WO1992009352A1 - Method of and device for counter-flow separation of mixture - Google Patents

Method of and device for counter-flow separation of mixture Download PDF

Info

Publication number
WO1992009352A1
WO1992009352A1 PCT/JP1991/001663 JP9101663W WO9209352A1 WO 1992009352 A1 WO1992009352 A1 WO 1992009352A1 JP 9101663 W JP9101663 W JP 9101663W WO 9209352 A1 WO9209352 A1 WO 9209352A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid particles
solution
tower
components
separated
Prior art date
Application number
PCT/JP1991/001663
Other languages
French (fr)
Japanese (ja)
Inventor
Terukatsu Miyauchi
Original Assignee
Terukatsu Miyauchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terukatsu Miyauchi filed Critical Terukatsu Miyauchi
Publication of WO1992009352A1 publication Critical patent/WO1992009352A1/en
Priority to GB9216071A priority Critical patent/GB2255916A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/02Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor with moving adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2215/00Separating processes involving the treatment of liquids with adsorbents
    • B01D2215/02Separating processes involving the treatment of liquids with adsorbents with moving adsorbents
    • B01D2215/021Physically moving or fluidising the adsorbent beads or particles or slurry, excluding the movement of the entire columns

Definitions

  • the present invention relates to an improved method and apparatus for separating at least one or more eye components from a solution or a solid particle containing at least one or more eye components. .
  • the continuous separation method using the distribution equilibrium and the like includes the continuous annular mouth mat graph method and the simulated moving bed type method in which the solution is intermittently switched [Higgins method and Or the Sobex method (S 0 rbe ⁇ ) method) and the fluidized-bed method, but each has its advantages, features, and disadvantages. In addition, it was usually a batch type, and the efficiency was not always good.
  • the present invention has solved the difficulties and drawbacks of the continuous and steady solid-liquid countercurrent method, which was conventionally considered to be difficult as a solution separation device.
  • a method and an apparatus for separating and purifying at least one or more components of interest using functional particles, or at least one or more components of solid particles It is an object of the present invention to provide a method and an apparatus for distributing and separating components in a solution.
  • the screw wings attached to the outer peripheral surface of at least two parallel rotating shafts are opposite to each other in direction and partially overlap each other.
  • the rotary shafts rotate in opposite directions, so that the solid particles continuously supplied to the bottom of the column are continuously pumped upward.
  • solid particles are continuously pumped from the bottom of the multi-axial rotary tower toward the top of the column, and at the same time, the solution is continuously flowed down the column in a countercurrent to the solid particles.
  • the uniform and effective countercurrent contact between the pumped solid particles and the flowing solution is achieved by the rotation of the screw blade.
  • the component of interest in the mixture contained in the solution is distributed to solid particles and separated from the solution, or conversely, contained in the solid particles.
  • Another object of the present invention is to provide a countercurrent separation method for a mixture, which is characterized in that a target component of the component is distributed to a solution side and separated from solid particles.
  • solid particles having a separation function for the components of interest are used, and the solution is supplied to the top of the column.
  • the solution is supplied to the top of the column.
  • a solution having a separating function for the eye contact components is used, and the solution is placed at the top of the column.
  • the supplied solid particles are brought into contact with the solid particles ascending from the bottom of the tower in a countercurrent to distribute and separate the permeated components from the solid particles into the solution.
  • the solution contains two kinds of eye components
  • a combination of solid particles and an eluent which gives different resolutions to the two eye components should be used.
  • One of the two components is separated into solid particles and the other is separated into a solution, which is removed from the top and bottom of the column and separated.
  • the present invention also provides that the screw wings attached to the outer peripheral surface of at least two parallel rotating shafts have opposite directions and a part of them. Solid particles continuously supplied to the bottom of the column are continuously lifted upward by the rotation shafts rotating in opposite directions.
  • a multi-spindle rotating tower having an action of feeding the solution, and a supply port for a solution containing at least one or more eye-catching components in any part of the multi-spindle rotating tower.
  • a solid particle supply port near the lower part of the shaft rotor tower is provided with an outlet for solid particles with at least one or more of the joint components attached near the upper part of the multi-axis rotor tower.
  • Another object of the present invention is to provide a countercurrent separation device having the following features.
  • the screw wings provided on the outer peripheral surface of at least two parallel rotating shafts are opposite in direction to each other, and some of them overlap.
  • the rotating shafts rotate in opposite directions to each other, so that the solid particles continuously supplied to the lower part of the tower are continuously pumped upward.
  • An outlet for solid particles having at least one or more notable components is provided near the upper part, and near the lower end of the multi-spindle impeller.
  • the screw blades are separated from each other at the separated liquid discharge chamber following the solid-liquid separation plate provided with a number of small holes or mesh plates, and, if necessary, at the side wall of the multi-axial rotary blade tower.
  • Approach In the part on the other side, a plurality of small holes, or a solid-liquid separation plate with a net plate, followed by a separated liquid discharge chamber and / or a separated liquid extraction chamber are installed. Or means to allow these chambers to be at normal pressure or reduced pressure, or to force the pump to assemble the separated liquid.
  • the purpose of the present invention is to provide a countercurrent separator characterized by having a countercurrent separator.
  • FIG. 1 is a schematic longitudinal sectional view of one embodiment of the separation apparatus of the present invention
  • FIG. 2 is a schematic cross-sectional view taken along the line ⁇ of the apparatus of FIG. 1 or FIG.
  • FIG. 3 is a schematic longitudinal sectional view of another example of the separation apparatus of the present invention.
  • FIGS. 1 to 3 show examples thereof.
  • the apparatus shown in FIGS. 1 and 2 is used in a method for separating at least one or more eye components from a solution containing at least one or more eye components.
  • the multi-axis rotary wing tower 1 is composed of a cylindrical body having a combination of at least two vertically long cylinders (for example, a cocoon cross section).
  • the screw wings 4, 4 ′ attached to the outer peripheral surface of the parallel rotating shafts 3, 3 ′ driven by the device 2 have the opposite directions to each other.
  • a part of the towers overlaps and extends almost the entire height of the tower, and the rotation axes are opposite to each other, preferably at a constant speed.
  • the screw blades may be continuous as shown in the drawing, or may be partially notched.
  • the screw wings 4 and 4 ′ installed in the inside are parts that are separated from each other by rotation, and are located above the solid-liquid separation plate 5, but in many cases.
  • a port 6 for supplying solid particles is provided on the side wall near the lower part of the rotary blade tower 1.
  • the screw blades 4 and 4 ′ are portions on the side closer to each other due to rotation, and at least near the upper part of the multi-axial rotary wing tower 1, at least in the raw material solution. It has an outlet 7 for the solid particles to which one or more eye components are attached.
  • the solid particle feed port 6 and discharge port 7 are preferably fitted with a single or doubles screw extruder.
  • a suitable position between the supply of solid particles 6 and the outlet 7 of the solid particles to which the eye-grain component separated from the raw material solution is attached for example, near the center thereof
  • the position has a supply port 8 for a raw material solution to be separated, which is a solution containing at least one or more components of interest.
  • an inlet 15 for the eluent and / or washing liquid is provided near the top of the multi-spindle rotor tower 1. Elute the solid particles on which the rising component is attached and / or purify by washing.
  • the discharge chamber 9 is connected, and is connected to the pump 11 for forcibly sending out the separated liquid through the pipe 10 from the discharge chamber 9.
  • the multi-spindle rotor tower 1 may be provided with a heating or cooling device as necessary.
  • the attached solid particles are purified by an eluent or a washing solution, and the solid particles are removed. It is removed from the room 7.
  • the purified adhered solid particles are sent to one end of the separation device 13, for example, the lower portion thereof by the transfer means 12 from the outlet 7, and adhered thereto. It is sent to a process that separates and collects at least one or more eye-catching components.
  • the step of separating and recovering at least one or more adhering components adhered to the solid particles and the type of the raw material solution to be separated and the difference in the recovery mechanism can be adopted, but in any case, the solid particles are regenerated using the eluent to recover the target component of interest. .
  • the side wall of the multi-axis rotary blade In the part where the screw blades approach each other, i.e., on the same horizontal plane or slightly below it on the side opposite to the solid particle introduction port 6, a plurality of small holes or mesh plates were used.
  • a solid-liquid separation plate and a separated liquid discharge chamber (not shown) following the plate may be provided.
  • the separated liquid discharge chamber may be provided with a means (not shown) capable of increasing or decreasing the pressure.
  • the solid particles that have completed the recovery process are taken out from the other end of the separation device 13, for example, near the upper part thereof, subjected to other processing if necessary, and again multi-axised by the transfer means 14. It is sent to the supply port 6 of the solid particles of the rotary wing tower 1 and can be used again as solid particles for separating the component of interest in the raw material solution.
  • At least one or more components of interest separated in the separation device 13 may be recirculated through the supply port 15 together with an eluent and / or a washing solution, if necessary.
  • the separated liquid from which at least one or more components of interest have been removed is removed from the solid-liquid separation plate 5 near the lower end of the multi-axial rotary tower 1.
  • the separated liquid is taken out through the chamber 10 and sent to the next step by the pump 11.
  • This separated liquid can be continuously sent to another separation device as needed to perform an appropriate treatment to separate and remove the remaining other components of interest.
  • FIG. 3 shows that at least one component of interest is included without providing the eluent and / or washing solution inlet 15 in FIG.
  • An example is shown in which an inlet 8 for a raw material solution, which is a solution to be removed, is provided at the upper side of the multi-axis rotary wing tower 1 but on the side wall slightly lower than the lower side of the extraction chamber 7.
  • This device can be used as a means for separation when the solution to be separated is a simple component.
  • Shi Li Ca particles A Le Mi Na particles, C a C 0 3 powder, activated carbon particles of the seed s, Ze O La wells particles, molecular sieving carbon, a throat molecular adsorbent particles that have a sieving action, the species' s Hydroxypatite particles, activated clay particles, ion-exchange resin particles, particles with adsorption capacity, etc.
  • Strong and weakly acidic ion exchange resin particles strong and weakly basic ion exchange resin particles, balm chip particles, activated clay particles, inorganic ion exchange ability particle.
  • Particles having affinity ability modified with a substrate having a particular affinity ability for a specific component for example, an enzyme (eg, agarose particles) ), Particles having an affinity function utilizing an antigen-antibody reaction, particles having an affinity function by modifying pores such as porous silica, and particles having an affinity function.
  • the range of the average particle size of the solid particles is preferably
