WO1992012869A1 - Device for controlling attitude of vehicle - Google Patents

Device for controlling attitude of vehicle Download PDF

Info

Publication number
WO1992012869A1
WO1992012869A1 PCT/JP1992/000026 JP9200026W WO9212869A1 WO 1992012869 A1 WO1992012869 A1 WO 1992012869A1 JP 9200026 W JP9200026 W JP 9200026W WO 9212869 A1 WO9212869 A1 WO 9212869A1
Authority
WO
WIPO (PCT)
Prior art keywords
stabilizer
vehicle body
vehicle
arm
right wheels
Prior art date
Application number
PCT/JP1992/000026
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiko Hibino
Original Assignee
Nippondenso Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippondenso Co., Ltd. filed Critical Nippondenso Co., Ltd.
Publication of WO1992012869A1 publication Critical patent/WO1992012869A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll

Definitions

  • the present invention relates to an attitude control device for a vehicle, and more particularly to a stabilizer that suppresses a roll to secure steering stability.
  • a stabilizer has been used as a device that connects the movements of independent left and right wheels to reduce the inclination and sway of the vehicle that occurs during turning, and to ensure steering stability.
  • the stabilizer has high rigidity, the independent movement of the left and right wheels is restricted on uneven road surfaces, joints between road surfaces, undulating road surfaces, etc., resulting in large vibrations and poor riding comfort. There is a problem.
  • the stabilizer is connected to a shock absorber provided between the upper panel member and the lower arm. Then, the torsional action force generated in the stabilizer is mechanically equivalent to the torsional action force acting at the portion where the lower arm and the shock absorber are connected. Because of this, the torsional action force of the stabilizer acts at a position distant from the vehicle body, so that the torsional action force for suppressing the roll generated during turning becomes small, and if sufficient steering stability cannot be ensured. There is a problem.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle attitude control device capable of sufficiently suppressing the roll and improving the steering stability of the vehicle. That is what you do. Disclosure of the invention
  • the ends of the cam that transmit and receive the torsional action force are coupled to the respective unsprung members of the left and right wheels, and the upper and lower wheels of the left and right wheels with respect to the vehicle body
  • a vehicle attitude control device provided with a sun stabilizer that is twisted in accordance with a motion difference
  • a cushioning member disposed between the vehicle body and the coupling member, for reducing vibration generated according to a road surface condition
  • the end of the arm that receives and transmits the torsional action force of the stabilizer and the connecting member are at least at positions closer to the vehicle body than where the buffer member is connected to the connecting member. It is characterized in that it is combined with the coupling member.
  • a vehicle attitude control device provided with a stabilizer that is twisted according to
  • a spring member provided between the axle member and the vehicle body in the vicinity of the left and right wheels, and configured to reduce vibration generated according to a road surface condition
  • a connecting member is provided between at least one of the arms for transmitting and receiving the torsional action force of the vehicle body and the stabilizer to connect the two and to adjust the connecting distance thereof.
  • the connecting member is interposed between at least one of the lower panel members of the left and right wheels and the arm that transmits and receives the torsional force of the stabilizer.
  • the ends of the connecting member and the arm that receives and transmits the torsional action force of the stabilizer are at least as high as the position where the cushioning member is connected to the connecting member. Is also connected to the connecting member at a position close to the vehicle body.
  • connection distance when the connection distance is not adjusted by the connection member, the amount of twist of the stabilizer with respect to the vertical movement difference between the left and right wheels is reduced, and riding comfort can be improved. You.
  • the connection distance when the connection distance is adjusted by the connection member, the amount of twist of the stabilizer with respect to the adjustment of the connection distance can be increased, and the posture control such as roll suppression can be effectively performed. it can.
  • the connecting member connects the vehicle body and at least one of the arms for transmitting and receiving the torsional action force of the stabilizer to connect the two and adjust the connecting distance.
  • the ends of the connecting members and the arms that receive and transmit the torsional action force of the stabilizer are connected to the vehicle body at least at a position closer to the center of the vehicle body than the panel members.
  • the ride comfort can be improved when the connection distance is not adjusted by the connecting member, as in the first invention.
  • the posture control can be effectively performed.
  • FIG. 1 is a configuration diagram showing a first embodiment of the present invention
  • FIG. 2 is a configuration diagram showing a mounting portion of a cylinder device in the first embodiment
  • FIG. 3 is an arm ratio and a stabilizer.
  • FIG. 4 is a characteristic diagram showing the characteristics of the torsional action force and the effect index of FIG. 4
  • FIG. 4 is a configuration diagram showing the configuration of the hydraulic control device and the electronic control device in the first embodiment, and the respective input / output states
  • FIG. 1 Electrons in Examples FIG. 6 is a flow chart showing the operation of the control device, FIG. 6 is a graph showing the relationship between the lateral acceleration and the roll angle of a vehicle having different arm ratios, and
  • FIG. FIG. 8 is a structural diagram showing a second embodiment, and FIG. 8 is a span-stabilizer characteristic diagram showing characteristics of the span and the torsional acting force of the stabilizer. Best mobile phone for carrying out the invention
  • FIG. 1 is a schematic configuration diagram of a flat type suspension to which a vehicle attitude control device according to the present invention is applied. .
  • a left wheel 1 and a right wheel 2 are supported by a vehicle body 12 via lower arms 13 and 14 and shock absorbers (corresponding to shock absorbing members) 5 and 6, respectively.
  • the lower arms 13 and 14 correspond to connecting members.
  • the torsion portion 8 of the stabilizer 7 has torsional elasticity, and is rotatably supported by rubber bearings 9 and 10.
  • a cylinder device (corresponding to a coupling member) 16 that can adjust the coupling distance.
  • the cylinder device 16 is located at the position of the optimum arm ratio T of the lower arm 13. Are combined.
  • the hydraulic pressure in the cylinder device 16 is controlled by a hydraulic control device 3 driven in accordance with a control signal from the electronic control device 4.
  • the cylinder device 16 is provided only on the left wheel 1, but a similar cylinder device may be provided on the right wheel 2.
  • the above-mentioned optimum arm ratio T will be described later.
  • FIG. 2 is a configuration diagram showing an assembled state of the cylinder device 16.
  • the suspension shown in Fig. 2 is analyzed by making it a dynamic model. Thereby, the torsional action force F generated in the stabilizer 7 can be obtained.
  • the stabilizer 7 As an index indicating the roll suppressing effect of the vehicle attitude control device in the first embodiment, when the cylinder device 16 is fixed to neutral (only the normal stabilizer 7), the stabilizer 7 The effect index E shown below is set using the torsional action force Fm generated in the actuator and the torsional action force Fs generated in the stabilizer 7 when the cylinder device 16 is operated only by the stroke S. did.
  • This effect index E can also be expressed by the following equation by analyzing the suspension shown in Fig. 1 as a dynamic model and analyzing it. Where n is a constant and ⁇ is a function.
  • the mounting position of the cylinder device 16 can increase the roll suppressing effect as the arm ratio t decreases.
  • the torsional action force F generated in the stabilizer 7 shown in Fig. 1 is given by ⁇ and 7 as constants and f as a function.
  • the optimal mounting position (optimal arm ratio T) of the cylinder device 16 that has the appropriate amount of torsional force F and maximizes the roll suppression effect is shown in FIG. So that occurs in stabilizer 7
  • the torsional action force corresponds to a value obtained by dividing the limit repulsion action force Fmax at which the lower arm 13 or the cylinder device 16 breaks down by the safety factor P. That is, the optimal arm ratio T is
  • FIG. 3 is an arm ratio-stabilizer characteristic diagram showing the characteristics of the arm ratio t and the torsional acting force F of the sun stabilizer, and (b) is the relationship between the arm ratio t and the effect index E.
  • FIG. 6 is an arm ratio-effect index characteristic diagram showing characteristics.
  • the safety factor P (usually set to 2 or more) is set as shown in the following equation.
  • FIG. 4 is a configuration diagram showing configurations of the hydraulic control device 3 and the electronic control device 4.
  • the electronic control unit 4 is a central processing unit (hereinafter referred to as a CPU) 4a, a lead 'only' memory (hereinafter referred to as R0M) 4b, and a random. .. Access memory (hereinafter referred to as RAM) 4c, input section 4d, output section 4e, and data bus 4f.
  • the input section 4d includes a piston position detecting device 43 for detecting the position of the cylinder 16 of the cylinder device, a vehicle speed sensor 41 for detecting the traveling speed of the vehicle, and a vehicle inclination detecting state.
  • Information signals output from the tilt sensor 44 that performs the steering operation and the steering angle sensor 42 that detects the steering angle of the steering wheel are input.
  • a control signal is output from the output unit 4 e to the hydraulic control device 3 and the cylinder device 16.
  • the hydraulic control device 3 is mainly composed of oil driven by the power of the engine 30. It consists of a pressure pump 31, a reservoir tank 34, and a control valve (4 port 3 position solenoid valve) 32.
  • the hydraulic pump 31 sucks hydraulic oil from the reservoir tank 34 and passes through the line 33a, the control valve 32, the line 33c or the line 33d.
  • the control valve 32 is actuated by the linear solenoids 32 d and 32 e which are excited by a control signal from the electronic control unit 4 so that the neutral position 32 a and the extension position 32 b are activated. It is a valve that can be switched to the three contraction positions 32c and any intermediate position between them.
