WO1992015655A1 - Reduction of benzene in gasolines - Google Patents
Reduction of benzene in gasolines Download PDFInfo
- Publication number
- WO1992015655A1 WO1992015655A1 PCT/US1991/001462 US9101462W WO9215655A1 WO 1992015655 A1 WO1992015655 A1 WO 1992015655A1 US 9101462 W US9101462 W US 9101462W WO 9215655 A1 WO9215655 A1 WO 9215655A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dewaxing
- benzene
- process according
- reformate
- fraction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/64—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/20—Organic compounds not containing metal atoms
- C10G29/205—Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
Definitions
- This invention relates to a process for reducing the concentration of benzene in the gasoline pool of a petroleum refinery. It also provides a method for increasing the octane rating of the gasoline by-product from a dewaxing process.
- the demand for gasoline as a motor fuel is one of the major factors which dictates the design and mode of operation of a modern petroleum refinery.
- the gasoline product from a refinery is derived from several sources within the refinery including, for example, gasoline from the catalytic cracking unit, straight run gasoline, reformate and gasoline obtained as a low boiling by-product from various refinery operations, especially catalytic processes such as catalytic dewaxing.
- the octane number of the gasoline from these different sources varies according to the nature of the processing and the octane rating of the final gasoline pool will depend upon the octane ratings of the individual components in the pool as well as the proportions of these components.
- Benzene is particularly prevalent in reformer gasoline, being a distinctive product of the reforming process, produced by the dehydrogenation of 0o- cycloparaffins, the dehydrocyclization of straight chain paraffins of appropriate chain length (C g ) and dealkylation of other aromatics. It is produced in particularly high concentrations in the continuous catalytic reforming process which is currently replacing the conventional cyclic reforming process in the industry.
- a benzene rich fraction from a petroleum refinery stream is alkylated in a catalytic dewaxing unit.
- the benzene rich fraction is preferably obtained from a reformer effluent stream and after removal of C_ aromatics and other heavier components, is subjected to alkylation by the olefinic light hydrocarbons which are formed as byproducts of a catalytic dewaxing process.
- the catalytic dewaxing process is preferably a distillate or lube dewaxing process employing an intermediate pore size zeolite as a dewaxing catalyst, preferably zeolite ZSM-5.
- the single figure is a simplified schematic flowsheet of the present combined dewaxing-alkylation process.
- a benzene rich fraction obtained from a petroleum refinery stream is alkylated in a catalytic dewaxing reactor by means of the light olefinic fragments formed as by-products from the catalytic dewaxing process.
- the preferred source of the benzene rich fraction is a reformate i.e., a refinery stream which has been subjected to catalytic reforming, preferably over a reforming catalyst containing platinum.
- Other refinery streams containing significant quantities of benzene and with a suitable boiling range of about C 5 to 400 ⁇ F (C 5 to about 203 ⁇ C), usually C 5 to 330 ⁇ F (C 5 to about 165"C) may, however, be used.
- Reformates usually contain C g to C aromatic hydrocarbons and C g to C. paraffinic hydrocarbons with the aromatic hydrocarbons being constituted mainly by benzene, toluene, xylene and ethyl benzene.
- Compositions for reformates which may be used in the present process are shown in Table 1 below:
- Boiling Range °F 60 to 400 60 to 400 80 to 390
- the benzene constitutes a significant proportion of the reformate stream and if no measures are taken to remove it, it will pass into the refinery gasoline pool unchanged.
- the present method provides a convenient way of converting the benzene to alkyl aromatics which are not objectionable environmentally and which contribute to yield as well as octane in the gasoline pool.
- n-hexane and iso-hexanes which are converted to benzene by dehydrocyclization and in addition, any cyclo-hexane present is converted to benzene by dehydrogenation.
- the iso-hexanes are of relatively high octane rating and can therefore be passed directly to the gasoline pool if a severe reduction of the benzene is required.
- the iso-hexanes should be separated from the reformer feed and should bypass the reformer so as to minimize benzene formation at this stage.
