明 細 書 Specification
金属粉末製造方法および製造装置 Method and apparatus for producing metal powder
【技術分野】 【Technical field】
本発明は、 溶融金属を旋回移動する冷却液層中に供給して金属粉 末を製造する方法およびその装置に関する。 The present invention relates to a method and an apparatus for producing a metal powder by supplying a molten metal into a swirling cooling liquid layer.
【背景技術】 [Background Art]
急冷凝固金属粉末は、 結晶粒が微細で合金元素も過飽和に含有さ せることができるので、 急冷凝固粉末によって形成された押出材ゃ 焼結材は、 溶製材では具備することのない優れた材質特性を有し、 機械部品等の素材として注目されている。 Since the rapidly solidified metal powder has fine crystal grains and can contain alloying elements in supersaturation, the extruded material formed by the rapidly solidified powder and the sintered material are excellent materials that are not provided by the ingot material. It has properties and is attracting attention as a material for mechanical parts.
前記急冷凝固金属粉末の製造方法として、 特公平 1 - 49769 号公 報に開示されているように、 回転ドラム法がある。 この方法は、 冷 却液の入った有底の冷却ドラムを回転し、 その内周面に冷却液層を 遠心力の作用で形成し、 該冷却液層に溶融金属を噴出し、 これを旋 回する冷却液層によって分断して急冷凝固した金属粉末を得る方法 である。 As a method for producing the rapidly solidified metal powder, there is a rotating drum method as disclosed in Japanese Patent Publication No. 1-49769. In this method, a bottomed cooling drum containing a cooling liquid is rotated, a cooling liquid layer is formed on the inner peripheral surface of the cooling drum by the action of centrifugal force, and a molten metal is jetted into the cooling liquid layer. This is a method of obtaining rapidly solidified metal powder by dividing by a rotating cooling liquid layer.
一方、 米国特許 4, 787, 935号、 4, 869, 469 号には、 溶融金属流を ガスァトマイズした後、 ァトマイズされた球形の溶滴を冷却用筒体 内で旋回しながら流下する冷却ガスの渦卷き流に供給し、 冷却凝固 させる金属粉末の製造方法およびその装置が開示されている。 On the other hand, U.S. Pat.Nos. 4,787,935 and 4,869,469 disclose a method of gas atomizing a molten metal stream and then turning the atomized spherical droplets while rotating in a cooling cylinder. A method and an apparatus for producing a metal powder to be supplied to a spiral flow and cooled and solidified are disclosed.
前記回転ドラム法によると、 いわゆるバッチ式操業となり、 生産 性に劣るという問題がある。 また、 冷却ドラムの回転数には限度が あるため、 冷却液層の流速を大きくすることが困難で、 微粉末が得 難いという問題がある。 According to the rotary drum method, a so-called batch operation is performed, and there is a problem that productivity is poor. In addition, since the number of rotations of the cooling drum is limited, it is difficult to increase the flow rate of the cooling liquid layer, and it is difficult to obtain fine powder.
一方、 前記米国特許の製造方法によると、 粒径 0. 1 ϊα の微粉末 から 1000 IB 程度の粗粉末まで、 連続的に製造することができる。 しかし、 この製造方法では、 冷却速度が 102 〜107 eC / sec 程度し
か得られず、 急冷作用が不十分である。 また、 冷却ガスの渦巻き流 の中心部の溶滴は旋回運動を行ないにく く、 冷却速度が低下するた め、 製造粉末の品質にばらつきが生じ易いという問題がある。 また 、 冷却用筒体内に溶滴の冷却に好適な冷却ガスの渦巻き流を形成す るには、 冷却用筒体を相当大きく しなければなず、 設置場所、 設備 コストの面で、 容易に実施し難いという問題がある。 On the other hand, according to the production method of the above-mentioned US patent, it is possible to continuously produce from a fine powder having a particle size of 0.1 粒径 α to a coarse powder having a particle size of about 1000 IB. However, in this manufacturing method, the cooling rate is about 10 2 to 10 7 e C / sec. No quenching effect is obtained. In addition, the droplet at the center of the spiral flow of the cooling gas is not easily swirled, and the cooling rate is reduced, so that the quality of the produced powder tends to vary. In addition, in order to form a spiral flow of cooling gas suitable for cooling droplets in the cooling cylinder, the cooling cylinder must be made considerably large, and this can be easily performed in terms of installation location and equipment costs. There is a problem that it is difficult to implement.
本発明はかかる問題に鑑みなされたもので、 冷却速度にばらつき が生じにく く、 大きな冷却速度で急冷凝固させることができ、 また 微粉末が容易に得られる金属粉末の製造方法およびその方法を実施 するための好適な製造装置を提供することを目的とする。 The present invention has been made in view of such a problem, and provides a method of manufacturing a metal powder and a method of producing a metal powder that can be rapidly solidified at a high cooling rate without causing a variation in a cooling rate and a fine powder can be easily obtained. An object of the present invention is to provide a suitable manufacturing apparatus for carrying out the method.
【発明の開示】 DISCLOSURE OF THE INVENTION
本発明の金属粉末の製造方法は、 冷却用筒体の内周面に沿って冷 却液を噴出供耠し、 該筒体の冷却液排出端側へ筒体内周面に沿って 旋回しながら移動する冷却液層を形成し;該冷却液層の内側の空間 部に溶融金属を供耠し;該溶融金属に冷却液層に措向するガスジニ ッ トを吹き付けて分断すると共に分断された溶融金属を冷却液層に 供耠し;冷却液層中で凝固した金属粉末を含む冷却液を筒体の冷却 液排出端から外部へ排出する。 金属粉末を含む冷却液の外部への排 出に際しては、 該冷却液を筒体の冷却液排出端に設けられた閉塞用 蓋に備えられた排出管からその管内を満たしつつ外部へ排出するの がよい。 In the method for producing metal powder according to the present invention, a cooling liquid is jetted and supplied along an inner peripheral surface of a cooling cylinder, and is swirled along a peripheral surface of the cylinder toward a cooling liquid discharge end of the cylinder. Forming a moving cooling liquid layer; supplying a molten metal to a space inside the cooling liquid layer; blowing a gas jet toward the cooling liquid layer on the molten metal to separate the molten metal and splitting the molten metal; The metal is supplied to the coolant layer; the coolant containing the metal powder solidified in the coolant layer is discharged to the outside from the coolant discharge end of the cylinder. When discharging the cooling liquid containing metal powder to the outside, the cooling liquid is discharged to the outside while filling the inside of the pipe from the discharging pipe provided in the closing lid provided at the cooling liquid discharging end of the cylindrical body. Is good.
また、 本発明の製造装置は、 内周面に沿って冷却液を噴出供耠す るための冷却液噴出流路が設けられた冷却用筒体と ;前記冷却液噴 出流路から噴出された冷却液が前記筒体の内周面に沿って旋回しな がら筒体の冷却液排出端側に移動するように形成された冷却液層の 内側の空間部に溶融金属を洪耠するための溶融金属供給手段と ;該 溶融金属を分断すると共に分断された溶融金属を冷却液層に供給す
るためのガスジヱッ トを噴出するためのガスジヱッ ト噴出手段と ; 前記冷却液噴出流路に冷却液を供給するための冷却液供給手段とを 備えている。 前記冷却用筒体には、 冷却液排出端に閉塞用蓋を設け 、 該蓋に冷却液を管内に満たした状態でこれを排出するための排出 管を設けておくのがよい。 In addition, the manufacturing apparatus of the present invention includes: a cooling cylinder provided with a coolant ejection flow path for ejecting and supplying a coolant along an inner peripheral surface; and a cooling cylinder ejected from the coolant ejection flow path. The molten metal floods the space inside the coolant layer formed so that the coolant moves toward the coolant discharge end of the cylinder while rotating along the inner peripheral surface of the cylinder. Means for supplying molten metal; and supplying the molten metal to the cooling liquid layer while dividing the molten metal. And a cooling liquid supply means for supplying a cooling liquid to the cooling liquid discharging flow path. It is preferable that the cooling cylinder is provided with a closing lid at a cooling liquid discharge end, and the lid is provided with a discharge pipe for discharging the cooling liquid in a state where the cooling liquid is filled in the pipe.
