WO1992011543A1 - Method of measuring the range and speed of an object - Google Patents
Method of measuring the range and speed of an object Download PDFInfo
- Publication number
- WO1992011543A1 WO1992011543A1 PCT/DE1991/000899 DE9100899W WO9211543A1 WO 1992011543 A1 WO1992011543 A1 WO 1992011543A1 DE 9100899 W DE9100899 W DE 9100899W WO 9211543 A1 WO9211543 A1 WO 9211543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- speed
- distance
- difference
- emitted
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/583—Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
- G01S13/584—Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
Definitions
- the invention is based on a method according to the type of the main claim.
- the reflected signal undergoes a Doppler shift.
- this Doppler shift falsifies the distance measurement. That is why in the known methods, the shortest possible ramp duration is selected, as a result of which the intermediate frequency range is shifted towards high frequencies, so that the Doppler shift becomes relatively small.
- the relative speed can be measured by differentiating the distance values of successive measurements.
- a measurement of the relative speed using the known method is too imprecise.
- the object of the present invention is therefore to provide a method for measuring the distance and the speed of an object with the aid of electromagnetic waves, in which both the distance and the speed can be measured as precisely as possible.
- the method according to the invention should be suitable for the relatively small distances and speeds occurring in road traffic.
- the inventive method with the characterizing features of the main claim has the advantage that an accurate distance and speed measurement is possible with relatively simple and known means.
- the accuracy of the speed measurement is significantly increased compared to the known methods.
- the accuracy of the distance measurement is also increased by compensating for the Doppler effect.
- Another advantage of the invention over the known method, in which the speed information is obtained by differentiating successive distance measurements, is that the measurement result is available very quickly, namely after a measurement cycle.
- Differentiation methods on the other hand, have to measure the distance course for a relatively long time in order to average out statistical fluctuations in the measured values, which are exacerbated by the differentiation.
- This advantage is particularly important for applications in road traffic, such as. B. collision avoidance or distance control, since fast response times are required here.
- the method according to the invention is particularly well suited for distance warning devices on motor vehicles. With the help of your own vehicle speed, you can easily differentiate between oncoming, stationary and preceding objects.
- frequency modulation is preferably carried out in such a way that the transition between two frequencies takes the form of a ramp, the ramp duration preferably being of the order of 1 ms.
- FIG. 1 shows the course over time of the frequencies of the emitted and the received signal during reflection on an object moving relative to the location of the measurement and in the case of an object at a constant distance
- FIG. 2 shows the intermediate frequency spectra resulting from the frequency curve according to FIG. 1 and
- Fig. 3 shows a device for performing the inventive method.
- frequency f is plotted over time t.
- the frequency of the transmitted signal is shown as a solid line, while the frequency of the received signal is dash-dotted in the case of a non-moving object and dashed in the case of a moving object.
- the frequencies rise in each case from a carrier frequency f_ by a frequency deviation f in a ramp manner, in order to fall again in a ramp shape to the carrier frequency f ⁇ after a short time which is not essential for the measurement.
- the ramp duration T is preferably about 1 ms at the distances and speeds to be measured in road traffic.
- the frequency of the received signal is shown in dashed lines in FIG. 1. This results in the
- Fig. 2 shows the spectral power N of
- the speed resolution in the method according to the invention is increased by the factor f, _ / f H , which in practice is between 100 and 300.
- f, _ / f H carrier frequencies from 50 GHz to 100 GHz and frequency swings up to 300 MHz are advantageous with a range of approximately 150 m.
- a known FMCW radar front end essentially contains a controllable oscillator (VCO) 2, a circulator 3, a Antenna 4 and a mixer 5.
- VCO controllable oscillator
- the output signal of the controllable oscillator is fed to the antenna via the circulator and radiated by the latter.
- the wave returning after the reflection is fed as a corresponding signal via the circulator to the mixer 5 and mixed there with the output signal of the oscillator 2.
- the resulting intermediate frequency corresponds to the difference between the frequencies of the transmitted signal and the received signal and is available at the output 6 of the mixer 5.
- a control input 7 of the controllable oscillator 2 is supplied with a signal for frequency modulation of the transmitted signal.