- the reformer feed should be iso-dehexanized prior to entering the reformer with the separated iso-hexanes being passed directly to the gasoline pool.
- the alkylating capacity of the catalytic dewaxing unit is usually rather limited in comparison to the volume of the reformate available since the light olefinic components produced from the dewaxing reactions form a relatively minor part of the dewaxed effluent (typically, less than 30 weight percent of the effluent) . Because of this, the presence of alkylatable aromatic species other than benzene in the fraction which is fed to the dewaxing unit for alkylation should be limited so that the available olefins will be reserved for reaction with the benzene. The reformate should therefore be fractionated to remove C__ aromatics.
- Catalytic dewaxing is, by now, an established refinery process and has achieved widespread utility in the dewaxing of the distillate fuel fractions as well as in the dewaxing of lubricant fractions.
- Catlytic dewaxing processes are described in "Industrial Application of Shape Selective Catalysis", Chen and Garwood, Catal. Rev.-Sci. Encr.. 28 (2 and 3) 185-264 (1986), see especially 241-247.
- Catalytic dewaxing process are also disclosed in U.S. Patents No. 3,700,585 which describes the use of ZSM-5 for dewaxing various petroleum feedstocks. Patents describing catalytic dewaxing processes include U.S. Patent Nos.
- the MDDW and MLDW processes employ intermediate pore size zeolite dewaxing catalysts such as ZSM-5.
- Another dewaxing process employing zeolite beta, a zeolite of different type and structure, is disclosed in U.S. Patent No. 4,419,220 (LaPierre) .
- This process, known as MIDW may also be used for reformate upgrading since the zeolite beta dewaxing catalyst used in it is also able to mediate the benzene alkylation reaction.
- the present reformate upgrading process is particularly useful with the distillate dewaxing, process (MDDW) , employing an intermediate pore size zeolite such as ZSM-5 as the dewaxing catalyst and a distillate boiling range feed which is catalytically dewaxed, usually in the presence of hydrogen, typically at temperatures from about 300° to 850°F (about 150° to 455 ⁇ C) , hydrogen partial pressures from about 100 to 4000 psig (about 790 to 27680 kPa abs) , a space velocity of about 0.1 to 10 LHSV and hydrogen/oil ratio of at least 1000 SCF/BBL about 180 n.1.1. "1 ) (H_:dewaxing feed).
- MDDW distillate dewaxing, process
- the high pressures characteristic of this process tend to minimize cracking of paraffins and aromatics in the benzene-rich feed stream.
- the distillate boiling range feed will typically have a boiling range within the range of 400° to 1000°F (about 205 ⁇ to 540 ⁇ C), more usually 500 to 1000'F (about 260° to 540 ⁇ C) and may typically be a straight run, desulfurized or catalytically cracked distillate or gas oil, for example, distillate fuels including kerosene, jet fuel, fuel oil, and heating oil.
- the lube dewaxing process (MLDW) employing intermediate pore size zeolite dewaxing catalysts also represents a preferred dewaxing process for use in the present upgrading scheme.
- the lube dewaxing process operates at relatively low temperatures and high pressures so that the extent to which paraffins and aromatics entering the dewaxing reactor are cracked is relatively low. Because of this, it may be desirable in some cases to send a full range reformate stream to this reactor. Lube dewaxing processes are described in U.S.
- a dewaxing process using a synthetic offretite catalyst is disclosed in U.S.
- Typical process conditions for lube dewaxing over an intermediate pore size zeolite dewaxing catalyst such as ZSM-5 are temperatures from about 500° to 700°F (about 260° to 370 ⁇ C), with the end-of-cycle temperature preferably not exeeding about 670°F (about 355 ⁇ C) for good product stability, pressures from 400-800 psig (about 2860 to 5620 kPa abs) , hydrogen:oil ratios of 1000 to 4000 SCF/bbl, usually 2000 to 3000
- Feeds for the MLDW process may include a wide range of lube boiling range materials e.g. 650°F+ (about 345°C+) fractions such as light, intermediate or heavy neutral lube fractions as well as residual fractions e.g. bright stock.