  • the tower can be operated as long as it is not more than about 5 mm and up to 5; / m, but the average particle size is preferably about 1 mm to 20 ⁇ .
  • Biochemistry from aqueous solutions containing various biochemicals Separation of substances For example, amino acids, enzymes, proteins, nucleic acids, and antibiotics.
  • the function of the separation device used in the present invention is to separate at least one or more eye components contained in a solution containing at least one or more eye components.
  • a multi-axis rotary tower may be used to separate a solution containing at least one or more components of interest, which is a raw material to be separated, for separation.
  • the solid particle supply port 6 is located above the solid-liquid separation plate 5 in the multi-spindle impeller 1 but near the lower part of the multi-spindle impeller 1. Supply solid particles.
  • the screw wings attached to the outer peripheral surface of the parallel rotary shaft are opposite to each other in direction, and a part thereof overlaps. And a slurry state in which the raw material solution to be separated from the solid particles by the rotation axes rotating in opposite directions is mixed. Therefore, there is not enough horizontal space on the side where the screw wings overlap each other.
  • the liquid is squeezed out by being stirred and mixed and pressurized, and the slurry is depressurized on the side where the screw wings are away from each other. In other words, it absorbs the liquid flowing down by relaxation and promotes solid-liquid contact.
  • adsorption equilibrium adsorption equilibrium, exchange equilibrium, partition equilibrium, solubility, affinity, etc., between the solid particles and at least one or more of the components to be separated in the raw material solution. Due to differences in exclusion function due to differences in molecular size, differences in physical and chemical properties such as chemical structure, etc. One or more of the components of interest are rapidly absorbed, adsorbed, dissolved, bonded, etc., to the solid particles and adhere to them.
  • the solid particles to which at least one or more of the eye components to be separated are attached are sufficiently stirred horizontally with the solution to be separated, mixed and squeezed. Solids with at least one or more eye contact components due to the rotation of the screw wings due to the release of the slurry generated and the liquid flowing down. The particles are sent upward.
  • the slurry relaxes and absorbs the liquid flowing down from above, causing it to swell. It becomes Lee.
  • the swollen slurry is then sent to the side where the screw wings approach each other and are overlapped with each other, where they are pressurized.
  • the liquid is discharged, and the discharged liquid flows downward.
  • the solid particles come into countercurrent contact with the raw material solution.
  • the solid particles to which at least one or more eye-catching components should be separated in the raw material solution rise as the screw blades rotate, and finally multi-rotor blades
  • the solid particles near the upper part of 1 are discharged from the outlet 7.
  • the eluent is used to elute the solid particles to which the eluting components rising from the inlet 15 of the eluent and / or the washing liquid placed near the top of the multi-axis rotary blade tower 1 are attached. And, by flowing down the washing solution, it is possible to purify the eye-grain component attached to the solid particles.
  • the solution to be separated contains two components (referred to as “A + B”) as the eye-catching component, A and B are separated.
  • a + B the raw material solution ⁇ ⁇ + ⁇ containing intermediate feed solution ”is supplied from the supply port 8 at the approximate center of the multi-spindle impeller 1 shown in Fig. 1. Supply.
  • One of the two components, A is selectively distributed to the solid particles, adheres to the solid particles, and ascends in the multi-axis rotary blade tower 1. If another combination of the component B and the solution and the solid particles is selected so that the component B is distributed by the liquid and flows down the column, the component B starts from the top of the multi-axis rotating blade tower 1. A is attached to the solid particles and discharged from the solid particle outlet 7, and B is discharged from the separated outlet chamber 10 at the bottom of the column along with the separated liquid. , A and B are separated. '
  • the principle of separation is as described above, but in some cases, in order to achieve sufficient separation and concentration, the solid particles adhering mainly to the discharged A component are regenerated. Then, a part of the separated A component is added to the eluent entering from the top of the tower, and returned to the column together with the liquid (this is called “top reflux”), and the A component is separated. , Purification and concentration.
  • B is recovered from the separated liquid mainly containing B component discharged from the bottom of the tower, and a part of the recovered B is distributed to regenerated solid particles. It can also be returned to. (This is called "bottom reflux.")
  • a solution contains two or more n components, and it is necessary to use ( ⁇ — 1) multi-axis rotating blade towers to separate each component.
  • ⁇ — 1 multi-axis rotating blade towers
  • the solution containing A is, for example, near the top of the tower in Figure 3.
  • the raw material solution is supplied to the raw material solution inlet 8, and is contacted with the solid particles fed from the solid particle inlet 6 while flowing down the inside of the multi-axis rotating blade tower 1, and is mixed therewith.
  • the A component adheres to the solid particles by being squeezed, and the solid particles to which the A component adheres rise in the multi-spindle rotor tower 1 and are taken out from the attached solid particle outlet 7 to be separated and collected.
  • device 13 A is separated by suitable means.
  • the regenerated solid particles are recycled to the multi-spindle rotor tower 1.
  • selective elution can be performed using an eluent.
  • the type and mechanism of operation of the separation / recovery device 13 described above are specifically determined by the type of solid particles and the component to be separated, but are generally worn. It can be separated by a solution called the eluent of the eye component.
  • the separated liquid from which at least one or more of the eye-dropping components has been removed flows down the multi-spindle impeller 1, and is supplied to a separated liquid extraction chamber provided below the solid-liquid separation plate 5. Are taken out.
  • the solid particles from which the sedimentary components have been removed by the above-mentioned separation and recovery device 13 are subjected to other treatments as necessary, and then again subjected to the multi-axis rotation by the transfer process 14. It can be sent to the wing tower 1 for recirculation and use.
  • the separated liquid from which at least one or more notable components have been removed from the raw material solution gradually flows down the multi-axis rotary blade tower 1, passes through the solid-liquid separator 5, and is collected in the separated liquid chamber 9.
  • this separated liquid is sent to another similar device and subjected to a separation treatment to further remove the remaining other eye-contacting components as described above. I can do it.
  • Example 1 Separation of fructose from an aqueous fructose solution.
  • the solid particles supplied to the bottom were raised from the bottom toward the top by the action of a screw.
  • the raw material solution is supplied to the top of the column, and while flowing down the column, the rotation of the double squirrel allows uniform and effective countercurrent to the planar particles rising in the column. After contacting at, it is discharged from the bottom of the tower.
  • Strongly acidic ion-exchange resin sulfuric acid type, with a degree of cross-linking of 10 and an average particle size of 6) treated with a 0.1 mol aqueous solution of calcium chloride beforehand Fructose recovery It was used as functional solid particles. The operation was carried out at 20 ° C under atmospheric pressure. Immediately, the canopy-form strongly acidic ion exchange resin was used as the particle phase, and the superficial velocity of the particle phase was reduced to 3 ° C. .
  • the concentration of fructose in the aqueous fructose solution discharged from the bottom of the tower was measured using a refractometer, and the average concentration was 2.8 g ⁇ 1. there were.
  • the fructose recovery rate by particles is determined by the concentration of the stock solution 1 and the concentration of the effluent 1
  • the average fructose recovery rate is 95%.
  • the superficial velocity is assumed to mean that the interior of the tower is completely empty, and that particles or liquids have flowed through the empty tower, respectively, with each of them being filled with a full volume.
  • the flow velocity at the time of flight is also called the apparent flow velocity.
  • the operation was performed at room temperature under atmospheric pressure.
  • Example 1 From the aqueous sucrose solution obtained by dissolving glucose and fructose, the same strongly acidic ion-exchanged resin as the calcium type used in Example 1 was used as the functional solid particles. To separate glucose and fructose.
  • the aqueous solution When the aqueous solution enters the column, it is mixed with the aqueous phase flowing down from the top of the column by the action of the rotating screw. In addition, the particles are uniformly contacted with the particles rising in the column, flow countercurrently to the particles, flow down in the column, and are discharged from the bottom of the column.
  • fructose is selectively distributed to the functional solid particles, discharged together with the resin particles from the top of the column, and glucose is removed.
  • the first is to selectively distribute water flowing down, regenerate the sugar contained in the particles discharged from the bottom of the column to form an aqueous solution, and together with the aqueous solution discharged from the bottom of the column.
  • the results of the analysis of the sugar concentration using a refractometer are as follows: 7 ⁇ -o
  • Example 3 Separation of a mixture of phenol and toluene.
  • styrene-based porous synthetic resin sphere particles are used as the solid particle supply port at the bottom of the tower.
  • the height of the tower was raised at a superficial velocity of 3.0 m 3 / m 2 hr.
  • the tower imperative et supplies METHANOL solution at a superficial velocity 2 5 m J / m 2 h r:.
  • a ⁇ is Ru resin particles Ru is continuously countercurrent contact. All operations were performed at room temperature.
  • the raw material liquid to be separated is a methanol solution containing 0.1 mol / mol of phenol and 0.1 mol of toluene, respectively. Then, the raw material solution is continuously supplied from the inlet 8 of the raw material at the center of the tower at a superficial velocity of 0.5 ⁇ 3 ⁇ / ⁇ 2 ⁇ 1 ⁇ , and flows down the tower. And the mixture was mixed uniformly.
  • the phenol is distributed in a large amount to the liquid, discharged together with the liquid from the separated liquid taking-out chamber 9, and is analyzed by an ultraviolet spectrophotometer (250 nm). As measured, its purity is 80% (mosoole% of phenol in phenol and phenol).
  • Toluene was distributed and attached to the solid particles in a large amount, and was discharged together with the particles from the outlet 7 for the solid particles at the top of the tower.
  • the adhered particles were regenerated by a regenerator 13 and the purity of truene obtained in this way was 72%.
  • Example 4 Separation of proteins by fine hydroxyapatite particles.
  • regenerated fine hydroxya having an average particle size of 35 nm was used as the functional solid particles.
  • the particles of the pattern crystal are introduced from the solid particle supply port 6 at the bottom of the tower, and are raised in the tower at an empty tower speed of 1.0 m3 mhr.
  • the operation was performed at room temperature at the inlet of the separated solution 15 near the top of the column.
  • the phosphate concentration was adjusted to 170 mM calcium phosphate buffer.
  • the raw material feed solution to be separated by contact with the hydroxyapatite crystal particles is a phosphoric acid having a phosphoric acid concentration of 1.0 millimol.
  • This feed liquid is continuously supplied at a superficial velocity of 0.1 lm 3 / m 2 hr from the raw material solution inlet 8 located at the approximate center of the tower, and the rotating liquid is fed. It flows down in the tower by the mixing action of the clean wings. After it is uniformly mixed with 170 milliliters of potassium phosphate buffer, it flows down in the tower.
  • lysozyme was obtained from the bottom of the column with the buffer solution, and its purity was 85 mol%.
  • cytochrome C selectively adsorbed to the hydroxyapatite crystal particles was obtained.
  • the purity of cytochrome C in the eluate obtained by the elution was 82 mol%.
  • the present invention relates to the separation of at least one or more of the ingredients contained in the solution or the solid particles, which contain at least one or more of the ingredients as raw materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

An improved method of and device for separating at least one kind of objective constituent from solution or solid particles containing at least kind of said objective constituents. The method of this invention is characterized in that: a multi-shaft rotary blade type tower, in which respective screw blades provided on the respective outer peripheral surfaces of at least two revolving shafts in parallel with each other are adapted to be directionally opposite to each other and to overlap partly, is used so that, when said revolving shafts revolve in the directions reverse to each other respectively, solid particles continuously fed onto the bottom of the tower are continuously fed upward; and continuous upward feeding of solid particles from the bottom of said tower toward the top thereof and continuous downward flowing of solution into the tower in counter-flow manner against said solid particles give rise to uniform and effective counter-flow contact between upward fed solid particles and downward flowing solution which are stirred with the rotation of said screw blades, whereby objective constituents in the mixture contained in the solution are distributed to solid particles so as to be separated from the solution or, on the contrary, objective ones of constituents contained in solid particles are distributed to the solution so as to be separated from solid particles. The device of this invention is a counter-flow separator including multi-shaft rotary blade type tower for performing the above-described method.

Description

明 細 書 混合物の 向流分離方法及び装置 〔技術分野〕  Description Method and apparatus for countercurrent separation of mixture (Technical field)
本発明 は改良 さ れ た少な く と も 一種以上の 着 目 成分を 含ん だ溶液又 は固体粒子か ら そ の 少な く と も 一種以上の 着 目 成分を分離す る 方法及 び装置 に 関す る 。  The present invention relates to an improved method and apparatus for separating at least one or more eye components from a solution or a solid particle containing at least one or more eye components. .
〔背景の技術〕  [Background technology]
従来、 少な く と も 一種以上の 特定成分を含ん だ溶液か ら 、 そ の少な く と も 一種以上の特定成分を分離す る た め に 、 溶液 と 粒子間 の 溶質の 吸着平衡、 交換平衡、 分配平 衡等を利用 し て、 連続的 に分離す る 方法 に は連続環状 ク 口 マ ト グ ラ フ 法、 間欠的 に 溶液を切 り かえ る 疑似移動層 型法 〔 ヒ ギ ン ス 法 と か ソ ー ベ ッ ク ス ( S 0 r b e∑ ) 法〕 及 び 液体流動層法な どが知 ら れて い たが、 そ れぞれ長所及 び 特徴 と 短所を持 っ て い る 。 ま た、 通常 はバ ッ チ式で あ り 必ず し も 能率が良 く な か っ た。  Conventionally, in order to separate at least one or more specific components from a solution containing at least one or more specific components, a solute adsorption equilibrium, exchange equilibrium, and solute between a solution and particles have been used. The continuous separation method using the distribution equilibrium and the like includes the continuous annular mouth mat graph method and the simulated moving bed type method in which the solution is intermittently switched [Higgins method and Or the Sobex method (S 0 rbe∑) method) and the fluidized-bed method, but each has its advantages, features, and disadvantages. In addition, it was usually a batch type, and the efficiency was not always good.
〔発明 の 開示〕  [Disclosure of the invention]
本発明 は溶液の 分離装置 と し ての従来困難 と 考え ら れ て い た連続定常的 な 固液向流法の 困難 と 欠点を解決 し た も の で あ る 。  The present invention has solved the difficulties and drawbacks of the continuous and steady solid-liquid countercurrent method, which was conventionally considered to be difficult as a solution separation device.
こ れ に よ り 、 従来の 装置 に比 し て能率が高 く 、 操作 も 容易で あ っ て、 少な く と も 一種以上の 着 目 成分を含有す る溶液を原料と し、 少な く と も一種以上の着目成分を機 能性粒子を使用 して分離、 精製する方法及び装置、 あ る い は固体粒子に含ま れる少な く と も一種以上の着目成分 を溶液に分配させて分離する方法及び装置を提供 し よ う と する も のであ る 。 This makes it more efficient and easier to operate than conventional devices, and contains at least one or more eye-catching components. A method and an apparatus for separating and purifying at least one or more components of interest using functional particles, or at least one or more components of solid particles It is an object of the present invention to provide a method and an apparatus for distributing and separating components in a solution.
本発明は、 少な く と も 2 つの平行な回転軸の外周面に 付設さ れたス ク リ ュ ー翼が、 その向 き は互い に逆で、 そ れ ら の一部が重な り 合 う よ う にな っ てお り 、 前記回転軸 が互いに反対方向に回転する こ と によ り 塔底部に連続的 に供給さ れた固体粒子を連続的に上方に揚送する作用を 有する多軸回転翼塔を用い、 該多軸回転翼塔の塔底部か ら固体粒子を塔頂部に向かっ て連続的に揚送 し、 同時に 該固体粒子と 向流に塔内 に溶液を連続的に流下さ せる こ と に よ り 、 前記ス ク リ ユ ー翼の回転に よ っ て揚送固体粒 子と流下溶液と の間の均一かつ効果的な向流接触を行な わせ る こ と に よ り 、 溶液中に含ま れる 混合物中の着目成 分を固体粒子に分配させて溶液か ら分離し、 或は逆に固 体粒子に含ま れる成分中の着目成分を溶液側に分配さ せ て固体粒子か ら分離する こ と を特徽と する混合物の向流 分離方法を提供する も のであ る。  According to the present invention, the screw wings attached to the outer peripheral surface of at least two parallel rotating shafts are opposite to each other in direction and partially overlap each other. In this case, the rotary shafts rotate in opposite directions, so that the solid particles continuously supplied to the bottom of the column are continuously pumped upward. Using a rotary shaft tower, solid particles are continuously pumped from the bottom of the multi-axial rotary tower toward the top of the column, and at the same time, the solution is continuously flowed down the column in a countercurrent to the solid particles. The uniform and effective countercurrent contact between the pumped solid particles and the flowing solution is achieved by the rotation of the screw blade. In other words, the component of interest in the mixture contained in the solution is distributed to solid particles and separated from the solution, or conversely, contained in the solid particles. Another object of the present invention is to provide a countercurrent separation method for a mixture, which is characterized in that a target component of the component is distributed to a solution side and separated from solid particles.
本発明の方法において、 溶液中に着目成分が少な く と も一種以上含ま れてい る と き、 こ の着目成分に対 して分 離機能を有する 固体粒子を用い、 溶液は塔頂部に供給 し て、 塔頂部か ら上昇 し て く る固体粒子と 向流に接触させ て溶液中か ら 粒子中へ着 目 成分を分配 し て分離す る 。 又、 固体粒子中 に着 目 成分が少な く と も 一種以上含 ま れて い る と き 、 こ の 着 目 成分 に対 し て分離機能を有す る 溶液を用 い、 溶液 は塔頂部 に供給 し て、 塔底部か ら 上昇 し て く る 固体粒子 と 向流 に接触 さ せ て固体粒子中か ら 溶 液中へ着 目 成分を分配 し て分離す る 。 In the method of the present invention, when at least one or more components of interest are contained in the solution, solid particles having a separation function for the components of interest are used, and the solution is supplied to the top of the column. To contact the solid particles rising from the top with the countercurrent. To separate the components from the solution into the particles. When the solid particles contain at least one or more eye contact components, a solution having a separating function for the eye contact components is used, and the solution is placed at the top of the column. The supplied solid particles are brought into contact with the solid particles ascending from the bottom of the tower in a countercurrent to distribute and separate the permeated components from the solid particles into the solution.
又、 溶液中 に着 目 成分が 2 種含 ま れて い る と き 、 2 つ の 目 成分に対 し て異な っ た分離度を与え る よ う な 固体 粒子 と 溶離液 と の組合わせ を用 い て、 固体粒子を塔底部 か ら 送入 し 、 溶離液を塔頂部 に供給 し 、 分離 さ れ る べ き 着 目 成分を含む溶液を塔の 中 間部 に供給す る こ と に よ り 2 つ の 着 目 成分の う ち一方 は 固体粒子 に 、 他方 は溶液に 分配 さ せ てそ れぞれ塔頂部及 び塔底部か ら 取 り 出 し て分 離す る 。  Also, when the solution contains two kinds of eye components, a combination of solid particles and an eluent which gives different resolutions to the two eye components should be used. By feeding the solid particles from the bottom of the column, supplying the eluent to the top of the column, and supplying the solution containing the component to be separated to the middle of the column. One of the two components is separated into solid particles and the other is separated into a solution, which is removed from the top and bottom of the column and separated.
本発明 は又、 少な く と も 2 つ の平行な 回転軸の 外周面 に付設 さ れた ス ク リ ユ ー翼が、 そ の 向 き は互 い に逆で、 そ れ ら の 一部が重な り 合 う 様 に な つ て お り 、 前記回転軸 が互 い に反対方向 に 回転す る こ と に よ り 塔底部 に連続的 に供給 さ れ た 固体粒子を連続的 に上方 に揚送す る 作用 を 有す る 多軸回転翼塔を用 い、 該多軸回転翼塔 中 の い ずれ かの 部分 に少な く と も 一種以上の 着 目 成分を含む溶液の 供給 口、 該多軸回転翼塔の下部付近 に 固体粒子の 供給 口 こ の多軸回転翼塔の上部付近 に少 な く と も 一種以上の 着 目 成分を付着 し た 固体粒子の 取 出 し 口 を設 け、 更 に該多 軸回転翼塔の下端付近に複数の小孔、 又は網扳を設けて な る 固液分離板に続 く 分離液取出 し室と、 及び要すれば 該多軸回転翼塔側壁部で、 ス ク リ ユ ー翼が互い に接近す る側の部分に複数の小孔、 又は網板を設けてな る 固液分 離板に続 く 分離済液体取出 し室 と の両方又はいずれかの 室を設置 し、 こ の、 又は こ れ ら の室を常圧又は減圧にす る か、 あ る い はポ ンプに よ っ て分離済液体を強制的に組 み出す こ と を可能とする手段を有する こ と を特徵 と ナる 向流分離装置を提供する も のであ る 。 The present invention also provides that the screw wings attached to the outer peripheral surface of at least two parallel rotating shafts have opposite directions and a part of them. Solid particles continuously supplied to the bottom of the column are continuously lifted upward by the rotation shafts rotating in opposite directions. A multi-spindle rotating tower having an action of feeding the solution, and a supply port for a solution containing at least one or more eye-catching components in any part of the multi-spindle rotating tower. A solid particle supply port near the lower part of the shaft rotor tower is provided with an outlet for solid particles with at least one or more of the joint components attached near the upper part of the multi-axis rotor tower. In addition, A separation liquid extraction chamber following a solid-liquid separation plate provided with a plurality of small holes or meshes near the lower end of the shaft rotor tower, and, if necessary, a side wall of the multi-shaft rotor tower, Separated liquid discharge chamber followed by solid-liquid separation plate with multiple small holes or mesh plate provided on the part where clear wings approach each other, or both or either chamber Means to allow this or these chambers to be at normal or reduced pressure, or to force the separated liquid to be assembled by pumps Another object of the present invention is to provide a countercurrent separation device having the following features.
本発明はま た少な く と も 2 つ の平行な回転軸の外周面 に付設さ れたス ク リ ュ ー翼が、 その向 き は互い に逆で、 それ ら の一部が重な り 合 う 様にな つ てお り 、 前記回転軸 が互い に反対方向に回転する こ と に よ り 塔下部に連続的 に供給さ れた固体粒子を連続的に上方に揚送する 作用を 有する 多軸回転翼塔を用い、 該多軸回転翼塔中の いずれ かの部分に少な く と も一種以上の着目成分を含む溶液の 供耠口、 該多軸回転翼塔の下部付近に固体粒子の供給口、 該多軸回転翼塔の下部付近に固体粒子の供給口、 該多軸 回転翼塔の塔頂部付近に溶離液及び又は洗滌液の洪耠口、 こ の多軸回転翼塔の上部付近に少な く と も一種以上の着 目成分を付着 し た固体粒子の取出 し 口を設け、 更に該多 軸回転翼塔の下端付近に複数の小孔、 又は網板を設けて な る 固液分離板に続 く 分離液取出 し室と、 及び要すれば 該多軸回転翼塔側壁部で、 ス ク リ ユ ー翼が互い に接近す る 側 の部分に複数の 小孔、 又 は網板を設 け て な る 固液分 離板 に続 く 分離済液体取 出 し 室 と の両方又 は い ずれか の 室を設置 し 、 こ の 、 又 は こ れ ら の 室を常圧又 は減圧 に す る か、 あ る い は ポ ン プ に よ っ て分離済液体を強制 的 に組 み 出す こ と を可能 と す る 手段を有す る こ と を特徴 と す る 向流分離装置を提供す る も の で あ る 。 According to the invention, the screw wings provided on the outer peripheral surface of at least two parallel rotating shafts are opposite in direction to each other, and some of them overlap. The rotating shafts rotate in opposite directions to each other, so that the solid particles continuously supplied to the lower part of the tower are continuously pumped upward. A multi-axial rotary tower, a supply port for a solution containing at least one or more components of interest in any part of the multi-axial rotary tower, and solid particles near a lower portion of the multi-axial rotary tower. A supply port for solid particles near the lower part of the multi-shaft impeller, a flood port for eluent and / or washing liquid near the top of the multi-shaft impeller, An outlet for solid particles having at least one or more notable components is provided near the upper part, and near the lower end of the multi-spindle impeller. The screw blades are separated from each other at the separated liquid discharge chamber following the solid-liquid separation plate provided with a number of small holes or mesh plates, and, if necessary, at the side wall of the multi-axial rotary blade tower. Approach In the part on the other side, a plurality of small holes, or a solid-liquid separation plate with a net plate, followed by a separated liquid discharge chamber and / or a separated liquid extraction chamber are installed. Or means to allow these chambers to be at normal pressure or reduced pressure, or to force the pump to assemble the separated liquid. The purpose of the present invention is to provide a countercurrent separator characterized by having a countercurrent separator.
〔図面の簡単な 説明〕  [Brief description of drawings]
第 1 図 は本発明分離装置の一実施例 の 縦断面模式図で あ り 、 第 2 図は第 1 図又 は第 3 図の 装置の Π — Π 線横断 面模式図であ る 。 第 3 図 は本発明分離装置の 他の 例 の縦 断面模式図であ る 。  FIG. 1 is a schematic longitudinal sectional view of one embodiment of the separation apparatus of the present invention, and FIG. 2 is a schematic cross-sectional view taken along the line Π of the apparatus of FIG. 1 or FIG. FIG. 3 is a schematic longitudinal sectional view of another example of the separation apparatus of the present invention.
〔発明を実施す る た め の最良の形態〕  [Best mode for carrying out the invention]
本発明方法及び装置を そ の 例示 と し て示す第 1 図乃至 第 3 図 に基づ き 説明す る 。  The method and apparatus of the present invention will be described with reference to FIGS. 1 to 3 which show examples thereof.
ま ず、 第 1 図及び第 2 図 に 示す装置を少な く と も 一種 以上の着 目 成分を含む溶液か ら そ の少な く と も 一種以上 の 着 目成分を分離す る 方法 に使用す る 場合に つ い て説明 すれば、 多軸回転翼塔 1 は縦長の少な く と も 2 個 の 組み 合わ さ れた 円筒状 (例え ば断面 は繭形) の筒状体 よ り な り 、 駆動装置 2 に よ り 駆動 さ れ る 平行 な 回転軸 3 , 3 ' の 外周面 に付設 さ れた ス ク リ ュ ー 翼 4 , 4 ' は、 そ の 向 き は互い に逆で そ れ ら の一部が重な り 合 う よ う に な っ て ほ ぼ塔高全長 に わ た っ て設 け ら れて お り 、 前記回転軸が 互 い に反対方向に、 好 ま し く は等速で回転す る こ と に よ り 内容固液混合物中の 固体粒子を、 多軸回転翼塔 1 の塔 底部付近か ら 塔頂部付近に あ る 少な く と も 一種以上の 着 巨成分を付着 し た固体粒子の取出 し 口 7 へ揚送す る 構成 と な っ て い る 。 前記ス ク リ ュ ー翼は 図示の よ う に連続 し て い て も よ い が、 ま た部分的に切欠 き があ っ て も 良い こ こ で本発明多軸回転翼塔 1 に は こ の 中に設 け た ス ク リ ュ ー翼 4 , 4 ' が回転 に よ り 互い に離反す る 側の 部分 であ っ て、 固液分離板 5 よ り も上の 位置であ る が多軸回 転翼塔 1 の下部付近の側壁に は固体粒子の供袷口 6 を設 け てあ る 。 First, the apparatus shown in FIGS. 1 and 2 is used in a method for separating at least one or more eye components from a solution containing at least one or more eye components. In the case described, the multi-axis rotary wing tower 1 is composed of a cylindrical body having a combination of at least two vertically long cylinders (for example, a cocoon cross section). The screw wings 4, 4 ′ attached to the outer peripheral surface of the parallel rotating shafts 3, 3 ′ driven by the device 2 have the opposite directions to each other. A part of the towers overlaps and extends almost the entire height of the tower, and the rotation axes are opposite to each other, preferably at a constant speed. To rotate with The solid particles in the solid-liquid mixture are removed from the bottom of the multi-rotor impeller 1 from the bottom to the top of the tower, where at least one or more attached components are attached.7 It is configured to be transported to The screw blades may be continuous as shown in the drawing, or may be partially notched. The screw wings 4 and 4 ′ installed in the inside are parts that are separated from each other by rotation, and are located above the solid-liquid separation plate 5, but in many cases. A port 6 for supplying solid particles is provided on the side wall near the lower part of the rotary blade tower 1.
ま た、 ス ク リ ュ ー翼 4 , 4 ' が回転 に よ り 互い に接近 す る 側の部分であ っ て、 多軸回転翼塔 1 の上部付近に は 原料溶液中の少な く と も 一種以上の着 目成分を付着 し た 固体粒子の取出 し 口 7 を有す る 。  In addition, the screw blades 4 and 4 ′ are portions on the side closer to each other due to rotation, and at least near the upper part of the multi-axial rotary wing tower 1, at least in the raw material solution. It has an outlet 7 for the solid particles to which one or more eye components are attached.
こ の固体粒子の供給口 6 及び取出 し 口 7 に は好ま し く は シ ン グ ル又 は ダ ブルス ク リ ユ ー押 出 し機を取 り 付け使 用 れる 。  The solid particle feed port 6 and discharge port 7 are preferably fitted with a single or doubles screw extruder.
こ こ で、 固体粒子の供耠 ロ 6 と 原料溶液よ り 分離さ れ た着 目成分を付着 し た固体粒子の取出 し 口 7 の 間 に適当 な位置、 例え ばそ の ほ ぼ中央付近の位置 に は、 少な く と も 一種以上の 着 目成分を含む溶液であ る 被分離用原料溶 液の供給 口 8 を有す る 。  Here, a suitable position between the supply of solid particles 6 and the outlet 7 of the solid particles to which the eye-grain component separated from the raw material solution is attached, for example, near the center thereof The position has a supply port 8 for a raw material solution to be separated, which is a solution containing at least one or more components of interest.
こ の第 1 図に示す例 に お い て は、 こ の多軸回転翼塔 1 の塔頂部付近に溶離液及び又は洗浄液の導入 口 1 5 を設 け、 上昇す る 着 目 成分を付着 し た 固体粒子を溶離 し 及び 又 は洗浄 に よ る 精製を行な う 。 In the example shown in Fig. 1, an inlet 15 for the eluent and / or washing liquid is provided near the top of the multi-spindle rotor tower 1. Elute the solid particles on which the rising component is attached and / or purify by washing.
更 に、 多軸回転翼塔 1 の下部 に あ る 固液分離板 5 に は 複数の 小孔又 は網板が設 け ら れて お り 、 そ の 固液分離板 5 に は分離済液取 出 し 室 9 が連な り 、 こ の 取出 し 室 9 よ り パ イ プ 1 0 を経て分離済液を 強制的 に送 り 出す た め の ポ ン プ 1 1 に接続 さ れ る 。  Further, a plurality of small holes or mesh plates are provided in the solid-liquid separation plate 5 at the lower portion of the multi-spindle impeller 1, and the separated liquid is provided in the solid-liquid separation plate 5. The discharge chamber 9 is connected, and is connected to the pump 11 for forcibly sending out the separated liquid through the pipe 10 from the discharge chamber 9.
な お、 多軸回転翼塔 1 は、 必要 に 応 じ 加温、 或 は冷却 装置を設 け て も 良 い。  The multi-spindle rotor tower 1 may be provided with a heating or cooling device as necessary.
こ こ で、 原料溶液中の少な く と も 一種以上の着 目 成分 を移行、 付着 し た 固体粒子 は、 溶離液及 び又 は洗滌液 に よ り 精製 さ れ、 前記の 固体粒子の取 出 し 室 7 よ り 取 出 さ れ る 。 こ の精製 さ れた付着済固体粒子 は、 そ の取 出 し 口 7 よ り 移送手段 1 2 に よ り 分離装置 1 3 の 一端、 例え ば そ の下部へ送 ら れ、 付着 し て い る 少な く と も 一種以上 の 着 目 成分を分離、 回収す る 工程 に送 ら れ る 。  At this time, at least one or more eye-catching components in the raw material solution have been transferred, and the attached solid particles are purified by an eluent or a washing solution, and the solid particles are removed. It is removed from the room 7. The purified adhered solid particles are sent to one end of the separation device 13, for example, the lower portion thereof by the transfer means 12 from the outlet 7, and adhered thereto. It is sent to a process that separates and collects at least one or more eye-catching components.
こ こ で、 付着 し て い る 少な く と も 一種以上の着 目 成分 を分離、 回収す る 工程 と して は、 固体粒子及び被分離用 原料溶液の 種類及 び回収 メ 力 二 ズム の 相違 に よ り 各種の 手段を採用 す る こ と がで き る が、 い ずれ に し て も 溶離液 を用 い て固体粒子を再生 し 、 目 的 と す る 着 目 成分の 回収 を行な う 。  Here, the step of separating and recovering at least one or more adhering components adhered to the solid particles and the type of the raw material solution to be separated and the difference in the recovery mechanism. Various methods can be adopted, but in any case, the solid particles are regenerated using the eluent to recover the target component of interest. .
ま た、 塔の 底部 に設 け た 固液分離板 5 と 分離液取出 し 室 6 の 外 に、 又 は そ れ ら に代 っ て、 多軸回転翼塔側壁部 で、 ス ク リ ュ ー翼が互い に接近する側の部分に即ち固体 粒子導入口 6 の反対側にそれと 同 じ水平面又はそれよ り やや下部に、 複数の小孔、 又は網板を用 いた固液分離板 及びそれに続 く 分離済液体取出 し室 (図示せず) を設け て も よい。 In addition, outside the solid-liquid separation plate 5 and the separation liquid discharge chamber 6 provided at the bottom of the tower, or in place of them, the side wall of the multi-axis rotary blade In the part where the screw blades approach each other, i.e., on the same horizontal plane or slightly below it on the side opposite to the solid particle introduction port 6, a plurality of small holes or mesh plates were used. A solid-liquid separation plate and a separated liquid discharge chamber (not shown) following the plate may be provided.
なお、 分離済液体取出 し室は加圧又は減圧にする こ と を可能とする手段を設け る (図示せず) こ と ができ る 。  The separated liquid discharge chamber may be provided with a means (not shown) capable of increasing or decreasing the pressure.
回収工程を終了 し た固体粒子は分離装置 1 3 の他端、 例えばその上部付近よ り 取 り 出 さ れ、 要すれば他の処理 を施 した上、 移送手段 1 4 に よ り 再び多軸回転翼塔 1 の 固体粒子の供給口 6 へ送入さ れて再び原料溶液中の着目 成分の分離のための固体粒子と して使用 さ れ得る。  The solid particles that have completed the recovery process are taken out from the other end of the separation device 13, for example, near the upper part thereof, subjected to other processing if necessary, and again multi-axised by the transfer means 14. It is sent to the supply port 6 of the solid particles of the rotary wing tower 1 and can be used again as solid particles for separating the component of interest in the raw material solution.
分離装置 1 3 において分離さ れた少な く と も一種以上 の着目成分は、 必要に応 じ そ の一部を溶離液及び又は洗 滌液と と も に供給口 1 5 よ り 循環使用する こ と も でき る < 次に、 含有 していた少な く と も一種以上の着目成分を 除去さ れた分離済液は、 多軸回転翼塔 1 の下端付近にあ る固液分離板 5 よ り 分離済液取出 し室 1 0 を経てポ ン プ 1 1 によ り 次の工程に送 ら れる 。  At least one or more components of interest separated in the separation device 13 may be recirculated through the supply port 15 together with an eluent and / or a washing solution, if necessary. <Next, the separated liquid from which at least one or more components of interest have been removed is removed from the solid-liquid separation plate 5 near the lower end of the multi-axial rotary tower 1. The separated liquid is taken out through the chamber 10 and sent to the next step by the pump 11.
こ の分離済液は、 必要に応 じ 引 き続き他の分離装置に 送っ て適宜の処理を行ない、 残留 してい る他の着 目成分 を分離、 除去する こ とができる 。  This separated liquid can be continuously sent to another separation device as needed to perform an appropriate treatment to separate and remove the remaining other components of interest.
次に第 3 図は第 1 図における溶離液及び又は洗滌液の 導入口 1 5 を設けず少な く と も一種以上の着目成分を含 む溶液であ る 原料溶液の導入 口 8 を多軸回転翼塔 1 の ほ ぼ上部で あ る が、 取 出 し 室 7 の やや下部反対側 の 側壁 に 設 け た例を示す。 Next, FIG. 3 shows that at least one component of interest is included without providing the eluent and / or washing solution inlet 15 in FIG. An example is shown in which an inlet 8 for a raw material solution, which is a solution to be removed, is provided at the upper side of the multi-axis rotary wing tower 1 but on the side wall slightly lower than the lower side of the extraction chamber 7.
こ の装置で は原料被分離用 溶液が単純な成分の 場合の 分離用手段 と し て利用 す る こ と がで き る 。  This device can be used as a means for separation when the solution to be separated is a simple component.
以上 は着 目 成分が溶液中 に存在す る 場合 に つ い て述べ た が、 着 目 成分が固体粒子中 に存在す る 場合 に つ い て も 同様の 分離が可能で あ る 。  Although the above description has been made for the case where the eye component is present in the solution, similar separation is possible when the eye component is present in the solid particles.
本発明 に使用 す る こ と がで き る 対象 と し て は下記の よ う な も の が例示 さ れ る 。  The following can be exemplified as the objects that can be used in the present invention.
固体粒子の 例  Examples of solid particles
a ) 種 々 の 吸着材粒子  a) Various adsorbent particles
シ リ カ 粒子、 ア ル ミ ナ粒子、 C a C 0 3 粉末、 種 々 の 活性炭粒子、 ゼォ ラ イ ト 粒子、 分子篩活性炭、 な ど分子 篩作用 を有す る 吸着材粒子、 種 々 の ヒ ド ロ キ シ ァ パ タ イ ト 粒子、 活性白土粒子、 イ オ ン交換樹脂粒子、 吸着能を 持つ粒子等。 Shi Li Ca particles, A Le Mi Na particles, C a C 0 3 powder, activated carbon particles of the seed s, Ze O La wells particles, molecular sieving carbon, a throat molecular adsorbent particles that have a sieving action, the species' s Hydroxypatite particles, activated clay particles, ion-exchange resin particles, particles with adsorption capacity, etc.
b ) イ オ ン交換能を持つ粒子。  b) Particles capable of ion exchange.
強酸及び弱酸性 イ オ ン交換樹脂粒子、 強塩基性及 び弱 塩基性イ オ ン交換樹脂粒子、 バ ー ム チ ッ ト 粒子、 活性白 土粒子、 無機の イ オ ン交換能を有す る 粒子。  Strong and weakly acidic ion exchange resin particles, strong and weakly basic ion exchange resin particles, balm chip particles, activated clay particles, inorganic ion exchange ability particle.
c ) キ レ ー ト 化能を有す る 種々 の キ レ ー ト 樹脂粒子. キ レ ー ト 化剤 (必要 に応 じ て有機溶媒で希釈す る 。 ) を 含浸 し た有機及び無機の粒子。 d ) 選択的抽 出能を有す る 有機溶媒、 或は水溶液を 含浸 し た多孔質の有機又は無機の粒子。 c) Various chelating resin particles capable of chelating. Organic and inorganic particles impregnated with a chelating agent (diluted with an organic solvent if necessary). . d) Porous organic or inorganic particles impregnated with an organic solvent or an aqueous solution capable of selective extraction.
e ) 分離篩作用 を有す る ゲル類を含浸、 固定化 さ せ た多孔質の有機又 は無機の粒子でポ リ ス チ レ ン ゲル粒子 等。  e) Porous organic or inorganic particles impregnated and immobilized with gels that have a separation sieving effect, such as polystyrene gel particles.
f ) 特定の成分、 例え ば酵素 に対 し て特定の ァ フ ィ 二テ ィ 能を有する 基質で修飾 し た ァ フ ィ 二テ ィ 能を有す る 粒子 (例え ばァ ガ ロ ー ス粒子) 、 抗原 一 抗体反応を利 用 し た ァ フ ィ 二テ ィ 能を有す る 粒子、 多孔質 シ リ カ等の 細孔を修飾 し て ァ フ ィ 二テ ィ 能を与え た粒子、 ァ フ ィ 二 テ ィ 能を有す る 膨潤性ゲル成分を多孔質細粒内 に固定化 し た ¾i子等 α  f) Particles having affinity ability modified with a substrate having a particular affinity ability for a specific component, for example, an enzyme (eg, agarose particles) ), Particles having an affinity function utilizing an antigen-antibody reaction, particles having an affinity function by modifying pores such as porous silica, and particles having an affinity function. A swellable gel component having a fining ability immobilized in porous fine particles.
g ) 種々 の有用成分あ る い は除去すべ き 成分を含ん だ粒子。  g) Particles containing various useful components or components to be removed.
固体粒子の平均粒径の範囲 と し て は、 好ま し く は The range of the average particle size of the solid particles is preferably
5 m m程度以下 5 ;/ m ま での程度な ら ば塔の操作は可能 であ る が、 平均粒径 1 m m乃至 2 0 πι程度が更 に好ま し い。 The tower can be operated as long as it is not more than about 5 mm and up to 5; / m, but the average particle size is preferably about 1 mm to 20 πι.
次に分離の対象 と な る 種々 の少な く と も一種以上の着 目 成分を含んだ溶液は非常に広範 に わ た る が、 そ の 例を あ げれば次の よ う な も の があ る 。  Next, the solutions containing various at least one or more components of interest to be separated are very widespread, but examples include the following: is there .
a ) 種々 の金属 イ オ ン を含ん だ水溶液か ら の金属ィ ォ ン の分離。  a) Separation of metal ions from aqueous solutions containing various metal ions.
b ) 種々 の生化学物質を含んだ水溶液か ら の生化学 物質の分離。 例 え ばア ミ ノ 酸、 酵素、 蛋 白 質、 核酸、 抗 生物質等。 b) Biochemistry from aqueous solutions containing various biochemicals Separation of substances. For example, amino acids, enzymes, proteins, nucleic acids, and antibiotics.
c ) 天然物抽 出液か ら の 有効成分の 分離。  c) Separation of active ingredient from natural product extract.
d ) 薬品、 食品等の 脱色、 脱臭、 精製。  d) Decolorization, deodorization and purification of chemicals and foods.
e ) 種 々 の化学物質を含ん だ水溶液或 は有機溶媒溶 液か ら の 着 目 成分の 分離。  e) Separation of components of interest from aqueous or organic solvent solutions containing various chemicals.
f ) 種 々 の 有用成分あ る い は 除去すべ き 成分を含ん だ固体粒子か ら 着 目成分を選択的 に分配で き る 機能を も つ た溶液。 例 え ば選択的溶媒 と か溶離液な ど。  f) A solution that has the function of selectively distributing the spotting component from solid particles containing various useful components or components to be removed. For example, selective solvents or eluents.
本発明 に使用す る 分離装置の作用 を、 少な く と も 一種 以上の着 目 成分を含む溶液 よ り そ の 中 に含有 さ れ る 少な く と も 一種以上の着 目 成分を分離す る 場合を例 に と っ て く わ し く 説明すれば、 分離の た め に 、 分離 さ れ る べ き 原 料で あ る 少な く と も 一種以上の 着 目 成分を含む溶液を多 軸回転翼塔 1 の供給 口 8 よ り 供給す る 。  The function of the separation device used in the present invention is to separate at least one or more eye components contained in a solution containing at least one or more eye components. For example, a multi-axis rotary tower may be used to separate a solution containing at least one or more components of interest, which is a raw material to be separated, for separation. Supply from supply port 8 of 1.
次 に、 多軸回転翼塔 1 中 の 固液分離板 5 よ り も 上部の 位置で あ る が多軸回転翼塔 1 の下部付近 に設 け ら れた 固 体粒子の 供給 口 6 よ り 固体粒子を供給す る 。  Next, the solid particle supply port 6 is located above the solid-liquid separation plate 5 in the multi-spindle impeller 1 but near the lower part of the multi-spindle impeller 1. Supply solid particles.
多軸回転翼塔 1 は、 平行な 回転軸 の 外周面 に付設 さ れ た ス ク リ ュ ー 翼が、 そ の 向 き は互 い に 逆で、 そ れ ら の一 部が重な り 合 う よ う に な っ て お り 、 前記回転軸が互 い に 反対方向 に 回転す る こ と に よ り 前記固体粒子 と 分離 さ れ る べ き 原料溶液 と は混在 し た ス ラ リ ー 状態 と な り 、 ス ク リ ュ ー翼が互 い に重な り 合 う 側 に お い て水平方 向 に は十 分撹伴、 混合 さ れて加圧 さ れ る こ と に よ っ て液 は絞 り 出 さ れ、 ス ク リ ユ ー翼が互い に離れ る 側に お い て ス ラ リ 一 は減圧 と な り 、 弛緩 し て流下す る 液を吸収 し、 固液の接 蝕が促進 さ れ る 。 In the multi-axis rotary wing tower 1, the screw wings attached to the outer peripheral surface of the parallel rotary shaft are opposite to each other in direction, and a part thereof overlaps. And a slurry state in which the raw material solution to be separated from the solid particles by the rotation axes rotating in opposite directions is mixed. Therefore, there is not enough horizontal space on the side where the screw wings overlap each other. The liquid is squeezed out by being stirred and mixed and pressurized, and the slurry is depressurized on the side where the screw wings are away from each other. In other words, it absorbs the liquid flowing down by relaxation and promotes solid-liquid contact.
そ の 際、 固体粒子 と 原料溶液中の分離 さ れ る べ き 少な く と も 一種以上の着 目成分 と の 間 に 吸着平衡、 交換平衡 分配平衡、 溶解度、 ァ フ ィ 二 テ ィ 能な どに よ る 差、 分子 の大 き さ に よ る 排除機能の差、 化学構造等の物理的、 化 学的な特性の差等に よ り 原料溶液中の 分離 さ れ る べ き 少 な く と も 一種以上の着 目成分は、 固体粒子に急速 に 吸収 吸着、 溶解、 結合等 さ れ、 付着す る 。  At that time, adsorption equilibrium, exchange equilibrium, partition equilibrium, solubility, affinity, etc., between the solid particles and at least one or more of the components to be separated in the raw material solution. Due to differences in exclusion function due to differences in molecular size, differences in physical and chemical properties such as chemical structure, etc. One or more of the components of interest are rapidly absorbed, adsorbed, dissolved, bonded, etc., to the solid particles and adhere to them.
分離さ れ る べ き少な く と も 一種以上の 着 目成分を付着 し た固体粒子は、 原料被分離用 溶液 と 水平方向 に十分撹 伴、 混合さ れて絞 ら れ る こ と に よ り 生成 し た ス ラ リ ー の 液放出が生 じ て液は下方 に流下 し、 ま た ス ク リ ュ ー翼の 回転の た め に少な く と も 一種以上の着 目成分を付着 し た 固体粒子は上方へ送 ら れ る 。  The solid particles to which at least one or more of the eye components to be separated are attached are sufficiently stirred horizontally with the solution to be separated, mixed and squeezed. Solids with at least one or more eye contact components due to the rotation of the screw wings due to the release of the slurry generated and the liquid flowing down. The particles are sent upward.
次に、 ス ク リ ュ ー翼が互い に離反す る側に お い て は、 ス ラ リ 一 は弛緩す る た め上方か ら 流下 し て き た液を吸収 し て膨潤 し た ス ラ リ ー と な る 。 こ の膨潤 し た ス ラ リ ー は、 続い てス ク リ 'ユ ー翼が互い に近付 き 重な る 側 に送 ら れ、 こ こ で加圧 さ れ る の で、 再びス ラ リ ー の 液放出が起 り 、 放出 さ れた液は下方 に流下す る 。 そ の 結果、 固体粒子 と 原料溶液 と は 向流接触す る こ と と な る 。 原料溶液中の分離 さ れ る べ き 少な く と も 一種以上の 着 目 成分が付着 し た 固体粒子 は ス ク リ ユ ー翼の 回転 に つ れ て上昇 し 、 遂 に は多軸回転翼塔 1 の上部付近の 固体粒子 の 取 出 し 口 7 よ り 排出 さ れ る 。 Next, on the side where the screw blades move away from each other, the slurry relaxes and absorbs the liquid flowing down from above, causing it to swell. It becomes Lee. The swollen slurry is then sent to the side where the screw wings approach each other and are overlapped with each other, where they are pressurized. The liquid is discharged, and the discharged liquid flows downward. As a result, the solid particles come into countercurrent contact with the raw material solution. The solid particles to which at least one or more eye-catching components should be separated in the raw material solution rise as the screw blades rotate, and finally multi-rotor blades The solid particles near the upper part of 1 are discharged from the outlet 7.
こ の 際、 こ の 多軸回転翼塔 1 の 塔頂部付近 に設 け た溶 離液及 び又 は洗浄液の 導入 口 1 5 よ り 上昇す る 着 目 成分 を付着 し た 固体粒子を溶離液及び又 は洗浄液を流下す る こ と に よ り 固体粒子 に 付着 し た着 目 成分の精製を行な う こ と がで き る 。  At this time, the eluent is used to elute the solid particles to which the eluting components rising from the inlet 15 of the eluent and / or the washing liquid placed near the top of the multi-axis rotary blade tower 1 are attached. And, by flowing down the washing solution, it is possible to purify the eye-grain component attached to the solid particles.
な お、 多軸回転翼塔 1 に お い て原料溶液中 の 分離 さ れ る べ き 少な く と も 一種以上の 着 目 成分の 種類及び量に よ り そ れが付着 し た固体粒子の 溶離及び又 は洗浄操作の 不 用 の 場合 も あ る 。 そ の 際 は 第 3 図 に 示 し た装置 を使用す る こ と 力 で き る 。  Elution of solid particles to which the multi-spindle rotor tower 1 adheres depending on the type and amount of at least one or more of the components to be separated in the raw material solution. And / or in some cases the washing operation is unnecessary. In that case, you can use the equipment shown in Fig. 3.
次 い で移送工程 1 2 に よ り 固体粒子に付着 し て い る 少 な く と も 一種以上の 着 目 成分を分離回収す る 装置 1 3 へ 送 り れ る 。  Next, it is sent to a device 13 for separating and recovering at least one or more kinds of eye components adhering to the solid particles by the transfer step 12.
今、 分離 さ れ る べ き 溶液中の 着 目 成分 と し て二つ の 成 分 ( 「 A + B 」 と す る 。 ) が含 ま れて い る と き 、 A と B と を そ れぞれ別 に取出す場合、 原料溶液で あ る Γ Α + Β 含有の 中 間 フ ィ 一 ド溶液」 を第 1 図の 多軸回転翼塔 1 の ほ ぼ中央部 に あ る 供給 口 8 よ り 供給す る 。  Now, when the solution to be separated contains two components (referred to as “A + B”) as the eye-catching component, A and B are separated. When each of them is to be separately taken out, the raw material solution 中 Α + Β containing intermediate feed solution ”is supplied from the supply port 8 at the approximate center of the multi-spindle impeller 1 shown in Fig. 1. Supply.
二つ の 着 目 成分の 中 の 一つ A は 固体粒子 に選択的 に分 配 し て固体粒子 に付着 し て多軸回転翼塔 1 内 を上昇 し 、 も う 一つ の着 目 成分 B は液に よ り 分配 し て塔内 を流下す る よ う に溶液 と 固体粒子 と の組合わせを選ぶ と 、 多軸回 転翼塔 1 の塔頂部か ら は A は固体粒子に付着 し て固体粒 子の取出 し 口 7 よ り 排出 さ れ、 ま た、 塔底の分離済取出 し室 1 0 よ り 分離液に伴わ れて B が排出 さ れて、 A と B と の分離が行な わ れ る 。 ' One of the two components, A, is selectively distributed to the solid particles, adheres to the solid particles, and ascends in the multi-axis rotary blade tower 1. If another combination of the component B and the solution and the solid particles is selected so that the component B is distributed by the liquid and flows down the column, the component B starts from the top of the multi-axis rotating blade tower 1. A is attached to the solid particles and discharged from the solid particle outlet 7, and B is discharged from the separated outlet chamber 10 at the bottom of the column along with the separated liquid. , A and B are separated. '
分離の原理 は前記の通 り であ る が、 場合に よ り 更に分 離 と 濃縮を十分に行な う た め に、 排出 さ れ る A 成分を主 と し て付着 し た固体粒子を再生 し、 分離 さ れた A 成分の 一部を塔頂部か ら 入 る 溶離液 に加え て液 と 共に塔内へ返 戻 ( こ れを 「塔頂還流」 と 呼ぶ。 ) し て A成分の 分離、 精製、 濃縮を行な う こ と がで き る 。  The principle of separation is as described above, but in some cases, in order to achieve sufficient separation and concentration, the solid particles adhering mainly to the discharged A component are regenerated. Then, a part of the separated A component is added to the eluent entering from the top of the tower, and returned to the column together with the liquid (this is called “top reflux”), and the A component is separated. , Purification and concentration.
同様に塔底部か ら 排出 さ れ る 主 と し て B 成分を含有す る 分離液か ら B を 回収 し てそ の一部を再生固体粒子に分 配 さ せて多軸回転翼塔' 1 へ返戻す る こ と も 行な い得 る 。 ( こ れを 「塔底還流」 と 呼ぶ。 )  Similarly, B is recovered from the separated liquid mainly containing B component discharged from the bottom of the tower, and a part of the recovered B is distributed to regenerated solid particles. It can also be returned to. (This is called "bottom reflux.")
塔頂、 塔底の還流の有効性は分離の機構に よ り 異な る も の であ る 。  The effectiveness of the top and bottom reflux depends on the separation mechanism.
次に、 溶液中 に分離 さ れ る べ き 多 く の成分 ( A + B + C + …) が含 ま れて い る 場合。  Second, if the solution contains many components (A + B + C +…) that must be separated.
一般に溶液中に 2 つ以上の n ケ の成分が含ま れて い て、 そ れぞれの成分 に分離す る た め に は ( η — 1 ) ケ の 多軸 回転翼塔を使用す る 必要があ る が、 原理的に は  In general, a solution contains two or more n components, and it is necessary to use (η — 1) multi-axis rotating blade towers to separate each component. There is, but in principle,
( A + B ) → ( A ) + ( B ) の前記 2 成分系の分離の 繰 り 返 し で あ る 。 (A + B) → (A) + (B) This is a repetition of the separation of the two-component system described above.
次 に、 溶液中 に分離 さ れ る 成分がた だ 1 つ ( 「 A 」 と す る 。 ) だ け が含 ま れて い る 場合、 A を含む溶液を例 え ば第 3 図塔頂付近の 原料溶液送入 口 8 に供給 し 、 多軸回 転翼塔 1 内 を流下す る 間 に 固体粒子の送入 口 6 よ り 送入 さ れ た固体粒子 に接触 さ れ、 混合 さ れ、 絞 ら れて A 成分 が固体粒子 に付着 し 、 A 成分が付着 し た 固体粒子 は 多軸 回転翼塔 1 内 を上昇 し て付着済固体粒子取出 し 口 7 よ り 取 出 さ れ、 分離回収装置 1 3 に お い て A は適当 な手段 に よ り 分離 さ れ る 。 再生 さ れた 固体粒子 は多軸回転翼塔 1 へ再循環使用 す る 。  Next, if the solution contains only one component (referred to as “A”), the solution containing A is, for example, near the top of the tower in Figure 3. The raw material solution is supplied to the raw material solution inlet 8, and is contacted with the solid particles fed from the solid particle inlet 6 while flowing down the inside of the multi-axis rotating blade tower 1, and is mixed therewith. The A component adheres to the solid particles by being squeezed, and the solid particles to which the A component adheres rise in the multi-spindle rotor tower 1 and are taken out from the attached solid particle outlet 7 to be separated and collected. In device 13 A is separated by suitable means. The regenerated solid particles are recycled to the multi-spindle rotor tower 1.
A を分離す る 手段 と し て は、 例え ば溶離液を使用 し て 選択的 に 溶離す る こ と も で き る 。  As a means for separating A, for example, selective elution can be performed using an eluent.
前記の 、 分離回収装置 1 3 の種類及び作用 の メ カ ニ ズ ム は 、 固体粒子及 び分離 さ れ る べ き 成分の種類 に よ り 、 具体的 に は決定 さ れ る が一般 に は着 目 成分の 溶離液 と 称 す る 液で分離す る こ と がで き る 。  The type and mechanism of operation of the separation / recovery device 13 described above are specifically determined by the type of solid particles and the component to be separated, but are generally worn. It can be separated by a solution called the eluent of the eye component.
次 に少な く と も 一種以上の 着 目 成分を 除去 さ れ た分離 液 は、 多軸回転翼塔 1 を流下 し 、 固液分離板 5 の 下部 に 設 け て あ る 分離液取出 し 室 よ り 取 り 出 さ れ る 。  Next, the separated liquid from which at least one or more of the eye-dropping components has been removed flows down the multi-spindle impeller 1, and is supplied to a separated liquid extraction chamber provided below the solid-liquid separation plate 5. Are taken out.
前記の分離回収装置 1 3 に よ り こ の 着 目 成分を 除去 さ れた固体粒子 は必要に 応 じ 他の 処理を行な っ た後、 移送 工程 1 4 に よ り 、 再度、 多軸回転翼塔 1 へ送 ら れて再循 環、 使甩 さ れ得 る 。 一方、 原料溶液中の少な く と も 一種以上の着 目 成分が 除去さ れた分離液 は漸次多軸回転翼塔 1 を流下 し、 固液 分離板 5 を経て分離液取出 し室 9 に集め ら れ、 パ イ プ 1After the solid particles from which the sedimentary components have been removed by the above-mentioned separation and recovery device 13, the solid particles are subjected to other treatments as necessary, and then again subjected to the multi-axis rotation by the transfer process 14. It can be sent to the wing tower 1 for recirculation and use. On the other hand, the separated liquid from which at least one or more notable components have been removed from the raw material solution gradually flows down the multi-axis rotary blade tower 1, passes through the solid-liquid separator 5, and is collected in the separated liquid chamber 9. And pipe 1
0 、 ポ ン プ 1 1 に よ り 排出 さ れる 。 0, discharged by pump 11.
こ の分離液は必要に応 じ、 同様の他の装置 に送入、 分 離処理す る こ と に よ り 、 更に残留 し て い る 他の 着 目 成分 を前記同様に除去す る こ と がで き る 。  If necessary, this separated liquid is sent to another similar device and subjected to a separation treatment to further remove the remaining other eye-contacting components as described above. I can do it.
こ れ ら は着 目成分が溶液中 に存在す る 場合につ き述べ たが、 着 目成分が固体粒子中に存在す る 場合は、 前記溶 液に着 目成分が固体粒子 と 送入溶液 と の 間で前記同様の 分配を生 じ、 同様に着 目 成分の分離が可能であ る 。  These are described when the eye component is present in the solution, but when the eye component is present in the solid particles, the eye component is added to the solution by the solid particles and the feed solution. A similar distribution as described above occurs between and and it is possible to separate the components of interest as well.
(実施例)  (Example)
< 実施例 1 >果糖水溶液か ら 果糖の分離。  <Example 1> Separation of fructose from an aqueous fructose solution.
第 3 図に示す よ う な小型の実験室用 2 軸回転翼塔 (塔 径 5 c m、 塔高 1 6 0 c m ) を用 い、 ダ ブル ス ク リ ュ ー を互 い に反対方向 に 回転さ せて使用 し た。  Using a small laboratory two-axis rotary wing tower (tower diameter 5 cm, tower height 160 cm) as shown in Fig. 3, rotating the double screws in opposite directions I used it.
塔底に供給 さ れた固体粒子を ス ク リ ユ ー の作用 に よ り 、 塔底か ら 塔頂に 向か っ て上昇 さ せた。 一方、 原料溶液は 塔頂に供給 さ れ、 塔内 を流下す る 間 に ダ ブルス ク リ ユ ー の 回転に よ り 、 塔内 を上昇す る 面体粒子 と 均一に 、 かつ 効果的 に 向流で接触 して後、 塔底か ら 排出 さ れ る 。  The solid particles supplied to the bottom were raised from the bottom toward the top by the action of a screw. On the other hand, the raw material solution is supplied to the top of the column, and while flowing down the column, the rotation of the double squirrel allows uniform and effective countercurrent to the planar particles rising in the column. After contacting at, it is discharged from the bottom of the tower.
強酸性イ オ ン交換樹脂 (ス ル フ ォ ン酸型で架橋度 1 0 、 平均粒径 6 を予め 0 . 1 モ ル塩化カ ル シ ゥ ム水溶液で処理 し てカ ル シ ウ ム型 と し た も の を果糖回収 用 の機能性固体粒子 と し て用 い た。 操作 は大気圧下で 2 0 °C で行な っ た 即 ち 、 カ ノレ シ ゥ ム 型 と し た 強酸性ィ ォ ン交換樹脂 を粒 子相 と し て、 粒子相 の 空塔速度を 3 . 0 m 3 u / ' m " 9 h r で連 1¾的 に塔底か ら 送入 し 、 一方、 濃度 5 5 g 1 の 果 糖水溶液を塔頂か ら 空塔速度 5 m J / m 2 h r の 割 合で供給 し、 塔内 を上昇 し て く る 粒子 と 向流 に 均一 に接 触 さ せ た。 Strongly acidic ion-exchange resin (sulfuric acid type, with a degree of cross-linking of 10 and an average particle size of 6) treated with a 0.1 mol aqueous solution of calcium chloride beforehand Fructose recovery It was used as functional solid particles. The operation was carried out at 20 ° C under atmospheric pressure. Immediately, the canopy-form strongly acidic ion exchange resin was used as the particle phase, and the superficial velocity of the particle phase was reduced to 3 ° C. . 0 m 3 u / 'm "9 forced in continuous 1¾ to column bottom or et at hr, whereas the concentration 5 5 results aqueous saccharide solution to column imperative et superficial velocity of g 1 5 m J / m 2 hr And the particles were ascending uniformly in the column and in contact with the countercurrent.
塔内 の状態が定常 と な っ た後、 塔底か ら 排出 さ れ る 果 糖水溶液の 中の果糖濃度を屈折計を用 い て測定 し た処、 平均 2 . 8 g κ 1 の 濃度であ っ た。 今、 粒子 に よ る 果糖回収率を 原液濃度 1 一排出液濃度 1  After the condition in the tower became steady, the concentration of fructose in the aqueous fructose solution discharged from the bottom of the tower was measured using a refractometer, and the average concentration was 2.8 g κ1. there were. Now, the fructose recovery rate by particles is determined by the concentration of the stock solution 1 and the concentration of the effluent 1
回収率 = X 1 0 0 %  Recovery rate = X 100%
原液濃度 g Z 1 と 定義すれば平均 9 5 % の果糖回収率 と な っ て い る 。  If defined as the stock solution concentration gZ1, the average fructose recovery rate is 95%.
た だ し 、 空塔速度 と は、 塔内 が全 く か ら で あ る と し て こ の 空塔内 を、 粒子或 は液がそ れぞれ一杯 に 満た し て流 れ た と 仮定 し た 時の 流速で あ っ て、 見掛 け流速 と も 呼ぶ ま た、 空塔速度 X 塔断面積 = 流量  However, the superficial velocity is assumed to mean that the interior of the tower is completely empty, and that particles or liquids have flowed through the empty tower, respectively, with each of them being filled with a full volume. The flow velocity at the time of flight is also called the apparent flow velocity.
と な る 。 It becomes.
< 実施例 2 〉 ブ ド ウ 糖 と 果糖の分離。  <Example 2> Separation of glucose and fructose.
第 1 図及び第 2 図 に 示す小型の実験室用 の 2 軸回転翼 塔 〔有効高 さ 1 6 0 cm、 直径 5 . O cm (繭型で あ っ て こ れを構成す る 円形の 直径) 〕 を用 い て ダ ブル ス ク リ ュ ー 4 , 4 ' を互い に反対方向 に回転 さ せて 2 軸回転翼塔底 の 固体粒子供給口 6 よ り 機能性固体粒子であ る 平均直径 6 0 の 強酸性カ チオ ン樹脂を供給 し た。 Small laboratory two-axis rotor shown in Figs. 1 and 2 Using a tower (effective height: 160 cm, diameter: 5.0 cm (circular diameter that is cocoon-shaped and constitutes a circular shape)), the double screws 4, 4 'are connected to each other. Then, it was rotated in the opposite direction, and a strongly acidic cationic resin with an average diameter of 60, which was functional solid particles, was supplied from the solid particle supply port 6 at the bottom of the twin-screw rotor blade.
操作は大気圧下に室温で行な つ た。  The operation was performed at room temperature under atmospheric pressure.
ブ ド ウ 糖 と果糖を溶解 し た糖水溶液か ら 、 実施例 1 で 用 い たの と 同 じ カ ル シ ウ ム型 と し た強酸性イ オ ン 交換樹 脂を機能性固体粒子 と し て使用 し、 ブ ド ウ 糖 と 果糖の分 離を行な つ た。  From the aqueous sucrose solution obtained by dissolving glucose and fructose, the same strongly acidic ion-exchanged resin as the calcium type used in Example 1 was used as the functional solid particles. To separate glucose and fructose.
即 ち 、 イ オ ン交換樹脂粒子は 2 軸回転翼塔の塔底か ら 空塔速度 3 . O m 3 Z m 2 h r で連続的 に送入 し た。 Immediate Chi, Yi on-exchange resin particles were added continuously fed with 2 bottom or al superficial velocity third axis rotary wing tower. O m 3 Z m 2 hr .
ま た、 塔頂部か ら は溶離液 と し て水を空塔速度 1 . 0 m 3 / m 2 h r で連続的 に流下 さ せ、 同時に塔中央部 に 被分離用原料溶液 と し て ブ ド ウ 糖 と 果糖の水溶液を Also, the superficial velocity 1 of water column top or colleagues as the eluent. 0 m 3 / m continuously flow down at 2 hr, blanking de as a separation target raw material solution for the tower central section at the same time An aqueous solution of sugar and fructose
0 . 5 0 m 3 / m 2 h r の空塔速度で連続的 に供給 し た < 塔中央部 に供給 さ れ る 糖水溶液に は水溶液 1 1 あ た り 、It was continuously supplied at a superficial velocity of 0.50 m 3 / m 2 hr. <11
5 0 g の プ ド ウ糖 と 果糖 と を含んでお り 、 こ の水溶液は 塔内 に入 る と 、 回転す る ス ク リ ユ ーの作用 で塔頂か ら 流 下す る 水相 と 均一 に混合 さ れ、 ま た、 塔内を上昇す る 粒 子 と 均一に接触 し て こ れ と 向流 し、 塔内 を流下 し て塔底 か ら 排出 さ れ る 。 It contains 50 g of pudose sugar and fructose. When the aqueous solution enters the column, it is mixed with the aqueous phase flowing down from the top of the column by the action of the rotating screw. In addition, the particles are uniformly contacted with the particles rising in the column, flow countercurrently to the particles, flow down in the column, and are discharged from the bottom of the column.
こ の操作に よ っ て、 果糖は機能性固体粒子 に選択的 に 分配 し て、 塔頂か ら 樹脂粒子 と 共に排出 さ れ、 ブ ド ウ 糖 9一 は流下す る 水 に選択的 に分配 し て、 塔底か ら 排出 さ れ る 粒子 に含 ま れ る 糖を再生 し て水溶液 と し 、 塔底か ら 排 出 さ れた水溶液 と 共に屈折計を用 い て糖の 濃度を分析 し た結果 は次の よ う で あ つ 7<- o By this operation, fructose is selectively distributed to the functional solid particles, discharged together with the resin particles from the top of the column, and glucose is removed. The first is to selectively distribute water flowing down, regenerate the sugar contained in the particles discharged from the bottom of the column to form an aqueous solution, and together with the aqueous solution discharged from the bottom of the column. The results of the analysis of the sugar concentration using a refractometer are as follows: 7 <-o
即 ち 、 塔頂か ら は純度 7 7 重量% の 果糖 (残 り は プ ド ゥ 糖) 、 ま た、 塔底か ら は純度 7 7 重量% の ブ ド ウ 糖 (残 り は果糖) が得 ら れた。  Immediately from the top of the column, 77% by weight of fructose (the rest is pudose), and from the bottom, 77% by weight of the fructose (the rest is fructose). I got it.
ぐ 実施例 3 〉 フ エ ノ ー ル と 卜 ルェ ン の 混合物の 分離。  Example 3> Separation of a mixture of phenol and toluene.
第 1 図、 第 2 図及び実施例 2 に示す装置を使用 し て再 生 さ れた 固体粒子 と し て ス チ レ ン 系 の 多孔性合成樹脂球 粒子を塔底の 固体粒子の供給 口 か ら 3 . 0 m 3 / m 2 h r の 空塔速度で塔内 を上昇 さ せ た。 ま た、 塔頂か ら は メ タ ノ ー ル液を空塔速度 2 . 5 m J / m 2 h r で供給 し : ^ さ れ る 樹脂粒子 と 連続的 に 向流接触 さ せ る 。 操作 は すべて常温で行な っ た。 As the solid particles regenerated by using the apparatus shown in FIG. 1, FIG. 2 and Example 2, styrene-based porous synthetic resin sphere particles are used as the solid particle supply port at the bottom of the tower. The height of the tower was raised at a superficial velocity of 3.0 m 3 / m 2 hr. Also, the tower imperative et supplies METHANOL solution at a superficial velocity 2 5 m J / m 2 h r:. A ^ is Ru resin particles Ru is continuously countercurrent contact. All operations were performed at room temperature.
分離 さ れ る べ き 原料液 は メ タ ノ ー ノレ 1 1 当 り 0 . 1 モ ル の フ エ ノ ー ル と ト ル ェ ン を そ れぞれ等モ ル含む メ 夕 ノ ー ル溶液で あ っ て、 塔の 中央部の 原料溶液の導入 口 8 か ら 0 . 5 πι 3ύ / πι 2ώ 1ΐ Γ の 空塔速度で連続的 に供給 し 、 塔内 を流下す る メ タ ノ ー ル液 と 均一 に 混合 し た。 The raw material liquid to be separated is a methanol solution containing 0.1 mol / mol of phenol and 0.1 mol of toluene, respectively. Then, the raw material solution is continuously supplied from the inlet 8 of the raw material at the center of the tower at a superficial velocity of 0.5 πι 3 ύ / πι 2 ώ 1 ΐ, and flows down the tower. And the mixture was mixed uniformly.
以上の操作を行な う と 、 フ エ ノ ー ル は液 に 多 く 分配 し て分離液取出 し 室 9 よ り 液 と 共 に排出 さ れ、 紫外分光光 度計 ( 2 5 0 n m ) で測定 し た と こ ろ 、 そ の純度 は 8 0 % ( フ エ ノ ー ノレ と ト ノレ ェ ン 中 の フ エ ノ ー ノレ の モ ゾレ % ) で あ た By performing the above operations, the phenol is distributed in a large amount to the liquid, discharged together with the liquid from the separated liquid taking-out chamber 9, and is analyzed by an ultraviolet spectrophotometer (250 nm). As measured, its purity is 80% (mosoole% of phenol in phenol and phenol). Was
ま た、 ト ルエ ン は固体粒子に多 く 分配、 付着 し て、 塔 頂の固体粒子の取出 し 口 7 よ り 粒子 と 共に排出 さ れた。  Toluene was distributed and attached to the solid particles in a large amount, and was discharged together with the particles from the outlet 7 for the solid particles at the top of the tower.
付着粒子を再生装置 1 3 に よ り 再生 し、 こ の よ う に し て得 ら れた ト ルエ ン の純度 は 7 2 % で あ っ た 。  The adhered particles were regenerated by a regenerator 13 and the purity of truene obtained in this way was 72%.
く 実施例 4 >微細な ヒ ド ロ キ シ ァパ タ イ 卜 の粒子 に よ る 蛋白質の分離。  Example 4> Separation of proteins by fine hydroxyapatite particles.
第 1 図、 第 2 図及び実施例 2 に使用 し た と 同様の装置 を使用 し、 機能性固体粒子 と し て、 平均粒径 3 5 n m の 再生さ れた微細な ヒ ド ロ キ シ ァ パ タ イ ト 結晶 の 粒子を塔 底の 固体粒子の供給 口 6 か ら 導入 し、 1 . 0 m 3 m h r の 空塔速度で塔内 を上昇 さ せ る 。 操作は常温で あ る 塔頂付近の分離液導入口 1 5 か ら は、 リ ン酸濃度 に し て、 1 7 0 ミ リ モ ル の リ ン 酸 カ リ ウ ム緩衝液  Using a device similar to that used in FIG. 1, FIG. 2 and Example 2, as the functional solid particles, regenerated fine hydroxya having an average particle size of 35 nm was used. The particles of the pattern crystal are introduced from the solid particle supply port 6 at the bottom of the tower, and are raised in the tower at an empty tower speed of 1.0 m3 mhr. The operation was performed at room temperature at the inlet of the separated solution 15 near the top of the column. The phosphate concentration was adjusted to 170 mM calcium phosphate buffer.
( Κ 2 Η Ρ 0 ^ と Κ Η 。 Ρ 0 4 を等モ ル溶解 し た水溶液 を リ ン酸カ リ ウ ム緩衝液 と 呼ぶ。 ま た、 こ の緩衝液に含 ま れ る Ρ Ο 4 の濃度を リ ン酸濃度 と 定義 し て、 緩衝 液の 濃度を表わ し た。 ) を空塔速度 1 . 5 m d m h r で流下 さ せ上昇 し て く る ヒ ド ロ キ シ ァパ タ イ ト 結 曰 2 Η Ρ 0 ^ and Κ 。. An aqueous solution in which 4 04 is dissolved in equimolar is called potassium phosphate buffer. Also, 水溶液 Ο 4 contained in this buffer the concentration is defined as-phosphate concentration, the concentration of the buffer was Table Wa.) superficial velocity 1. 5 m d arsenide de passed down that rises in mhr b key sheet § Pas data Say it
B曰 粒子 と 連続的に 向流接触 さ せた。  B said the particles were in continuous countercurrent contact.
ヒ ド ロ キ シ ァパ タ イ ト 結晶粒子 と 接触 し て分離 さ れ る べ き 原料 フ ィ ー ド液は、 1 . 0 ミ リ モ ル の リ ン 酸濃度を 持つ リ ン酸カ リ ウ ム緩衝液に溶か し た稀薄な リ ゾチ ー ム と チ ト ク ロ ー ム C の 混合溶液であ っ て、 ほ ぼ等モ ルを合 計 0 . 1 ミ リ モ ル Z 1 の 濃度 に な る よ う に溶か し た水溶 液で あ る 。 The raw material feed solution to be separated by contact with the hydroxyapatite crystal particles is a phosphoric acid having a phosphoric acid concentration of 1.0 millimol. A mixture of diluted lysozyme and cytochrome C dissolved in a buffer solution. It is an aqueous solution that has been dissolved to a total concentration of 0.1 millimoles Z1.
こ の フ ィ 一 ド液 は塔の ほ ぼ中央部 に あ る 原料溶液の導 入 口 8 か ら 0 . l m 3 / m 2 h r の 空塔速度で連続的 に 供給 さ れ、 回転す る ス ク リ ユ ー翼の 混合作用 に よ っ て塔 内 を流下す る 1 7 0 ミ リ モ ル の リ ン酸 カ リ ウ ム 緩衝液 と 均一 に混合 さ れた後塔内 を流下す る 。 This feed liquid is continuously supplied at a superficial velocity of 0.1 lm 3 / m 2 hr from the raw material solution inlet 8 located at the approximate center of the tower, and the rotating liquid is fed. It flows down in the tower by the mixing action of the clean wings. After it is uniformly mixed with 170 milliliters of potassium phosphate buffer, it flows down in the tower.
以上の操作を行な う と 、 塔底か ら 緩衝液に 伴わ れて リ ゾチ ー ム が得 ら れ、 そ の純度 は 8 5 モ ル%で あ っ た。 ま た、 塔頂か ら は ヒ ド ロ キ シ ァ パ タ イ ト 結晶粒子 に選択的 に 吸着 さ れた チ ト ク ロ ー ム C が得 ら れ、 チ ト ク ロ ー ム C を結晶か ら 溶離 し て得 ら れた溶離液中の チ ト ク ロ ー ム C の純度 は 8 2 モ ル% で あ っ た。  By performing the above operations, lysozyme was obtained from the bottom of the column with the buffer solution, and its purity was 85 mol%. In addition, from the top of the tower, cytochrome C selectively adsorbed to the hydroxyapatite crystal particles was obtained. The purity of cytochrome C in the eluate obtained by the elution was 82 mol%.
(産業上の 利用可能性)  (Industrial applicability)
原料 と し て少な く と も 一種以上の 着 目 成分を含む溶液 あ る い は固体粒子 よ り 、 含有す る 少 な く と も 一種以上の 着 目 成分を分離す る た めに、 本発明 の方法及 び装置を使 用 す る こ と に よ り 従来法 に比 し て連続定常的 に極 め て効 率の良い分離を行な う こ と がで き 、 た と え ば ア ミ ノ 酸、 酵素、 蛋 白 質等種々 の生化学物質を含ん だ水溶液か ら の 生化学物質の分離等 に有効 に 用 い る こ と がで き る 。  The present invention relates to the separation of at least one or more of the ingredients contained in the solution or the solid particles, which contain at least one or more of the ingredients as raw materials. By using the method and the device of the present invention, it is possible to perform continuous and extremely efficient separation as compared with the conventional method. It can be effectively used for separation of biochemical substances from an aqueous solution containing various biochemical substances such as acids, enzymes, and proteins.

Claims

請 求 の 範 囲 The scope of the claims
1 . 少な く と も 2 つ の平行な 回転軸の外周面に付設 さ れた ス ク リ ュ ー翼が、 そ の 向 き は互い に逆で、 そ れ ら の一部が重な り 合 う よ う に な っ て お り 、 前記回転軸が互 い に反対方向 に回転す る こ と に よ り 塔底部に連続的 に供 給 さ れた固体粒子を連続的に上方 に揚送す る 作用 を有す る 多軸回転翼塔を用 い、 該多軸回転翼塔の塔底部か ら 固 体粒子を塔頂部に 向 か っ て連続的 に揚送 し 、 同時に該固 体粒子 と 向流に塔内 に溶液を連続的 に流下さ せ る こ と に よ り 、 前記ス ク リ ユ ー翼の 回転に よ っ て揚送固体粒子 と 流下溶液 と の 間の均一かつ効果的な 向流接触を行な わせ る こ と に よ り 、 溶液中 に含ま れ る 混合物中の着 目 成分を 固体粒子に分配 さ せて溶液か ら 分離 し、 或 は逆に 固体粒 子に含ま れ る 成分中の着 目成分を溶液側 に分配 さ せて固 体粒子か ら 分離す る こ と を特徴 と す る 混合物の 向流分離 方法。 1. The screw wings attached to the outer peripheral surface of at least two parallel rotating shafts are opposite in direction to each other, and a part of them is overlapped. As the rotating shafts rotate in opposite directions, the solid particles continuously supplied to the bottom of the column are continuously pumped upward. The solid particles are continuously pumped from the bottom of the multi-axis rotating blade tower toward the tower top, and simultaneously with the solid particles. By continuously flowing the solution in the countercurrent in the counter-current, the rotation of the screw blades enables uniform and effective communication between the discharged solid particles and the flowing solution. The countercurrent contact allows the components of the mixture contained in the solution to be distributed to the solid particles and separated from the solution, or vice versa. Countercurrent separation process of the mixture characterized and paying attention this component you separation or solid particles found by distributed solution side in components are Ru contained in the solid particles child.
2 . 溶液中に着 目成分が少な く と も 一種以上含 ま れ てい る と き、 こ の着 目成分に対 して分離機能を有す る 固 体粒子を用 い、 溶液は塔頂部に供給 し て、 塔底部か ら 上 昇 し て く る 固体粒子 と 向流に接触 さ せて溶液中か ら 粒子 中へ着目成分を分配 し て分離す る 請求項 1 記載の 向流分 離方法。  2. When the solution contains at least one or more eye-catching components, use solid particles that have a separation function for these eye-catching components, and the solution is placed at the top of the tower. The countercurrent separation method according to claim 1, wherein the component is supplied and brought into contact with the solid particles rising upward from the bottom of the tower and in a countercurrent to distribute and separate the target component from the solution into the particles. .
3 - 固体粒子に着 目成分が少な く と も 一種以上含ま れて い る と き 、 こ の 着 目 成分 に対 し て分離機能を有す る 溶液を用 い、 溶液 は塔頂部 に 供給 し て、 塔底部か ら 上昇 し て く る 固体粒子 と 向流 に接触 さ せ て、 固体粒子中 か ら 溶液中へ着 目 成分を分配 し て分離す る 請求項 1 記載の 向 流万 ¾fe 法。 3-Solid particles contain at least one or more notable components When this is done, a solution that has a separation function for this component is used, and the solution is supplied to the top of the column, and the solid particles that rise from the bottom of the column and the countercurrent flow The method according to claim 1, wherein the contact component is separated from the solid particles into the solution by contacting the solid particles with the solution.
4 . 溶液中 に着 目 成分が 2 種含 ま れて い る と き 、 2 つ の 着 目 成分に対 し て異な っ た分離度 を与え る よ う な 固 体粒子 と 溶離液 と の組合わせ を用 い て、 固体粒子を塔底 部か ら 送入 し 、 溶離液を塔頂部 に 供給 し 、 分離 さ れ る べ き 着 目 成分を含む溶液を塔の 中間部 に供給す る こ と に よ り 2 つ の 着 目 成分の う ち 一方 は 固体粒子 に、 他方 は溶液 に分配さ せ て そ れぞれ塔頂部及び塔底部か ら 取 り 出 し て 分離す る こ と を特徴 と す る 請求項 1 記載の 向流分離方法 4. When the solution contains two species of the eye component, a combination of solid particles and an eluent that gives different resolutions to the two eye components. By using the combination, the solid particles are fed from the bottom of the column, the eluent is supplied to the top of the column, and the solution containing the component to be separated is supplied to the middle of the column. Thus, one of the two components is separated into solid particles, and the other is separated into a solution and removed from the top and bottom of the column and separated. The countercurrent separation method according to claim 1
5 . 少な く と も 2 つ の平行な 回転軸 の外周面 に 付設 さ れた ス ク リ ュ ー翼が、 そ の 向 き は互 い に逆で、 そ れ ら の一部が重な り 合 う 様 に な つ て お り 、 前記回転軸が互 い に反対方 向 に 回転す る こ と に よ り 塔底部 に連続的 に供給 さ れた固体粒子を連続的 に上方 に 揚送す る 作用 を有す る 多軸回転翼塔を用 い、 該多軸回転翼塔中 のい ずれかの 部 分 に少な く と も 一種以上の 着 目 成分を含む溶液の 供給 口 該多軸回転翼塔の 下部付近 に 固体粒子の 供給 口、 こ の 多 軸回転翼塔の上部付近 に少な く と も 一種以上の着 目 成分 を付着 し た 固体粒子の取出 し 口 を設 け、 更 に該多軸回転 翼塔の 下端付近に複数の小孔、 又 は網板を設 け て な る 固 液分離板に続 く 分離液取出 し室 と、 及び要すれば該多軸 回転翼塔側壁部で、 ス ク リ ュ ー翼が互い に接近する側の 部分に複数の小孔、 又は網板を設けてな る 固液分離板に 続 く 分離済液体取出 し室と の両方又はいずれかの室を設 置 し、 こ の、 又は こ れ ら の室を常圧又は減圧にする か、 あ る いはポ ン プによ っ て分離済液体を強制的に組み出す こ とを可能とする手段を有する こ と を特徵 とする 向流分 5. The screw wings attached to the outer peripheral surface of at least two parallel rotating shafts are opposite to each other, and some of them overlap. The solid particles supplied continuously to the bottom of the tower are continuously pumped upward by rotating the rotating shafts in opposite directions to each other. A multi-axial rotary tower having a function of supplying a solution containing at least one or more components of interest in any part of the multi-axial rotary tower. A supply port for solid particles is provided near the lower part of the wing tower, and a discharge port for solid particles having at least one or more of the joint components is provided near the upper part of the multi-axis rotary wing tower. A multi-rotor tower with a plurality of small holes or mesh plates near the lower end A plurality of small holes or mesh plates are provided at the portion where the screw blades approach each other in the separated liquid discharge chamber following the liquid separation plate and, if necessary, on the side wall of the multi-axis rotary blade tower. A liquid-removal chamber and / or a chamber for separating the separated liquid that follows the solid-liquid separation plate that is provided with Or a means for enabling forced separation of the separated liquid by a pump.
6 . 少な く と も 2 つの平行な回転軸の外周面に付設 さ れたス ク リ ユ ー翼が、 その向 き は互い に逆で、 それ ら の一部が重な り 合う 様にな つ てお り 、 前記回転軸が互い に反対方向に回転する こ と に よ り 塔下部に連続的に供給 さ れた固体粒子を連続的に上方に揚送す る作用を有する 多軸回転翼塔を用 い、 該多軸回転翼塔中の いずれかの部 分に少な く と も一種以上の着目成分を含む溶液の供給口、 該多軸回転翼塔の下部付近に固体粒子の供給口、 該多軸 回転翼塔の下部付近に固体粒子の供給口、 該多軸回転翼 塔の塔頂部付近に溶離液及び又は洗滌液の供給口、 こ の 多軸回転翼塔の上部付近に少な く と も一種以上の着目成 分を付着 し た固体粒子の取出 し 口を設け、 更に該多軸回 転翼塔の下端付近に複数の小孔、 又は網板を設けてな る 固液分離板に続 く 分離液取出 し室 と 、 及び要すれば該多 軸回転翼塔側壁部で、 ス ク リ ュ ー翼が互い に接近する 側 の部分に複数の小孔、 又は網板を設けてな る 固液分離板 に続 く 分離済液体取出 し 室 と の両方又 は い ずれかの室を 設置 し、 こ の 、 又 は こ れ ら の 室を常圧又 は減圧 に す る か あ る い は ポ ン プ に よ つ て分離済液体を 強制的 に組み 出す こ と を可能 と す る 手段を有す る こ と を特徵 と す る 向流分 離装置。 6. At least the screw wings attached to the outer peripheral surface of the two parallel rotating shafts are oriented so that their directions are opposite to each other and some of them overlap each other. A multi-axis rotary blade having an operation of continuously pumping solid particles continuously supplied to the lower part of the tower upward by rotating the rotary shafts in directions opposite to each other. A supply port for a solution containing at least one or more components of interest in any part of the multi-spindle tower, and a supply port for solid particles near the lower part of the multi-spindle tower A supply port for solid particles near the lower part of the multi-shaft impeller, a supply port for eluent and / or washing liquid near the top of the multi-shaft impeller, and a small amount near the upper part of the multi-shaft impeller. In particular, an outlet for solid particles to which one or more components of interest are attached is provided, and a plurality of small holes and holes are provided near the lower end of the multi-axis rotating blade tower. Or, a separated liquid discharge chamber following a solid-liquid separation plate provided with a mesh plate, and, if necessary, a portion of the side wall of the multi-axis rotary blade tower on which the screw blades approach each other. Solid-liquid separation plate with multiple small holes or mesh plate And / or one or more chambers for the separated liquid removal chambers, and either or at normal or reduced pressure in these chambers or pumps A countercurrent separation device characterized in that it has means for forcibly assembling the separated liquid by the method described above.
PCT/JP1991/001663 1990-11-29 1991-11-29 Method of and device for counter-flow separation of mixture WO1992009352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB9216071A GB2255916A (en) 1990-11-29 1992-07-28 Method of and device for counter-flow separation of mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/325566 1990-11-29
JP32556690A JPH04197402A (en) 1990-11-29 1990-11-29 Countercurrent separation of mixture and apparatus therefor

Publications (1)

Publication Number Publication Date
WO1992009352A1 true WO1992009352A1 (en) 1992-06-11

Family

ID=18178321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001663 WO1992009352A1 (en) 1990-11-29 1991-11-29 Method of and device for counter-flow separation of mixture

Country Status (4)

Country Link
JP (1) JPH04197402A (en)
DE (1) DE4193006T (en)
GB (1) GB2255916A (en)
WO (1) WO1992009352A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108554293A (en) * 2017-12-07 2018-09-21 滁州恒通磁电科技有限公司 A kind of forming magnetic tile raw material material blending device
CN110270129A (en) * 2019-08-05 2019-09-24 翔宇药业股份有限公司 A kind of automation extraction element and its application in compound oral liquid for tonifying blood containing red skin of peanut production
CN112619470A (en) * 2020-12-17 2021-04-09 黄海亮 Uniform mixing and stirring device for livestock feed processing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5891433A (en) * 1993-08-13 1999-04-06 Silver; Barnard Stewart Extracting soluble substances from subdivided solids with a water-base liquid extraction medium
ZA945796B (en) * 1993-08-13 1995-03-14 Barnard Stewart Silver Method and apparatus for extracting with liquids soluble substances from subdivided solids
CN100364634C (en) * 2005-11-23 2008-01-30 黑龙江省计算中心 Double-spiral, continuous counter-flow extraction equipment
ITMI20120298A1 (en) * 2012-02-28 2013-08-29 Asi Apparecchiature Scient Innovative S DEVICE AND PROCEDURE TO DETECT THE PRESENCE OF FLUORESCENT PARTICLES LOST IN VERY LOW CONCENTRATIONS IN A LIQUID HALF CONTAINED IN A CUVET.
NO343574B1 (en) * 2017-05-22 2019-04-08 M&M Engine As Method for filtration of polluted liquid, and a filtration apparatus
CN109381889A (en) * 2018-11-26 2019-02-26 吴斌 A kind of segregative alkaloid extraction equipment of solid-liquid
CN109794079A (en) * 2019-03-02 2019-05-24 孙志良 A kind of Supercritical Fluid Extraction Enhanced by Ultrasonic device
CN117046152B (en) * 2023-09-18 2024-05-10 陇西一方制药有限公司 Special field cleaner for continuous countercurrent extraction unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493460A (en) * 1972-04-28 1974-01-12
JPS5059338U (en) * 1973-10-05 1975-06-02
JPS5140027B1 (en) * 1970-07-31 1976-11-01
JPS63315139A (en) * 1987-06-19 1988-12-22 Mitsubishi Heavy Ind Ltd Apparatus for mixing treatment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU76626A1 (en) * 1977-01-21 1978-09-13

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140027B1 (en) * 1970-07-31 1976-11-01
JPS493460A (en) * 1972-04-28 1974-01-12
JPS5059338U (en) * 1973-10-05 1975-06-02
JPS63315139A (en) * 1987-06-19 1988-12-22 Mitsubishi Heavy Ind Ltd Apparatus for mixing treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108554293A (en) * 2017-12-07 2018-09-21 滁州恒通磁电科技有限公司 A kind of forming magnetic tile raw material material blending device
CN110270129A (en) * 2019-08-05 2019-09-24 翔宇药业股份有限公司 A kind of automation extraction element and its application in compound oral liquid for tonifying blood containing red skin of peanut production
CN112619470A (en) * 2020-12-17 2021-04-09 黄海亮 Uniform mixing and stirring device for livestock feed processing

Also Published As

Publication number Publication date
JPH04197402A (en) 1992-07-17
GB2255916A (en) 1992-11-25
DE4193006T (en) 1992-12-10
GB9216071D0 (en) 1992-09-23

Similar Documents

Publication Publication Date Title
Dechow Separation and purification techniques in biotechnology
WO1992009352A1 (en) Method of and device for counter-flow separation of mixture
JPH07501261A (en) Solid phase application system
EP0639100B1 (en) Continuous-belt separator/reactor and method
CN1074791C (en) Process for producing calcium D-pantothenate
JPS6335636B2 (en)
JPH11103879A (en) Production of highly pure erythritol crystal
US4548802A (en) Continuous flow separation with moving boundary sorption
US4111660A (en) Liquid-liquid extraction method and apparatus
CN104878056A (en) Method for producing high-purity fructo-oligose
EP3615213B1 (en) Treatment of sugar solutions
JP2003524157A (en) Chromatographic material and method of using the same
CN103193896B (en) A kind of preparation method of Konjac Glucomannan and the thin-film evaporator adopted thereof
US4362627A (en) Cellular flow system and method
WO2019157220A2 (en) Method and system to improve all phases of ion-exchange resin regeneration
US4726903A (en) Continuous flow separation or mixing by electrophoresis with moving boundary sorption
AU2012253187B2 (en) Improved apparatus and circulating fluidized bed system
CN103736402A (en) Sodium alginate chiral cross-linked membrane and applications thereof
US3660279A (en) Method for sorption of antibiotics from unfiltered liquids
RU2756908C1 (en) Method for chromatographic separation of a glucose-fructose syrup and an unit for implementation thereof
Dechow Ion exchange
Pirotta Ion exchangers in pharmacy, medicine and biochemistry
RU2005127831A (en) MIXTURES OF SUBSTANCES
Ottens et al. Downstream processing
Bhattacharyya et al. Down Stream Processing of Biologicals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB US

RET De translation (de og part 6b)

Ref document number: 4193006

Country of ref document: DE

Date of ref document: 19921210

WWE Wipo information: entry into national phase

Ref document number: 4193006

Country of ref document: DE