- This signal has the ramp shape shown schematically in FIG. 3 and is generated by a ramp generator 8 which, in a manner known per se, essentially consists of an integrator to which voltages of opposite signs are supplied during the ramps.
- the inputs 9 and 10 of the ramp generator 8 are supplied with the pulses shown in FIG. 3 by a control and computing unit 11.
- the control and computing unit 11 contains a frequency analyzer and a computing unit for calculating the distance s and the relative speed f. Since the control and computing unit basically corresponds to those used in the known FMCW radar devices, there is no need to explain them in detail. Compared to these known control and computing units, the pulses supplied to the ramp generator 8 are essentially broadened and implemented in order to carry out the method according to the invention Computer program provided in accordance with the arithmetic operations explained in connection with Figures 1 and 2. The intermediate frequency is fed to the control and computing unit via an analog / digital converter 12.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
The invention concerns a method, using electromagnetic waves, of measuring the range and speed of an object; the range being calculated from the difference in frequency of the emitted and simultaneously received waves (FMCW-radar). The frequency difference is measured while the emitted-wave frequency is increasing and while it is decreasing. The speed is calculated from the difference between the frequency differences, while the range is calculated from the mean of the frequency differences.
Description
Verfahren zur Messung des Abstandes und der Geschwindigkeit eines ObjektsProcedure for measuring the distance and speed of an object
Die Erfindung geht aus von einem Verfahren nach der Gattung des Hauptanspruchs.The invention is based on a method according to the type of the main claim.
Zur Abstandsmessung mit Hilfe von elektromagnetischen Wellen (Radar) sind verschiedene Verfahren bekanntgeworden. Bei dem sogenannten FMCW-Radar werden kontinuierlich elektromagnetische Wellen ausgesendet, deren Frequenz zwischen zwei Werten im wesentlichen rampenförmig moduliert wird. Bei den bekannten Verfahren dieser Art werden die empfangenen reflektierten Wellen mit den gleichzeitig ausgesendeten Wellen gemischt. Während der Frequenzänderung, also während der Rampe des Modulationssignals, kann aus der durch die Mischung gewonnenen Zwischenfrequenz in einfacher Weise auf die Laufzeit und damit auf den Abstand des Objekts geschlossen werden.Various methods have become known for measuring distances using electromagnetic waves (radar). In the so-called FMCW radar, electromagnetic waves are continuously emitted, the frequency of which is essentially modulated in a ramp-like manner between two values. In the known methods of this type, the received reflected waves are mixed with the waves emitted at the same time. During the frequency change, that is to say during the ramp of the modulation signal, the transit time and thus the distance of the object can be inferred in a simple manner from the intermediate frequency obtained by the mixture.
Bewegt sich das reflektierende Objekt relativ zum Ort der Messung, erfährt das reflektierte Signal eine Dopplerverschiebung. Bei den bekannten Verfahren verfälscht diese Dopplerverschiebung die Abstandsmessung. Deshalb wird
bei den bekannten Verfahren eine möglichst kurze Rampendauer gewählt, wodurch der Zwischenfrequenzbereich in Richtung auf hohe Frequenzen verschoben wird, so daß die Dopplerverschiebung relativ klein wird.If the reflecting object moves relative to the location of the measurement, the reflected signal undergoes a Doppler shift. In the known methods, this Doppler shift falsifies the distance measurement. That is why in the known methods, the shortest possible ramp duration is selected, as a result of which the intermediate frequency range is shifted towards high frequencies, so that the Doppler shift becomes relatively small.
Eine Messung der Relativgeschwindigkeit ist bei den bekannten Verfahren durch eine Differentiation der Abstandswerte aufeinanderfolgender Messungen möglich. Insbesondere bei der Abstands- und Geschwindigkeitsmessung von Straßenfahrzeugen ist eine Messung der relativen Geschwindigkeit mit dem bekannten Verfahren jedoch zu ungenau.In the known methods, the relative speed can be measured by differentiating the distance values of successive measurements. However, in particular when measuring the distance and speed of road vehicles, a measurement of the relative speed using the known method is too imprecise.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Messung des Abstandes und der Geschwindigkeit eines Objekts mit Hilfe elektromagnetischer Wellen anzugeben, bei welchem sowohl der Abstand als auch die Geschwindigkeit möglichst genau gemessen werden können. Insbesondere soll das erfindungsgemäße Verfahren für die im Straßenverkehr vorkommenden relativ geringen Abstände und Geschwindigkeiten geeignet sein.The object of the present invention is therefore to provide a method for measuring the distance and the speed of an object with the aid of electromagnetic waves, in which both the distance and the speed can be measured as precisely as possible. In particular, the method according to the invention should be suitable for the relatively small distances and speeds occurring in road traffic.