本発明によると、 冷却用筒体の内周面に沿って冷却液噴出流路か ら噴出供給された冷却液は、 筒体の内周面に沿って旋回しながら筒 体の冷却液排出端開口に向って移動する。 この際、 旋回時の遠心力 の作用でほぼ一定内径の冷却液層が筒体内周面に形成される。 この 冷却液層は常に新たに供給される冷却液によって形成されるために 一定の温度が容易に維持される。 また、 冷却媒体は液体であるため 、 ガスに比べて冷却能に優れる。 このめた、 冷却液層としては旋回 半径が小さく、 また、 層厚の薄いもので足り、 ひいてはこれを形成 する冷却用筒体もコンパク トなもので済む。 According to the present invention, the cooling liquid ejected and supplied from the cooling liquid ejection flow path along the inner peripheral surface of the cooling cylinder rotates while flowing along the inner peripheral surface of the cylinder, and the cooling liquid discharge end of the cylinder is discharged. Move towards the opening. At this time, a cooling liquid layer having a substantially constant inner diameter is formed on the inner peripheral surface of the cylinder by the action of the centrifugal force during the turning. Since this cooling liquid layer is always formed by the newly supplied cooling liquid, a constant temperature is easily maintained. Further, since the cooling medium is a liquid, the cooling medium is excellent in the cooling ability as compared with the gas. As the cooling liquid layer, a turning layer having a small turning radius and a small layer thickness is sufficient, and the cooling cylinder that forms the cooling liquid layer is also compact.
前記冷却液層の内側の空間部に溶融金属供給手段から供給された 溶融金属は、 ガスジ ッ ト噴出手段から冷却液層に指向して噴出さ れたガスジエツ トが吹き付けられて、 分断される。 分断された溶融 金属 (溶滴) は、 冷却液層に向って飛散し、 すべての溶滴が冷却液 層内に確実に注入供給される。 冷却液層内に注入された溶滴は、 そ の周りに冷却液の蒸気が発生するが、 この蒸気は溶滴の周りから速 やかに離脱する。 その理由は、 冷却液層における流速の分布は旋回 中心側に行くほど増大する傾斜速度分布となっているため、 冷却液 層内に注入された溶滴は回転運動をするからである。 従って、 溶滴 の外周面は冷却液に常に接するようになるため、 溶滴は高い冷却速 度で冷却されると共に蒸気による粉末粒子表面の汚染も防止される 。 また、 ガスジエツ トの流速、 流量を制御することにより、 分断さ れた溶滴の大きさを容易に調整することができるため、 所期の急冷
凝固微粉末を容易に得ることができる。 しかも、 冷却液層の温度、 表面状態が一定で安定なため、 溶滴の冷却条件が一定になり、 粉末 の品質も安定する。 The molten metal supplied from the molten metal supply means to the space inside the coolant layer is blown by the gas jet ejected from the gas jet ejection means toward the coolant layer and is divided. The separated molten metal (droplets) scatters toward the coolant layer, and all droplets are reliably injected and supplied into the coolant layer. The droplet injected into the cooling liquid layer generates vapor of the cooling liquid around it, and this vapor is quickly released from around the droplet. The reason is that since the distribution of the flow velocity in the cooling liquid layer has a gradient velocity distribution that increases toward the center of rotation, the droplets injected into the cooling liquid layer rotate. Therefore, since the outer peripheral surface of the droplet always comes into contact with the cooling liquid, the droplet is cooled at a high cooling rate and the contamination of the powder particle surface by the vapor is prevented. In addition, by controlling the flow rate and flow rate of the gas jet, the size of the separated droplets can be easily adjusted. A coagulated fine powder can be easily obtained. In addition, since the temperature and surface condition of the cooling liquid layer are constant and stable, the cooling conditions for the droplets are constant and the quality of the powder is stable.
冷却液層は連続的に形成されるため、 溶融金属を連続的に供給し 、 ガスジエツ トを連続的に吹き付けて分断し、 冷却液層に供耠する ことによって、 粉末の連続生産が可能となる。 そして、 冷却液層内 で凝固した金属粉末は、 冷却液と共に冷却用筒体の冷却液排出端開 口より連続的に排出される。 Since the cooling liquid layer is formed continuously, continuous production of powder becomes possible by continuously supplying molten metal, continuously blowing and separating gas jet to supply the cooling liquid layer. . The metal powder solidified in the cooling liquid layer is continuously discharged together with the cooling liquid from the cooling liquid discharge end opening of the cooling cylinder.
金属粉末を含む冷却液の排出に際しては、 該冷却液を冷却用筒体 の冷却液排出端開口に閉塞用蓋を設けておき、 前記冷却液を閉塞用 蓋に備えられた排出管からその管内を満たしつつ外部へ排出すると よい。 この方法によれば、 冷却液層の内側の空閭部に、 ガスジエツ トを形成するガスを容易に充満させることができる。 このガスとし て適宜の不活性ガスや還元性ガスなどの非酸化性ガスを用いること により、 溶滴の酸化を防止することができる。 When discharging the cooling liquid containing the metal powder, a closing lid is provided at the opening of the cooling liquid discharge end of the cooling cylinder, and the cooling liquid is discharged from the discharge pipe provided in the closing lid into the pipe. It is good to discharge to the outside while satisfying. According to this method, the empty portion inside the cooling liquid layer can be easily filled with the gas forming the gas jet. By using a suitable non-oxidizing gas such as an inert gas or a reducing gas as this gas, oxidation of the droplet can be prevented.
[図面の簡単な説明】 [Brief description of drawings]
図 1は実施例に係る金属粉末製造装置の要部断面図である。 図 2 は他の実施例に係る同装置の要部断面図である。 図 3は第 3の実施 例に係る同装置の要部断面図である。 図 4は第 4の実施例に係る同 装置の要部断面図である。 図 5は連続注湯装置の断面説明図である 。 図 6は金属粉末連続生産設備の全体配置図である。 図 7は本発明 の製造実施例に供した金属粉末製造装置の要部断面図である。 図 8 は製造実施例における細流状溶融金属とガスジェッ トとの平面的位 置関係図である。 図 9は製造実施例および製造比較例によつて製造 された金属粉末の粒度分布を示すグラフ図である。 図 10は本発明の 製造実施例によつて製造された金属粉末の粒径と冷却速度との関係 を示すグラフ図である。
【発明を実施するための最良の形態】 FIG. 1 is a sectional view of a main part of a metal powder production apparatus according to an embodiment. FIG. 2 is a sectional view of a main part of the same device according to another embodiment. FIG. 3 is a cross-sectional view of a main part of the same device according to the third embodiment. FIG. 4 is a sectional view of a main part of the same device according to the fourth embodiment. FIG. 5 is an explanatory sectional view of the continuous pouring apparatus. Figure 6 is an overall layout diagram of the continuous metal powder production facility. FIG. 7 is a sectional view of a main part of a metal powder manufacturing apparatus used in a manufacturing example of the present invention. FIG. 8 is a plan view showing the positional relationship between the trickled molten metal and the gas jet in the production example. FIG. 9 is a graph showing the particle size distribution of metal powders produced according to the production example and the production comparative example. FIG. 10 is a graph showing the relationship between the particle size of the metal powder produced according to the production example of the present invention and the cooling rate. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は実施例に係る金属粉末製造装置を示しており、 内周面に冷 却液層 9 を形成するための冷却用筒体 1 と、 冷却液層 9 の内側の空 間部 23に溶融金属 25を流下供給するための溶融金属供給手段である るつぼ 15と、 前記筒体 1 に冷却液を供給するための手段であるボン プ 7 と、 流下した細流状の溶融金属 25を溶滴に分断すると共に冷却 液層 9 に供給するためのガスジエツ ト 26を噴出するガスジェヅ ト噴 出手段であるジヱッ トノズル 24とを備えている。 FIG. 1 shows a metal powder production apparatus according to an embodiment, in which a cooling cylinder 1 for forming a cooling liquid layer 9 on the inner peripheral surface and a space 23 inside the cooling liquid layer 9 are melted. A crucible 15 as a molten metal supply means for supplying the metal 25 downflow, a pump 7 as a means for supplying a cooling liquid to the cylindrical body 1, and a trickle-shaped molten metal 25 flowing down into droplets A jet nozzle 24 is provided as gas jet ejection means for ejecting a gas jet 26 for dividing and supplying the gas jet 26 to the cooling liquid layer 9.
前記筒体 1 は円筒形状であり、 筒体軸心が鉛直方向に設置されて おり、 その上端開口には環状蓋 2 が取り付けられ、 該蓋 2 の中心部 には溶融金属を冷却用筒体 1 の内部に供給するための開口部 3 が形 成されている。 また、 冷却用筒体 1 の上部には、 冷却液噴出流路 5 を有する冷却液噴出管 4 が周方向等間隔に複数個形成され、 該流路 5 の出口 (吐出口) は筒体 1 内周面に沿って接線方向から冷却液を 噴出供給できるように開口されている。 前記流路 5 の開口部におけ る中心線は、 筒体軸心に直交する平面に対して 0〜20β 程度斜め下 方に設定されている。 そして、 冷却液噴出管 4 は、 ポンプ 7 を介し てタンク 8 に配管接続されており、 タンク 8 内の冷却液をポンプ 7 によって吸い揚げて該噴出管 4 の冷却液噴出流路 5 から冷却用筒体 1 内周面側に噴出供給することより冷却用筒体 1 の内周面に、 該内 周面に沿って旋回しながら流下する冷却液層 9 が形成される。 タン ク 8 には、 図示省略の補給用の冷却液烘給管が設けられ、 またタン ク 8 内や冷却液の循環流路の途中に冷却器を適宜介在させてもよい 。 冷却液としては一般に水が使用される。 冷却能に優れ、 低コスト だからである。 水のほか、 油などの加熱した金属の急冷処理に使用 される液体が使用される場合もある。 尚、 水を用いる場合、 水中の 溶存酸素を除去したものを使用するのが望ましい。 酸素の除去処理
装置は市販されており、 入手容易である。 The cylindrical body 1 has a cylindrical shape, and a cylindrical axis is installed in a vertical direction. An annular lid 2 is attached to an upper end opening of the cylindrical body 1. An opening 3 for supplying the inside of 1 is formed. Further, a plurality of cooling liquid ejection pipes 4 having a cooling liquid ejection flow path 5 are formed at equal intervals in a circumferential direction on the upper part of the cooling cylinder 1, and an outlet (discharge port) of the flow path 5 is provided at the cylinder 1. An opening is provided along the inner peripheral surface so that coolant can be ejected and supplied from the tangential direction. Centerline that put the opening of the channel 5 is set to 0 to 20 beta approximately obliquely lower side with respect to a plane perpendicular to the cylindrical body axis. The coolant jet pipe 4 is connected to a tank 8 via a pump 7, and the coolant in the tank 8 is drawn up by the pump 7 to be cooled from a coolant jet channel 5 of the jet pipe 4. By jetting and supplying to the inner peripheral surface side of the cylindrical body 1, a cooling liquid layer 9 that flows down while rotating along the inner peripheral surface is formed on the inner peripheral surface of the cooling cylindrical body 1. The tank 8 is provided with a replenishing coolant supply pipe (not shown), and a cooler may be appropriately provided in the tank 8 or in the middle of the coolant circulation path. Water is generally used as the cooling liquid. This is because it has excellent cooling performance and low cost. In addition to water, liquids used in the quenching of heated metals such as oil may be used. When water is used, it is desirable to use water from which dissolved oxygen has been removed. Oxygen removal treatment Equipment is commercially available and readily available.
冷却用茼体 1 の内周面下部には、 冷却液層 9 の層厚を調整するた めの層厚調整用リング 10がポルトによって着脱、 交換自在に取付け られ、 このリング 10によって冷却液の流下速度が抑えられて略一定 内径の冷却液層 9 が少ない流量で容易に形成される。 筒体 1 の冷却 液排出端である下端開口には R筒状の液切り用網体 11が連設され、 この網体 11の下側には漏斗状の粉末回収容器 12が取付けられている 。 前記網体 11の周囲には該網体 11を覆うように冷却液回収カバー 13 が設けられ、 この回収カバー 13の底部には排液口 14が形成され、 該 排液口 14は配管を介してタンク 8 に接続されている。 A layer thickness adjusting ring 10 for adjusting the layer thickness of the cooling liquid layer 9 is attached to the lower part of the inner peripheral surface of the cooling body 1 by a port so as to be detachable and replaceable. The flow rate is suppressed, and the coolant layer 9 having a substantially constant inner diameter is easily formed with a small flow rate. At the lower end opening, which is the cooling liquid discharge end of the cylindrical body 1, an R cylindrical liquid drain net 11 is continuously provided, and a funnel-shaped powder collecting container 12 is attached below the net 11. . A coolant recovery cover 13 is provided around the net 11 so as to cover the net 11, and a drain port 14 is formed at the bottom of the recovery cover 13, and the drain port 14 is provided via a pipe. Connected to tank 8.
冷却用筒体 1 の上方に配置された溶融金属供耠手段であるるつぼ 15は黒鉛ゃ窒化珪素等の耐火物で形成され、 有底円筒状のるつぼ本 体 16と、 該るつぼ本体 16の上端開口を閉塞する蓋体 17とを備えてな る。 るつぼ本体 16の外周には加熟用の誘導コイル 18が設けられ、 る つぼ本体 16の底部 19には、 上下方向に賞通状のノズル孔 20が形成さ れ、 該ノズル孔 20は環状蓋 2 の開口部 3 に向いている。 また、 るつ ぼ 15の蓋体 17には、 A r や Ν 2 等の不活性ガスの圧媒ゃ圧送された 溶融金属を注入するための注入孔 21が形成され、 該注入孔 21から不 活性ガス等を加圧注入することにより、 るつぼ 15内の溶融金属 22が ノズル孔 20から開口部 3 を介して冷却液層 9 内側の空間部 23に噴出 される。 A crucible 15 serving as a molten metal supply means disposed above the cooling cylinder 1 is formed of a refractory material such as graphite / silicon nitride, and has a bottomed cylindrical crucible body 16 and an upper end of the crucible body 16. And a lid 17 for closing the opening. An induction coil 18 for maturation is provided on the outer periphery of the crucible body 16, and a bottom-end 19 of the crucible body 16 is formed with a vertically extending nozzle hole 20 in a vertical direction. It faces the opening 3 of 2. Further, the lid 17 Ruth pot 15, the injection hole 21 for injecting a pressure medium Ya pumped molten metal inert gas 2 such as A r and Ν is formed from injection hole 21 not By injecting the active gas or the like under pressure, the molten metal 22 in the crucible 15 is jetted from the nozzle hole 20 to the space 23 inside the cooling liquid layer 9 via the opening 3.
前記冷却液層 9 の内側の空閭部 23には、 通常のガスァトマイズ法 で使用されるエア或いは不活性ガス等の圧縮ガスを噴出させるため のジヱッ トノズル 24が配置されている。 該ノズル 24は、 環状蓋 2 の 開口部 3 を介して挿入された圧縮ガス供耠管 27の先端に取付けられ 、 このノズル 24の噴出口は、 冷却液層 9 およびるつぼ 15のノズル孔 20から噴出された細流状の溶融金属 25に措向されている。
前記冷却液噴出流路 5 の出口は図では冷却用筒体 1 の上部側面に 開口しているが、 該出口と層厚調整用リング 10までの距離が長い場 合、 冷却液の流下速度の増大により、 冷却液層 9 の層厚が中央部で 凹状になり易いので、 冷却液噴出流路 5 の出口は冷却用筒体 1 の上 端と層厚調整用リング 10の上面との中央位置から前記リ ング 10の上 面までの間に開口させるのがよい。 かかる位置に開口しても、 出口 より上方は、 遠心力の作用により冷却液が押し上げられ、 下方とほ ぼ同様の一定厚さの冷却液層が形成される。 A jet nozzle 24 for ejecting a compressed gas such as air or an inert gas used in a normal gas atomizing method is disposed in an empty space 23 inside the cooling liquid layer 9. The nozzle 24 is attached to the tip of a compressed gas supply pipe 27 inserted through the opening 3 of the annular lid 2, and the nozzle of the nozzle 24 is connected to the coolant layer 9 and the nozzle hole 20 of the crucible 15. It is intended for the spouted molten metal 25. The outlet of the cooling liquid ejection flow path 5 is opened in the upper side of the cooling cylinder 1 in the figure, but when the distance between the outlet and the layer thickness adjusting ring 10 is long, the cooling liquid flow speed is reduced. Due to the increase, the thickness of the cooling liquid layer 9 tends to be concave at the center, so the outlet of the cooling liquid ejection flow path 5 is located at the center between the upper end of the cooling cylinder 1 and the upper surface of the layer thickness adjusting ring 10. It is preferable that the opening be provided between the upper surface of the ring 10 and the upper surface. Even if it is opened at such a position, the coolant is pushed up by the action of the centrifugal force above the outlet, and a coolant layer with a constant thickness almost similar to that below is formed.
前記構成において、 金属粉末を製造するには、 先ず、 ポンプ 7 を 作動させて、 筒体 1 内周面に冷却液層 9 を形成し、 次に、 るつぼ 15 内の溶融金属 22をノズル孔 20から下方に噴出する。 このとき、 ジェ ッ トノズル 24からガスジヱッ ト 26を高速で噴出させておく。 るつぼ 15から噴出された細流状の溶融金属 25にジュッ トノズル 24から噴出 されたガスジエツ ト 26が吹き付けられ、 該溶融金属 25が分断される と共に分断された溶滴が冷却液層 9 に向けて飛散される。 この飛散 された溶滴は、 旋回しながら流下する冷却液層 9 内に注入され、 急 冷凝固されて金属粉末が製造される。 この場合、 ガスジェッ ト 26と 溶融金属 25との衝突部から冷却液層 9 までの距離を適宜設定するこ とにより、 粉末粒子の形状を球形から偏平な不定形まで変化させる ことができる。 すなわち、 冷却液層 9 までの距離を短くすると、 ガ スジエツ ト 26によって分断された溶滴は、 その表面に凝固殻を形成 する前に冷却液層 9 中に注入され、 冷却液層 9 によって再分断され るため、 微細な不定形粉末が得られる。 一方、 前記距離を十分とる と、 溶滴の表面に凝固殻が形成されるため、 冷却液層 9 に注入され ても、 ほぼ球形を保つことができる。 In the above configuration, in order to produce metal powder, first, the pump 7 is operated to form the cooling liquid layer 9 on the inner peripheral surface of the cylindrical body 1, and then the molten metal 22 in the crucible 15 is discharged through the nozzle hole 20. Spouts downward from. At this time, the gas jet 26 is jetted from the jet nozzle 24 at a high speed. The gas jet 26 jetted from the jet nozzle 24 is sprayed on the trickled molten metal 25 jetted from the crucible 15, and the molten metal 25 is split, and the split droplets scatter toward the cooling liquid layer 9. Is done. The scattered droplets are injected into the cooling liquid layer 9 flowing down while turning, and rapidly solidified to produce metal powder. In this case, by appropriately setting the distance from the collision portion between the gas jet 26 and the molten metal 25 to the coolant layer 9, the shape of the powder particles can be changed from a spherical shape to a flat amorphous shape. That is, when the distance to the coolant layer 9 is reduced, the droplets separated by the gas jet 26 are injected into the coolant layer 9 before forming a solidified shell on the surface thereof, and are re-established by the coolant layer 9. Due to the fragmentation, fine amorphous powder is obtained. On the other hand, if the distance is sufficient, a solidified shell is formed on the surface of the droplet, so that even when injected into the cooling liquid layer 9, it can maintain a substantially spherical shape.
そして、 冷却液層 9 中の金属粉末は、 冷却液と共に旋回しながら 層厚調整用リング 10を越えて流下し、 冷却用筒体 1 の下端開口より
液切り用網体 11に入る。 ここで、 冷却液は遠心力の作用で網体 11か ら放射状に外方へ飛散し、 一次的に脱液された液分の少ない金属粉 末が得られる。 この一次脱液された金属粉末は粉末回収容器 12に入 り、 ここから排出されて、 遠心分離機等の脱液装置により脱液され 、 乾燥装置により乾燥される。 また、 網体 11から飛散された冷却液 は回収カバ一 13を介してタンク 8 に戻されて循環使用される。 図 2は金属粉末製造装置の他の実施例を示しており、 前記実施例 の製造装置と同部材は同符号で示している。 Then, the metal powder in the cooling liquid layer 9 flows down through the layer thickness adjusting ring 10 while rotating with the cooling liquid, and flows through the lower end opening of the cooling cylinder 1. Enter the drainage net 11. Here, the coolant scatters radially outward from the mesh body 11 by the action of the centrifugal force, and a metal powder with a small amount of liquid that has been temporarily removed is obtained. The metal powder subjected to the primary elimination enters the powder recovery container 12, is discharged therefrom, is eliminated by an elimination device such as a centrifuge, and is dried by a drying device. In addition, the coolant scattered from the net 11 is returned to the tank 8 through the recovery cover 13 and used for circulation. FIG. 2 shows another embodiment of the metal powder production apparatus, and the same members as those of the production apparatus of the above embodiment are denoted by the same reference numerals.
この実施例では、 冷却用筒体 1 は筒体軸心が傾斜して配置されて いる。 冷却液噴出流路 5 は、 厚肉の冷却用筒体 1 に直接開設されて おり、 冷却用筒体 1 の外周面に開口した冷却液噴出流路 5 の入口'は ポンプ 7 に配管接続される。 また、 冷却用筒体 1 の下端開口には該 開口を閉塞するための漏斗状の閉塞用蓋 31が取り付けられており、 その底部には排出管 33が備えられており、 その内部が冷却液の排出 流路 32とされている。 また、 冷却用筒体 1 の下部内周面には、 上面 がテーパ面で形成された層厚調整用リング 10がポルトによって取り 付けられている。 前記排出管 33は、 その他端開口( 出口) がタンク 8 の上部に位置するように配管されており、 その途中に流量調整弁 34が設けられている。 前記タンク 8 の上部開口には、 網かご 35が取 付け取外し自在に装着されている。 In this embodiment, the cooling cylinder 1 is arranged with the cylinder axis inclined. The cooling liquid ejection flow path 5 is opened directly in the thick cooling cylinder 1, and the inlet ′ of the cooling liquid ejection flow path 5 opened on the outer peripheral surface of the cooling cylinder 1 is connected to the pump 7 by piping. You. Further, a funnel-shaped closing lid 31 for closing the opening is attached to the lower end opening of the cooling cylinder 1, and a discharge pipe 33 is provided at the bottom thereof, and the inside thereof is provided with a cooling liquid. Discharge channel 32. A layer thickness adjusting ring 10 having an upper surface formed by a tapered surface is attached to a lower inner peripheral surface of the cooling cylinder 1 by a port. The discharge pipe 33 is piped such that the other end opening (outlet) is located above the tank 8, and a flow regulating valve 34 is provided in the middle of the pipe. A net basket 35 is detachably attached to the upper opening of the tank 8.
該実施例の場合、 流量調整弁 34の開閉を適宜調整することにより 、 冷却液を排出流路 32内に満たした状態で排出することができる。 この場合、 排出管 33からガスの流出を阻止することができ、 筒体 1 の冷却液層 9 の内側の空間部 23に、 ジ Xッ トノズル 24から噴出した ガスジヱッ ト 26のガスを充満させることができる。 従って、 不活性 ガス等の非酸化性のガスを用いることにより、 分断された溶滴の酸 化を有効に防止することができる。
図 3は金属粉末製造装置の第 3実施例であり、 該実施例では、 冷 却用筒体 1 の内周面に、 冷却液噴出流路 5 の出口が上下方向に複数 段 ( 2段) 開口している。 冷却液噴出流路 5 の筒軸方向の段数、 閭 隔は、 筒体内径、 冷却液の吐出量、 噴出圧力、 下側の層厚調整用リ ング 10の設定距離等により異なるが、 ほぼ一定内径の冷却液層 9 が 得られるように適宜の段数を略等間隔に設ければよい。 この実施例 では、 層厚調整用リング 10の上部に冷却液噴出流路 5 が複数段設け られているので、 前記リング 10の上部で冷却液の流下速度の増大に よる冷却液層 9 の層厚の減少を防止することができ、 筒体 1 の内周 面にほぽ一定内径、 一定旋回流速の冷却液層 9 を長い範囲で容易に 形成することができ、 冷却域を長範囲に設けることができる。 なお 、 同図に示すように、 冷却液噴出流路 5 の筒軸方向に隣接する段間 に、 各々層厚調整用リング 10A を設けてもよい。 これによつて、 冷 却液層 9 の層厚、 流速をより一層安定させることができる。 もっと も、 冷却液噴出流路 5 を一段とし、 層厚調整用リングを複数段設け るだけでも、 冷却液層 9 の層厚の減少を防止する効果がある。 In the case of this embodiment, by appropriately adjusting the opening and closing of the flow control valve 34, the cooling liquid can be discharged in a state filled in the discharge flow path 32. In this case, gas can be prevented from flowing out from the discharge pipe 33, and the space 23 inside the coolant layer 9 of the cylinder 1 is filled with the gas of the gas jet 26 ejected from the jet nozzle 24. Can be. Therefore, by using a non-oxidizing gas such as an inert gas, the oxidation of the separated droplets can be effectively prevented. FIG. 3 shows a third embodiment of the metal powder manufacturing apparatus. In this embodiment, the cooling liquid jet passage 5 has a plurality of outlets (two stages) in the vertical direction on the inner peripheral surface of the cooling cylinder 1. It is open. The number of cooling fluid ejection passages 5 in the direction of the cylinder axis and the distance between them differ depending on the inner diameter of the cylinder, the amount of coolant discharged, the ejection pressure, the set distance of the lower layer thickness adjustment ring 10, etc., but are almost constant. An appropriate number of stages may be provided at substantially equal intervals so as to obtain a cooling liquid layer 9 having an inner diameter. In this embodiment, since a plurality of cooling liquid jet channels 5 are provided above the layer thickness adjusting ring 10, the cooling liquid layer 9 is formed above the ring 10 by increasing the flow rate of the cooling liquid. A reduction in thickness can be prevented, and a coolant layer 9 having a substantially constant inner diameter and a constant swirling flow velocity can be easily formed in a long range on the inner peripheral surface of the cylindrical body 1, and the cooling region is provided in a long range be able to. As shown in the figure, a layer thickness adjusting ring 10A may be provided between adjacent stages of the coolant ejection flow path 5 in the cylinder axis direction. Thereby, the thickness and the flow velocity of the cooling liquid layer 9 can be further stabilized. In addition, even if the cooling liquid ejection flow path 5 is provided in one stage and the ring thickness adjusting ring is provided in a plurality of stages, there is an effect of preventing a decrease in the thickness of the cooling liquid layer 9.
また、 図 3の第 3実施例では、 網体 11の内周面に流下緩衝用のフ ランジ 28がボルト等によって着脱自在に付設されている。 該フラン ジ 28により、 冷却液の流下スピードが遅くなり、 より長時間の脱液 が可能になり、 遠心脱液を効果的に行なうことができる。 In the third embodiment shown in FIG. 3, a flow-down buffering flange 28 is detachably attached to the inner peripheral surface of the net body 11 by bolts or the like. The flange 28 slows down the flow rate of the cooling liquid, enables longer-time dewatering, and can effectively perform centrifugal dewatering.
図 4は金属粉末製造装置の第 4の実施例を示しており、 該実施例 では、 冷却用筒体 1 は筒体軸心が傾斜して配置されており、 その内 周面に形成された冷却液層 9 の内側の空間部 23においてガスジエツ ト 26が V形に交差するように 2本のジヱッ トノズル 24, 24 が圧縮ガ ス供給管 27, 27 を介して設けられている。 前記ジ ッ トノズル 24, 2 4 のノズル開口はスリ ッ ト形であり、 ガスジェツ ト 26も一定の幅を 有する膜状となっており、 その交差状態における断面が図のように
V形となっている。 そして、 V形ガスジエツ トの交差域に溶融金属 25がるつぼ 15のノズル孔 20から流下し、 分断されている。 かかる V 形ガスジエツ トによれば、 分断効果に優れ、 また溶融金属 25の流下 位置が少々ずれても分断された溶滴を交差域から冷却液層 9 の内周 面の特定範囲に飛散させて注入することができる。 尚、 ノズル開口 が逆円錐形のスリツ トで形成されたジエツ トノズルを用いて、 逆 R 錐形状の面状ガスジエツ トを形成し、 その交差部に溶融金属を供耠 するようにしてもよい。 また、 線状ガスジエツ トを噴出するジエツ トノズルを逆円錐形状に複数個配置し、 逆円錐形状の線状ガスジェ ッ 卜の集合体を形成し、 その交差部に溶融金属を供耠するようにし てもよい。 FIG. 4 shows a fourth embodiment of the metal powder production apparatus. In this embodiment, the cooling cylinder 1 is arranged with its cylinder axis inclined and formed on the inner peripheral surface thereof. Two jet nozzles 24, 24 are provided via compressed gas supply pipes 27, 27 so that the gas jet 26 intersects the V shape in the space 23 inside the coolant layer 9. The nozzle openings of the jet nozzles 24 and 24 have a slit shape, and the gas jet 26 also has a film shape having a constant width. It has a V shape. Then, the molten metal 25 flows down from the nozzle hole 20 of the crucible 15 into the intersection of the V-shaped gas jet and is separated. According to such a V-shaped gas jet, the dividing effect is excellent, and even if the flowing position of the molten metal 25 slightly shifts, the divided droplets are scattered from the intersection area to a specific area on the inner peripheral surface of the coolant layer 9. Can be injected. Note that a planar gas jet having an inverted R-cone shape may be formed by using a jet nozzle whose nozzle opening is formed by an inverted conical slit, and a molten metal may be supplied to the intersection. Also, a plurality of jet nozzles for ejecting linear gas jets are arranged in an inverted cone shape to form an aggregate of inverted cone-shaped linear gas jets, and molten metal is supplied to the intersection. Is also good.
前記第 3および第 4実施例においては、 冷却用筒体 1 の下端開口 には液切り用網体 11が連設されており、 ここからガスジエツ ト 26を 形成したガスが流出するが、 該下端開口に、 図 2のように、 排出管 33を備えた閉塞用蓋 31を取り付けてもよい。 かかる構成によれば、 排出管 33の途中に設けられた流量調整弁 34を調整することにより、 冷却液層 9 の内側の空間部 23にガスジエツ ト 26を形成したガスを容 易に充満させることができる。 In the third and fourth embodiments, a liquid drain net 11 is continuously provided at the lower end opening of the cooling cylinder 1, from which the gas forming the gas jet 26 flows out. As shown in FIG. 2, a closing lid 31 provided with a discharge pipe 33 may be attached to the opening. According to such a configuration, by adjusting the flow control valve 34 provided in the middle of the discharge pipe 33, the space 23 inside the coolant layer 9 can be easily filled with the gas having the gas jet 26 formed therein. Can be.
なお、 前記各実施例では、 冷却用筒体 1 として円筒状のものを示 したが、 これに限らず、 内周面が冷却液の移動方向に沿って漸次縮 径する回転対称面で形成された形状、 例えば漏斗形状としてもよい 。 回転放物面によってラッパ形状とした場合、 層厚調整用フランジ を取付けなくても、 一定内径の冷却液層を形成することができる。 また、 冷却用筒体は、 図例では、 その筒体軸心が鉛直ないし斜め方 向となるように配置したものを示したが、 これに限るものではなく 、 冷却水の噴出速度が十分で筒体内周面に遠心力の作用で冷却液層 9 が形成される限り、 筒体軸心の方向は問わない。
また、 図例では、 層厚調整用リ ング 10はその上面が水平面ないし テーパ面で形成されているが、 これに限らず、 例えばリング上端外 周縁から下端内周縁にかけて漸次縮径する流線形曲面で形成しても よい。 また、 るつぼ 15内の溶融金属 22は、 圧媒を作用させて加圧す ることによりノズル孔 20から噴出したが、 圧媒を作用させることな く、 溶融金属 22自体に作用する重力 (自重) により、 ノズル孔 20か ら噴出 (流出) するようにしてもよい。 In each of the above embodiments, the cooling cylinder 1 is shown as a cylindrical one. However, the present invention is not limited to this.The inner peripheral surface is formed of a rotationally symmetric surface whose diameter gradually decreases along the moving direction of the coolant. The shape may be a funnel shape, for example, a funnel shape. In the case of a trumpet shape formed by a paraboloid of revolution, a cooling liquid layer having a constant inner diameter can be formed without attaching a layer thickness adjusting flange. In the illustrated example, the cooling cylinder is arranged such that the axis of the cylinder is vertical or oblique. However, the present invention is not limited to this, and the cooling water jetting speed is sufficient. As long as the coolant layer 9 is formed on the peripheral surface of the cylinder by the action of centrifugal force, the direction of the cylinder axis does not matter. In addition, in the illustrated example, the ring thickness adjusting ring 10 has an upper surface formed of a horizontal surface or a tapered surface, but the present invention is not limited to this. It may be formed by. Further, the molten metal 22 in the crucible 15 was ejected from the nozzle hole 20 by applying a pressure medium to pressurize, but the gravity (self-weight) acting on the molten metal 22 itself without applying the pressure medium Thus, the gas may be ejected (outflow) from the nozzle hole 20.
また、 本発明の製造対象である粉末の材質は、 アルミニウム又は その合金等の低融点金属に限らず、 チタニウム、 .ニッケル、 鉄又は それらの合金等の高融点金属をも含み、 特に制限されない。 The material of the powder to be manufactured in the present invention is not limited to a low melting point metal such as aluminum or an alloy thereof, and includes a high melting point metal such as titanium, nickel, iron or an alloy thereof, and is not particularly limited.
図 1で説明した第 1実施例の金属粉末製造装置を備え、 溶融金属 の供給から金属粉末の製造、 脱液、 乾燥を一貫して行なうための金 属粉末連続生産設備の一例の全体構成図を図 5および図 6に示す。 本例によると、 連続注湯装置 41から圧送された溶融金属は、 既述の 金属粉末製造装置 42、 連続脱液機 43および連続乾燥装置 44を経て、 製品金属粉末とされる。 尚、 金属粉末製造装置として他の実施例の ものが使用可能なことは勿論である。 An overall configuration diagram of an example of a continuous metal powder production facility equipped with the metal powder production apparatus of the first embodiment described in FIG. 1 and configured to consistently carry out production, dewatering, and drying of metal powder from supply of molten metal. Are shown in FIGS. 5 and 6. According to this example, the molten metal pumped from the continuous pouring device 41 passes through the above-described metal powder producing device 42, the continuous dewatering device 43, and the continuous drying device 44, and is turned into product metal powder. It is needless to say that the apparatus of another embodiment can be used as a metal powder production apparatus.
前記連続注湯装置 41は、 耐火性断熱材で形成された本体容器 46を 備え、 該容器 46には蓋体 47により密閉自在とされた金属溶湯供給口 48が開設され、 不活性ガス等の圧媒供給管 49、 容器内の溶融金属 53 の排出管 50が設けられており、 底部には誘導加熱用コイル 51を有す る凹部 52が設けられている。 該コイル 51によって、 容器 46内の溶融 金属 53は温度制御が行われ、 圧媒洪耠管 49より注入されるアルゴン ガス等の不活性ガスにより排出管 50を介して金属粉末製造装置 42の るつぼ 15へ圧送される。 排出管 50は、 断熱層の形成やインダクショ ンヒータ等の適宜の保温手段により保温される。 The continuous pouring apparatus 41 includes a main body container 46 formed of a refractory heat insulating material. The container 46 is provided with a molten metal supply port 48 that can be hermetically sealed by a lid 47 and is provided with an inert gas or the like. A pressure medium supply pipe 49 and a discharge pipe 50 for the molten metal 53 in the vessel are provided, and a recess 52 having an induction heating coil 51 is provided at the bottom. The temperature of the molten metal 53 in the vessel 46 is controlled by the coil 51, and the crucible of the metal powder production apparatus 42 is discharged through an exhaust pipe 50 by an inert gas such as argon gas injected from a pressurized medium pipe 49. It is pumped to 15. The discharge pipe 50 is kept warm by an appropriate heat keeping means such as formation of a heat insulating layer and an induction heater.
前記金属粉末製造装置 42によつて製造された金属粉末は、 液切り
用網体 11によって一次脱液された後の残留冷却液と共に粉末回収容 器 12を介して連続脱液機 43に供給され、 遠心力の作用で脱液される 。 連続脱液機 43は、 上方に拡径した回転ドラム 55を備え、 該ドラム 55の中間部周壁は多数の細孔を有するスクリーンブレートで形成さ れ、 内周面には脱水後の粉末を上方へ送り出すための凸状リブ 56が 多数形成されている。 回転ドラム 55の外周面側には冷却液回収カバ 一 57が設けられており、 脱液された冷却液は、 その底部よりタンク 8 に回収される。 また、 回転ドラム 55の上部には金属粉末回収カバ 一 58が設けられ、 排出シユート 59が付設されている。 The metal powder manufactured by the metal powder manufacturing apparatus 42 is drained. It is supplied to the continuous dewatering machine 43 via the powder container 12 together with the residual cooling liquid after the primary dewatering by the netting device 11, and is dewatered by the action of centrifugal force. The continuous dewatering machine 43 includes a rotating drum 55 whose diameter is increased upward, a peripheral wall of an intermediate portion of the drum 55 is formed by a screen plate having a large number of pores, and an inner peripheral surface of the drum 55 holds powder after dehydration. A large number of convex ribs 56 are formed for feeding the sheet to the outside. A cooling liquid collecting cover 57 is provided on the outer peripheral surface side of the rotating drum 55, and the drained cooling liquid is collected in the tank 8 from the bottom thereof. A metal powder collecting cover 58 is provided above the rotating drum 55, and a discharge shot 59 is provided.
連続脱液機 43の排出シユート 59より排出された湿潤金属粉末は引 き铙いて連続乾燥装置 44に供給される。 連続乾燥装置 44は、 多数の 細孔を有する流動床 61を有する乾燥容器 62と、 該容器 62の上部より 湿潤原料を供耠するためのロータリーフィ一ダーを有する供耠装置 63と、 前記容器 62の下部より熱風を供耠するための熱風発生装置 64 と、 前記容器 62の上部より排出した排風より微粉を捕収するための サイクロン 65とを備えており、 前記容器 62の上部および下部側壁に は排出管 66が付設されている。 The wet metal powder discharged from the discharge shot 59 of the continuous liquid remover 43 is pulled and supplied to the continuous drying device 44. The continuous drying device 44 includes a drying container 62 having a fluidized bed 61 having a large number of pores, a supply device 63 having a rotary feeder for supplying a wet raw material from an upper portion of the container 62, A hot air generator 64 for supplying hot air from a lower part of the container 62; and a cyclone 65 for collecting fine powder from exhaust air discharged from an upper part of the container 62, and an upper part and a lower part of the container 62. A discharge pipe 66 is attached to the side wall.
乾燥容器 62内では流動層 67が形成されており、 湿潤金属粉末は、 流動層 67中で熱風と激しく混合され、 熱交換され、 速やかに乾燥さ れて、 通常オーバーフローにより排出管 66を介して外部に取り出さ れる。 In the drying vessel 62, a fluidized bed 67 is formed, and the wet metal powder is mixed vigorously with hot air in the fluidized bed 67, heat exchanged, dried quickly, and usually overflowed through the discharge pipe 66. It is taken out.
尚、 本発明を実施するに際しては、 連続注湯装置、 連続脱液機、 連続乾燥装置は既述のものに限らず、 市場に供耠されている適宜の ものを使用することができる。 In practicing the present invention, the continuous pouring device, the continuous dewatering device, and the continuous drying device are not limited to those described above, and any suitable devices available on the market can be used.
次に具体的な金属粉末の製造実施例を掲げる。 Next, specific production examples of metal powder will be described.
〈製造実施例 1〉 <Production Example 1>
図 7に示す製造装置を用いて、 アルミニゥム合金粉末を製造した
。 冷却用筒体 1 の内径 Dは 100mm であり、 冷却液噴出流路 5 の吐出 口は冷却用筒体 1 の上端と層厚調整用リング 10の上端との中間位置 に設けた。 冷却液噴出流路 5 の吐出口径は 11. 5mraであり、 これより 0. 3niVrain の流量で冷却水を噴出させた。 その結果、 層厚調整用リ ング 10の上方に内径 d = 55議、 長さ h = 50mm、 水膜面流速 43m/sec の冷却液層 9 が形成された。 Aluminum alloy powder was manufactured using the manufacturing equipment shown in Fig. 7. . The inner diameter D of the cooling cylinder 1 was 100 mm, and the discharge port of the cooling liquid ejection flow path 5 was provided at an intermediate position between the upper end of the cooling cylinder 1 and the upper end of the layer thickness adjusting ring 10. The discharge port diameter of the cooling liquid discharge channel 5 was 11.5 mra, from which cooling water was discharged at a flow rate of 0.3 niVrain. As a result, a coolant layer 9 with an inner diameter d = 55 mm, a length h = 50 mm, and a water film surface velocity of 43 m / sec was formed above the ring thickness adjusting ring 10.
るつぼ 15で 1000。 C の溶融アルミニウム合金( 組成: wt %で A1— 12Si— 1 Mg- lCu ) を溶製した。 そして、 るつぼ 15に 1. 0kgi/cm2の アルゴンガスを供給して、 るつぼ内の溶融金属 22.を加圧し、 るつぼ 15のノズル孔 20から直径 2mm の細流状溶融金属 25を冷却液層 9 の内 側の空間部 23に噴出した。 細流状溶融金属 25と水平面とのなす噴出 角 0 1 は 30° とした。 Crucible 15 and 1000. A molten aluminum alloy of C (composition: wt%, A1-12Si-1 Mg-lCu) was produced. Then, 1.0 kgi / cm 2 of argon gas is supplied to the crucible 15 to pressurize the molten metal 22 in the crucible 15, and the liquid molten metal 25 having a diameter of 2 mm from the nozzle hole 20 of the crucible 15 is supplied to the cooling liquid layer 9. It erupted into the space 23 inside. The jet angle 01 between the trickle-like molten metal 25 and the horizontal plane was set to 30 °.
前記空間部 23内で溶融金属 25に向けて、 ノズル孔径 6ΠΠΒ のジエツ トノズル 24 からェャジヱッ ト 26を 5kgf/ciB2 で噴出させて吹き付 けた。 ジヱッ ト 26と水平面とのなす噴出角 0 2 は 45 とした。 また 、 図 8に示すように、 ジェッ ト 26と細流状溶融金属 25とのなす角は 、 平面的に見て溶融金属 25から冷却液層の旋回方向 Aに測って 0 8 = 45° とした。 A jet 26 was jetted from a jet nozzle 24 having a nozzle hole diameter of 6 mm at a pressure of 5 kgf / ciB 2 toward the molten metal 25 in the space 23. Eggplant jetting angle 0 2 of the Jiwe' bets 26 and the horizontal plane was set to 45. Also, as shown in FIG. 8, the angle between the jet 26 and the trickle-shaped molten metal 25 was set to be 0 8 = 45 ° when measured in a plane A from the molten metal 25 in the turning direction A of the cooling liquid layer in a plan view. .
その結果、 図 9の Aに示す粒度分布 (ある粉末の粒径と、 粉末全 量に対するその粒径の粉末の含有重量%との関係) をもつアルミ二 ゥム合金粉末が得られた。 この粉末の平均粒径は 291. 8 z ra であり 、 かさ密度は 0. 90g/cra3 であった。 また、 粉末の粒子形状を観察し たところ、 偏平不定形状であった。 従って、 ェャジエツ トによって 分断された溶滴は、 冷却液層によって再分断されたものと推定され る。 As a result, an aluminum alloy powder having the particle size distribution shown in FIG. 9A (the relationship between the particle size of a certain powder and the content% by weight of the powder with respect to the total amount of the powder) was obtained. The average particle size of the powder is 291. 8 z ra, bulk density was 0. 90g / cra 3. Observation of the particle shape of the powder revealed a flat and irregular shape. Therefore, it is estimated that the droplet separated by the jet was re-divided by the cooling liquid layer.