  • the cylinder 16 is provided with a piston 22 slidable in an oil-tight manner in the cylinder body 21. Then, the hydraulic oil is supplied from the hydraulic control device 3 which is operated by the control signal from the electronic control device 4, and the cylinder device 16 is thereby operated.
  • the stabilizer 7 (Fig. 1) exerts its inherent torsional rigidity to secure the running stability of the vehicle.
  • one end of the cylinder device 16 and one end of the other stabilizer are respectively connected to the lower arms 13 and 14 of the left and right wheels at a predetermined arm ratio t. Therefore, for example, when only the right wheel moves over the protrusion, the vertical movement difference between the right and left wheels is reduced in size and acts on the stabilizer 7. Therefore, the torsional rigidity exhibited by the screen stabilizer 7 is the same as that of the cylinder device 16 and the other.
  • One end of each of the stabilizers can be made smaller as compared to a case where each end is attached to a shock absorber. For this reason, it is possible to improve the riding comfort when traveling straight ahead.
  • the target expansion / contraction amount of the cylinder device 16 is determined according to a relationship predetermined according to the vehicle speed and the magnitude of the steering angle. Then, the hydraulic control device 3 is driven to extend or contract the cylinder device 16 according to the target expansion / contraction amount.
  • the linear solenoid 32 d when the cylinder device 16 is extended, the linear solenoid 32 d is energized to drive the control valve 32 to the extension position 32 b. Then, the pipes 33a and 33d communicate with each other through the port of the control valve 32, and the lower chamber 26 of the cylinder device 16 receives the pressure discharged from the pump 31. Oil is supplied via line 33a, control valve 32, and line 33d. Note that when the linear solenoid 32 d is energized, the linear solenoid 32 e is non-energized, and the linear solenoid 32 e is energized. In this case, the linear solenoid 32d is in a non-energized state.
  • the port of the control valve 32 connected through the pipe 33c is designed so that the opening area thereof increases as the current flowing through the linear solenoid 32d increases. Operate. Therefore, the current supplied to the linear solenoid 32d is controlled, whereby the reservoir tank 34 is connected from the upper chamber 25 of the cylinder device 16 to the reservoir tank 34 through the pipe 33c. The amount of spilled oil can be adjusted.
  • the piston 22 can move to the upper chamber 25 side, so that the energizing current of the linear solenoids 32d and 32e can be obtained.
  • the electronic control unit 4 predicts the position of the piston 22 from the magnitude of the output energizing current and the energizing time. Can be calculated.
  • the position of the piston 22 is predicted by this prediction calculation, and the predicted position of the piston 22 is corrected using the piston position detection device 43.
  • the power supply to the linear solenoid 32d is terminated.
  • the position of the piston 22 is predicted by calculation because the piston position detecting device 43 This is because it is configured as a so-called switch that detects only the middle position of the stroke.
  • the piston position detecting device 43 is configured by arranging a coil around the piston rod of the cylinder device 16, and the piston rod has different magnetic permeability. It is constructed by joining two metals. The joining position of the two metals of the piston rod corresponds to the intermediate position of the piston stroke in the cylinder device 16. Therefore, by detecting a change in the inductance of the coil, it is possible to detect the intermediate position of the bistro stroke.
  • the control valve 32 When the energization of the linear solenoid 32d is completed, the control valve 32 returns to the neutral position 32a. For this reason, the upper chamber 25 and the lower chamber 26 at the cylinder position 16 are kept oil-tight again, and the piston 22 is fixed at the target position. Since the hydraulic control device 3 has the configuration of the meter-out hydraulic circuit as described above, it can be adjusted accurately regardless of the minute oil amount or the large oil amount, and the cylinder device 1 can be accurately adjusted. 6 can be controlled.
  • the port area of the control valve 32 connected via the pipe 33 d is such that the opening area increases as the current flowing to the linear solenoid 32 e increases. Activate Therefore, by controlling the current supplied to the linear solenoid 32 e, the pipe from the lower chamber 26 of the cylinder device 16 is controlled. The amount of oil flowing to reservoir tank 34 through road 33d can be adjusted.
  • the position of the piston 22 is predicted, and the linear solenoid is determined when it is determined that the piston 22 has reached the target position.
  • the energization of the switch 32 e is terminated, and the piston 22 is fixed at the target position.
  • the electronic control unit 4 is configured as means for realizing required functions using the CPU 4a that repeatedly executes signal input, processing, and signal output according to a preset control program.
  • the program procedure executed by the electronic control unit 4 is as shown in FIG.
  • each signal generated by the vehicle speed sensor 41, the steering angle sensor 42, the inclination sensor 44, etc. is input via the input unit 4d. Receiving and storing the information in RAM 4c.
  • the running conditions of the vehicle are determined in steps 110, 112, and 118, and in steps 114, 116, 120, 122, respectively.
  • the control amount corresponding to the traveling condition is determined.
  • This control amount indicates the amount of movement of the cylinder device 16 provided between one end of the stabilizer 7 and the lower arm 13, and includes the respective running conditions and the control amount to be determined.
  • the relationship is set in the ROM 4b in advance as an arithmetic expression or a map in the program memory.
  • step 110 it is determined whether or not the vehicle is turning right based on the steering angle force obtained by the steering angle sensor 42.
  • step 111 whether or not the vehicle is turning left is determined. Is determined. If the vehicle is turning right or left, the process proceeds to step 114 or step 116, respectively, and the control amount necessary to suppress the roll of the vehicle caused by the turn is calculated. calculate.
  • step 118 it is determined whether or not the lateral inclination of the vehicle obtained by the inclination sensor 44 is equal to or greater than a predetermined angle.
  • step 120 a control amount corresponding to the inclination is calculated in step 120.
  • control amount is set to a predetermined value in step 122.
  • This set value is set in advance to a value at which the cylinder device 16 does not exert an additional acting force on the stabilizer 7.
  • the control amount during the right turn described above is calculated so that the moving amount is extended by an amount corresponding to the centrifugal force with respect to the reference value, and the control amount during the left turn is the reference value. Needless to say, the operation is performed to reduce the Then, the set control amount is output to the control valve 32 and the cylinder device 16 and each is controlled as described above.
  • FIG. 6 is a lateral acceleration-roll angle characteristic diagram showing characteristics of lateral acceleration and a steep angle in vehicles having different arm ratios t.
  • the roll angle is 2.3 degrees in a vehicle having an arm ratio of 1.
  • the roll angle is 0.9 degrees, and the arm ratio is Compared with the vehicle of No. 1, the amount of reduction in the roll angle is greatly increased.
  • the vehicle having the arm ratio of 0.4 can secure more stable driving than the vehicle having the arm ratio of 1.
  • the cylinder device 16 connected to the stabilizer 7 is arranged close to the vehicle body, thereby increasing the torsional action force for suppressing the roll. As a result, steering stability can be ensured.
  • the upper arm or the lower arm is positioned at an optimum arm ratio T.
  • a cylinder may be installed, and the upper arm or the lower arm and the stabilizer may be connected to each other via a cylinder device.
  • FIG. 7 is a configuration diagram showing a second embodiment of the present invention.
  • the figure numbers in FIG. 7 that are the same as the figure numbers in FIG. 1 indicate that they are equivalent to the configuration in FIG.
  • the left wheel 1 and the right wheel 2 are supported by an axle (corresponding to an axle member) 15, and a vehicle body 12 is supported by coil springs (corresponding to a panel member) 50, 51 via an axle 15. It is supported by.
  • the torsion portion 8 of the stabilizer 7 has torsional elasticity, and is rotatably supported by rubber single bearings 9 and 10.
  • One end of the stabilizer 7 is connected to a cylinder device 16 capable of adjusting the connection distance, and is attached with an optimum span L.
  • This optimum span L described above will be described. This optimum span L can be obtained in the same manner as the optimum arm ratio T of the flat type suspension.
  • Ru can be expressed by the formula shown below Ri by the span 1 x.
  • 'and ⁇ ' are constants ⁇ 'and f' are functions.
  • the optimum mounting position (optimal snow, .L) of the cylinder device 16 for which the torsional action force F is of an appropriate size and which maximizes the roll suppressing effect is shown in FIG.
  • the torsional action force generated in the stabilizer 7 corresponds to a value obtained by dividing the limit torsional action force F max at which the cylinder device 16 is destroyed by the safety factor P ′. That is, the optimal span L is
  • FIG. 8 is a characteristic diagram of the span stabilizer which shows the characteristics of the span 1 and the torsional acting force F of the stabilizer.
  • the safety factor P ′ is set as shown in Expression (6).
  • the vehicle attitude control device can be applied to a vehicle that changes the attitude of the vehicle using the stabilizer, and can greatly contribute to improving the performance. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A device for controlling the attitude of a vehicle, in which a cylinder mechanism (16) capable of adjusting a connecting distance is fixed to one end of a stabilizer (7) and a hydraulic pressure in the cylinder (16) is controlled by a hydraulic control device (3) driven in response to control signals from an electronic control device (4). The cylinder (16) is set in a position in which an arm ratio (T) of a lower arm is optimum, that is, the torsional acting force (F) of the stabilizer (7) is appropriate in strength and a rolling control effect is improved as much as possible. Said optimum arm ratio (T) is specifically expressed by a value [f(T) = Fmax/P] which corresponds to a value obtained by dividing the value of a critical torsional acting force (Fmax) to break the lower arm or cylinder (16) by a safety factor (P).