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß eine genaue Abstands- und Geschwindigkeitsmessung mit relativ einfachen und an sich bekannten Mitteln möglich ist. Insbesondere die Genauigkeit der Geschwindigkeitsmessung wird gegenüber den bekannten Verfahren wesentlich erhöht. Es wird jedoch auch die Genauigkeit der Abstandsmessung erhöht durch eine Kompensation des Dopplereffektes.The inventive method with the characterizing features of the main claim has the advantage that an accurate distance and speed measurement is possible with relatively simple and known means. In particular, the accuracy of the speed measurement is significantly increased compared to the known methods. However, the accuracy of the distance measurement is also increased by compensating for the Doppler effect.
Als weiterer Vorteil der Erfindung gegenüber dem bekannten Verfahren, bei dem die Geschwindigkeitsinformation durch Differenzieren aufeinanderfolgender Abstandsmessungen erfolgt, ist anzusehen, daß das Meßergebnis sehr schnell, nämlich nach einem Meßzyklus, zur Verfügung steht. Bei dem
Differentiationsverfahren muß hingegen relativ lange der Abstandsverlauf gemessen werden, um statistische Meßwertschwankungen, die durch das Differenzieren noch verstärkt werden, herauszumitteln.Another advantage of the invention over the known method, in which the speed information is obtained by differentiating successive distance measurements, is that the measurement result is available very quickly, namely after a measurement cycle. In which Differentiation methods, on the other hand, have to measure the distance course for a relatively long time in order to average out statistical fluctuations in the measured values, which are exacerbated by the differentiation.
Dieser Vorteil ist besonders bedeutsam bei Anwendungen im Straßenverkehr, wie z. B. Kollisionsvermeidung oder Abstandsregelung, da hier schnelle Reaktionszeiten gefordert sind.This advantage is particularly important for applications in road traffic, such as. B. collision avoidance or distance control, since fast response times are required here.
Durch die genannten Vorteile ist das erfindungsgemäße Verfahren besonders gut für Abstandswarneinrichtungen an Kraftfahrzeugen geeignet. Dabei kann unter Zuhilfenahme der eigenen Fahrzeuggeschwindigkeit in einfacher Weise zwischen entgegenkommenden, stehenden und vorausfahrenden Objekten unterschieden werden.Due to the advantages mentioned, the method according to the invention is particularly well suited for distance warning devices on motor vehicles. With the help of your own vehicle speed, you can easily differentiate between oncoming, stationary and preceding objects.
Vorzugsweise wird bei dem erfindungsgemäßen Verfahren die Frequenzmodulation derart vorgenommen, daß der Übergang zwischen zwei Frequenzen in Form einer Rampe erfolgt, wobei die Rampendauer vorzugsweise in der Größenordnung von 1 ms liegt.In the method according to the invention, frequency modulation is preferably carried out in such a way that the transition between two frequencies takes the form of a ramp, the ramp duration preferably being of the order of 1 ms.
Durch die in den ünteranspruchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Erfindung möglich.Advantageous further developments and improvements of the invention specified in the main claim are possible through the measures listed in the subclaims.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung anhand mehrerer Figuren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt:An embodiment of the invention is shown in the drawing using several figures and explained in more detail in the following description. It shows:
Fig. 1 den zeitlichen Verlauf der Frequenzen des ausgesendeten und des empfangenen Signals bei der Reflektion an einem sich gegenüber dem Ort der Messung bewegenden Objekt und bei einem Objekt in konstanter Entfernung,
Fig. 2 die sich bei dem Frequenzverlauf nach Fig. 1 ergebenden Zwischenfrequenzspektren und1 shows the course over time of the frequencies of the emitted and the received signal during reflection on an object moving relative to the location of the measurement and in the case of an object at a constant distance, FIG. 2 shows the intermediate frequency spectra resulting from the frequency curve according to FIG. 1 and
Fig. 3 eine Einrichtung zur Durchführung des erfindungsgemäßen Verf hrens.Fig. 3 shows a device for performing the inventive method.
Gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen.Identical parts are provided with the same reference symbols in the figures.
In Fig. 1 ist über die Zeit t die Frequenz f aufgetragen. Die Frequenz des ausgesendeten Signals ist als durchgezogene Linie dargestellt, während die Frequenz des empfangenen Signals im Falle eines sich nicht bewegenden Objekts strichpunktiert und im Falle eines sich bewegenden Objekts gestrichelt dargestellt ist. Die Frequenzen steigen jeweils von einer Trägerfrequenz f_ um einen Frequenzhub f rampenförmig an, um nach einer kurzen, für die Messung an sich unwesentlichen Zeit, rampenförmig wieder auf die Trägerfrequenz fτ abzufallen. Die Rampendauer T beträgt bei den im Straßenverkehr zu messenden Abständen und Geschwindigkeiten vorzugsweise etwa 1 ms. Der Verlauf der Frequenz des empfangenen Signals ist gegenüber dem Verlauf der Frequenz des ausgesendeten Signals um die Laufzeit t_ = 2s/c verschoben. Dieses gilt sowohl für die ansteigende als auch für die abfallende Rampe.1, frequency f is plotted over time t. The frequency of the transmitted signal is shown as a solid line, while the frequency of the received signal is dash-dotted in the case of a non-moving object and dashed in the case of a moving object. The frequencies rise in each case from a carrier frequency f_ by a frequency deviation f in a ramp manner, in order to fall again in a ramp shape to the carrier frequency f τ after a short time which is not essential for the measurement. The ramp duration T is preferably about 1 ms at the distances and speeds to be measured in road traffic. The course of the frequency of the received signal is shifted from the course of the frequency of the transmitted signal by the transit time t_ = 2s / c. This applies to both the ascending and descending ramp.
Eine zusätzliche Frequenzverschiebung ergibt sich durch denAn additional frequency shift results from the
Dopplereffekt derart, daß die Frequenz des empfangenenDoppler effect such that the frequency of the received
Signals bei Objekten, welche sich in Richtung auf den Ort der Messung bewegen, erhöht und bei sich entfernendenSignals for objects that move in the direction of the location of the measurement are increased and for those that are moving away
Objekten verringert wird. Für den Fall eines näherkommendenObjects. In the event of an approaching
Objekts ist die Frequenz des empfangenen Signals in Fig. 1 gestrichelt dargestellt. Damit ergibt sich dieThe frequency of the received signal is shown in dashed lines in FIG. 1. This results in the
Zwischenfrequenz f als Funktion des Abstands s und der relativen Geschwindigkeit vr zu fz(s, vr) = fo ± fΛD. Dabei
ist c die Lichtgeschwindigkeit. Das positive Vorzeichen gilt für die abfallende, das negative Vorzeichen für die ansteigende Rampe. Für die Dopplerverschiebung gilt f D„ = 2vO - fr1-lc und für fO = 2s«fr„l/(T»c).Intermediate frequency f as a function of the distance s and the relative speed vr to fz (s, vr) = fo ± f Λ D. c is the speed of light. The positive sign applies to the falling ramp, the negative sign to the rising ramp. For the Doppler shift applies f D „= 2vO - f r 1-lc and for fO = 2s « fr „l / (T » c).
Fig. 2 zeigt die spektrale Leistung N desFig. 2 shows the spectral power N of
Zwischenfrequenzsignals als Funktion der Frequenz. Im Falle der ansteigenden Rampe (Fig. 2A) ist eine Verschiebung in Richtung auf niedrigere Frequenzen erfolgt, während im Falle der abfallenden Rampe (Fig. 2B) das Spektrum in Richtung auf höhere Frequenzen verschoben ist. Mit Hilfe eines geeigneten Frequenzanalysators können die jeweiligen Frequenzen gemessen werden. Die Mittelfrequenzen der verschobenen Zwischenfrequenzsignale ergeben sich dann zu f = f - f_ im Falle der ansteigenden Rampe und zu f = f + fD im Falle der abfallenden Rampe. Unter Benutzung der oben angegebenen Gleichungen werden der Abstand s und die relative Geschwindigkeit v berechnet. Dabei wird der Abstand s über die Frequenz f aus dem Mittelwert der Mittelfrequenzen f berechnet. Zur Bestimmung der Geschwindigkeit über die Frequenz f dient die Differenz beider Mittelfrequenzen f .Intermediate frequency signal as a function of frequency. In the case of the rising ramp (FIG. 2A) there has been a shift towards lower frequencies, while in the case of the falling ramp (FIG. 2B) the spectrum has been shifted towards higher frequencies. The respective frequencies can be measured with the aid of a suitable frequency analyzer. The mean frequencies of the shifted intermediate frequency signals then result in f = f - f_ in the case of the rising ramp and f = f + f D in the case of the falling ramp. The distance s and the relative speed v are calculated using the equations given above. The distance s over the frequency f is calculated from the mean of the mean frequencies f. The difference between the two center frequencies f is used to determine the speed via the frequency f.
Gegenüber dem bekannten Verfahren, bei welchem die Geschwindigkeit durch Differentiation aufeinanderfolgender Abstände erfolgt, wird die Geschwindigkeitsauflösung beim erfindungsgemäßen Verfahren um den Faktor f,_/fH, der in der Praxis zwischen 100 und 300 liegt, erhöht. Für eine Abstands- und Geschwindigkeitsmessung zu vorausfahrenden Verkehrsteilnehmern sind bei einer Reichweite von etwa 150 m Trägerfrequenzen von 50 GHz bis 100 GHz und Frequenzhübe bis 300 MHz vorteilhaft.Compared to the known method, in which the speed is achieved by differentiating successive distances, the speed resolution in the method according to the invention is increased by the factor f, _ / f H , which in practice is between 100 and 300. For a distance and speed measurement to road users traveling ahead, carrier frequencies from 50 GHz to 100 GHz and frequency swings up to 300 MHz are advantageous with a range of approximately 150 m.
Fig. 3 zeigt ein Blockschaltbild einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens. Ein an sich bekanntes FMCW-Radar-Frontend enthält im wesentlichen einen steuerbaren Oszillator (VCO) 2, einen Zirkulator 3, eine
Antenne 4 und einen Mischer 5. Das Ausgangssignal des steuerbaren Oszillators wird über den Zirkulator der Antenne zugeführt und von dieser abgestrahlt. Die nach der Reflektion zurückkehrende Welle wird als entsprechendes Signal über den Zirkulator dem Mischer 5 zugeleitet und dort mit dem Ausgangssignal des Oszillators 2 gemischt. Die entstandene Zwischenfrequenz entspricht der Differenz der Frequenzen des ausgesendeten Signals und des empfangenen Signals und steht am Ausgang 6 des Mischers 5 zur Verfügung.3 shows a block diagram of a device for carrying out the method according to the invention. A known FMCW radar front end essentially contains a controllable oscillator (VCO) 2, a circulator 3, a Antenna 4 and a mixer 5. The output signal of the controllable oscillator is fed to the antenna via the circulator and radiated by the latter. The wave returning after the reflection is fed as a corresponding signal via the circulator to the mixer 5 and mixed there with the output signal of the oscillator 2. The resulting intermediate frequency corresponds to the difference between the frequencies of the transmitted signal and the received signal and is available at the output 6 of the mixer 5.
Einem Steuereingang 7 des steuerbaren Oszillators 2 wird ein Signal zur Frequenzmodulation des ausgesendeten Signals zugeführt. Dieses Signal weist die in Fig. 3 schematisch dargestellte Rampenform auf und wird von einem Rampengenerator 8 erzeugt, der in an sich bekannter Weise im wesentlichen aus einem Integrator besteht, dem während der Rampen Spannungen mit entgegengesetztem Vorzeichen zugeführt werden. Zur Steuerung dieser Auf- und Abintegration werden den Eingängen 9 und 10 des Rampengenerators 8 die in Fig. 3 dargestellten Impulse von einer Kontroll- und Recheneinheit 11 zugeführt.A control input 7 of the controllable oscillator 2 is supplied with a signal for frequency modulation of the transmitted signal. This signal has the ramp shape shown schematically in FIG. 3 and is generated by a ramp generator 8 which, in a manner known per se, essentially consists of an integrator to which voltages of opposite signs are supplied during the ramps. To control this upward and downward integration, the inputs 9 and 10 of the ramp generator 8 are supplied with the pulses shown in FIG. 3 by a control and computing unit 11.