比較のため、 溶融金属に向けてェャジ Xッ トを吹き付ける点を除 き、 同条件でアルミニウム合金粉末を製造した。 その結果を図 9の
Bに併せて示した。 この場合の平均粒径は 420 urn . かさ密度は 0. 70g/cm3 であった。 従って、 実施例におけるェャジエツ トの吹き付 けにより、 微粉化を容易に達成できることが確認された。 For comparison, aluminum alloy powder was manufactured under the same conditions except that a jet X was sprayed on the molten metal. The result is shown in Fig. 9. B is shown together. The average particle size in this case was 420 urn. The bulk density was 0.70 g / cm 3 . Therefore, it was confirmed that pulverization can be easily achieved by spraying the jet in the examples.
〈製造実施例 2 > <Production Example 2>
図 2に示す製造装置を用いて、 製造実施例 1 と同組成のアルミ二 ゥム合金粉末を製造した。 冷却用筒体 1 の内径は 200mm であり、 筒 体軸心は鉛直方向に対して 25° 傾斜させた。 冷却液噴出流路 5 の吐 出口径は 11. 5咖であり、 これより 0. 3m3/min の流量で冷却水を噴出 させた。 その結果、 環状蓋 2 と層厚調整用リング 10との間に、 内径 250mm、 長さ 300mm、 平均流速 20m/sec の冷却液層 9 が形成された 。 また、 流量調整弁 34を調整して、 排出流路 32内に冷却液が充満す よつにし 7"こ o Aluminum alloy powder having the same composition as in Production Example 1 was produced using the production apparatus shown in FIG. The inner diameter of the cooling cylinder 1 was 200 mm, and the cylinder axis was inclined by 25 ° with respect to the vertical direction. The outlet diameter of the coolant discharge channel 5 was 11.5 mm, from which the coolant was jetted at a flow rate of 0.3 m 3 / min. As a result, a cooling liquid layer 9 having an inner diameter of 250 mm, a length of 300 mm, and an average flow velocity of 20 m / sec was formed between the annular lid 2 and the layer thickness adjusting ring 10. Also, adjust the flow control valve 34 so that the coolant is filled in the discharge passage 32.
るつぼ 15で 1000。 C の溶融アルミニウム合金を溶製し、 るつぼ 15 に l. Okgf/cra2のアルゴンガスを供給して、 るつぼ内の溶融金属 22を 加圧し、 るつぼ 15のノズル孔 2Dから直径 2mm の細流状溶融金属 25を 鉛直下方に噴出し、 冷却液層 9 の内側の空間部 23に供給した。 Crucible 15 and 1000. The molten aluminum alloy of C is melted, and l. Okgf / cra 2 argon gas is supplied to the crucible 15 to pressurize the molten metal 22 in the crucible, and a 2 mm-diameter stream is melted from the nozzle hole 2D of the crucible 15. Metal 25 was jetted vertically downward and supplied to the space 23 inside the coolant layer 9.
前記空間部 23内で溶融金属 25に向けて、 ノズル孔径 6mni のジエツ トノズル 24 からアルゴンガスジヱッ ト 26を 10kgf/cm2 で噴出させ て吹き付け、 溶融金属 25を粉化した。 溶融金属 25とアルゴンガスジ エツ ト 26とのなす角は 30° とした。 Argon gas jet 26 was ejected from jet nozzle 24 having a nozzle diameter of 6 mni at a pressure of 10 kgf / cm 2 and sprayed toward molten metal 25 in space 23 to pulverize molten metal 25. The angle between the molten metal 25 and the argon gas jet 26 was 30 °.
得られた粉末の平均粒径は 200 m 、 かさ密度は 1. 3g/cm8であり 、 粒径と冷却速度との関係を図 1 0に示す。 尚、 冷却速度は、 粉末 粒子の金属組織より判断した。 同図より、 本発明により製造した金 属粉末は、 粒径が 100 〜1000 /z m と比較的大きいものでも、 冷却速 度が 104 〜: L05 で/ secであり、 微細な組織が得られることが分かる 。 尚、 同図より、 0. 1 ii m の粒径の場合の冷却速度は 108 で/ sec以 上と推定される。
次に、 粉末中に含有されるガス量を測定したところ、 H 2 : 12pp in 、 0 2 : 500ppmであった。 比較のため、 流量調整弁 34を全開し、 排出管 33内を冷却水によって閉塞しないようにし、 他は同じ条件で 、 アルミニウム合金粉末を製造した。 得られた粉末のガス含有量は 、 H 2 : 20ppm 、 0 2 : 820 ppm であった。 これにより、 実施例は 比較例に対して、 ガス含有量が著しく低減されていることが分かる The average particle size of the obtained powder is 200 m, the bulk density is 1.3 g / cm 8 , and the relationship between the particle size and the cooling rate is shown in FIG. The cooling rate was judged from the metal structure of the powder particles. From the figure, metallic powder produced by the present invention is not intended is relatively large 100 to 1000 / zm particle size, cooling speed is 104 to: a L0 5 in / sec, obtained fine structure You can see that From the figure, it is estimated that the cooling rate in the case of a particle size of 0.1 im is 10 8 or more / sec. Then, by measurement of amount of gas contained in the powder, H 2: 12pp in, 0 2: was 500 ppm. For comparison, the flow control valve 34 was fully opened to prevent the discharge pipe 33 from being blocked by the cooling water, and the aluminum alloy powder was manufactured under the same conditions except for the above. Gas content of the obtained powder, H 2: 20ppm, 0 2 : was 820 ppm. As a result, it can be seen that the gas content of the example is significantly reduced as compared with the comparative example.
〈製造実施例 3 > <Production Example 3>
製造実施例 2と同様の製造条件で鉄合金粉末を製造した。 但し、 鉄合金の組成は、 wt %で Fe— 1. 3C— 4Cr - 3. 5Mo - 10W一 3. 5V— 10 Coであり、 溶融温度は 1600° C とした。 An iron alloy powder was produced under the same production conditions as in Production Example 2. However, the composition of the iron alloy was Fe-1.3C-4Cr-3.5Mo-10W-13.5V-10Co in wt%, and the melting temperature was 1600 ° C.
得られた粉末の平均粒径は 250 tz ni であり、 粉末中に含有される ガス量を測定したところ、 H 2 : 9 ppra 、 0 2 : 580ppra、 N 2 : 72 Oppraであった。 尚、 冷却液層の平均流速を 5 in/sec とし、 他は同条 件で前記組成の鉄合金粉末を製造したところ、 ガス含有量は、 H 2 : 15ppm 、 0 2 : 1200 ppm、 N 2 : 740ppmであった。 これより、 冷 却液層の流速を大きくするほど、 溶滴の周りに発生した冷却液蒸気 は溶滴から速やかに離脱し、 良好な汚染防止作用が得られることが 分かる。 The average particle diameter of the obtained powder was 250 tz ni, was measured the amount of gas contained in the powder, H 2: 9 ppra, 0 2: 580ppra, N 2: was 72 Oppra. In addition, when the average flow velocity of the cooling liquid layer was 5 in / sec, others produced iron alloy powder of the composition in said Article matter, gas content, H 2: 15ppm, 0 2 : 1200 ppm, N 2 : 740 ppm. From this, it can be seen that as the flow velocity of the cooling liquid layer is increased, the cooling liquid vapor generated around the droplet is quickly separated from the droplet, and a better pollution prevention effect is obtained.
【産業上の利用可能性】 [Industrial applicability]
本発明は、 粉末冶金, 熱間等方圧加圧, 熱間鍛造, 熱間押出等の 原料粉末、 合成樹脂, ゴム, 金属等への複合用粉末、 電磁クラッチ The present invention relates to powder metallurgy, raw material powder for hot isostatic pressing, hot forging, hot extrusion, etc., composite powder for synthetic resin, rubber, metal, etc., electromagnetic clutch
•ブレーキ用の磁性粉体、 などに使用される金属粉末の製造に利用 される。
• Used for the production of metal powder used for magnetic powder for brakes, etc.