Description

明 細 書 車両用姿勢制御装置 技術分野  Description Vehicle attitude control system Technical field
本発明は車両用姿勢制御装置に関する ものであ り、 特にロールを抑 えて操縦安定性を確保するスタ ビラ イザに用い られる ものである。 背景技術  The present invention relates to an attitude control device for a vehicle, and more particularly to a stabilizer that suppresses a roll to secure steering stability. Background art
従来、 独立した左右の車輪の動きを連結する こ と によ り、 旋回時に 生じる車両の傾き、 揺れを少な く し、 操縦安定性を確保する装置と し て、 スタ ビラ イザが用い られている。 しかし、 このスタ ビライザの剛 性が高い場合には、 凹凸路面、 路面のつなぎ目、 うねり路面等で左右 の車輪の独立した動きが規制されて振動が大き く な つて しま い、 乗り 心地が悪く なる という 問題がある。  Conventionally, a stabilizer has been used as a device that connects the movements of independent left and right wheels to reduce the inclination and sway of the vehicle that occurs during turning, and to ensure steering stability. . However, if the stabilizer has high rigidity, the independent movement of the left and right wheels is restricted on uneven road surfaces, joints between road surfaces, undulating road surfaces, etc., resulting in large vibrations and poor riding comfort. There is a problem.
そ こで、 この問題を解決する ものと して、 スタ ビラ イザに発生する 捩り作用力を制御する装置がある (例えば、 特開昭 6 1 — 1 4 6 6 1 2 号公報) 。  In order to solve this problem, there is a device for controlling the torsional force generated in the stabilizer (for example, Japanese Patent Application Laid-Open No. 61-146612).
と ころが上述した従来のものでは、 スタ ビライザは、 パネ上部材ぉ よびロアアームの間に設け られたシ ョ ッ ク ァブソーバに接铳されてい る。 する と スタ ビライザに発生する捩り作用力は、 力学的にみる と、 ロアアームと シ ョ ッ クァブソーバとが結合された部分で働 く 捩り作用 力と同等となる。 このため、 車体から離れた位置でスタ ビライザの捩 り作用力が働 く ので、 旋回時に発生する ロールを抑えるための捩り作 用力は小さ く なつて しま い、 操縦安定性を充分に確保できないと い う 問題がある。  However, in the above-described conventional device, the stabilizer is connected to a shock absorber provided between the upper panel member and the lower arm. Then, the torsional action force generated in the stabilizer is mechanically equivalent to the torsional action force acting at the portion where the lower arm and the shock absorber are connected. Because of this, the torsional action force of the stabilizer acts at a position distant from the vehicle body, so that the torsional action force for suppressing the roll generated during turning becomes small, and if sufficient steering stability cannot be ensured. There is a problem.
そ こで本発明は上記問題点に鑑みてなされた ものであ り、 ロールを 充分に抑えて車両の操縦安定性を高める こ とができ る車両用姿勢制御 装置を提供する こ とを目的とする ものである。 発明の開示 The present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicle attitude control device capable of sufficiently suppressing the roll and improving the steering stability of the vehicle. That is what you do. Disclosure of the invention
上記目的を達成するために、 第 1 発明による車両用姿勢制御装置に おいては、  In order to achieve the above object, in the vehicle attitude control device according to the first invention,
車体に回動可能に支持される と と も に、 捩じ り作用力を授受するァ 一ムの端部が左右車輪の各々のバネ下部材に結合されて、 車体に対す る左右車輪の上下動差に応じて捩じ られるス夕 ビライザを備えた車両 用姿勢制御装置において、  In addition to being rotatably supported by the vehicle body, the ends of the cam that transmit and receive the torsional action force are coupled to the respective unsprung members of the left and right wheels, and the upper and lower wheels of the left and right wheels with respect to the vehicle body In a vehicle attitude control device provided with a sun stabilizer that is twisted in accordance with a motion difference,
前記左右車輪を車体に結合する結合部材と、  A coupling member for coupling the left and right wheels to a vehicle body,
前記車体と前記結合部材との間に配置され、 路面状態に応じて発生 する振動を緩和する緩衝部材と、  A cushioning member disposed between the vehicle body and the coupling member, for reducing vibration generated according to a road surface condition;
前記左右車輪の各々のパネ下部材の少な く と も一方と前記スタ ビラ ィザの捩り作用力を授受するアーム との間に介在して両者を連結し、 その連結距離を調整可能に した連結部材とを備え、  A connection in which at least one of the lower panel members of the left and right wheels is interposed between an arm that receives and transmits the torsional force of the stabilizer and the two are connected, and the connection distance thereof is adjustable. And a member,
前記スタ ビライザの捩じ り作用力を授受するアームの端部及び前記 連結部材を、 少な く と も前記緩衝部材が前記結合部材に接铳された位 置よ り も前記車体に近づけた位置で、 前記結合部材に桔合したこ とを 特徵とする。  The end of the arm that receives and transmits the torsional action force of the stabilizer and the connecting member are at least at positions closer to the vehicle body than where the buffer member is connected to the connecting member. It is characterized in that it is combined with the coupling member.
また、 第 2発明による車両用姿勢制御装置においては、  In the vehicle attitude control device according to the second invention,
左右車輪を結合する車軸部材に回動可能に支持される と と もに、 そ の捩じ り作用力を授受するアームの端部が車体に結合されて、 車体に 対する左右車輪の上下動差に応じて捩じられるスタ ビライザを備えた 車両用姿勢制御装置において、  In addition to being rotatably supported by the axle member that connects the left and right wheels, the end of the arm that transfers the torsional action is connected to the vehicle body, and the vertical movement of the left and right wheels with respect to the vehicle body In a vehicle attitude control device provided with a stabilizer that is twisted according to
前記車軸部材と車体との間で、 前記左右車輪の近傍にそれぞれ設け られ、 路面状態に応じて発生する振動を緩和するばね部材と、  A spring member provided between the axle member and the vehicle body in the vicinity of the left and right wheels, and configured to reduce vibration generated according to a road surface condition;
前記車体と前記スタ ビラ イ ザの捩じ り作用力を授受する少な く と も 一方のアームとの間に介在して両者を連結し、 その連結距離を調整可 能にした連結部材とを備え、  A connecting member is provided between at least one of the arms for transmitting and receiving the torsional action force of the vehicle body and the stabilizer to connect the two and to adjust the connecting distance thereof. ,
前記スタ ビライザの捩じ り作用力を授受するアームの端部及び前記 連結部材を、 少な く と も前記パネ部材よ り も車体中心に近づけた位置 で前記車体に結合したこ とを特徵とする。 A position where the end of the arm that receives and transmits the torsional force of the stabilizer and the connecting member are closer to the center of the vehicle body than at least the panel member. It is characterized in that it is connected to the vehicle body.
上記構成によ り 、 第 1 発明においては、 連結部材が、 左右車輪の各 々のパネ下部材の少な く と も一方と スタ ビライザの捩り作用力を授受 するアーム と の間に介在して両者を連結し、 その連結距離を調整する こ の連結部材及びスタ ビラ イ ザの捩じ り作用力を授受するアームの端 部は、 少な く と も緩衝部材が結合部材に接続された位置よ り も車体に 近づけた位置で、 結合部材に結合される。  According to the above configuration, in the first aspect, the connecting member is interposed between at least one of the lower panel members of the left and right wheels and the arm that transmits and receives the torsional force of the stabilizer. The ends of the connecting member and the arm that receives and transmits the torsional action force of the stabilizer are at least as high as the position where the cushioning member is connected to the connecting member. Is also connected to the connecting member at a position close to the vehicle body.
従って、 連結部材によ って連結距離の調整を行わないと き には、 左 右車輪の上下動差に対するスタ ビライザの捩じれ量が小さ く な り、 乗 り心地の向上を図る こ とができ る。 一方、 連結部材によって連結距離 の調整を行ったと きには、 その連結距離の調整に対するスタ ビライザ の捩じれ量を大き く する こ とができ、 ロール抑制等の姿勢制御を効果 的に行う こ とができ る。  Therefore, when the connection distance is not adjusted by the connection member, the amount of twist of the stabilizer with respect to the vertical movement difference between the left and right wheels is reduced, and riding comfort can be improved. You. On the other hand, when the connection distance is adjusted by the connection member, the amount of twist of the stabilizer with respect to the adjustment of the connection distance can be increased, and the posture control such as roll suppression can be effectively performed. it can.
また、 第 2 発明においては、 連結部材が、 車体と スタ ビライザの捩 じ り作用力を授受する少な く と も一方のアームとの間に介在して両者 を連結し、 その連結距離を調整する。 この連結部材及びスタ ビライザ の捩じ り作用力を授受するアームの端部は、 少な く と もパネ部材よ り も車体中心に近づけた位置で、 車体に結合される。  In the second invention, the connecting member connects the vehicle body and at least one of the arms for transmitting and receiving the torsional action force of the stabilizer to connect the two and adjust the connecting distance. . The ends of the connecting members and the arms that receive and transmit the torsional action force of the stabilizer are connected to the vehicle body at least at a position closer to the center of the vehicle body than the panel members.