Die Kontroll- und Recheneinheit 11 enthält außer einer Einrichtung zur Erzeugung der Steuerimpulse für den Rampengenerator einen Frequenzanalysator sowie eine Recheneinheit zur Berechnung des Abstandes s und der relativen Geschwindigkeit f. Da die Kontroll- und Recheneinheit grundsätzlich solchen entspricht, die bei den bekannten FMCW-Radar-Geräten verwendet werden, erübrigt sich eine Erläuterung im einzelnen. Gegenüber diesen bekannten Kontroll- und Recheneinheiten sind zur Durchführung des erfindungsgemäßen Verfahrens im wesentlichen die dem Rampengenerator 8 zugeführten Impulse verbreitert und ein
Rechenprogramm entsprechend den im Zusammenhang mit den Figuren 1 und 2 erläuterten Rechenoperationen vorgesehen. Die Zwischenfrequenz wird der Kontroll- und Recheneinheit über einen Analog/Digital-Wandler 12 zugeführt.
In addition to a device for generating the control pulses for the ramp generator, the control and computing unit 11 contains a frequency analyzer and a computing unit for calculating the distance s and the relative speed f. Since the control and computing unit basically corresponds to those used in the known FMCW radar devices, there is no need to explain them in detail. Compared to these known control and computing units, the pulses supplied to the ramp generator 8 are essentially broadened and implemented in order to carry out the method according to the invention Computer program provided in accordance with the arithmetic operations explained in connection with Figures 1 and 2. The intermediate frequency is fed to the control and computing unit via an analog / digital converter 12.
Claims
1. Verfahren zur Messung des Abstandes und der Geschwindigkeit eines Objekts mit Hilfe elektromagnetischer Wellen, wobei aus dem Frequenzunterschied der ausgesendeten und der gleichzeitig empfangenen Wellen der Abstand berechnet wird (FMCW-Radar), dadurch gekennzeichnet, daß der Frequenzunterschied während eines Anstiegs und während eines Abfalls der Frequenz der ausgesendeten Wellen gemessen wird und daß die Geschwindigkeit aus der Differenz der Frequenzunfeerschiede und der Abstand aus dem Mittelwert der Frequenzunterschiede berechnet werden.1. A method for measuring the distance and the speed of an object with the aid of electromagnetic waves, the distance being calculated from the frequency difference between the emitted and the simultaneously received waves (FMCW radar), characterized in that the frequency difference during a rise and during a If the frequency of the emitted waves is measured and that the speed is calculated from the difference in the frequency differences and the distance from the mean value of the frequency differences.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die ausgesendete Welle trapezförmig moduliert ist, wobei zwischen Intervallen mit im wesentlichen konstanter Frequenz eine ansteigende und eine abfallende Rampe vorgesehen ist.2. The method according to claim 1, characterized in that the emitted wave is modulated trapezoidal, with an increasing and a decreasing ramp is provided between intervals with a substantially constant frequency.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Dauer der Rampen in der Größenordnung von 1 ms liegt. 3. The method according to claim 2, characterized in that the duration of the ramps is in the order of 1 ms.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß aus der Frequenz der ausgesendeten Welle und der Frequenz der empfangenen Welle durch nichtlineare Mischung ein Zwischenfrequenzsignal gebildet wird, daß die Mittenfrequenz des Zwischenfrequenzsignals während des Frequenzanstiegs und während des Freguenzabfalls gemessen wird, daß aus dem Mittelwert der Mittenfrequenzen der Abstand und aus der Differenz der Mittenfrequenzen die Geschwindigkeit berechnet werden. 4. The method according to claim 1, characterized in that an intermediate frequency signal is formed from the frequency of the emitted wave and the frequency of the received wave by nonlinear mixing, that the center frequency of the intermediate frequency signal is measured during the frequency rise and during the frequency drop, that from the mean the distance from the center frequencies and the speed from the difference of the center frequencies.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19904040572 DE4040572A1 (en) | 1990-12-19 | 1990-12-19 | METHOD FOR MEASURING THE DISTANCE AND SPEED OF AN OBJECT |
DEP4040572.9 | 1990-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992011543A1 true WO1992011543A1 (en) | 1992-07-09 |
Family
ID=6420675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1991/000899 WO1992011543A1 (en) | 1990-12-19 | 1991-11-16 | Method of measuring the range and speed of an object |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4040572A1 (en) |
WO (1) | WO1992011543A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994016340A1 (en) * | 1992-12-31 | 1994-07-21 | Rockwell International Corporation | Computerised radar process for measuring distances and relative speeds between a vehicle and obstacles in front of it |
US5483242A (en) * | 1992-12-17 | 1996-01-09 | Robert Bosch Gmbh | Method for measuring the distance and velocity of objects |
US6587074B1 (en) * | 1999-07-27 | 2003-07-01 | Robert Bosch Gmbh | System for measuring the distance and the relative velocity between objects |
US7508337B2 (en) * | 2006-11-24 | 2009-03-24 | Hitachi, Ltd. | Radar apparatus and signal processing method |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2283631B (en) * | 1993-11-06 | 1998-04-29 | Roke Manor Research | Radar apparatus |
US5633642A (en) * | 1993-11-23 | 1997-05-27 | Siemens Aktiengesellschaft | Radar method and device for carrying out the method |
FR2733840B1 (en) * | 1995-05-05 | 1997-06-06 | Siemens Automotive Sa | METHOD OF MEASURING THE RELATIVE DISTANCE AND SPEED OF AN OBJECT IN RELATION TO A CONTINUOUS WAVE RADAR MODULATED IN FREQUENCY PERIODICALLY |
DE19526448A1 (en) * | 1995-07-20 | 1997-01-30 | Bosch Gmbh Robert | Motor vehicle radar system - measures angle between object and reference axis by measuring phase differences between reflected radar beams |
DE19631590C2 (en) * | 1996-08-05 | 1999-09-23 | Bosch Gmbh Robert | Method for the treatment of interference signals in a motor vehicle radar system and motor vehicle radar system therefor |
DE19742606B4 (en) * | 1997-09-26 | 2005-09-15 | Volkswagen Ag | Method and device for activating occupant protection systems in motor vehicles |
DE19920887C2 (en) * | 1999-05-06 | 2002-12-05 | Dornier Gmbh | Method for determining the uniqueness range in a frequency-controlled pulse radar system |
DE19963625A1 (en) * | 1999-12-29 | 2001-07-12 | Bosch Gmbh Robert | Procedure for measuring the distance and speed of objects |
DE10005421A1 (en) | 2000-02-08 | 2001-08-09 | Bosch Gmbh Robert | Frequency Modulated Carrier Wave radar system for establishing the distance profile of fog banks for motor vehicles has circuit for automatically compensating for signal intensities of reflected signals |
DE10242808B4 (en) | 2002-09-14 | 2018-09-06 | Robert Bosch Gmbh | Method and device for detecting obstacles and / or road users |
DE10326282B4 (en) * | 2003-06-11 | 2006-01-19 | Siemens Ag | Access control system with suppression of modulation interference |
DE102008038365A1 (en) * | 2008-07-02 | 2010-01-07 | Adc Automotive Distance Control Systems Gmbh | Vehicle radar system and method for determining a position of at least one object relative to a vehicle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2612636A (en) * | 1946-01-28 | 1952-09-30 | Rca Corp | Radio location and detection arrangement |
JPH01210887A (en) * | 1988-02-18 | 1989-08-24 | Matsushita Electric Ind Co Ltd | Fm radar sensor |
-
1990
- 1990-12-19 DE DE19904040572 patent/DE4040572A1/en not_active Withdrawn
-
1991
- 1991-11-16 WO PCT/DE1991/000899 patent/WO1992011543A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2612636A (en) * | 1946-01-28 | 1952-09-30 | Rca Corp | Radio location and detection arrangement |
JPH01210887A (en) * | 1988-02-18 | 1989-08-24 | Matsushita Electric Ind Co Ltd | Fm radar sensor |
Non-Patent Citations (3)
Title |
---|