- lube boiling range materials e.g. 650°F+ (about 345°C+) fractions such as light, intermediate or heavy neutral lube fractions as well as residual fractions e.g. bright stock.
- lube will have been subjected to an initial solvent extraction step to remove undesirable aromatic components e.g. with phenol, furfural or N-methylpyrrolidone and accordingly, lube feeds will usually be 650°F+ (345°C+) raffinates.
- the relatively low temperature and high pressures of the lube dewaxing process are favorable since cracking of paraffins and/or aromatics entering the reactor with the benzene fraction will be held at a relatively low level.
- the distillate dewaxing process operating at high pressures also tends to minimize cracking of the paraffins and aromatics entering the reactor. In cases such as these it may be desirabile to employ a full range reformate as the feed.
- the catalytic dewaxing reactions which take place in the dewaxing reactor in the presence of the zeolite dewaxing catalyst proceed by shape-selective cracking reactions which are selective for the straight chain and near-straight chain waxy components of the feed.
- the cracking produces olefinic products, most of which are concentrated in the naphtha or lighter boiling ranges. These olefins will react with the benzene to form alkylaromatic species, mostly within the gasoline boiling range, usually 200°F+ (about 93°C+).
- the acidic dewaxing catalyst readily mediates the alkylation reaction under the conditions prevailing in the dewaxing reactor.
- the dewaxing processes operating at pressures generally in the range of about 10 to 1000 psig (about 170 to 7000 kPa) (H ⁇ partial pressure) with operating temperatures typically from 500° to 850°F (about 260° to 455°C) at reactor inlet, are particularly effective for promoting benzene alkylation.
- the optimum operating temperature range for benzene alkylation is about 300 to 425°F at a typical benzene:olefin ratio of about 6.6:1 (molar, benzene:ethylene) , within the typical operating temperature rate for the dewaxing processes described above.
- Benzene conversion is typically 10-60% per pass within this temperature range while the corresponding olefin conversion will usually be at least 60 percent, usually over 90 percent at these temperatures.
- Operational constraints of the dewaxing process e.g. need to meet target pour point, may, however, require the use of a higher temperature than the optimum for the alkyation reaction.
- the yield of alkylated aromatics will vary according to the benzene:olefin ratio with higher yields favored by higher benzene:olefin ratios up to the limit of olefins available for alkylation.
- the preferred weight ratio is from about 0.5:1 - 500:1, most preferably 10:1 - 50:1 (benzene:olefin, by weight) .
- the benzene rich fraction derived from the reformate or other refinery streams is admitted to the dewaxing reactor where it undergoes alkylation by the light olefins, principally in the gasoline and C, boiling range, formed by the shape selective dewaxing reactions which occur in the reactor.
- the product of the reactions are alkyl aromatics which are less objectionable then benzene and which posses, moreover, good octane ratings for blending into the refinery gasoline pool.
- the relatively low octane value gasoline produced as a by-product of the dewaxing process is converted to a higher octane blending component for the refinery gasoline pool.
- Addition of the benzene-rich fraction to the dewaxer also tends to minimize the overall reaction exotherm, prolonging dewaxer cycle duration if a fixed bed process is used.
- the light gas make of the dewaxing process is also reduced while increasing gasoline yield as well as the hydrogen purity of the ciruclating gas used in the fixed bed process.
- the preferred zeolites for carrying out the present catalytic dewaxing/upgrading process are the intermediate pore size zeolites, that is, zeolites which posses a constraint index of 1 to 12. These zeolites preferably have a silica/alumina ratio of at ' least 12:1, as described in U.S. Patent No. 4,016,218 (Haag) . Zeolites which may be used in the manner described above are ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-38 and ZSM-48 all of which are known materials, as discussed in U.S. Patents Nos. 4,016,218 and 4,446,007 (Smith).
- Zeolite beta may also be used, as described in U.S. 4,419,220 (LaPierre) .
- Normal reactor configuration for the dewaxing process may be employed, preferably downflow trickle bed reactors with a fixed bed of the zeolite catalyst.
- a C fi feed fraction containing iso-hexane is introduced by way of conduit 10 to iso-dehexanizer 11 in which the iso-hexanes are separated as overhead and passed through line 12 as an acceptable, high octane component to the refinery gasoline pool.
- the remainder of the C, feed, including paraffins and naphthenes is passed through line 13 into platinum catalytic reformer 14 together with a C_ naphtha feed introduced through conduit 15.
- Hydrogen-rich gases evolved in the course of the characteristic reforming reactions in platinum reformer 14 pass out through line 16 and the reformate through line 17 to debutanizer 20.
- the C. gases from the debutanizer leave as overhead through line 21 to pass to the reformer gas plant.
- Debutanizer bottoms pass through line 22 to dehexanizer 23 to form a C_ bottoms fraction which is removed through line 24.
- the light C 5 reformate containing substantial quantities of benzene passes out as overhead through line 25 to catalytic dewaxing unit 30. A portion of the light reformate may be withdrawn through conduit 26.
- a waxy feed e.g. distillate or lube raffinate is introduced into the catalytic dewaxer through inlet 31; hydrogen may be supplied from the reformer by means of line 32 connected to reformer off-gas line 16.
- the dewaxed product from the dewaxer e.g. low pour point distillate or lube is removed through outlet 33.
- C. effluent from the dewaxer passes through line 34 to be combined with the light ends from the debutanizer in line 21.
- the gasoline boiling range fraction from the dewaxer including alkyl aromatic components produced by the alkyation of benzene (from dehexanizer 23) with olefinic dewaxing products, passes out through effluent line 35.
- An unstabilized gasoline product may be passed through the ancillary equipment by way of line 36.
- the light ends from this fraction are removed in debutanizer 20 with the alkylaromatic component and other C Face + materials removed as dehexanizer bottoms; unreacted benzene is then recycled together with fresh benzene from the reformer.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Machines For Laying And Maintaining Railways (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/570,987 US4997543A (en) | 1988-12-21 | 1990-08-22 | Reduction of benzene in gasoline |
DE69111464T DE69111464T2 (en) | 1988-12-21 | 1991-03-04 | REDUCTION OF BENZOL IN GASOLINE. |
JP91506399A JPH05508172A (en) | 1988-12-21 | 1991-03-04 | How to reduce benzene in gasoline |
CA002099607A CA2099607A1 (en) | 1988-12-21 | 1991-03-04 | Reduction of benzene in gasolines |
AU75466/91A AU652149B2 (en) | 1988-12-21 | 1991-03-04 | Reduction of benzene in gasoline |
EP91906516A EP0558483B1 (en) | 1988-12-21 | 1991-03-04 | Reduction of benzene in gasolines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28730088A | 1988-12-21 | 1988-12-21 | |
US07/570,987 US4997543A (en) | 1988-12-21 | 1990-08-22 | Reduction of benzene in gasoline |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992015655A1 true WO1992015655A1 (en) | 1992-09-17 |
Family
ID=34840862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1991/001462 WO1992015655A1 (en) | 1988-12-21 | 1991-03-04 | Reduction of benzene in gasolines |
Country Status (7)
Country | Link |
---|---|
US (1) | US4997543A (en) |
EP (1) | EP0558483B1 (en) |
JP (1) | JPH05508172A (en) |
AU (1) | AU652149B2 (en) |
CA (1) | CA2099607A1 (en) |
DE (1) | DE69111464T2 (en) |
WO (1) | WO1992015655A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4997543A (en) * | 1988-12-21 | 1991-03-05 | Mobil Oil Corporation | Reduction of benzene in gasoline |
US5326466A (en) * | 1991-01-22 | 1994-07-05 | Mobil Oil Corporation | Distillate dewaxing reactor system integrated with olefin upgrading |
US5210348A (en) * | 1991-05-23 | 1993-05-11 | Chevron Research And Technology Company | Process to remove benzene from refinery streams |
US5401389A (en) * | 1991-08-15 | 1995-03-28 | Mobil Oil Corporation | Gasoline-cycle oil upgrading process |
US5500108A (en) * | 1991-08-15 | 1996-03-19 | Mobil Oil Corporation | Gasoline upgrading process |
US5391288A (en) * | 1991-08-15 | 1995-02-21 | Mobil Oil Corporation | Gasoline upgrading process |
US5599439A (en) * | 1993-03-13 | 1997-02-04 | Mobil Oil Corporation | Gasoline and reformate upgrading process |
US5380425A (en) * | 1993-08-31 | 1995-01-10 | Mobil Oil Corporation | Over alkylation and catalytic cracking for benzene conversion |
JP3364012B2 (en) | 1994-08-29 | 2003-01-08 | 株式会社コスモ総合研究所 | Hydrogenation of benzene in hydrocarbon oils |
US7790943B2 (en) * | 2006-06-27 | 2010-09-07 | Amt International, Inc. | Integrated process for removing benzene from gasoline and producing cyclohexane |
MXPA06015023A (en) * | 2006-12-19 | 2008-10-09 | Mexicano Inst Petrol | Use of adsorbent microporous carbon material, for reducing benzene content in hydrocarbon flows. |
US10023533B2 (en) | 2014-12-16 | 2018-07-17 | Exxonmobil Research And Engineering Company | Process to produce paraffinic hydrocarbon fluids from light paraffins |
US9637423B1 (en) | 2014-12-16 | 2017-05-02 | Exxonmobil Research And Engineering Company | Integrated process for making high-octane gasoline |
US9637424B1 (en) | 2014-12-16 | 2017-05-02 | Exxonmobil Research And Engineering Company | High octane gasoline and process for making same |
CN107001949A (en) | 2014-12-16 | 2017-08-01 | 埃克森美孚研究工程公司 | Alkane modifies distillate processed and lubricant base oil |
US10647632B2 (en) * | 2015-06-29 | 2020-05-12 | Sabic Global Technologies B.V. | Process for producing cumene and/or ethylbenzene from a mixed hydrocarbon feedstream |
US11905472B2 (en) * | 2021-04-27 | 2024-02-20 | Kellogg Brown & Root Llc | On-site solvent generation and makeup for tar solvation in an olefin plant |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1009457A (en) * | 1962-02-28 | 1965-11-10 | British Petroleum Co | Process for the hydrocatalytic treatment of gas oils |
US4140622A (en) * | 1977-11-03 | 1979-02-20 | Uop Inc. | Process to reduce the benzene content of gasoline |
EP0057071A1 (en) * | 1981-01-15 | 1982-08-04 | Mobil Oil Corporation | Pretreatment of catalytic dewaxing feedstocks |
US4446007A (en) * | 1982-06-08 | 1984-05-01 | Mobil Oil Corporation | Hydrodewaxing |
US4908341A (en) * | 1986-12-04 | 1990-03-13 | Mobil Oil Corp. | Method for reactivating spent catalyst by contact with one or more aromatic compounds |
US4997543A (en) * | 1988-12-21 | 1991-03-05 | Mobil Oil Corporation | Reduction of benzene in gasoline |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4016218A (en) * | 1975-05-29 | 1977-04-05 | Mobil Oil Corporation | Alkylation in presence of thermally modified crystalline aluminosilicate catalyst |
US4209383A (en) * | 1977-11-03 | 1980-06-24 | Uop Inc. | Low benzene content gasoline producing process |
US4358362A (en) * | 1981-01-15 | 1982-11-09 | Mobil Oil Corporation | Method for enhancing catalytic activity |
US4858103A (en) * | 1983-02-07 | 1989-08-15 | Tokyo Keiki Company, Ltd. | Fluid valve control system for controlling fluid pressure or flow |
US4648957A (en) * | 1984-12-24 | 1987-03-10 | Mobil Oil Corporation | Lube hydrodewaxing method and apparatus with light product removal and enhanced lube yields |
-
1990
- 1990-08-22 US US07/570,987 patent/US4997543A/en not_active Expired - Fee Related
-
1991
- 1991-03-04 AU AU75466/91A patent/AU652149B2/en not_active Ceased
- 1991-03-04 CA CA002099607A patent/CA2099607A1/en not_active Abandoned
- 1991-03-04 DE DE69111464T patent/DE69111464T2/en not_active Expired - Fee Related
- 1991-03-04 WO PCT/US1991/001462 patent/WO1992015655A1/en active IP Right Grant
- 1991-03-04 JP JP91506399A patent/JPH05508172A/en active Pending
- 1991-03-04 EP EP91906516A patent/EP0558483B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1009457A (en) * | 1962-02-28 | 1965-11-10 | British Petroleum Co | Process for the hydrocatalytic treatment of gas oils |
US4140622A (en) * | 1977-11-03 | 1979-02-20 | Uop Inc. | Process to reduce the benzene content of gasoline |
EP0057071A1 (en) * | 1981-01-15 | 1982-08-04 | Mobil Oil Corporation | Pretreatment of catalytic dewaxing feedstocks |
US4446007A (en) * | 1982-06-08 | 1984-05-01 | Mobil Oil Corporation | Hydrodewaxing |
US4908341A (en) * | 1986-12-04 | 1990-03-13 | Mobil Oil Corp. | Method for reactivating spent catalyst by contact with one or more aromatic compounds |
US4997543A (en) * | 1988-12-21 | 1991-03-05 | Mobil Oil Corporation | Reduction of benzene in gasoline |
Also Published As
Publication number | Publication date |
---|---|
US4997543A (en) | 1991-03-05 |
EP0558483A1 (en) | 1993-09-08 |
EP0558483B1 (en) | 1995-07-19 |
DE69111464T2 (en) | 1996-01-11 |
JPH05508172A (en) | 1993-11-18 |
CA2099607A1 (en) | 1992-09-05 |
AU7546691A (en) | 1992-10-06 |
AU652149B2 (en) | 1994-08-18 |
DE69111464D1 (en) | 1995-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4997543A (en) | Reduction of benzene in gasoline | |
US5396010A (en) | Heavy naphtha upgrading | |
AU687797B2 (en) | Benzene reduction in gasoline by alkylation with higher olefins | |
US5347061A (en) | Process for producing gasoline having lower benzene content and distillation end point | |
US5350504A (en) | Shape selective hydrogenation of aromatics over modified non-acidic platinum/ZSM-5 catalysts | |
US5346609A (en) | Hydrocarbon upgrading process | |
KR101474599B1 (en) | Process for making high octane gasoline with reduced benzene content by benzene alkylation at high benzene conversion | |
RU2186830C2 (en) | Method of increasing quality of sulfur-containing fraction of raw material (versions) | |
AU635060B2 (en) | Production of aromatics-rich gasoline with low benzene content | |
US5414172A (en) | Naphtha upgrading | |
MXPA97001763A (en) | Gasol improvement process | |
RU2186831C2 (en) | Hydrodesulfurization method and method for improving quality of hydrocarbon stock | |
EP0593424A1 (en) | Multi-stage wax hydrocracking | |
EP0552141A1 (en) | Multi-stage wax hydrocracking | |
US4036735A (en) | Process for upgrading motor gasoline | |
US5326463A (en) | Gasoline upgrading process | |
US5338436A (en) | Dewaxing process | |
AU640136B2 (en) | Multi-stage wax hydrocracking | |
MXPA99010590A (en) | Benzene conversion in an improved gasoline upgrading process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2099607 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991906516 Country of ref document: EP |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 1991906516 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991906516 Country of ref document: EP |