従って、 第 2発明においても、 第 1 発明と同様に、 連結部材によ つ て連結距離の調整を行わないと きには、 乗り心地の向上を図る こ とが でき、 一方、 連結部材によ って連結距離の調整を行ったと き には、 姿 勢制御を効果的に行う こ とができ る。 図面の簡単な説明  Therefore, in the second invention as well, the ride comfort can be improved when the connection distance is not adjusted by the connecting member, as in the first invention. Thus, when the connection distance is adjusted, the posture control can be effectively performed. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の第 1 実施例を表す構成図、 第 2 図は第 1 実施例に おける シ リ ンダ装置の取り付け部を示す構成図、 第 3 図はアーム比と ス タ ビラ イ ザの捩り作用力および効果指数との特性を示す特性図、 第 4 図は第 1 実施例における油圧制御装置および電子制御装置の構成と 各々の入出力状態とを示す構成図、 第 5 図は第 1 実施例における電子 制御装置の作動を示すフ ローチヤ 一 ト、 第 6 図はアーム比がそれぞれ 異なる車両における横加速度と ロール角との特性を示す横加速度一 口 ール角特性図、 第 7 図は本発明の第 2 実施例を表す構成図、 第 8 図は スパンとスタ ビライザの捩り作用力との特性を示すスパ ン一スタ ビラ ィザ特性図である。 発明を実施するための最良の携帯 FIG. 1 is a configuration diagram showing a first embodiment of the present invention, FIG. 2 is a configuration diagram showing a mounting portion of a cylinder device in the first embodiment, and FIG. 3 is an arm ratio and a stabilizer. FIG. 4 is a characteristic diagram showing the characteristics of the torsional action force and the effect index of FIG. 4, FIG. 4 is a configuration diagram showing the configuration of the hydraulic control device and the electronic control device in the first embodiment, and the respective input / output states, and FIG. 1 Electrons in Examples FIG. 6 is a flow chart showing the operation of the control device, FIG. 6 is a graph showing the relationship between the lateral acceleration and the roll angle of a vehicle having different arm ratios, and FIG. FIG. 8 is a structural diagram showing a second embodiment, and FIG. 8 is a span-stabilizer characteristic diagram showing characteristics of the span and the torsional acting force of the stabilizer. Best mobile phone for carrying out the invention
以下、 本発明を図に示す実施例に基づいて説明する。  Hereinafter, the present invention will be described based on an embodiment shown in the drawings.
まず、 第 1 実施例について説明する。 第 1 図は、 本発明による車両 用姿勢制御装置を適用 したス ト ラ ッ ト型サスペンシ ョ ンの概略構成図 での 。。  First, a first embodiment will be described. FIG. 1 is a schematic configuration diagram of a flat type suspension to which a vehicle attitude control device according to the present invention is applied. .
第 1 図において、 左車輪 1 および右車輪 2 はそれぞれロアアーム 1 3 、 1 4 およびシ ョ ッ クァブソーバ (緩衝部材に相当) 5 、 6 を介し て車体 1 2 に支持されている。 なお、 このロアアーム 1 3 、 1 4 は、 結合部材に相当する。  In FIG. 1, a left wheel 1 and a right wheel 2 are supported by a vehicle body 12 via lower arms 13 and 14 and shock absorbers (corresponding to shock absorbing members) 5 and 6, respectively. The lower arms 13 and 14 correspond to connecting members.
スタ ビライザ 7 の トーシ ョ ン部 8 は捩り弾性を有しており、 ラバー 軸受け 9 、 1 0 にて回転可能に支持されている。 スタ ビライザ 7 の一 端には、 連結距離を調整でき る シ リ ンダ装置 (連結部材に相当) 1 6 が接続され、 こ のシ リ ンダ装置 1 6 はロアアーム 1 3 の最適アーム比 Tの位置にて結合される。 シ リ ンダ装置 1 6 内の油圧は、 電子制御装 置 4 からの制御信号に応じて駆動される油圧制御装置 3 によって制御 されている。 なお、 図 1 では左車輪 1 にのみシ リ ンダ装置 1 6 が設け られているが、 右車輪 2 にも同様のシ リ ンダ装置を設けてもよい。 ま た、 上記最適アーム比 Tについては後述する ものとする。  The torsion portion 8 of the stabilizer 7 has torsional elasticity, and is rotatably supported by rubber bearings 9 and 10. Connected to one end of the stabilizer 7 is a cylinder device (corresponding to a coupling member) 16 that can adjust the coupling distance. The cylinder device 16 is located at the position of the optimum arm ratio T of the lower arm 13. Are combined. The hydraulic pressure in the cylinder device 16 is controlled by a hydraulic control device 3 driven in accordance with a control signal from the electronic control device 4. In FIG. 1, the cylinder device 16 is provided only on the left wheel 1, but a similar cylinder device may be provided on the right wheel 2. The above-mentioned optimum arm ratio T will be described later.
次に、 上記構成を有するス ト ラ ッ ト型サスペンシ ョ ンにおいて、 車 両のロール等の姿勢変化を効果的に抑えるべく 設けられた、 シ リ ンダ 装置 1 6 の取り付け位置について詳細に説明する。  Next, the mounting position of the cylinder device 16 provided to effectively suppress a change in the attitude of the vehicle rolls or the like in the strut type suspension having the above configuration will be described in detail. .
第 2 図は、 上記シ リ ンダ装置 1 6 の組付け状態を示す構成図である。 こ こで、 第 2 図に示すサスペ ン シ ョ ンを力学モデル化して解析する こ と によ り、 スタ ビライザ 7 に発生する捩り作用力 Fを求める こ とが でき る。 FIG. 2 is a configuration diagram showing an assembled state of the cylinder device 16. Here, the suspension shown in Fig. 2 is analyzed by making it a dynamic model. Thereby, the torsional action force F generated in the stabilizer 7 can be obtained.
すなわち、 ロアアーム 1 3 において、 車体取り付け部からタ イヤ取 り付け部までの長さを A r 、 車体取り付け部から シ リ ンダ装置 1 6 の 設置位置までの長さを R と した時、 アーム比 t は、  That is, in the lower arm 13, when the length from the vehicle body mounting portion to the tire mounting portion is Ar, and the length from the vehicle body mounting portion to the installation position of the cylinder device 16 is R, the arm ratio is t is
t = R / A r (1)  t = R / A r (1)
と表すこ とができ る。 It can be expressed as.
また、 上記第 1 実施例における車両用姿勢制御装置のロール抑制効 果を表す指数と して、 シ リ ンダ装置 1 6 を中立に固定 (通常のスタ ビ ライザ 7 のみ) した際にスタ ビライザ 7 に発生する捩り作用力 F m と シ リ ンダ装置 1 6 をス ト ローク Sだけ作動させた際にスタ ビライザ 7 に発生する捩り作用力 F s とを用いて、 以下に示す効果指数 E を設定 した。  In addition, as an index indicating the roll suppressing effect of the vehicle attitude control device in the first embodiment, when the cylinder device 16 is fixed to neutral (only the normal stabilizer 7), the stabilizer 7 The effect index E shown below is set using the torsional action force Fm generated in the actuator and the torsional action force Fs generated in the stabilizer 7 when the cylinder device 16 is operated only by the stroke S. did.
E = F s / F m (2)  E = F s / F m (2)
この効果指数 E は、 第 1 図に示すサスペンシ ョ ンを力学モデル化し て解析する こ と によ り、 以下に示すよ う な式にて表すこ と もでき る。 但し な は定数、 ε は関数である。  This effect index E can also be expressed by the following equation by analyzing the suspension shown in Fig. 1 as a dynamic model and analyzing it. Where n is a constant and ε is a function.
Ε = ε ( t ) = 1 + ( a S / t ) (3)  Ε = ε (t) = 1 + (a S / t) (3)
したがって、 数式 (3)に示すよ う に、 シ リ ンダ装置 1 6 の取り付け位 置は、 アーム比 t を小さ く するほどロール抑制効果を上げる こ とが可 能となる。 しかし、 第 1 図に示すスタ ビライザ 7 に発生する捩り作用 力 F は、 β、 7 を定数、 f を関数とする と、  Therefore, as shown in Expression (3), the mounting position of the cylinder device 16 can increase the roll suppressing effect as the arm ratio t decreases. However, the torsional action force F generated in the stabilizer 7 shown in Fig. 1 is given by β and 7 as constants and f as a function.
F = f ( t ) = ( S / t ) + ( r S / t 2 ) (4) と表されるので、 アーム比 t を小さ く する と大きな捩り作用力 Fが発 生して しまい、 場合によっては、 ロアアーム 1 3 も し く はシ リ ンダ装 置 1 6 を破壌して しま う。 F = f (t) = (S / t) + (r S / t 2 ) (4) Therefore, if the arm ratio t is reduced, a large torsional action force F is generated, and In some cases, the lower arm 13 or the cylinder device 16 will rupture.
したがって、 捩り作用力 Fが適性な大き さであ り、 しかもロール抑 制効果を極力上げるよ う なシ リ ンダ装置 1 6 の最適取り付け位置 (最 適アーム比 T ) は、 第 3 図に示すよ う に、 スタ ビライザ 7 に発生する 捩り作用力によ り、 ロアアーム 1 3 も し く はシ リ ンダ装置 1 6 が破壌 される限界揆り作用力 F max を安全率 Pで除算した値に対応したもの となる。 すなわち最適アーム比 Tは、 Therefore, the optimal mounting position (optimal arm ratio T) of the cylinder device 16 that has the appropriate amount of torsional force F and maximizes the roll suppression effect is shown in FIG. So that occurs in stabilizer 7 The torsional action force corresponds to a value obtained by dividing the limit repulsion action force Fmax at which the lower arm 13 or the cylinder device 16 breaks down by the safety factor P. That is, the optimal arm ratio T is
f ( T ) = F max / P (5)  f (T) = F max / P (5)
と表される。 なお第 3 図において、 (a)はアーム比 t とス夕 ビライザの 捩り作用力 F との特性を示すアーム比一スタ ビライザ特性図、 (b)はァ ーム比 t と効果指数 E との特性を示すアーム比—効果指数特性図であ る。 そ して、 上記安全率 P (通常、 2以上に設定) は、 下式に示すよ う に設定されている。  It is expressed as In Fig. 3, (a) is an arm ratio-stabilizer characteristic diagram showing the characteristics of the arm ratio t and the torsional acting force F of the sun stabilizer, and (b) is the relationship between the arm ratio t and the effect index E. FIG. 6 is an arm ratio-effect index characteristic diagram showing characteristics. The safety factor P (usually set to 2 or more) is set as shown in the following equation.
P -対象物の疲労限度 Z算定または計測した対象物にかかる最大 応力 (6) 但し、 このシ リ ンダ装置を実際に車両に搭載する際には、 油圧源の 能力、 車両への搭載能力等を考慮して、 各々の制約の中で最小のァー ム比を最適アーム比 Tとする。  P-Fatigue limit of the object Z Maximum stress on the object calculated or measured (6) However, when this cylinder device is actually mounted on the vehicle, the capacity of the hydraulic power source, the mounting capability on the vehicle, etc. In consideration of the above, the minimum arm ratio among the respective constraints is set as the optimal arm ratio T.
次に、 第 1 図に示した油圧制御装置 3 および電子制御装置 4 の詳細 な構成について説明する。  Next, the detailed configurations of the hydraulic control device 3 and the electronic control device 4 shown in FIG. 1 will be described.
第 4 図は、 油圧制御装置 3 および電子制御装置 4 の構成を示す構成 図である。  FIG. 4 is a configuration diagram showing configurations of the hydraulic control device 3 and the electronic control device 4.
第 4 図において、 電子制御装置 4 は中央処理装置 (以下、 C P Uと い う ) 4 a 、 リ ー ド ' オ ン リ ' メ モ リ (以下、 R 0 Mと い う ) 4 b、 ラ ンダム . .アクセス · メ モ リ (以下、 R A Mという) 4 c、 入力部 4 d、 出力部 4 e、 およびデータバス 4 f によ り構成されている。 入力 部 4 d には、 シ リ ンダ装置 1 6 の ビス ト ン位置を検出する ビス ト ン位 置検出装置 4 3 、 車両の走行速度を検出する車速セ ンサ 4 1 、 車両の 傾斜状態を検出する傾斜セ ンサ 4 4 、 およびステア リ ン グホイールの 操舵角を検出する操舵角セ ンサ 4 2 から出力される情報信号が入力さ れる。 一方、 出力部 4 e からは、 油圧制御装置 3 およびシ リ ンダ装置 1 6 に向けて制御信号が出力される。  In FIG. 4, the electronic control unit 4 is a central processing unit (hereinafter referred to as a CPU) 4a, a lead 'only' memory (hereinafter referred to as R0M) 4b, and a random. .. Access memory (hereinafter referred to as RAM) 4c, input section 4d, output section 4e, and data bus 4f. The input section 4d includes a piston position detecting device 43 for detecting the position of the cylinder 16 of the cylinder device, a vehicle speed sensor 41 for detecting the traveling speed of the vehicle, and a vehicle inclination detecting state. Information signals output from the tilt sensor 44 that performs the steering operation and the steering angle sensor 42 that detects the steering angle of the steering wheel are input. On the other hand, a control signal is output from the output unit 4 e to the hydraulic control device 3 and the cylinder device 16.
油圧制御装置 3 は、 主に、 エ ン ジ ン 3 0 の動力によ り駆動される油 圧ポ ンプ 3 1 、 リ ザーバタ ンク 3 4 、 および制御弁 ( 4 ポー ト 3 位置 電磁弁) 3 2 によ り構成される。 こ の油圧ポ ンプ 3 1 は、 リ ザーバタ ン ク 3 4 から作動油を吸入し、 管路 3 3 a 、 制御弁 3 2 、 管路 3 3 c も し く は管路 3 3 d を介してシ リ ンダ装置 1 6 に圧油を供給する。 ま た制御弁 3 2 は、 電子制御装置 4 からの制御信号によ り励磁される リ ニァソ レノ ィ ド 3 2 d、 3 2 e の作動によって、 中立位置 3 2 a 、 伸 長位置 3 2 b、 収縮位置 3 2 c の 3 位置およびそれらの任意の中間位 置に切換える こ とができ る弁である。 The hydraulic control device 3 is mainly composed of oil driven by the power of the engine 30. It consists of a pressure pump 31, a reservoir tank 34, and a control valve (4 port 3 position solenoid valve) 32. The hydraulic pump 31 sucks hydraulic oil from the reservoir tank 34 and passes through the line 33a, the control valve 32, the line 33c or the line 33d. Supply pressurized oil to cylinder device 16. The control valve 32 is actuated by the linear solenoids 32 d and 32 e which are excited by a control signal from the electronic control unit 4 so that the neutral position 32 a and the extension position 32 b are activated. It is a valve that can be switched to the three contraction positions 32c and any intermediate position between them.
シ リ ンダ装置 1 6 には、 シ リ ンダボディ 2 1 内で油密状態で摺動可 能な ピス ト ン 2 2 が設け られている。 そ して、 電子制御装置 4 からの 制御信号によ り作動する油圧制御装置 3 よ り圧油が供給され、 これに よ り シ リ ンダ装置 1 6 は作動される。  The cylinder 16 is provided with a piston 22 slidable in an oil-tight manner in the cylinder body 21. Then, the hydraulic oil is supplied from the hydraulic control device 3 which is operated by the control signal from the electronic control device 4, and the cylinder device 16 is thereby operated.
次に、 上記構成における作動を説明する。  Next, the operation in the above configuration will be described.
まず、 直進走行時における作動を説明する。 第 4 図において、 直進 走行時では、 制御弁 3 2 は中立位置 3 2 a の状態に設定される。 こ の 時、 油圧ポ ンプ 3 1 よ り吐出される圧油は、 管路 3 3 a 、 制御弁 3 2、 管路 3 3 b を経て リ ザーバタ ンク 3 4 に戻る。 一方、 シ リ ンダ装置 1 6 の上室 2 5 および下室 2 6 に接続された管路 3 3 c 、 管路 3 3 d は、 制御弁 3 2 によって遮断されるため、 シ リ ンダ装置 1 6 の上室 2 5 お よび下室 2 6 は油密状態に保たれ、 ピス ト ン 2 2 はシ リ ンダボディ 2 1 内で固定される。 .  First, the operation during straight running will be described. In FIG. 4, during straight running, the control valve 32 is set to the neutral position 32a. At this time, the pressure oil discharged from the hydraulic pump 31 returns to the reservoir tank 34 via the pipe 33a, the control valve 32, and the pipe 33b. On the other hand, the pipes 33c and 33d connected to the upper chamber 25 and the lower chamber 26 of the cylinder device 16 are shut off by the control valve 32, so that the cylinder device 1 The upper chamber 25 and the lower chamber 26 of 6 are kept oil-tight, and the piston 22 is fixed in the cylinder body 21. .
つま り、 シ リ ンダ装置 1 6 は一種の剛体の働きをする こ と になるの で、 スタ ビライザ 7 (図 1 ) はその固有の捩り剛性を発揮して、 車両 の走行安定性を確保する。 ただ し、 本実施例では、 シ リ ンダ装置 1 6 及び他方のスタ ビライザの一端がそれぞれ左右車輪のロアアーム 1 3、 1 4 に所定のアーム比 t で結合されている。 こ のため、 例えば右車輪 のみが突起を乗り越した場合、 それによる左右車輪の上下動差は、 そ の大き さが縮小されてスタ ビライザ 7 に作用する こ と になる。 従って、 ス夕 ビライザ 7 が発揮する捩じ り剛性は、 シ リ ンダ装置 1 6 及び他方 のスタ ビライザの一端がそれぞれシ ョ ッ ク ァブソーバに取り付けられ 場合と比較して小さ く する こ とができる。 このため、 直進走行時にお いては、 乗り心地の向上を図る こ とができ る。 In other words, since the cylinder device 16 acts as a kind of rigid body, the stabilizer 7 (Fig. 1) exerts its inherent torsional rigidity to secure the running stability of the vehicle. . However, in this embodiment, one end of the cylinder device 16 and one end of the other stabilizer are respectively connected to the lower arms 13 and 14 of the left and right wheels at a predetermined arm ratio t. Therefore, for example, when only the right wheel moves over the protrusion, the vertical movement difference between the right and left wheels is reduced in size and acts on the stabilizer 7. Therefore, the torsional rigidity exhibited by the screen stabilizer 7 is the same as that of the cylinder device 16 and the other. One end of each of the stabilizers can be made smaller as compared to a case where each end is attached to a shock absorber. For this reason, it is possible to improve the riding comfort when traveling straight ahead.
次に、 旋回走行時における作動を説明する。 第 4 図において、 旋回 走行時では、 車速および操舵角の大き さに応じて予め定められた関係 に したがって、 シ リ ンダ装置 1 6 の目標伸縮量を決定する。 そ して、 この目標伸縮量に応じてシ リ ンダ装置 1 6 を伸長または収縮させるベ く 、 油圧制御装置 3 を駆動する。  Next, the operation during turning will be described. In FIG. 4, during turning, the target expansion / contraction amount of the cylinder device 16 is determined according to a relationship predetermined according to the vehicle speed and the magnitude of the steering angle. Then, the hydraulic control device 3 is driven to extend or contract the cylinder device 16 according to the target expansion / contraction amount.
すなわち、 シ リ ンダ装置 1 6 を伸長させる時には、 制御弁 3 2 を伸 縮位置 3 2 b側へ駆動すべく リ ニアソ レノ ィ ド 3 2 d に通電する。 す る と、 管路 3 3 a および管路 3 3 d は制御弁 3 2 のポー ト を介して連 通し、 シ リ ンダ装置 1 6 の下室 2 6 にはポンプ 3 1 から吐出される圧 油が管路 3 3 a、 制御弁 3 2 、 管路 3 3 dを介して供給される。 なお、 リ ニアソ レノ ィ ド 3 2 dが通電状態である場合には リ ニアソ レノ ィ ド 3 2 e は無通電状態であ り、 また、 リ ニアソ レノ ィ ド 3 2 eが通電状 態である場合には リ ニアソ レノ ィ ド 3 2 d は無通電状態である。  That is, when the cylinder device 16 is extended, the linear solenoid 32 d is energized to drive the control valve 32 to the extension position 32 b. Then, the pipes 33a and 33d communicate with each other through the port of the control valve 32, and the lower chamber 26 of the cylinder device 16 receives the pressure discharged from the pump 31. Oil is supplied via line 33a, control valve 32, and line 33d. Note that when the linear solenoid 32 d is energized, the linear solenoid 32 e is non-energized, and the linear solenoid 32 e is energized. In this case, the linear solenoid 32d is in a non-energized state.
一方、 管路 3 3 c を介して接続される制御弁 3 2 のポー ト は、 リ ニ ァソ レノ ィ ド 3 2 dへの通電電流が大き く なるにつれてその開口面積 が增大するよう に作動する。 したがって リ ニアソ レノ ィ ド 3 2 dへの 通電電流を制御す.る こ とによ り、 シ リ ンダ装置 1 6 の上室 2 5 から管 路 3 3 c を通ってリ ザーバタ ンク 3 4 へ流出する油量を調節する こ と ができ る。  On the other hand, the port of the control valve 32 connected through the pipe 33c is designed so that the opening area thereof increases as the current flowing through the linear solenoid 32d increases. Operate. Therefore, the current supplied to the linear solenoid 32d is controlled, whereby the reservoir tank 34 is connected from the upper chamber 25 of the cylinder device 16 to the reservoir tank 34 through the pipe 33c. The amount of spilled oil can be adjusted.
そ して、 上室 2 5 よ り圧油が流出 してはじめてビス ト ン 2 2 が上室 2 5側へ移動できるので、 リ ニアソ レ ノ イ ド 3 2 d、 3 2 e の通電電 流を制御する こ と によ り ビス ト ン 2 2 の移動量をも調節する こ とがで きる しかも 、 リ ニアソ レノ イ ド 3 2 d、 3 2 e の通電電流の大き さ と流出油量 (すなわち ピス ト ンの移動量) との関係は予測する こ と力 < でき るので、 電子制御装置 4 は、 出力 した通電電流の大きさ と通電時 間とから ビス ト ン 2 2 の位置を予測計算する こ とができ る。 この予測計算によ り ピス ト ン 2 2 の位置を予測 し、 それと共に ビス ト ン位置検出装置 4 3 を用いてピス ト ン 2 2 の予測位置を補正する。 その後、 ピス ト ン 2 2 の予測位置が目標位置に達したと判断した時点 で リ ニア ソ レ ノ ィ ド 3 2 d への通電を終了する。 なお、 ピス ト ン位置 検出装置 4 3 が設け られてい る に も係わ らずビス ト ン 2 2 の位置を予 想計算するのは、 ピス ト ン位置検出装置 4 3 が、 ピス ト ンス ト ローク の中間位置のみを検出する、 いわゆるスィ ツ チと して構成されている ためである。 ピス ト ン位置検出装置 4 3 は、 シ リ ンダ装置 1 6 の ビス ト ンロ ッ ドの周囲にコイルを配置する こ と によ って構成されており、 ビス ト ンロ ッ ドは透磁率の異なる 2 種の金属を接合して構成されてい る。 ピス ト ンロ ッ ドの 2 種の金属の接合位置は、 シ リ ンダ装置 1 6 に おける ピス ト ンス ト ロークの中間位置に対応している。 従って、 コィ ルのイ ンダク タ ンス変化を検出する こ と によ り 、 ビス ト ンス ト ロ ー ク の中間位置を検出する こ とができ る。 Then, only when the pressurized oil flows out of the upper chamber 25, the piston 22 can move to the upper chamber 25 side, so that the energizing current of the linear solenoids 32d and 32e can be obtained. By controlling the amount of oil, the amount of movement of the piston 22 can be adjusted, and the magnitude of the current flowing through the linear solenoids 32 d and 32 e and the amount of oil spill ( (I.e., the amount of movement of the piston), the force <can be predicted. Therefore, the electronic control unit 4 predicts the position of the piston 22 from the magnitude of the output energizing current and the energizing time. Can be calculated. The position of the piston 22 is predicted by this prediction calculation, and the predicted position of the piston 22 is corrected using the piston position detection device 43. Then, when it is determined that the predicted position of the piston 22 has reached the target position, the power supply to the linear solenoid 32d is terminated. It should be noted that, despite the provision of the piston position detecting device 43, the position of the piston 22 is predicted by calculation because the piston position detecting device 43 This is because it is configured as a so-called switch that detects only the middle position of the stroke. The piston position detecting device 43 is configured by arranging a coil around the piston rod of the cylinder device 16, and the piston rod has different magnetic permeability. It is constructed by joining two metals. The joining position of the two metals of the piston rod corresponds to the intermediate position of the piston stroke in the cylinder device 16. Therefore, by detecting a change in the inductance of the coil, it is possible to detect the intermediate position of the bistro stroke.
リ ニアソ レ ノ ィ ド 3 2 d への通電が終了する と、 制御弁 3 2 は中立 位置 3 2 a の状態に戻る。 このため、 シ リ ンダ位置 1 6 の上室 2 5 お よび下室 2 6 は再び油密状態に保たれ、 ピス ト ン 2 2 は目標位置で固 定される。 こ のよ う に油圧制御装置 3 は、 メ ータアウ ト油圧回路の構 成を有するので、 微小油量、 大油量にかかわ らず正確に調節する こ と ができ、 的確にシ リ ンダ装置 1 6 を制御する こ とができ る。  When the energization of the linear solenoid 32d is completed, the control valve 32 returns to the neutral position 32a. For this reason, the upper chamber 25 and the lower chamber 26 at the cylinder position 16 are kept oil-tight again, and the piston 22 is fixed at the target position. Since the hydraulic control device 3 has the configuration of the meter-out hydraulic circuit as described above, it can be adjusted accurately regardless of the minute oil amount or the large oil amount, and the cylinder device 1 can be accurately adjusted. 6 can be controlled.
また、 シ リ ンダ装置 1 6 を収縮させる時には、 制御弁 3 2 を収縮位 置 3 2 c側へ駆動すべく リ ニア ソ レノ ィ ド 3 2 e に通電する。 する と、 管路 3 3 a および管路 3 3 c は制御弁 3 2 のポー トを介して連通 し、 シ リ ンダ装置 1 6 の上室 2 5 にはポ ンプ 3 1 から吐出される圧油が管 路 3 3 a 、 制御弁 3 2 、 管路 3 3 c を介して供給される。  When the cylinder device 16 is contracted, the linear solenoid 32 e is energized in order to drive the control valve 32 to the contracted position 32 c. Then, the pipes 33a and 33c communicate with each other through the port of the control valve 32, and the pressure discharged from the pump 31 is connected to the upper chamber 25 of the cylinder device 16. Oil is supplied via line 33a, control valve 32, and line 33c.
一方、 管路 3 3 d を介 して接続される制御弁 3 2 のポー ト は、 リ ニ ァ ソ レノ ィ ド 3 2 e への通電電流が大き く なるにつれてその開口面積 が増大するよ う に作動する。 したがって リ ニアソ レノ ィ ド 3 2 e への 通電電流を制御する こ と によ り 、 シ リ ンダ装置 1 6 の下室 2 6 から管 路 3 3 dを通ってリ ザーバタ ンク 3 4へ流出する油量を調節する こ と ができる。 On the other hand, the port area of the control valve 32 connected via the pipe 33 d is such that the opening area increases as the current flowing to the linear solenoid 32 e increases. Activate Therefore, by controlling the current supplied to the linear solenoid 32 e, the pipe from the lower chamber 26 of the cylinder device 16 is controlled. The amount of oil flowing to reservoir tank 34 through road 33d can be adjusted.
故に、 シ リ ンダ装置 1 6 が伸長する場合と同様に してビス ト ン 2 2 の位置が予測され、 ピス ト ン 2 2 が目標位置に達したと判定された時 点でリ ニアソ レノ イ ド 3 2 e の通電を終了 し、 ピス ト ン 2 2 が目標位 置で固定される。  Therefore, similarly to the case where the cylinder device 16 is extended, the position of the piston 22 is predicted, and the linear solenoid is determined when it is determined that the piston 22 has reached the target position. The energization of the switch 32 e is terminated, and the piston 22 is fixed at the target position.
次に、 電子制御装置 4 の作動について説明する。  Next, the operation of the electronic control unit 4 will be described.
電子制御装置 4 は、 予め設定した制御プログラムに従って信号入力、 処理、 および信号出力を繰り返し実行する C P U 4 a を用いて所要の 機能を実現する手段と して構成されている。 こ の電子制御装置 4 が実 行するプログラム手順は、 第 5 図に示すとおりである。  The electronic control unit 4 is configured as means for realizing required functions using the CPU 4a that repeatedly executes signal input, processing, and signal output according to a preset control program. The program procedure executed by the electronic control unit 4 is as shown in FIG.
すなわち第 5 図において、 信号人力のステッ プ 1 0 8 では、 車速セ ンサ 4 1 、 操舵角セ ンサ 4 2 、 傾斜セ ンサ 4 4 等が発生する各々の信 号を入力部 4 dを介して受け取り、 その情報内容を R A M 4 c に記億 させる。  That is, in FIG. 5, in step 108 of the signal manual power, each signal generated by the vehicle speed sensor 41, the steering angle sensor 42, the inclination sensor 44, etc. is input via the input unit 4d. Receiving and storing the information in RAM 4c.
続いて、 ステッ プ 1 1 0、 1 1 2 、 さ らにステッ プ 1 1 8 において 車両の走行条件を判定する と共に、 ステッ プ 1 1 4、 1 1 6、 1 2 0、 1 2 2 においてそれぞれの走行条件に対応する制御量が決定する。 こ の制御量は、 スタ ビライザ 7 の一端と ロアアーム 1 3 との間に設けら れたシ リ ンダ装置 1 6 の移動量を表すものであ り、 各走行条件と決定 されるべき制御量との関係は、 演算式またはプログラムメ モ リ におけ るマ ッ プと して R O M 4 b に予め設定される。  Subsequently, the running conditions of the vehicle are determined in steps 110, 112, and 118, and in steps 114, 116, 120, 122, respectively. The control amount corresponding to the traveling condition is determined. This control amount indicates the amount of movement of the cylinder device 16 provided between one end of the stabilizer 7 and the lower arm 13, and includes the respective running conditions and the control amount to be determined. The relationship is set in the ROM 4b in advance as an arithmetic expression or a map in the program memory.
ステッ プ 1 1 0 では、 操舵角セ ンサ 4 2 によって得られる操舵角力、 ら車両が右旋回中であるか否かを判定し、 またステッ プ 1 1 2 では、 左旋回中であるか否かを判定する。 車両が右または左旋回中である塲 合には、 それぞれステッ プ 1 1 4 またはステッ プ 1 1 6 に処理が進め られ、 旋回によって生じる車両のロールを抑制するのに必要な制御量 を演算によって算出する。  In step 110, it is determined whether or not the vehicle is turning right based on the steering angle force obtained by the steering angle sensor 42.In step 111, whether or not the vehicle is turning left is determined. Is determined. If the vehicle is turning right or left, the process proceeds to step 114 or step 116, respectively, and the control amount necessary to suppress the roll of the vehicle caused by the turn is calculated. calculate.
このよ う な演算は、 旋回の際に車両に作用する遠心力に見合うだけ の制御量を求める ものであ り、 基本的には、 操舵角セ ンサ 4 2 にて得 られる操舵角によ り示される車両の旋回半径に逆比例 し、 車速セ ンサ 4 1 にて得られる走行速度の 2 乗に比例する関係式に基づいて算出さ れる。 Such calculations are only appropriate for the centrifugal force acting on the vehicle during turning. Is basically inversely proportional to the turning radius of the vehicle indicated by the steering angle obtained by the steering angle sensor 42, and is obtained by the vehicle speed sensor 41. It is calculated based on a relational expression proportional to the square of the traveling speed.