M.I. Skolnik: "Introduction to Radar Systems", 1981, McGraw-Hill, Singapore; Abschnitt 3.3, Seiten 81-84, siehe den ganzen Artikel * |
M.I. Skolnik: "Radar Handbook", 1970, McGraw-Hill, USA; Abschnitt 16.12, Seiten 16.25 - 16.26, siehe Seite 16.26, Zeile 12 * |
Patent Abstracts of Japan, Band 13, Nr. 517 (P-962) 2. November 1989, & JP, A, 01210887 (MATSUSHITA) 24. August 1989, siehe den ganzen Artikel * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5483242A (en) * | 1992-12-17 | 1996-01-09 | Robert Bosch Gmbh | Method for measuring the distance and velocity of objects |
DE4242700C2 (en) * | 1992-12-17 | 2003-01-30 | Bosch Gmbh Robert | Procedure for measuring the distance and speed of objects |
WO1994016340A1 (en) * | 1992-12-31 | 1994-07-21 | Rockwell International Corporation | Computerised radar process for measuring distances and relative speeds between a vehicle and obstacles in front of it |
EP0939322A2 (en) * | 1992-12-31 | 1999-09-01 | Rockwell International Corporation | Computerised radar process for measuring distances and relative speeds between a vehicle and obstacles in front of it |
EP0939322A3 (en) * | 1992-12-31 | 1999-10-06 | Rockwell International Corporation | Computerised radar process for measuring distances and relative speeds between a vehicle and obstacles in front of it |
US6587074B1 (en) * | 1999-07-27 | 2003-07-01 | Robert Bosch Gmbh | System for measuring the distance and the relative velocity between objects |
US7508337B2 (en) * | 2006-11-24 | 2009-03-24 | Hitachi, Ltd. | Radar apparatus and signal processing method |
Also Published As
Publication number | Publication date |
---|---|
DE4040572A1 (en) | 1992-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2755045B1 (en) | Method for the cyclic measuring of distances and speeds of objects with an FMCW radar sensor | |
DE4242700C2 (en) | Procedure for measuring the distance and speed of objects | |
WO1992011543A1 (en) | Method of measuring the range and speed of an object | |
EP2948789B1 (en) | Fmcw radar having distance-range graduation | |
EP1002239B1 (en) | Radar distance measuring device | |
DE69317146T2 (en) | Cruise control for a vehicle and radar system therefor | |
DE19803660C2 (en) | Motor vehicle radar | |
EP1325350B1 (en) | Method and device for determining separation and relative speed of a distant object | |
EP0499952B1 (en) | FMCW radar system with linear frequency modulation | |
DE102012212888A1 (en) | Detection of radar objects with a radar sensor of a motor vehicle | |
EP0955527A1 (en) | Microwave level detector | |
DE102007043535A1 (en) | FMCW radar locating device and corresponding FMCW radar locating method | |
DE102009057191A1 (en) | Method for uniquely determining a distance and / or a relative speed of an object, driver assistance device and motor vehicle | |
DE3789830T3 (en) | Radar device for measuring the distance to a surface. | |
DE102004030133A1 (en) | Radar sensor and method for evaluating objects | |
DE2158793B2 (en) | Device for measuring and displaying the distance and / or the change in distance between a motor vehicle and an obstacle | |
EP2440949B1 (en) | Method and device for measuring a change in distance | |
EP3581962A1 (en) | Dual beam fmcw distance measuring method with compensation of a speed-dependent distance measuring fault | |
DE19750742A1 (en) | Target detecting by high pulse repetition frequency radar | |
DE19610970A1 (en) | Radar information evaluation process on distance and speed | |
DE102005058114B4 (en) | Method and circuit for distance measurement according to the radar principle | |
DE2305941B2 (en) | Vehicle obstacle radar with alternating FM / CW and CW operation for distance and speed measurement | |
DE2756413B2 (en) | Device for measuring the distance and the speed of approach or the speed of removal of a moving target | |
EP0587041B1 (en) | Method of compensation of a part of a signal produced by a moving radar antenna | |
DE3908771C2 (en) | Method for measuring the distance of moving objects using a Doppler measuring radar and Doppler measuring radar for carrying out the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |