WO1993003395A1 - Method for detecting transient signals, particularly in acoustic signals - Google Patents

Method for detecting transient signals, particularly in acoustic signals Download PDF

Info

Publication number
WO1993003395A1
WO1993003395A1 PCT/FR1992/000760 FR9200760W WO9303395A1 WO 1993003395 A1 WO1993003395 A1 WO 1993003395A1 FR 9200760 W FR9200760 W FR 9200760W WO 9303395 A1 WO9303395 A1 WO 9303395A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filter
parameters
signals
regressive
Prior art date
Application number
PCT/FR1992/000760
Other languages
French (fr)
Inventor
Alain Lemer
Jean-Marie Nicolas
Jean-Pierre Pignon
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Csf filed Critical Thomson-Csf
Priority to AU24708/92A priority Critical patent/AU657792B2/en
Priority to EP92918452A priority patent/EP0597040A1/en
Publication of WO1993003395A1 publication Critical patent/WO1993003395A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/02Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
    • G01R29/027Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/165Spectrum analysis; Fourier analysis using filters
    • G01R23/167Spectrum analysis; Fourier analysis using filters with digital filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • G01S7/5273Extracting wanted echo signals using digital techniques

Definitions

  • the present invention relates to methods which make it possible to detect, and possibly identify, the transient acoustic signals characteristic of various phenomena which it is desired to study. It can be applied as well to aerial acoustic signals as to underwater acoustic signals, for applications as diverse as the identification of breakdowns in an automobile and the identification of ships.
  • the invention proposes a method for assisting in the detection of transient signals, in particular in acoustic signals, mainly characterized in that in a first step the parameters of a filter are determined making it possible to modify the received signal to obtain a signal formed by a first substantially continuous and low-level part and a second impulse part having a level significantly higher than this low level and representing the transient signals to be detected, and that in a second step the signal is filtered reception by a filter having the parameters thus determined.
  • the electrical signal representative of the audio signal received is applied to an anti-aliasing filter 101 adapted to the maximum frequency received, to the maximum frequency audible by the operator (approximately 20 KHz) and at the sampling frequency of a converter analog-digital (102) located after this filter 101.
  • This analog-digital converter delivers a digital signal Y (T) which is applied to several processing chains whose outputs lead to a switch 103.
  • One of the inputs of this switch is directly connected to converter 102 in order to allow the operator to listen directly to the received signal.
  • the output of the switch 103 is connected to the input of a digital-analog converter 104, followed by a low-pitch filter 105 and an amplifier 106 which supplies headphones 107.
  • a digital-analog converter 104 which supplies headphones 107.
  • the operator provided with the headset 107 hears the same signal as that received by the hydrophone, the passage by the digital channel not causing significant distortion of this signal.
  • the operator directs the output signal of the converter 102, using a switch 108, to a learning module 109
  • This training module makes it possible to model the signal listened to according to a stationary broadband component synthesized by a predictive model, and a prediction residue corresponding to the difference between the signal predicted by the predictive model and the true signal.
  • This modeling will preferably be carried out by the known method of autoregressive modeling of the signal with a P order.
  • the order P of such an autoregressive model corresponds to the P temporal previous samples of the output of the autoregressive filter
  • these P predictor coefficients can be obtained in a known manner by solving the Yule-Walker equations using the Levinson algorithm. This algorithm converges quickly and we can get the P coefficients in the space of a few seconds during which the operator closes the switch 108.
  • this selection of the learning sequences can be carried out automatically, either repeatedly (for example 1 second every 10 seconds), or by detection of an abnormal phenomenon identified in any way.
  • This gives a vector formed of P coefficients a. which can be used in different ways, for example by reverse filtering or by so-called "caricatural” filtering. In the case of the use of reverse filtering, the coefficients a.
  • the signal e (kT) obtained at the output of this adapted average filter MA is applied via the switch 103 to the converter 104, and the processed signal finally arrives on the headphones 107.
  • AR recursive filters of the self-regressive type which receive the coefficients a. and apply a processing defined by the formula to the input signal:
  • the signal at the output of converter 102 is applied to a first AR filter
  • the inventors have proposed to call signal c. (kT) thus obtained, order 1 caricature of the signal s (t) because it has a power spectral density substantially equal to the square of the power spectral density of this signal s (t), which amounts to saying that the permanent noise contained in the signal s (t) has been "flattened” by bringing out the impulse noise contained in this same signal.
  • This impulse noise is thus exaggerated by reducing the permanent noise, which corresponds pictorially to a caricature of the signal s (t). In this way the operator who listens to the signal resulting from this processing in the helmet 107 more easily perceives this impulse signal, which emerges better from the permanent signal.
  • the invention further proposes to further increase the influence of this processing by applying the signal at the output of the first AR filter in a second AR filter 111.2 then possibly in a succession of AR filters put in series up to an n th AR filter 111. n.
  • the signal cj thus obtained at the output of the AR filter 111. j will quite naturally be called caricature of order j of the input signal, and its power spectral density is substantially equal to the power n of the power spectral density of the signal s .
  • the treatment thus carried out is defined by the formula:
  • the outputs of the AR filters are respectively connected to inputs of the switch 103 and the operator can thus select, in addition to the direct signal and the signal filtered by reverse filtering using the MA filter, a caricature of order between 1 and n of the input signal.
  • the operator after having learned will successively select the different outputs and then come back to the one which seems to him to have particularly interesting characteristics. Indeed the passage in such a system, whether by reverse filtering or by j-order caricature, deeply distorts the signal, since in the best of cases there is a continuous signal of very low level barely audible from which come out more or less regular pulses which are clearly perceptible to the operator but which are distorted with respect to the initial signal received.
  • this signal is very difficult to analyze, even by a trained operator, to obtain precise information on the source of the disturbing signal, because the deformations which are made to this disturbing signal, if they make it more detectable, distort it too much compared to the original signal to allow effective identification.
  • these modifications are essentially variable according to the modalities brought, within the framework of the invention, to the processing chains, for example the order P of the auto-regression or the order j of the caricature.
  • the method according to the invention therefore essentially serves as a detection aid for an operator, who, after having identified the presence of a disturbing signal, may return for example to direct listening without filtering to concentrate his attention on the identification of the source of this disturbing signal. Possibly he can pass the baton to a more trained operator who will more easily carry out this identification.
  • the invention has been described in the case where the selection of the learning range is made by the operator, and the possibility of using automatic criteria based on scales has been mentioned. of time.
  • LEVINSON for example those of BURG, ITAKURA, GUEGUEN-LEROUX, MORF and FALCONER, or MORF and LEE. . .
  • the invention extends beyond self-regressive analysis to any technique for modeling the initial signal which allows a decomposition into a set of parameters characteristic of the chosen model and an "innovation" ( difference between the prediction provided by the model and the true signal).
  • ARMA model the KALMAN filter
  • neural networks . . .
  • a device applying the method according to the invention in order to obtain an automatic function making it possible to improve the performance of a device for detecting and automatically classifying acoustic signals.
  • the adapted medium filter to produce a pre-processing module making it possible to whiten and minimize the energy of a stationary signal, in order to favor the automatic detection of transient signals contained in an acoustic signal, by controlling for example the learning phases by a clock validated by a transient non-detection signal.

Abstract

The invention relates to methods allowing to detect in a continuous acoustic signal impulse acoustic signals. It provides for the determination of parameters (ai) of a filter by apprenticeship (109) by means of modeling by linear self-regressive prediction. Said parameters are then applied to a filter either of the adapted average type (110) or of the self-regressive type (111.1), which receives the reception signals and delivers a signal comprising a low level continuous portion and a high level impulse portion which represents the signals to be detected. Alternatively, a plurality of self-regressive filters (111.1)-(111.n) arranged in series may be used. The invention facilitates the detection of engine breakdowns.

Description

PROCEDE DfADDE A LA DETECTION DE SIGNAUX TRANSITOIRES , NOTAMMENT DANS LES SIGNAUX ACOUSTIQUESPROCESS f ADDE DETECTION SIGNAL TRANSITION, PARTICULARLY IN ACOUSTIC SIGNALS
La présente invention se rapporte aux procédés qui permettent de détecter, et éventuellement d'identifier, les signaux transitoires acoustiques caractéristiques de divers phénomènes que l'on souhaite étudier. Elle peut s'appliquer aussi bien aux signaux acoustiques aériens qu'aux signaux acoustiques sous-marins, pour des applications aussi diverses que l'identification des pannes dans une automobile et l'identification des navires .The present invention relates to methods which make it possible to detect, and possibly identify, the transient acoustic signals characteristic of various phenomena which it is desired to study. It can be applied as well to aerial acoustic signals as to underwater acoustic signals, for applications as diverse as the identification of breakdowns in an automobile and the identification of ships.
L'écoute des signaux acoustiques, c'est à dire essentiellement des bruits, est très utile pour repérer et identifier toutes sortes de choses . De manière triviale, le conducteur d'une automobile est souvent averti d'une panne en cours par des bruits mécaniques qui viennent l'alerter. Il confie alors sa voiture au garagiste qui est plus à même d'identifier avec certitude l'origine de la panne et d'y porter remède. De manière moins courante, les observateurs sonar à bord des bâtiments écoutent les bruits rayonnes dans le milieu marin et, lorsqu'ils détectent quelque chose de suspect, confient le soin de l'identification finale à un analyste possédant une grande expérience. Dans les deux cas, il faut que le bruit suspect soit suffisamment distinct, en amplitude et en fréquence, du bruit ambiant pour pouvoir attirer l'attention, soit de l'automobiliste, soit de l'opérateur sonar.Listening to acoustic signals, that is to say essentially noises, is very useful for spotting and identifying all kinds of things. In a trivial way, the driver of an automobile is often warned of an ongoing breakdown by mechanical noises that alert him. He then entrusts his car to the mechanic who is better able to identify with certainty the origin of the fault and to remedy it. Less commonly, sonar observers on board vessels listen to radiated noise in the marine environment and, when they detect something suspicious, entrust the task of final identification to an analyst with considerable experience. In both cases, the suspect noise must be sufficiently distinct, in amplitude and frequency, from the ambient noise to be able to attract the attention of either the motorist or the sonar operator.
En ce qui concerne les automobilistes il n'y a pas pour l'instant de dispositifs de cette nature sur le marché, mais en ce qui concerne les opérateurs sonar, on sait utiliser des jeux de filtres plus ou moins adaptés aux problèmes posés . Ces filtres, qu'ils soient passe-bas, passe-haut ou passe-bande, sont étudiés pour faire ressortir les bruits dont on peut penser qu'ils vont apparaître, ou éventuellement pour les éliminer. Dans la pratique ceci ne marche bien que pour des bruits perrrlanents. On a fait allusion à de tels systèmes de traitement, ainsi qu'à la possibilité de re -écouter de manière répétitive un enregistrement des signaux reçus, dans la demande de brevet N° 8715G73 déposée le 13 novembre 1987 par la demanderesse sur une invention concernant essentiellement un dispositif de localisation en direction par écoute stéréophonique des signaux reçus .As far as motorists are concerned, there are currently no such devices on the market, but as far as sonar operators are concerned, it is known to use sets of filters more or less adapted to the problems posed. These filters, whether low-pass, high-pass or band-pass, are studied to bring out the noises which one can think that they will appear, or possibly to eliminate them. In practice this only works well for noises perrrlanents. Reference has been made to such processing systems, as well as the possibility of repetitively listening to a recording of the signals received, in patent application No. 8715G73 filed on November 13, 1987 by the applicant on an invention relating to essentially a device for locating in direction by stereophonic listening of the signals received.
Lorsque le phénomène est évolutif, en particulier lorsqu'il s'agit d'un bruit impulsionnel, ces systèmes de filtrage sont très difficiles, voire impossibles, à mettre en oeuvre parce que l'opérateur n'arrive pas à régler suffisamment vite et suffisamment correctement les fréquences de coupure des iltres .When the phenomenon is progressive, in particular when it is impulse noise, these filtering systems are very difficult, if not impossible, to implement because the operator cannot adjust quickly enough and sufficiently the ilter cutoff frequencies correctly.
Pour résoudre ce problème, l'invention propose un procédé d'aide à la détection de signaux transitoires, notamment dans les signaux acoustiques, principalement caractérisé en ce que dans une première étape on détermine les paramètres d'un filtre permettant de modifier le signal reçu pour obtenir un signal formé d'une première partie sensiblement continue et à bas niveau et d'une deuxième partie impulsionnelle ayant un niveau nettement supérieure à ce bas niveau et représentant les signaux transitoires à détecter, et que dans une deuxième étape on filtre le signal de réception par un filtre ayant les paramètres ainsi déterminés. D'autres particularités et avantages de l'invention paraîtront clairement dans la description suivante faite en regard de la figure annexée qui représente le schéma bloc d'un dispositif permettant de mettre en oeuvre le procédé selon l'invention. Dans le dispositif représenté sur la figure annexée, le signal électrique représentatif du signal audio reçu, obtenu par exemple à partir d'un hydrophone, est appliqué sur un filtre anti-repliement 101 adapté à la fréquence maximale reçue, à la fréquence maximale audible par l'opérateur (sensiblement 20 KHz) et à la fréquence d'échantillonnage d'un convertisseur analogique -numérique (102) situé après ce filtre 101. Ce convertisseur analogique -numérique délivre un signal numérisé Y( T ) qui est appliqué à plusieurs chaînes de traitement dont les sorties aboutissent sur un commutateur 103. L'une des entrées de ce commutateur est reliée directement au convertisseur 102 afin de permettre à l'opérateur d'écouter directement le signal reçu. La sortie du commutateur 103 est reliée à l'entrée d'un convertisseur numérique -analogique 104, suivi d'un filtre pas se -bas 105 et d'un amplificateur 106 qui alimente un casque d'écoute 107. Lorsque la liaison entre les convertisseurs 102 et 104 est directe par l'intermédiaire du commutateur 103, l'opérateur muni du casque 107 entend le même signal que celui reçu par l'hydrophone, le passage par la voie numérique n'entraînant pas de déformation sensible de ce signal. Pour analyser ce signal reçu et faire ressortir des anomalies qui ne lui apparaissent pas à l'écoute directe, l'opérateur dirige le signal de sortie du convertisseur 102, à l'aide d'un interrupteur 108, sur un module d'apprentissage 109. Ce module d'apprentissage permet de modéliser le signal écouté selon une composante à large bande stationnaire synthétisée par un modèle prédictif, et un résidu de prédiction correspondant à la différence entre le signal prédit par le modèle prédictif et le signal vrai. Cette modélisation s'effectuera de préférence par la méthode connue de modélisation auto -régressive du signal avec un ordre P. L'ordre P d'un tel modèle auto-régressif correspond aux P échantillons temporels antérieurs de la sortie du filtre auto -régressifTo solve this problem, the invention proposes a method for assisting in the detection of transient signals, in particular in acoustic signals, mainly characterized in that in a first step the parameters of a filter are determined making it possible to modify the received signal to obtain a signal formed by a first substantially continuous and low-level part and a second impulse part having a level significantly higher than this low level and representing the transient signals to be detected, and that in a second step the signal is filtered reception by a filter having the parameters thus determined. Other features and advantages of the invention will appear clearly in the following description given with reference to the appended figure which represents the block diagram of a device making it possible to implement the method according to the invention. In the device represented in the appended figure, the electrical signal representative of the audio signal received, obtained for example from a hydrophone, is applied to an anti-aliasing filter 101 adapted to the maximum frequency received, to the maximum frequency audible by the operator (approximately 20 KHz) and at the sampling frequency of a converter analog-digital (102) located after this filter 101. This analog-digital converter delivers a digital signal Y (T) which is applied to several processing chains whose outputs lead to a switch 103. One of the inputs of this switch is directly connected to converter 102 in order to allow the operator to listen directly to the received signal. The output of the switch 103 is connected to the input of a digital-analog converter 104, followed by a low-pitch filter 105 and an amplifier 106 which supplies headphones 107. When the link between the converters 102 and 104 is direct via the switch 103, the operator provided with the headset 107 hears the same signal as that received by the hydrophone, the passage by the digital channel not causing significant distortion of this signal. To analyze this received signal and bring out anomalies which do not appear to it to direct listening, the operator directs the output signal of the converter 102, using a switch 108, to a learning module 109 This training module makes it possible to model the signal listened to according to a stationary broadband component synthesized by a predictive model, and a prediction residue corresponding to the difference between the signal predicted by the predictive model and the true signal. This modeling will preferably be carried out by the known method of autoregressive modeling of the signal with a P order. The order P of such an autoregressive model corresponds to the P temporal previous samples of the output of the autoregressive filter
y ( (k-1) Te) , . . . , y ( (k-P) Te)y ((k-1) T e ) ,. . . , y ((kP) T e )
utilisés pour prédire la sortie actuelle y (kT ) du filtre . Dans cette réalisation préférée, ces P coefficients prédicteurs peuvent être obtenus de manière connue par résolution des équations de Yule-Walker grâce à l'algorithme de Levinson. Cet algorithme converge rapidement et on peut obtenir les P coefficients en l'espace de quelques secondes pendant lesquelles l'opérateur ferme l'interrupteur 108. Eventuellement cette sélection des séquences d'apprentissage peut être effectuée de manière automatique, soit de façon répétitive (par exemple 1 seconde toutes les 10 secondes) , soit par détection d'un phénomène anormal identifié d'une manière quelconque. On obtient ainsi un vecteur formé de P coefficients a., qui peut être utilisé de différentes manières, par exemple par filtrage inverse ou par filtrage dit "caricatural" . Dans le cas de l'utilisation du filtrage inverse, les coefficients a. sont appliqués à un organe 110, appelé filtre à moyenne adaptée (MA) et qui effectue sur le signal y(kT ) délivré par le convertisseur 102 l'opération définie par la formule : P e (kTe) = y(KTe) - ∑ a. * y((k-i)Te) i=l Le signal e (kT ) obtenu en sortie de ce filtre à moyenne adaptée MA est appliqué par l'intermédiaire du commutateur 103 au convertisseur 104, et le signal traité arrive finalement sur le casque 107.used to predict the current output y (kT) of the filter. In this preferred embodiment, these P predictor coefficients can be obtained in a known manner by solving the Yule-Walker equations using the Levinson algorithm. This algorithm converges quickly and we can get the P coefficients in the space of a few seconds during which the operator closes the switch 108. Optionally, this selection of the learning sequences can be carried out automatically, either repeatedly (for example 1 second every 10 seconds), or by detection of an abnormal phenomenon identified in any way. This gives a vector formed of P coefficients a., Which can be used in different ways, for example by reverse filtering or by so-called "caricatural" filtering. In the case of the use of reverse filtering, the coefficients a. are applied to a member 110, called the adapted average filter (MA) and which performs on the signal y (kT) delivered by the converter 102 the operation defined by the formula: P e (kT e ) = y (KT e ) - ∑ a. * y ((ki) T e ) i = l The signal e (kT) obtained at the output of this adapted average filter MA is applied via the switch 103 to the converter 104, and the processed signal finally arrives on the headphones 107.
Dans le cas du filtrage dit caricatural, on utilise des filtres récursifs de type auto-régressif dits AR qui reçoivent les coefficients a. et appliquent au signal en entrée un traitement défini par la formule :In the case of so-called caricatural filtering, recursive filters of the self-regressive type called AR are used which receive the coefficients a. and apply a processing defined by the formula to the input signal:
cχ (kTe) = ∑ i κ o1 ((k-i)Te) + y (kTe) 1=1c χ (kT e ) = ∑ i κ o 1 ((ki) T e ) + y (kT e ) 1 = 1
Selon l'invention, dans une première voie le signal en sortie du convertisseur 102 est appliqué à un premier filtre ARAccording to the invention, in a first channel the signal at the output of converter 102 is applied to a first AR filter
111.1 dont la sortie est appliquée au convertisseur 104 par l'intermédiaire du commutateur 103. Le signal résultant arrive ensuite sur le casque 107. Les inventeurs ont proposé d'appeler le signal c. (kT ) ainsi obtenu, caricature d'ordre 1 du signal s(t) parce qu'il possède une densité spectrale de puissance sensiblement égale au carré de la densité spectrale de puissance de ce signal s(t) , ce qui revient à dire que l'on a "aplati" le bruit permanent contenu dans le signal s(t) en faisant ressortir le bruit impulsionnel contenu dans ce même signal. On exagère ainsi ce bruit impulsionnel en réduisant le bruit permanent, ce qui correspond de manière imagée à une caricature du signal s(t) . De cette manière l'opérateur qui écoute le signal résultant de ce traitement dans le casque 107 perçoit plus facilement ce signal impulsionnel, lequel ressort mieux du signal permanent.111.1, the output of which is applied to the converter 104 via the switch 103. The resulting signal then arrives on the headphones 107. The inventors have proposed to call signal c. (kT) thus obtained, order 1 caricature of the signal s (t) because it has a power spectral density substantially equal to the square of the power spectral density of this signal s (t), which amounts to saying that the permanent noise contained in the signal s (t) has been "flattened" by bringing out the impulse noise contained in this same signal. This impulse noise is thus exaggerated by reducing the permanent noise, which corresponds pictorially to a caricature of the signal s (t). In this way the operator who listens to the signal resulting from this processing in the helmet 107 more easily perceives this impulse signal, which emerges better from the permanent signal.
L'invention propose en outre d'augmenter encore l'influence de ce traitement en appliquant le signal en sortie du premier filtre AR dans un deuxième filtre AR 111.2 puis éventuellement dans ^ine succession de filtres AR mis en série jusqu'à un n ième filtre AR 111. n. Le signal cj ainsi obtenu en sortie du filtre AR 111. j sera tout naturellement appelé caricature d'ordre j du signal d'entrée, et sa densité spectrale de puissance est sensiblement égale à la puissance n de la densité spectrale de puissance du signal s. Le traitement ainsi effectué est défini par la formule :The invention further proposes to further increase the influence of this processing by applying the signal at the output of the first AR filter in a second AR filter 111.2 then possibly in a succession of AR filters put in series up to an n th AR filter 111. n. The signal cj thus obtained at the output of the AR filter 111. j will quite naturally be called caricature of order j of the input signal, and its power spectral density is substantially equal to the power n of the power spectral density of the signal s . The treatment thus carried out is defined by the formula:
P c. (kTe) = ∑ a. x c^Uk-i)^) + c^fl T^ i=lP c. (kT e ) = ∑ a. xc ^ Uk-i) ^) + c ^ fl T ^ i = l
Les sorties des filtres AR sont respectivement reliées à des entrées du commutateur 103 et l'opérateur peut ainsi sélectionner, en plus du signal direct et du signal filtré par filtrage inverse à l'aide du filtre MA, une caricature d'ordre compris entre 1 et n du signal d'entrée. Dans la pratique, l'opérateur après avoir procédé à l'apprentissage sélectionnera successivement les différentes sorties puis reviendra sur celle qui lui semble présenter des caractéristiques particulièrement intéressantes . En effet le passage dans un tel système, qu'il soit par filtrage inverse ou par caricature d'ordre j, déforme profondément le signal, puisque dans le meilleur des cas on a un signal continu de niveau très faible à peine audible duquel viennent sortir des impulsions plus ou moins régulières qui sont clairement perceptibles à l'opérateur mais qui sont déformées par rapport au signal initial reçu. En soi ce signal est très difficilement analysable, même par un opérateur entraîné, pour obtenir des renseignements précis sur la source du signal perturbateur, car les déformations qui sont apportées à ce signal perturbateur, si elles le rendent plus repérable, le déforment trop par rapport au signal d'origine pour en permettre une identification effective. En effet les quelques opérateurs particulièrement entraînés qui peuvent identifier facilement un signal non déformé, même s'il est très faible, ont justement un tel entraînement sur ce signal naturel qu'il leur est très difficile, voire impossible, de reconnaître un signal modifié de cette manière qui change toutes leurs habitudes. De plus ces modifications sont essentiellement variables selon les modalités apportées, dans le cadre de l'invention, aux chaînes de traitement, par exemple l'ordre P de l'auto-régression ou l'ordre j de la caricature.The outputs of the AR filters are respectively connected to inputs of the switch 103 and the operator can thus select, in addition to the direct signal and the signal filtered by reverse filtering using the MA filter, a caricature of order between 1 and n of the input signal. In practice, the operator after having learned will successively select the different outputs and then come back to the one which seems to him to have particularly interesting characteristics. Indeed the passage in such a system, whether by reverse filtering or by j-order caricature, deeply distorts the signal, since in the best of cases there is a continuous signal of very low level barely audible from which come out more or less regular pulses which are clearly perceptible to the operator but which are distorted with respect to the initial signal received. In itself this signal is very difficult to analyze, even by a trained operator, to obtain precise information on the source of the disturbing signal, because the deformations which are made to this disturbing signal, if they make it more detectable, distort it too much compared to the original signal to allow effective identification. Indeed the few particularly trained operators who can easily identify an undistorted signal, even if it is very weak, have such training on this natural signal that it is very difficult, if not impossible, for them to recognize a modified signal of this way that changes all their habits. In addition, these modifications are essentially variable according to the modalities brought, within the framework of the invention, to the processing chains, for example the order P of the auto-regression or the order j of the caricature.
Le procédé selon l'invention sert donc essentiellement d'aide à la détection pour un opérateur, lequel, après avoir repéré la présence d'un signal perturbateur, pourra revenir par exemple sur l'écoute directe sans filtrage pour concentrer son attention sur l'identification de la source de ce signal perturbateur. Eventuellement il pourra passer le relais à un opérateur plus entraîné qui procédera plus facilement à cette identificatio .The method according to the invention therefore essentially serves as a detection aid for an operator, who, after having identified the presence of a disturbing signal, may return for example to direct listening without filtering to concentrate his attention on the identification of the source of this disturbing signal. Possibly he can pass the baton to a more trained operator who will more easily carry out this identification.
Différentes variantes au procédé selon l'invention peuvent être utilisées :Different variants of the process according to the invention can be used:
Ainsi en ce qui concerne l'ordre du modèle on a déterminé expérimentalement qu'un ordre 30, correspondant à des échantillons de quelques millisecondes, donne de bons résultats . Pour aller plus loin on pourra sélectionner cet ordre en utilisant des critères connus tels que ceux d'AKAIKE, de RISSANEN ou de HANNAN.Thus with regard to the order of the model, it has been determined experimentally that an order 30, corresponding to samples of a few milliseconds, gives good results. To go further we can select this order using known criteria such as AKAIKE, RISSANEN or HANNAN.
Comme on l'a dit plus haut, l'invention a été décrite dans le cas où la sélection de la plage d'apprentissage est faite par l'opérateur, et on a évoqué la possibilité d'utiliser des critères automatiques basés sur des échelles de temps. On pourrait aussi utiliser un détecteur automatique fonctionnant à partir d'autres critères, ou d'autres signaux, ou encore un apprentissage en continu utilisant par exemple les algorithmes de modélisation auto-récursifs en temps tels que celui de MORF.As mentioned above, the invention has been described in the case where the selection of the learning range is made by the operator, and the possibility of using automatic criteria based on scales has been mentioned. of time. One could also use an automatic detector operating on the basis of other criteria, or other signals, or else continuous learning using, for example, self-recursive modeling algorithms in time such as that of MORF.
De même on peut utiliser un autre algorithme d'apprentissage que celui de LEVINSON, par exemple ceux de BURG, ITAKURA, GUEGUEN- LEROUX, MORF et FALCONER, ou MORF et LEE. . .Similarly, we can use a different learning algorithm than that of LEVINSON, for example those of BURG, ITAKURA, GUEGUEN-LEROUX, MORF and FALCONER, or MORF and LEE. . .
Enfin de manière encore plus générale, l'invention s'étend au-delà de l'analyse auto -régressive à toute technique de modélisation du signal initial qui permet une décomposition en un ensemble de paramètres caractéristiques du modèle choisi et une "innovation" (différence entre la prédiction fournie par le modèle et le signal vrai) . On citera par exemple le modèle ARMA, le filtre de KALMAN, les réseaux de neurones . . .Finally, even more generally, the invention extends beyond self-regressive analysis to any technique for modeling the initial signal which allows a decomposition into a set of parameters characteristic of the chosen model and an "innovation" ( difference between the prediction provided by the model and the true signal). We will cite for example the ARMA model, the KALMAN filter, neural networks. . .
Enfin, outre l'aide à un opérateur humain, on peut intégrer un dispositif appliquant le procédé selon l'invention, pour obtenir une fonction automatique permettant d'améliorer les performances d'un dispositif de détection et de classification automatique de signaux acoustiques . Par exemple on peut utiliser le filtre à moyenne adaptée pour réaliser un module de pré -traitement permettant de blanchir et de minimiser l'énergie d'un signal stationnaire, afin de favoriser la détection automatique de signaux transitoires contenus dans un signal acoustique, en contrôlant par exemple les phases d'apprentissage par une horloge validée par un signal de non détection de transitoire . Finally, in addition to assistance to a human operator, it is possible to integrate a device applying the method according to the invention, in order to obtain an automatic function making it possible to improve the performance of a device for detecting and automatically classifying acoustic signals. For example, it is possible to use the adapted medium filter to produce a pre-processing module making it possible to whiten and minimize the energy of a stationary signal, in order to favor the automatic detection of transient signals contained in an acoustic signal, by controlling for example the learning phases by a clock validated by a transient non-detection signal.

Claims

R E V E N D I C A T I O N S R E V E N D I C A T I O N S
1. Procédé d'aide à la détection de signaux transitoires, notamment dans les signaux acoustiques, caractérisé en ce que dans une première étape (109) on détermine les paramètres (a.) d'un filtre (110) permettant de modifier le signal reçu pour obtenir un signal formé d'une première partie sensiblement continue et à bas niveau et d'une deuxième partie impulsionnelle ayant un niveau nettement supérieure à ce bas niveau et représentant les signaux transitoires à détecter, et que dans une deuxième étape on filtre le signal de réception par un filtre (110) ayant les paramètres ainsi déterminés.1. Method for assisting in the detection of transient signals, in particular in acoustic signals, characterized in that in a first step (109), the parameters (a.) Of a filter (110) are used to modify the signal received to obtain a signal formed by a first substantially continuous and low-level part and a second impulse part having a level significantly higher than this low level and representing the transient signals to be detected, and that in a second step the reception signal by a filter (110) having the parameters thus determined.
2. Procédé selon la revendication 1, caractérisé en ce que pour déterminer (109) les paramètres du filtre on utilise un modèle prédictif à analyse auto-régressif d'ordre P. 3. Procédé selon la revendication 2, caractérisé en ce que l'on détermine les P coefficients producteurs du modèle régressif par les équations de Yule- alker avec l'algorithme de Levinson.2. Method according to claim 1, characterized in that to determine (109) the parameters of the filter, a predictive model with autoregressive analysis of order P is used. 3. Method according to claim 2, characterized in that the the P producing coefficients of the regressive model are determined by the Yule-alker equations with the Levinson algorithm.
4. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce l'on utilise un filtre à moyenne adaptée (110) .4. Method according to any one of claims 2 and 3, characterized in that one uses a suitable average filter (110).
5. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que l'on utilise au moins un filtre auto-régressif (111.1) . β. Procédé selon la revendication 5, caractérisé en ce que l'on utilise plusieurs filtres auto-régressifs (111.1-111. n) mis en série et ayant les mêmes coefficients de filtrage.5. Method according to any one of claims 2 and 3, characterized in that one uses at least one auto-regressive filter (111.1). β. Method according to Claim 5, characterized in that several self-regressive filters (111.1-111. N) are used in series and having the same filtering coefficients.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'on fixe de manière manuelle (108) la durée pendant laquelle on détermine (109) les paramètres du filtre. 8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'on fixe de manière automatique la durée pendant laquelle on détermine (109) les paramètres du filtre.7. Method according to any one of claims 1 to 6, characterized in that the duration during which the filter parameters are determined (109) is fixed manually (108). 8. Method according to any one of claims 1 to 6, characterized in that the duration during which the filter parameters are determined (109) is fixed automatically.
9. Procédé selon l'une quelconque des revendication 1 à 8, caractérisé en ce que l'on utilise une écoute audio (107) du signal filtré . 9. Method according to any one of claims 1 to 8, characterized in that an audio listening (107) of the filtered signal is used.
PCT/FR1992/000760 1991-08-02 1992-07-31 Method for detecting transient signals, particularly in acoustic signals WO1993003395A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU24708/92A AU657792B2 (en) 1991-08-02 1992-07-31 Method for detecting transient signals, particularly in acoustic signals
EP92918452A EP0597040A1 (en) 1991-08-02 1992-07-31 Method for detecting transient signals, particularly in acoustic signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR91/09874 1991-08-02
FR9109874A FR2680006B1 (en) 1991-08-02 1991-08-02 METHOD FOR ASSISTING THE DETECTION OF TRANSIENT SIGNALS, PARTICULARLY IN ACOUSTIC SIGNALS.

Publications (1)

Publication Number Publication Date
WO1993003395A1 true WO1993003395A1 (en) 1993-02-18

Family

ID=9415882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000760 WO1993003395A1 (en) 1991-08-02 1992-07-31 Method for detecting transient signals, particularly in acoustic signals

Country Status (5)

Country Link
EP (1) EP0597040A1 (en)
AU (1) AU657792B2 (en)
CA (1) CA2114632A1 (en)
FR (1) FR2680006B1 (en)
WO (1) WO1993003395A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188667A (en) * 1976-02-23 1980-02-12 Beex Aloysius A ARMA filter and method for designing the same
EP0234993A1 (en) * 1986-01-28 1987-09-02 Thomson-Csf Method and device for automatic target recognition starting from Doppler echos
US4982150A (en) * 1989-10-30 1991-01-01 General Electric Company Spectral estimation utilizing an autocorrelation-based minimum free energy method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US188667A (en) * 1877-03-20 Improvement in carbureters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188667A (en) * 1976-02-23 1980-02-12 Beex Aloysius A ARMA filter and method for designing the same
EP0234993A1 (en) * 1986-01-28 1987-09-02 Thomson-Csf Method and device for automatic target recognition starting from Doppler echos
US4982150A (en) * 1989-10-30 1991-01-01 General Electric Company Spectral estimation utilizing an autocorrelation-based minimum free energy method

Also Published As

Publication number Publication date
FR2680006A1 (en) 1993-02-05
AU657792B2 (en) 1995-03-23
CA2114632A1 (en) 1993-02-18
EP0597040A1 (en) 1994-05-18
FR2680006B1 (en) 1993-10-29
AU2470892A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
EP2293594B1 (en) Method for filtering lateral non stationary noise for a multi-microphone audio device
EP2309499B1 (en) Method for optimised filtering of non-stationary interference captured by a multi-microphone audio device, in particular a hands-free telephone device for an automobile.
EP2415047B1 (en) Classifying background noise contained in an audio signal
EP2772916B1 (en) Method for suppressing noise in an audio signal by an algorithm with variable spectral gain with dynamically adaptive strength
EP2538409B1 (en) Noise reduction method for multi-microphone audio equipment, in particular for a hands-free telephony system
EP0752181B1 (en) Frequency-domain adaptive-filter acoustic echo canceller
FR2864860A1 (en) NOISE CANCELLATION SYSTEM, VOICE RECOGNITION SYSTEM, AND AUTOMOTIVE NAVIGATION SYSTEM
FR3012928A1 (en) MODIFIERS BASED ON EXTERNALLY ESTIMATED SNR FOR INTERNAL MMSE CALCULATIONS
FR2820227A1 (en) NOISE REDUCTION METHOD AND DEVICE
FR3012929A1 (en) SPEECH PROBABILITY PRESENCE MODIFIER IMPROVING NOISE REMOVAL PERFORMANCE BASED ON LOG-MMSE
FR2568014A1 (en) PULSE-SHAPED PULSE DETECTION DEVICE AND PULSE-SHAPED PULSE SUPPRESSION DEVICE WITH PULSE-SHAPED DEVICE DETECTION DEVICE
EP1473709A1 (en) Method for the identification of specific sounds
FR3012927A1 (en) PRECISE ESTIMATING OF SIGNAL RATIO BY PROGRESSION BASED ON PROBABILITY OF THE PRESENCE OF MMSE SPEECH
FR2724029A1 (en) Neural net detection of acoustic signals from torpedo
WO1993003395A1 (en) Method for detecting transient signals, particularly in acoustic signals
FR2940565A1 (en) DEVICE FOR GENERATING SOUND MESSAGES WITH INTEGRATED FAULT DETECTION
FR2906070A1 (en) Electronic voice signal preprocessing system for hands free mobile telephone, has non coherent filtering stage filtering output of coherent filtering stage such that signal is successively subjected to coherent and non coherent filterings
EP3627510A1 (en) Filtering of an audio signal acquired by a voice recognition system
FR2799321A1 (en) Analysing method for continuous monitoring of the audio quality involves determining samples and analysing each of them to determine the variations of energy and envelope and a quality index in order to calculate the final quality index
EP2515300B1 (en) Method and system for noise reduction
EP1359788B1 (en) Panoramic audio device for passive sonar
FR2944909A1 (en) Detection device for use in surveillance system to detect events in audio flow, has regrouping unit regrouping time intervals, and signaling unit signaling detection of events when rhythmic patterns are identified
FR2466901A1 (en) DEVICE FOR AUTOMATICALLY ADJUSTING THE LEVEL OF SOUND SOURCES USEFUL IN VARIABLE BRUYANCE ENVIRONMENTS
FR3106691A1 (en) SPEECH CONVERSION THROUGH STATISTICAL LEARNING WITH COMPLEX MODELING OF TEMPORAL CHANGES
FR2559325A1 (en) Equipment making it possible to pick up and transmit distantly the speech of a person positioned in a disturbed medium so as to carry out a processing of this speech.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992918452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2114632

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1992918452

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1994 182154

Country of ref document: US

Date of ref document: 19940525

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 1992918452

Country of ref document: EP