ステッ プ 1 1 8 では、 傾斜セ ンサ 4 4 によ って得られる車両の横方 向の傾きが所定角以上か否かを判定する もので、 所定角度以上の傾き がある と判定された場合は、 ステ ッ プ 1 2 0 においてその傾き に対応 する制御量が演算される。  In step 118, it is determined whether or not the lateral inclination of the vehicle obtained by the inclination sensor 44 is equal to or greater than a predetermined angle. In step 120, a control amount corresponding to the inclination is calculated in step 120.
も し、 右旋回、 左旋回のいずれでもな く (ほぼ直進走行) 、 しかも 傾斜がほとんどない場合には、 ステッ プ 1 2 2 において制御量は予め 設定された一定の値に設定される。 こ の設定値は、 シ リ ンダ装置 1 6 がスタ ビライザ 7 に対して付加的な作用力を及ぼさない値に予め設定 されている。  If neither right turn nor left turn (almost straight traveling) and there is almost no inclination, the control amount is set to a predetermined value in step 122. This set value is set in advance to a value at which the cylinder device 16 does not exert an additional acting force on the stabilizer 7.
なお、 先に説明した右旋回中の制御量は、 上記基準値に対して移動 量を遠心力に見合う分だけ伸長されるよ う に演算され、 また左旋回中 の制御量は上記基準値に対して縮小させるよ う に演算されるのは言う までもない。 そ して、 こ の設定された制御量は、 制御弁 3 2 、 シ リ ン ダ装置 1 6 に出力されて、 それぞれが上述したよ う に制御される。  The control amount during the right turn described above is calculated so that the moving amount is extended by an amount corresponding to the centrifugal force with respect to the reference value, and the control amount during the left turn is the reference value. Needless to say, the operation is performed to reduce the Then, the set control amount is output to the control valve 32 and the cylinder device 16 and each is controlled as described above.
次に、 上述した車両用姿勢制御装置の一実施例がもた らす効果の一 例について説明する。  Next, an example of the effects provided by the embodiment of the vehicle attitude control device described above will be described.
第 6 図は、 アーム比 t がそれぞれ異なる車両における横加速度と 口 ール角 との特性を示す横加速度一 ロール角特性図である。 なお、 こ の 第 6 図に示す一例では、 アーム比が 1 である車両とアーム比が 0 . 4 である車両とを比較対象と しており 、 これらの車両は同一のロール剛 性 ( =アーム比 t 2 Xバネ定数 k ) を有し、 シ リ ンダス ト ローク は 6 0 m mである。 FIG. 6 is a lateral acceleration-roll angle characteristic diagram showing characteristics of lateral acceleration and a steep angle in vehicles having different arm ratios t. In the example shown in FIG. 6, a vehicle having an arm ratio of 1 and a vehicle having an arm ratio of 0.4 are compared, and these vehicles have the same roll stiffness (= arm). It has a ratio t 2 X spring constant k) and the cylinder stroke is 60 mm.
第 6 図に示すよ う に、 例えば横加速度が 0 . 4 5 ( G ) である場合、 アーム比が 1 である車両ではロール角は 2 . 3 度となる。 一方、 ァ一 ム比が 0 . 4 である車両ではロール角は 0 . 9 度とな り 、 アーム比が 1 である車両と比較する と大幅にロール角の低減量が増大する こ と に なる。 これによ り 、 アーム比が 0 . 4 である車両は、 アーム比が 1 で ある車両よ り もさ らに操縦安定性を確保する こ とができ る こ とがわか る ο As shown in FIG. 6, for example, when the lateral acceleration is 0.45 (G), the roll angle is 2.3 degrees in a vehicle having an arm ratio of 1. On the other hand, in a vehicle with an arm ratio of 0.4, the roll angle is 0.9 degrees, and the arm ratio is Compared with the vehicle of No. 1, the amount of reduction in the roll angle is greatly increased. As a result, it can be seen that the vehicle having the arm ratio of 0.4 can secure more stable driving than the vehicle having the arm ratio of 1.
以上述べたよ う に上記一実施例においては、 スタ ビライザ 7 に連結 されたシ リ ンダ装置 1 6 を車体に近づけて配置したこ と によ り、 ロー ルを抑える捩り作用力を大き く する こ とができ、 操縦安定性を確保す る こ とができ る。  As described above, in the above-described embodiment, the cylinder device 16 connected to the stabilizer 7 is arranged close to the vehicle body, thereby increasing the torsional action force for suppressing the roll. As a result, steering stability can be ensured.
なお、 上述したス ト ラ ッ ト型サスペンシ ョ ンと同様に、 ダブルウ イ ッ シ ュ ボー ン型サスペ ン シ ョ ンにおいても、 ア ッ パーアーム も し く は ロアアームの最適アーム比 Tとなる位置にシ リ ンダを設置して、 ア ツ パーアーム も し く はロ アアーム と スタ ビラ イザと をシ リ ンダ装置を介 して結合させて構成してもよい。  Note that, similarly to the above-described flat suspension, in the double-wish-bon suspension, the upper arm or the lower arm is positioned at an optimum arm ratio T. A cylinder may be installed, and the upper arm or the lower arm and the stabilizer may be connected to each other via a cylinder device.
次に、 第 2実施例と して、 車軸懸架型サスペ ン シ ョ ンに本発明を適 用 した例について説明する。  Next, as a second embodiment, an example in which the present invention is applied to an axle suspension type suspension will be described.
第 7 図は、 本発明の第 2 実施例を表す構成図である。 なお、 第 7 図 の図番号で、 第 1 図の図番号と同番号である ものは、 第 1 図の構成と 均等である こ とを示す。  FIG. 7 is a configuration diagram showing a second embodiment of the present invention. The figure numbers in FIG. 7 that are the same as the figure numbers in FIG. 1 indicate that they are equivalent to the configuration in FIG.
第 7 図において、 左輪 1 と右輪 2 と は車軸 (車軸部材に相当) 1 5 で支持され、 車体 1 2 はコイルスプリ ング (パネ部材に相当) 5 0、 5 1 を介 して車軸 1 5 に支持されている。 また、 スタ ビラ イ ザ 7 の ト ーシ ヨ ン部 8 は捩り弾性を有しており、 ラバ一軸受け 9、 1 0 にて回 転可能に支持されている。 このスタ ビライザ 7 の一端は、 連結距離を 調整でき る シ リ ンダ装置 1 6 が接続され、 最適スパ ン Lで取り付けら れている。  In FIG. 7, the left wheel 1 and the right wheel 2 are supported by an axle (corresponding to an axle member) 15, and a vehicle body 12 is supported by coil springs (corresponding to a panel member) 50, 51 via an axle 15. It is supported by. The torsion portion 8 of the stabilizer 7 has torsional elasticity, and is rotatably supported by rubber single bearings 9 and 10. One end of the stabilizer 7 is connected to a cylinder device 16 capable of adjusting the connection distance, and is attached with an optimum span L.
こ こで、 上述 した最適スパ ン L について説明する。 こ の最適スパ ン L は、 ス ト ラ ッ ト型サスペ ン シ ョ ンの最適アーム比 T と同様に求める こ とができ る。  Here, the optimal span L described above will be described. This optimum span L can be obtained in the same manner as the optimum arm ratio T of the flat type suspension.
すなわち、 車軸懸架型サスペンシ ョ ンにおけるロール抑制の効果指 数 Eおよびスタ ビライザに発生する捩り作用力 F は、 スパ ン 1 x によ り以下に示す式で表すこ とができ る。 但し、 な ' 、 β ' > は定数 ε ' , f ' は関数である。 In other words, the effect of roll suppression in axle suspension suspension Twisting action force generated in the number E and Star Biraiza F is, Ru can be expressed by the formula shown below Ri by the span 1 x. Where, 'and β' are constants ε 'and f' are functions.
E = ε ' ( 1 χ ) = 1 + ( な ' S Z l i ) (7) E = ε '(1 χ ) = 1 + (a' SZ li) (7)
F = f ' ( l x ) = ( /S ' / l x ) + ( r ' S / l x 2 ) —— (8) つま り、 数式 (7)、 数式 (8)に示すよ う に、 車軸懸架型サスペ ン シ ョ ン における効果指数 Eおよびスタ ビライザに発生する捩り作用力 F は、 ス ト ラ ッ ト型サスペ ン シ ョ ンの場合と同様な式で表される。 したがつ て、 第 1 実施例と同 じ手法によ って最適な取り付けスパ ン Lを求める こ とができ る。 F = f '(lx) = (/ S' / lx) + (r 'S / lx 2 ) --- (8) In other words, as shown in equations (7) and (8), the axle suspension type The effect index E in the suspension and the torsional force F generated in the stabilizer are expressed by the same formulas as in the case of the flat suspension. Therefore, the optimal mounting span L can be obtained by the same method as in the first embodiment.
すなわち、 捩り作用力 Fが適性な大き さであ り、 しかもロール抑制 効果を極力上げるよ う なシ リ ンダ装置 1 6 の最適取り付け位置 (最適 ス ノ、。ン L ) は、 第 8 図に示すよ う に、 スタ ビライザ 7 に発生する捩り 作用力によ り 、 シ リ ンダ装置 1 6 が破壊される限界捩り作用力 F max を安全率 P ' で除算した値に対応した ものとなる。 すなわち最適スパ ン L は、  In other words, the optimum mounting position (optimal snow, .L) of the cylinder device 16 for which the torsional action force F is of an appropriate size and which maximizes the roll suppressing effect is shown in FIG. As shown, the torsional action force generated in the stabilizer 7 corresponds to a value obtained by dividing the limit torsional action force F max at which the cylinder device 16 is destroyed by the safety factor P ′. That is, the optimal span L is
f ' ( L ) = F max ' / P ' (9)  f '(L) = F max' / P '(9)
と表される。 なお、 第 8 図はスパ ン 1 とスタ ビラ イザの捩り作用力 F との特性を示すスパ ンースタ ビライザ特性図である。 そ して上記安全 率 P ' は、 数式 (6)に示すよ う に設定されている。 It is expressed as FIG. 8 is a characteristic diagram of the span stabilizer which shows the characteristics of the span 1 and the torsional acting force F of the stabilizer. The safety factor P ′ is set as shown in Expression (6).
以上述べたよ う に して、 第 2 実施例における車軸懸架型サスペン シ ヨ ンに本発明を適用 した場合についても、 上記第 1 実施例と同様に し て最適スパン Lを求める こ とができ る。 産業上の利用可能性  As described above, even when the present invention is applied to the suspension suspension of the axle in the second embodiment, the optimum span L can be obtained in the same manner as in the first embodiment. . Industrial applicability
以上のよ う に、 本発明に係わる車両用姿勢制御装置は、 スタ ビラ ィ ザを用いて車両の姿勢を変化する車両に適用可能であ り、 その性能向 上に大き く 寄与する こ とができ る。  As described above, the vehicle attitude control device according to the present invention can be applied to a vehicle that changes the attitude of the vehicle using the stabilizer, and can greatly contribute to improving the performance. it can.

Claims

請求の範囲 The scope of the claims
1 . 車体に回動可能に支持される と と もに、 捩じ り作用力を授受する アームの端部が左右車輪の各々のバネ下部材に桔合されて、 車体に対 する左右車輪の上下動差に応じて捩じ られるスタ ビライザを備えた車 両用姿勢制御装置において、  1. While being rotatably supported by the vehicle body, the ends of the arms that transmit and receive the torsional force are engaged with the unsprung members of the left and right wheels, and the left and right wheels of the left and right wheels with respect to the vehicle body are In a vehicle attitude control device equipped with a stabilizer that is twisted according to the vertical movement difference,
前記左右車輪を車体に結合する結合部材と、  A coupling member for coupling the left and right wheels to a vehicle body,
前記車体と前記結合部材との間に配置され、 路面状態に応じて発生 する振動を緩和する緩衝部材と、  A cushioning member disposed between the vehicle body and the coupling member, for reducing vibration generated according to a road surface condition;
前記左右車輪の各々のバネ下部材の少な く と も一方と前記スタ ビラ ィザの捩り作用力を授受するアーム と の間に介在して両者を連結し、 その連結距離を調整可能にした連結部材とを備え、  A connection in which at least one of the unsprung members of each of the left and right wheels is interposed between an arm that receives and transmits the torsional force of the stabilizer, and the two are connected to adjust the connection distance thereof. And a member,
前記スタ ビラ イ ザの捩じり作用力を授受するアームの端部及び前記 連結部材を、 少な く と も前記緩衝部材が前記結合部材に接続された位 置より も前記車体に近づけた位置で、 前記結合部材に結合したこ とを 特徵とする車両用姿勢制御装置。  The end of the arm that receives and transmits the torsional force of the stabilizer and the connecting member are at least positioned closer to the vehicle body than the position where the buffer member is connected to the connecting member. A vehicle attitude control device characterized by being coupled to the coupling member.
2 . 左右車輪を結合する車軸部材に回動可能に支持される と と もに、 その捩じ り作用力を授受するアームの端部が車体に結合されて、 車体 に対する左右車輪の上下動差に応じて捩じ られるスタ ビライザを備え た車両用姿勢制御装置において、  2. While being rotatably supported by the axle member connecting the left and right wheels, the end of the arm that transfers the torsional force is connected to the vehicle body, and the vertical movement difference of the left and right wheels with respect to the vehicle body In a vehicle attitude control device having a stabilizer that is twisted according to
前記車軸部材と車体との間で、 前記左右.車輪の近傍にそれぞれ設け られ、 路面状態に応じて発生する振動を緩和するばね部材と、  A spring member provided between the axle member and the vehicle body, near the left and right wheels and near the wheels, for reducing vibration generated according to a road surface condition;
前記車体と前記スタ ビライザの捩 じ り作用力を授受する少な く と も —方のアームとの間に介在して両者を連結し、 その連結距離を調 可 能に した連結部材とを備え、  A connecting member interposed between the vehicle body and at least one of the arms for transmitting and receiving the torsional action force of the stabilizer and connecting the two, and having a connection distance adjustable;
前記スタ ビラ イ ザの捩じ り作用力を授受するアームの端部及び前記 連結部材を、 少な く と も前記パネ部材よ り も車体中心に近づけた位置 で前記車体に結合したこ とを特徵とする車両用姿勢制御装置。  It is characterized in that the end of the arm for receiving the torsional action force of the stabilizer and the connecting member are connected to the vehicle body at least at a position closer to the center of the vehicle body than the panel member. Vehicle attitude control device.
PCT/JP1992/000026 1991-01-16 1992-01-16 Device for controlling attitude of vehicle WO1992012869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/3270 1991-01-16
JP327091A JPH04262910A (en) 1991-01-16 1991-01-16 Attitude control device for vehicle

Publications (1)

Publication Number Publication Date
WO1992012869A1 true WO1992012869A1 (en) 1992-08-06

Family

ID=11552762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000026 WO1992012869A1 (en) 1991-01-16 1992-01-16 Device for controlling attitude of vehicle

Country Status (2)

Country Link
JP (1) JPH04262910A (en)
WO (1) WO1992012869A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362094A (en) * 1993-06-09 1994-11-08 General Motors Corporation Hydraulically controlled stabilizer bar system
DE19649187A1 (en) * 1996-11-27 1998-05-28 Bayerische Motoren Werke Ag Hydraulic stabilising unit having on/off valve between delivery pipe and tank pipe for vehicles
EP1238833A1 (en) * 2001-03-06 2002-09-11 Meritor Light Vehicle Technology, LLC Suspension system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219411A (en) * 1987-03-09 1988-09-13 Kayaba Ind Co Ltd Suspension control device
JPS6422615A (en) * 1987-07-16 1989-01-25 Mitsubishi Motors Corp Controlling method for suspension
JPH0167108U (en) * 1987-10-27 1989-04-28

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219411A (en) * 1987-03-09 1988-09-13 Kayaba Ind Co Ltd Suspension control device
JPS6422615A (en) * 1987-07-16 1989-01-25 Mitsubishi Motors Corp Controlling method for suspension
JPH0167108U (en) * 1987-10-27 1989-04-28

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362094A (en) * 1993-06-09 1994-11-08 General Motors Corporation Hydraulically controlled stabilizer bar system
DE19649187A1 (en) * 1996-11-27 1998-05-28 Bayerische Motoren Werke Ag Hydraulic stabilising unit having on/off valve between delivery pipe and tank pipe for vehicles
DE19649187C2 (en) * 1996-11-27 2001-09-06 Bayerische Motoren Werke Ag Hydraulic stabilization device
EP1238833A1 (en) * 2001-03-06 2002-09-11 Meritor Light Vehicle Technology, LLC Suspension system
US6659475B2 (en) 2001-03-06 2003-12-09 Meritor Light Vehicle, Llc Decouplable link for a stabilizer bar

Also Published As

Publication number Publication date
JPH04262910A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US6161843A (en) Adaptive anti-roll device
US4834419A (en) Hydraulic stabilizer control system with road surface sensor
US6793228B2 (en) Anti-roll suspension for automobiles
US20160200164A1 (en) Stabilizer
EP1138531A1 (en) Hydraulic anti-roll suspension system for motor vehicles
JPH0295911A (en) Control device for automobile active suspension
JPH0585369B2 (en)
JP2021194924A (en) Vehicular stabilizer system
US20040061292A1 (en) Articulation compensated hydraulic suspension system
JPH1142918A (en) Suspension device
JPH048619A (en) Car stabilizer device
WO1992012869A1 (en) Device for controlling attitude of vehicle
JP3087410B2 (en) Vehicle damping device
JPH048246B2 (en)
JPH048620A (en) Car stabilizer control device
JPS58105812A (en) Controller of rear suspension for vehicle
JPS62131811A (en) Stabilizer
JP2553861B2 (en) Stabilizer control device
KR100521211B1 (en) Apparatus for controlling roll-hardness of stabilizer bar for suspension system in automobile
JP3648771B2 (en) Vehicle stabilizer control device
KR101448796B1 (en) Suspension system for vehicles
KR20020055815A (en) Anti roll controlling device of vehicle
JPH0419212A (en) Suspension device for vehicle
JPH0899519A (en) Air suspension device for vehicle
JPH0630492Y2 (en) Stabilizer device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase