnenden Merkmalen des Hauptanspruches hat demgegenüber den Vorteil, daß das Meßelement auf sehr einfache und kostengünstige Weise gegen den Einfluß aggres¬ siver Medien geschützt wird. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vor¬ teilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Drucksensors möglich. Besonders vorteilhaft ist die Ver¬ wendung von Fluorkohlenstoffen, insbesondere PTFE, da die mikropo¬ rösen Eigenschaften dieser Materialien besonders gut sind und gut kontrolliert werden können. Durch die Beschichtung des Meßelementes mit einem Elastomer werden die Meßelemente zusätzlich gegen die kor¬ rosive Wirkung von Gasen geschützt. Als besonders gut mit den Me߬ elementen verträglich hat sich dabei Silikonkautschuk herausge¬ stellt. Durch die getrennte Fertigung von Deckel mit eingebauter poröser Platte und Gehäuse können jeweils optimierte Fertigungstech¬ niken verwendet werden. Besonders vorteilhaft ist dabei die Verwen¬ dung von Spritzguß für die Herstellung der Deckel, da in diesem Fall die porösen Platten bei der Herstellung zum Teil umspritzt werden können und so eine besonders einfache Massenfertigung möglich ist. Durch die Ausgestaltung des Deckels mit Luftkanälen wird sicherge¬ stellt, daß die poröse Platte vor direkten Flüssigkeitsspritzern und direkter Berührung geschützt wird. Durch die Verwendung eines Boro¬ silicatglas-Elements werden, wegen des geringen thermischen Ausdeh¬ nungskoeffizienten dieses Materials, die thermischen Spannungen zwischen Meßelement und Gehäuse minimiert. Durch die Verwendung ei¬ nes Druckdurchlasses im Borosilicatglas-Element kann der Drucksensor als Differenzdrucksensor ausgestaltet werden. Durch die Ausgestal¬ tung des Borosilicatglas-Elementes als Rohr wird die Montage des Borosilicatglas-Elementes in dem Gehäuse vereinfacht. In diesem Fall kann, das Borosilicatglas-Element mit nur geringem Justieraufwand in das Gehäuse eingeklebt werden. Fertigungstechnisch ist es besonders einfach, wenn das Gehäuse elektrische Durchführungen aufweist und das Meßelement durch Bonddrähte angeschlossen wird. Um eine einfache Verbindung von Gehäuse und Deckel zu gewährleisten, ist das Gehäuse mit einem Absatz für die Aufnahme des Deckels versehen. Durch den Druckmittelanschluß des Gehäuses wird der Einsatz des Sensors als Di ferenzdrucksensor vereinfacht. ZeichnungenThe pressure sensor according to the invention with the characterizing features of the main claim has the advantage that the measuring element is protected in a very simple and inexpensive manner against the influence of aggressive media. By the provisions recited in the dependent claims, the specified in the main claim pressure sensor are possible before ¬ some modifications and improvements. Especially advantageous is the Ver ¬ application of fluorocarbons, in particular PTFE, as the mikropo¬ Rösen properties of these materials are particularly well and can be well controlled. By coating the measuring element with an elastomer, the measuring elements are additionally protected against the corrosive effect of gases. Silicone rubber has proven to be particularly well compatible with the measuring elements. Due to the separate production of cover with built-in porous plate and housing, optimized production techniques can be used in each case. The use of injection molding for the production of the covers is particularly advantageous, since in this case the porous plates can be partially extrusion-coated during manufacture and particularly simple mass production is thus possible. The design of the cover with air channels ensures that the porous plate is protected from direct liquid splashes and direct contact. By using a borosilicate glass element, the thermal stresses between the measuring element and the housing are minimized because of the low thermal expansion coefficient of this material. By using a pressure passage in the borosilicate glass element, the pressure sensor can be designed as a differential pressure sensor. The design of the borosilicate glass element as a tube simplifies the assembly of the borosilicate glass element in the housing. In this case, the borosilicate glass element can be glued into the housing with little adjustment effort. In terms of production technology, it is particularly simple if the housing has electrical feedthroughs and the measuring element is connected by bonding wires. In order to ensure a simple connection between the housing and the cover, the housing is provided with a shoulder for receiving the cover. The pressure medium connection of the housing simplifies the use of the sensor as a differential pressure sensor. drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen darge¬ stellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen erfindungsgemäßen Drucksensor mit einem Me߬ element auf einem Borosilicat-Glas-Sockel und Figur 2 einen erfin- dungsgemäßen Drucksensor mit einem rohrförmigen Borosilicatglas-Ele¬ ment.Exemplary embodiments of the invention are shown in the drawings and explained in more detail in the description below. FIG. 1 shows a pressure sensor according to the invention with a measuring element on a borosilicate glass base and FIG. 2 shows a pressure sensor according to the invention with a tubular borosilicate glass element.
Beschreibung der AusführungsbeipieleDescription of the execution examples
In Figur 1 und Figur 2 ist mit 1 ein Meßelement bestehend aus einem Siliziumrahmen 2 und einer Membran 3 bezeichnet. Dieses Meßelement 1 ist auf einem Borosilicatglas-Element 10, 11 montiert. Mit 4 ist das Gehäuse und mit 8 der Deckel bezeichnet. In den Deckel 8 ist eine poröse Platte 5 eingebaut. Über eine teilweise als Luftkanal 9 aus¬ gestaltete Öffnung 19 gelangt der Druck des Mediums 6 z. B. der Außenluft auf die poröse Platte 5 und so auf die Oberseite des Meßelements 1. Durch je einen Druckdurchlaß 12, 13 des Borosilicat- glas-Ele ents 10, 11 und des Gehäuses 4 wird die Unterseite der Mem¬ bran 3 mit einem anderen Druck belastet. In folge dieses Druckunter¬ schieds wird die Membran 3 verformt. Wenn das Meßelement 1 nur von einer Seite mit einem veränderlichen Druck belastet wird und auf der anderen Seite einen hermetisch dichten Hohlraum aufweist, so kann der Sensor als Absolutdrucksensor verwendet werden, sonst als Differenzdrucksensor. Das Meßelement 1 wird durch elektrische Durch¬ führungen 15 und durch Bonddrähte 18 angeschlossen. Der Deckel 8 ist in einem Absatz 16 des Gehäuses 4 eingeklebt. Das Gehäuse 4 weist einen Druckmittelanschluß 17 auf. Das Meßelement 1 ist oben mit einer dünnen Silikonkautschukschicht 7 bedeckt. Die poröse Platte 5 besteht aus einem Fluorkohlenstoff wie bei¬ spielsweise PTFE. Die poröse Platte 5 hat die Eigenschaft Flüssig¬ keiten vom Meßelement 1 fernzuhalten und gleichzeitig Gasmoleküle ungehindert durchzulassen. Auf diese Weise wird das Meßelement 1 vor dem korrosiven Einfluß von Flüssigkeiten wie beispielsweise Benzin, 01 oder Wasser geschützt. Durch die Gasdurchlässigkeit findet jedoch ein ungehinderter Druckausgleich zwischen dem vorwiegend gasförmigen Medium 6 und dem Inneren des Gehäuses 4 statt. Das Meßelement 1 wird so mit dem Druck des Mediums 6 beaufschlagt, ohne daß Flüssigkeiten auf das Meßelement 1 gelangen können. Die das Meßelement 1 bedek- kende Schicht aus Silikonkautschuk 7 hat die Funktion, den Angriff des Meßelementes 1 durch Gasmoleküle, die von der porösen Platte durchgelassen wurden, zu verhindern. Im Gegensatz zu bisherigen Kon¬ zepten von Drucksensoren ist das Meßelement 1 nicht mehr hermetisch von der Umwelt abgekoppelt. Die Verpackung der Meßelemente erfolgt daher besonders kostengünstig.In FIG. 1 and FIG. 2, 1 denotes a measuring element consisting of a silicon frame 2 and a membrane 3. This measuring element 1 is mounted on a borosilicate glass element 10, 11. 4 with the housing and 8 with the lid. A porous plate 5 is built into the cover 8. The pressure of the medium 6 reaches z. B. the outside air on the porous plate 5 and so on the top of the measuring element 1. Through a pressure passage 12, 13 of the borosilicate glass element 10, 11 and the housing 4, the underside of the membrane 3 with another Pressure loaded. As a result of this pressure difference, the membrane 3 is deformed. If the measuring element 1 is loaded with a variable pressure from only one side and has a hermetically sealed cavity on the other side, the sensor can be used as an absolute pressure sensor, otherwise as a differential pressure sensor. The measuring element 1 is connected by electrical leadthroughs 15 and by bond wires 18. The cover 8 is glued into a shoulder 16 of the housing 4. The housing 4 has a pressure medium connection 17. The measuring element 1 is covered at the top with a thin silicone rubber layer 7. The porous plate 5 is made of a fluorocarbon as in ¬ game as PTFE. The porous plate 5 has the property of liquid ¬ speeds from the measuring element 1 and keep at the same time permit gas molecules through unhindered. In this way, the measuring element 1 is protected from the corrosive influence of liquids such as gasoline, oil or water. Due to the gas permeability, however, there is an unimpeded pressure equalization between the predominantly gaseous medium 6 and the interior of the housing 4. The measuring element 1 is thus subjected to the pressure of the medium 6 without liquids being able to get onto the measuring element 1. The layer of silicone rubber 7 covering the measuring element 1 has the function of preventing the attack of the measuring element 1 by gas molecules which have been let through by the porous plate. In contrast to previous concepts of pressure sensors, the measuring element 1 is no longer hermetically decoupled from the environment. The packaging of the measuring elements is therefore particularly inexpensive.
Als Materialien für die Membran 3 können dielektrische Schichten wie Siliziumoxid oder Siliziumnitrid verwendet werden, aber auch Mem¬ branen, die ebenfalls aus einkristallinem Silizium bestehen, sind verwendbar. Im letzteren Fall weisen Siliziumrahmen 2 und Silizium¬ membran.3 eine unterschiedliche Dotierung auf. Der Nachweis der Mem¬ branverformung infolge des Druckunterschieds auf beiden Seiten der Membran 3 kann durch aufgebrachte piezoresistive Dehnungsmeßstreifen erfolgen. In äquivalenter Weise sind Meßelemente mit kapazitivem Meßprinzip vorstellbar. Durch die Silikonkautschukschicht 7 wird die Empfindlichkeit des Meßelements nur unwesentlich beeinflußt. Diese Schicht wird besonders kostengünstig am fertigen Drucksensor durch Aufbringen eines Tropfen Silikonkautschuks auf das Meßelement und einer Temperaturbehandlung erzeugt. Dieser Schritt erfolgt ferti¬ gungstechnisch besonders einfach unter Verwendung einer automati¬ schen Doεiervorrichtung. Durch die Verwendung der Borosili- cat-Ele ente 10, 11 werden die Meßelemente 1 besonders spannungsarm montiert, da der Ausdehungskoeffizient von Borosilicatglas dem von Silizium sehr nahe kommt. Die Verbindung des Meßelements 1 mit dem Borosilicatglas-Element 10, 11 erfolgt durch anodisches Bonden. Durch die in Figur 2 gezeigte Montage auf einem rohrförmig ausge¬ bildeten Borosilicatglas-Element 11 wird zusätzlich eine mechanische Entkopplung des Meßelementes 1 vom Ausdehungskoeffizienten des Ge¬ häuses 4 erreicht. Durch das lange rohrförmige Borosilicatglas-Ele¬ ment 11 werden potentielle mechanische Verspannungen zwischen dem Gehäuse 4 und dem Meßelement 1 im Borosilicatglas-Körper abgebaut. Außerdem wird durch die Vertiefung 14 des Gehäuses 4 die Justierung der Druckdurchlässe 12, 13 des Borosilicatglas-Elements 11 und des Gehäuses 4 erreicht. Besonders einfach erfolgt die Verbindung von Borosilcatglas-Element 10, 11 und Gehäuse 4 durch Kleben.Dielectric layers such as silicon oxide or silicon nitride can be used as materials for the membrane 3, but membranes which also consist of single-crystal silicon can also be used. In the latter case, silicon frame 2 and silicon membrane 3 have different doping. The detection of the membrane deformation due to the pressure difference on both sides of the membrane 3 can be carried out by means of applied piezoresistive strain gauges. In an equivalent manner, measuring elements with a capacitive measuring principle are conceivable. The sensitivity of the measuring element is influenced only insignificantly by the silicone rubber layer 7. This layer is produced particularly inexpensively on the finished pressure sensor by applying a drop of silicone rubber to the measuring element and heat treatment. In terms of production technology, this step is carried out particularly simply using an automatic metering device. By using the borosilicate elements 10, 11, the measuring elements 1 are particularly low in stress because the coefficient of expansion of borosilicate glass comes very close to that of silicon. The measuring element 1 is connected to the borosilicate glass element 10, 11 by anodic bonding. The assembly shown in FIG. 2 on a tubular borosilicate glass element 11 additionally achieves mechanical decoupling of the measuring element 1 from the expansion coefficient of the housing 4. The long tubular borosilicate glass element 11 reduces potential mechanical stresses between the housing 4 and the measuring element 1 in the borosilicate glass body. In addition, the adjustment of the pressure passages 12, 13 of the borosilicate glass element 11 and of the housing 4 is achieved by the depression 14 of the housing 4. The connection of borosilcat glass element 10, 11 and housing 4 is particularly simple by gluing.
Der Deckel 8 wird besonders kostengünstig durch Spritzguß gefertigt. Dabei wird die poröse Platte 5 in eine Spritzgußform eingelegt und bei der Herstellung des Deckels 8 mit dem flüssigen Kunststoff um¬ spritzt, der anschließend aushärtet. Auf diese Weise erfolgt der Einbau der porösen Platte 5 in den Deckel 8 besonders kostengünstig. Bei der Herstellung wird die poröse Platte 5 durch Metallteile in der Form gehalten. Diese Metallteile bilden zugleich die Form für die späteren Luftkanäle 9 und für die zum Meßelement 1 hin gerich¬ tete Öffnung 19. Die Gestaltung der Luftkanäle 9 erfolgt derart, daß der Übergang von poröser Platte 5 und dem Material des Deckels 8 bündig d. h. ohne eine Stufe erfolgt. Auf diese Weise wird erreicht, daß kein geschlossener Flüssigkeitsfilm auf der Oberfläche der porö¬ sen Platte 5 stehenbleiben kann. In diesem Fall würde nämlich der ungehinderte Luftdurchtritt durch die poröse Platte 5 und somit auch der Druckausgleich zwischen Umgebung und Gehäuse behindert werden. Die Montage von Deckel 8 und Gehäuse 4 erfolgt besonders einfach durch Einkleben des Deckels 8 in den Absatz 16 des Gehäuses 4. - 6 -The cover 8 is manufactured particularly inexpensively by injection molding. In this case, the porous plate 5 is placed in an injection mold and, during the production of the cover 8, extrusion-coated with the liquid plastic, which then hardens. In this way, the installation of the porous plate 5 in the cover 8 is particularly inexpensive. During manufacture, the porous plate 5 is held in the mold by metal parts. These metal parts also form the shape for the later air channels 9 and for the opening 19 directed towards the measuring element 1. The air channels 9 are designed such that the transition from porous plate 5 and the material of the cover 8 is flush, ie without a step he follows. In this way it is achieved that no closed liquid film can remain on the surface of the porous plate 5. In this case, the unhindered passage of air through the porous plate 5 and thus the pressure equalization between the environment and the housing would be hindered. The cover 8 and the housing 4 are installed particularly simply by gluing the cover 8 into the shoulder 16 of the housing 4. - 6 -
Die Herstellung des Gehäuses 4 erfolgt ebenfalls zweckmäßigerweise durch Spritzguß von Kunststoff..Die elektrischen Durchführungen 15 können dabei mit eingegossen werden. Das Gehäuse 4 kann so auch problemlos mit einem Druckanschluß 17 versehen werden. The housing 4 is also expediently produced by injection molding of plastic. The electrical feedthroughs 15 can also be cast in. The housing 4 can also be easily provided with a pressure connection 17.

Claims

Ansprüche Expectations
1. Drucksensor, mit einem Meßelement, das einen Rahmen aus ein¬ kristallinem Silizium und einer verformbaren Membran sowie einen die Verformung der Membran erfassenden Wandler aufweist, und mit einem Gehäuse zur Aufnahme des Meßelementes und eines auf der unteren Sei¬ te der Membran einbringbaren Druckmittels sowie einem Deckel zum Schutz des Meßelements gegenüber einem Medium, dessen Druck auf der oberen Membranseite wirkt, dadurch gekennzeichnet, daß das Meßele¬ ment (1) mit seiner oberen Seite durch eine poröse Platte (5) von dem Medium (6) getrennt ist.1. Pressure sensor, with a measuring element which has a frame made of monocrystalline silicon and a deformable membrane and a transducer which detects the deformation of the membrane, and with a housing for receiving the measuring element and a pressure medium which can be introduced on the lower side of the membrane and a cover for protecting the measuring element against a medium, the pressure of which acts on the upper side of the membrane, characterized in that the upper side of the measuring element (1) is separated from the medium (6) by a porous plate (5).
2. Drucksensor nach Anspruch 1, dadurch gekennzeichnet, daß die poröse Platte (5) aus einem Fluorkohlenstoff, insbesondere PTFE besteht.2. Pressure sensor according to claim 1, characterized in that the porous plate (5) consists of a fluorocarbon, in particular PTFE.
3. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Meßelement (1) auf seiner oberen Seite mit einem Elastomer (7) bedeckt ist.3. Pressure sensor according to one of the preceding claims, characterized in that the measuring element (1) is covered on its upper side with an elastomer (7).
4. Drucksensor nach Anspruch 3, dadurch gekennzeichnet, daß das Elastomer (7) aus einem Silikonkautschuk besteht. 4. Pressure sensor according to claim 3, characterized in that the elastomer (7) consists of a silicone rubber.
5. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die poröse Platte (5) in den Deckel (8) einge¬ baut ist, und eine Öffnung (19) des Deckels (8) abdeckt.5. Pressure sensor according to one of the preceding claims, characterized in that the porous plate (5) is built into the cover (8) and covers an opening (19) of the cover (8).
6. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Deckel (8) durch Spritzguß hergestellt ist, und daß die poröse Platte (5) bei der Herstellung des Deckels (8) teilweise vom Material des Deckels (8) umspritzt ist.6. Pressure sensor according to one of the preceding claims, characterized in that the cover (8) is made by injection molding and that the porous plate (5) in the manufacture of the cover (8) is partially encapsulated by the material of the cover (8).
7. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Öffnung (19) des Deckels (8) auf der nach außen führenden Seite der porösen Platte (5) mindestens einen Luft¬ kanal (9) aufweist, und daß der mindestens eine Luftkanal (9) paral¬ lel zur Oberfläche der porösen Platte (5) verläuft.7. Pressure sensor according to one of the preceding claims, characterized in that the opening (19) of the cover (8) on the outwardly leading side of the porous plate (5) has at least one Luft¬ channel (9), and that the at least one Air duct (9) runs parallel to the surface of the porous plate (5).
8. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Meßelement (1) auf ein Borosilicatglas- Element (10,11) anodisch gebondet ist.8. Pressure sensor according to one of the preceding claims, characterized in that the measuring element (1) is anodically bonded to a borosilicate glass element (10, 11).
9. Drucksensor nach Anspruch 8, dadurch gekennzeichnet, daß das Borosilicatglas-Element (10,11) einen Druckdurchlaß (12) für das Druckmittel aufweist, der mit einem Druckdurchlaß (13) für das Druckmittel des Gehäuses (4) gefluchtet ist.9. Pressure sensor according to claim 8, characterized in that the borosilicate glass element (10, 11) has a pressure passage (12) for the pressure medium, which is aligned with a pressure passage (13) for the pressure medium of the housing (4).
10. Drucksensor nach Anspruch 8 oder 9 , dadurch gekennzeichnet, daß das Borosilicatglas-Element (11) als Rohr ausgebildet ist und in eine Vertiefung (14) des Gehäuses eingelassen ist.10. Pressure sensor according to claim 8 or 9, characterized in that the borosilicate glass element (11) is designed as a tube and is embedded in a recess (14) of the housing.
11. Drucksensor nach Anspruch 10, dadurch gekennzeichnet, daß das Borosilicatglas-Element (11) in das Gehäuse (4) eingeklebt ist. 11. Pressure sensor according to claim 10, characterized in that the borosilicate glass element (11) is glued into the housing (4).
12. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse' (4) elektrische Durchführungen (15) aufweist, und daß die Meßelemente (1) durch Bonddrähte (18) angeschlossen sind.12. Pressure sensor according to one of the preceding claims, characterized in that the housing '(4) has electrical bushings (15), and that the measuring elements (1) are connected by bonding wires (18).
13. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (4) einen Absatz (16) für die Aufnahme des Deckels (8) aufweist.13. Pressure sensor according to one of the preceding claims, characterized in that the housing (4) has a shoulder (16) for receiving the cover (8).
14. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (4) einen Druckmittelanschluß (17) aufweist.14. Pressure sensor according to one of the preceding claims, characterized in that the housing (4) has a pressure medium connection (17).
15. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Meßelement (1) auf der oberen Seite eine elektronische Auswerteschaltung (21) aufweist. 15. Pressure sensor according to one of the preceding claims, characterized in that the measuring element (1) has an electronic evaluation circuit (21) on the upper side.
PCT/DE1992/000761 1991-10-04 1992-09-08 Pressure sensor WO1993007457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914133061 DE4133061A1 (en) 1991-10-04 1991-10-04 PRESSURE SENSOR
DEP4133061.7 1991-10-04

Publications (1)

Publication Number Publication Date
WO1993007457A1 true WO1993007457A1 (en) 1993-04-15

Family

ID=6442113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1992/000761 WO1993007457A1 (en) 1991-10-04 1992-09-08 Pressure sensor

Country Status (2)

Country Link
DE (1) DE4133061A1 (en)
WO (1) WO1993007457A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003629A1 (en) * 1994-07-21 1996-02-08 Siemens Aktiengesellschaft Protective diaphragm for a silicon pressure sensor
DE19647408C1 (en) * 1996-03-21 1997-11-13 Siemens Ag Pressure sensor for vehicle door
WO1998005935A1 (en) * 1996-08-08 1998-02-12 Integrated Sensing Systems, Inc. Method for packaging microsensors
WO1998027411A1 (en) * 1996-12-17 1998-06-25 Laboratorium Für Physikalische Elektronik Institut Für Quantenelektronik Method for applying a microsystem or a converter on a substrate, and device manufactured accordingly
WO2002082032A1 (en) * 2001-04-06 2002-10-17 Krupp Uhde Gmbh Pressure sensor, in particular for fluid bed reactors
US8117920B2 (en) 2006-11-22 2012-02-21 Danfoss A/S Pressure sensor
WO2014102147A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Detection device and method for producing a detection device
WO2014102192A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Detecting device and method for producing a detecting device
WO2015024562A1 (en) * 2013-08-22 2015-02-26 Continental Automotive Gmbh Impact sensor having an elastically deformable hose and pressure sensor and two-stage pressure compensation
EP2848909A1 (en) * 2013-09-13 2015-03-18 Hella KGaA Hueck & Co. Gas sensor and motor vehicle with a gas sensor
WO2019043010A1 (en) * 2017-08-28 2019-03-07 Indigo Diabetes Nv Encapsulation of sensing device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334123C2 (en) * 1993-10-07 2002-12-19 Bosch Gmbh Robert pressure sensor
DE19605795A1 (en) * 1996-02-16 1997-08-21 Duerrwaechter E Dr Doduco Arrangement of an electrical circuit board and an electrical pressure sensor
DE19700393C2 (en) 1997-01-08 2002-03-14 Infineon Technologies Ag Housing with a semiconductor sensor arrangement and method for the production thereof
US6769319B2 (en) 2001-07-09 2004-08-03 Freescale Semiconductor, Inc. Component having a filter
DE102005058653A1 (en) * 2005-12-07 2007-06-28 Siemens Ag Medium pressure sensor e.g. relative pressure sensor, for air-conditioning system of motor vehicle, has sensor unit and circuit arrangement that are designed at side of sensor chip turned away from recess communicating with working medium
DE102008004358A1 (en) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Pressure compensation unit
US20150090030A1 (en) * 2013-09-27 2015-04-02 Infineon Technologies Ag Transducer arrangement comprising a transducer die and method of covering a transducer die

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399707A (en) * 1981-02-04 1983-08-23 Honeywell, Inc. Stress sensitive semiconductor unit and housing means therefor
US4502335A (en) * 1983-05-04 1985-03-05 Honeywell Inc. Fluid pressure transmitter assembly
US4513623A (en) * 1983-09-09 1985-04-30 Kulite Semiconductor Products, Inc. Transducer housing employing crimped leads
US4658651A (en) * 1985-05-13 1987-04-21 Transamerica Delaval Inc. Wheatstone bridge-type transducers with reduced thermal shift
DE3419710C2 (en) * 1983-05-26 1987-12-03 Kabushiki Kaisha Toyota Chuo Kenkyusho, Aichi, Jp
GB2194344A (en) * 1986-07-18 1988-03-02 Nissan Motor Pressure transducer and method of fabricating same
US4884451A (en) * 1987-04-18 1989-12-05 Parker-Ermeto Gmbh Fluid pressure measuring device with pressure attenuation
DE3938782A1 (en) * 1989-11-23 1991-05-29 Bosch Gmbh Robert Pressure compensator for sensor in braking system - contains air exchange body with elastic sealing ring that allows air exchange between sensor and atmosphere

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3200448C2 (en) * 1982-01-09 1986-03-06 Philips Patentverwaltung Gmbh, 2000 Hamburg Method of manufacturing a semiconductor pressure transducer assembly
DE3344799A1 (en) * 1983-12-10 1985-06-13 Hans W. Dipl.-Phys. ETH Winterthur Keller Piezoresistive pressure-measuring element
FI74350C (en) * 1984-02-21 1988-01-11 Vaisala Oy Capacitive absolute pressure sensor.
DD241476A1 (en) * 1985-09-30 1986-12-10 Berlin Treptow Veb K PRESSURE CONVERTER

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399707A (en) * 1981-02-04 1983-08-23 Honeywell, Inc. Stress sensitive semiconductor unit and housing means therefor
US4502335A (en) * 1983-05-04 1985-03-05 Honeywell Inc. Fluid pressure transmitter assembly
DE3419710C2 (en) * 1983-05-26 1987-12-03 Kabushiki Kaisha Toyota Chuo Kenkyusho, Aichi, Jp
US4513623A (en) * 1983-09-09 1985-04-30 Kulite Semiconductor Products, Inc. Transducer housing employing crimped leads
US4658651A (en) * 1985-05-13 1987-04-21 Transamerica Delaval Inc. Wheatstone bridge-type transducers with reduced thermal shift
GB2194344A (en) * 1986-07-18 1988-03-02 Nissan Motor Pressure transducer and method of fabricating same
US4884451A (en) * 1987-04-18 1989-12-05 Parker-Ermeto Gmbh Fluid pressure measuring device with pressure attenuation
DE3938782A1 (en) * 1989-11-23 1991-05-29 Bosch Gmbh Robert Pressure compensator for sensor in braking system - contains air exchange body with elastic sealing ring that allows air exchange between sensor and atmosphere

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 9, Nr 101, P353, Zusammenfassung von JP 59-224534, publ 1984-12-17 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003629A1 (en) * 1994-07-21 1996-02-08 Siemens Aktiengesellschaft Protective diaphragm for a silicon pressure sensor
DE19647408C1 (en) * 1996-03-21 1997-11-13 Siemens Ag Pressure sensor for vehicle door
WO1998005935A1 (en) * 1996-08-08 1998-02-12 Integrated Sensing Systems, Inc. Method for packaging microsensors
WO1998027411A1 (en) * 1996-12-17 1998-06-25 Laboratorium Für Physikalische Elektronik Institut Für Quantenelektronik Method for applying a microsystem or a converter on a substrate, and device manufactured accordingly
US6351390B1 (en) 1996-12-17 2002-02-26 Laboratorium Fur Physikalische Elektronik Institut Fur Quantenelektronik Method for applying a microsystem or a converter on a substrate, and device manufactured accordingly
WO2002082032A1 (en) * 2001-04-06 2002-10-17 Krupp Uhde Gmbh Pressure sensor, in particular for fluid bed reactors
US8117920B2 (en) 2006-11-22 2012-02-21 Danfoss A/S Pressure sensor
US20160195413A1 (en) * 2012-12-27 2016-07-07 Robert Bosch Gmbh Detection device and method for producing a detection device
CN104870964B (en) * 2012-12-27 2017-08-15 罗伯特·博世有限公司 Detection means and the method for manufacturing detection means
CN105283736B (en) * 2012-12-27 2018-02-23 罗伯特·博世有限公司 Detection means and the method for manufacturing detection means
WO2014102192A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Detecting device and method for producing a detecting device
CN104870964A (en) * 2012-12-27 2015-08-26 罗伯特·博世有限公司 Detection device and method for producing a detection device
CN105283736A (en) * 2012-12-27 2016-01-27 罗伯特·博世有限公司 Detecting device and method for producing a detecting device
JP2016506522A (en) * 2012-12-27 2016-03-03 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Detection device and method for manufacturing the detection device
US9714851B2 (en) 2012-12-27 2017-07-25 Robert Bosch Gmbh Detection device and method for producing a detection device
WO2014102147A1 (en) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Detection device and method for producing a detection device
WO2015024562A1 (en) * 2013-08-22 2015-02-26 Continental Automotive Gmbh Impact sensor having an elastically deformable hose and pressure sensor and two-stage pressure compensation
US9372102B2 (en) 2013-09-13 2016-06-21 Hella Kgaa Hueck & Co. Gas sensor and motor vehicle with a gas sensor
EP2848909A1 (en) * 2013-09-13 2015-03-18 Hella KGaA Hueck & Co. Gas sensor and motor vehicle with a gas sensor
WO2019043010A1 (en) * 2017-08-28 2019-03-07 Indigo Diabetes Nv Encapsulation of sensing device
US11358861B2 (en) 2017-08-28 2022-06-14 Indigo Diabetes Nv Encapsulation of sensing device

Also Published As

Publication number Publication date
DE4133061A1 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
WO1993007457A1 (en) Pressure sensor
EP0757237B1 (en) Pressure transducer
DE102006028673B4 (en) pressure sensor
EP1269135B1 (en) Pressure sensor module
EP2350596B1 (en) Relative pressure sensor
DE102008042489B4 (en) Workpiece assembly and use of the workpiece assembly
DE102012204414B4 (en) PRESSURE SENSOR
DE102006013414A1 (en) Pressure sensor device
DE10249238B4 (en) Sensor chip for a differential pressure sensor with double-sided overload protection
DE10392622T5 (en) Barometric pressure sensor
WO1989008243A1 (en) Manometer
DE102004051468A1 (en) Method for mounting semiconductor chips and corresponding semiconductor chip arrangement
EP2335039B1 (en) Sensor arrangement, method for operating a sensor arrangement and method for producing a sensor arrangement
WO2008025182A2 (en) Sensor unit
EP1065488B1 (en) Relative pressure sensor
DE102013209385A1 (en) Micromechanical differential pressure sensor device, corresponding manufacturing method and differential pressure sensor arrangement
DE10130375A1 (en) Differential Pressure Sensor
DE102012205878A1 (en) Micromechanical pressure sensor
EP0771415A1 (en) Protective diaphragm for a silicon pressure sensor
WO2019096560A1 (en) Micromechanical presssure sensor device and corresponding production method
DE102006026881A1 (en) Micromechanical sensor structure for pressure sensor, has sensor chip partially covered with passivation gel by one of enclosures in region, and another enclosure partially arranged on chip so that latter region is enclosed on chip
WO2019016320A1 (en) Pressure sensor assembly and method for producing same
DE102008040729A1 (en) Pressure sensor assembly for use in pressure sensor unit for aggressive measuring environment, comprises membrane and sensor element, which is embedded in membrane and membrane includes three layers
DE102009045158A1 (en) Sensor arrangement and method for producing a sensor arrangement
EP0943076B1 (en) Micromechanically produced flow-restriction device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

122 Ep: pct application non-entry in european phase