WO1992008955A1 - Mounting means for fluid pressure transmitters - Google Patents
Mounting means for fluid pressure transmitters Download PDFInfo
- Publication number
- WO1992008955A1 WO1992008955A1 PCT/US1991/008620 US9108620W WO9208955A1 WO 1992008955 A1 WO1992008955 A1 WO 1992008955A1 US 9108620 W US9108620 W US 9108620W WO 9208955 A1 WO9208955 A1 WO 9208955A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- fluid
- mounting plate
- manifold
- pair
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/0007—Fluidic connecting means
- G01L19/0015—Fluidic connecting means using switching means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/18—Supports or connecting means for meters
- G01F15/185—Connecting means, e.g. bypass conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/5109—Convertible
- Y10T137/5196—Unit orientable in a single location between plural positions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8593—Systems
- Y10T137/87249—Multiple inlet with multiple outlet
Definitions
- This invention relates to mounting means for fluid pressure transmitters in fl communication with a main flow line, and more particularly to a common mounting mea for both a differential pressure transmitter and a gauge pressure transmitter.
- a flow restriction is placed in a main flow line transporting a fluid a pressure taps are made on each side of the restriction for obtaining high and low flu pressures.
- Such a flow restriction may comprise an orifice plate, flow nozzle, or vent tube, for example.
- the high and low pressures taken from opposed sides of the restricti in the main flow line are communicated to a transmitter for measuring and transmitting t measured pressure or pressure differential by a suitable electronic signal or the like to remote location, such as a control room, where the pressure or pressure differential m be monitored and/or recorded by an operator.
- Gas flow measurements in a main flow line across a reduced diameter orifi require several variable inputs including the differential pressure and the gauge or stat pressure.
- a separate installation has normally been provided for each of the pressu transmitters with each installation normally utilizing a pair of orifice taps or ports one each side of the reduced diameter orifice.
- the use of two separate installations for flo measurement through a main flow line increases the possibility of malfunction fro possible leakage at the connecting joints or improper installation, as well as requiring relatively large amount of space for the two installations.
- a manifold is normally mounted between the main flow line and the pressu transmitters.
- the manifold permits blocking or venting of the pressure lines to t transmitters which may be required for proper calibration of the transmitters.
- the transmitters While single installation from the main flow line has been used heretofore for a differenti pressure transmitter and a gauge pressure transmitter, the transmitters have been mounte on separate sides of the manifold or have been mounted in a series relation to each oth with the gauge pressure transmitter being downstream from the differential pressur transmitter. Such an arrangement sometimes makes it difficult for "rodding" or cleanin through passages and valve seats, and usually requires utilization of the manifold f calibration of the transmitters.
- This invention is particularly directed to mounting means for a differential pressur transmitter and a gauge pressure transmitter in fluid communication with a main flow lin while utilizing only a single set of taps or ports for a reduced diameter orifice or restrictio in the main flow line.
- the mounting installation preferably is mounted directly to the mai flow line or positioned closely adjacent the main flow line and an improved precision i measuring the change in pressure is provided from the single set of ports as pressure puls or waves from the fluid in the main flow line are transmitted practically instantaneousl to the pressure transmitters, which normally include flexible diaphragms for measuring th fluid pressure.
- a manifold is mounted closely adjacent the main flow line and is connected to th pair of pressure taps or lines from the main flow line.
- the manifold is normally used control flow to a pressure transmitter while permitting blocking, venting, zero checks, an calibration, and includes five valves each movable between open and closed positio relative to a flow passage in the manifold.
- An important feature of the present invention is an adapter or mounting plate f supporting both a differential pressure transmitter and a gauge pressure transmitter.
- T mounting plate has opposed planar sides or surfaces mounted between the manifold and t pressure transmitters with the fluid flow to the differential pressure transmitter from t manifold being along a straight axis through the mounting plate.
- the mounting plate m have its flow passages and associated valve seats to the transmitters cleaned with a rod "rodded out".
- the gauge pressure transmitter is positioned downstream from t differential pressure transmitter and a block valve in the mounting plate blocks flu communication or flow to the gauge pressure transmitter when it is desired to calibrate t differential pressure transmitter.
- the mounting plate is provided with suitable flo passaging to permit the gauge pressure transmitter to measure either low pressure or hi pressure from the main flow line by a reversal of the connections to the mounting plat Normally, the gauge pressure transmitter measures the low pressure side of the orifice the main flow line, but it may be desired under certain conditions for the gauge pressu transmitter to measure the high pressure side of the orifice in the main flow line and the same mounting plate may be utilized for such high pressure measurement.
- An additional object is to provide such a mounting plate between a manifold and the transmitters with the gauge pressure transmitter being downstream of the differential pressure transmitter so that fluid communication to the gauge pressure transmitter may be blocked for calibration or venting of the differential pressure transmitter.
- Figure 1 is a schematic of a system for measuring fluid pressure in a main flow line utilizing the present invention in which a differential pressure transmitter and a gauge pressure transmitter are mounted on a manifold in fluid communication with a pair of fluid pressure taps on opposed sides of a restriction in the main flow line;
- Figure 2 is an elevation of one embodiment of the pressure measuring and transmitting assembly of the present invention mounted directly on a main flow line;
- Figure 3 is a perspective of a five valve manifold of the pressure measuring and transmitting assembly of Figure 2 positioned between the main flow line and the mounting plate for the gauge pressure transmitter and the differential pressure transmitter;
- Figure 4 is a plan view, partly in section, of the manifold shown in Figure 3;
- Figure 5 is a plan view of the mounting plate with certain parts broken away for showing fluid communication between the differential pressure transmitter and the gauge pressure transmitter;
- Figure 6 is a side elevation, with certain parts broken away, of the mounting plate of Figure 5;
- Figure 7 is an elevation of a modification of the pressure measuring and transmitting assembly mounted on a stand adjacent the main flow line and showing the differential pressure transmitter mounted on a planar face of the mounting plate and the gauge pressure transmitter on a side of the mounting plate at right angles to the differential pressure transmitter;
- Figure 8 is a plan of the modified pressure measuring and transmitting assembly shown in Figure 7 taken generally along line 8-8 of Figure 7 but rotated 90 ° ;
- Figure 9 is a plan of the mounting plate shown removed from the assembly of
- Figure 10 is a section taken generally along line 10-10 of Figure 9;
- Figure 11 is an end elevation of the mounting plate shown in Figures 9 and 10;
- Figure 12 is a front elevation of a further modification of the pressure measuring and transmitting assembly of the present invention showing a manifold connected directly to a side of a main flow line with the transmitter mounting plate extending in a horizontal direction; and
- Figure 13 is an additional modification of the pressure measuring and transmitting assembly of the present invention showing a manifold connected directly to a side of main flow line with the mounting plate extending in a generally vertical direction and the transmitters extending in opposite directions from each other.
- the main flow line is generally indicated at 10 having a flow restriction 12 therein which provides a fluid pressure drop as well known.
- Flow restriction 12 may be in the form of an orifice plate, flow nozzle, or venturi, as well known.
- a high pressure fluid tap or line is shown at 14 and a low pressure fluid tap or line is shown at 16 on opposed sides of restriction 12.
- a housing 17 is connected to flow line 10 as shown in Figure 2 for mounting restriction or orifice plate 12 within flow line 10.
- High and low pressure lines 14, 16 are in fluid communication with a five valve manifold generally shown at 18 and well known in the art as will be explained further below.
- High and low pressure lines 14, 16 extend along a straight axis through suitable flow passages in manifold 18 to a mounting plate generally illustrated at 20 on which a differential pressure transmitter 22 and a gauge pressure transmitter 24 are mounted.
- Differential pressure transmitter 22 is in fluid communication along a straight axis with both the high pressure line 14 and the low pressure line 16 from main flow line 10 for measuring the differential pressure on opposite sides of restriction 12 while gauge pressure transmitter 24 is in fluid communication with low pressure line 16 downstream from differential pressure transmitter 22 to measure the fluid pressure on the low pressure side of restriction 12. In some instances it may be desirable for gauge pressure transmitter 24 to measure the fluid pressure on the high pressure side of restriction 12 and mounting plate
- Transmitters 22 and 24 normally include a pressure transducer and an associated electronic head for measuring the fluid pressure and then transmitting an electronic signal indicating the measured fluid pressure or differential pressure to a remote control site as shown at 26 where the fluid pressure may be recorded and/or visually displayed for monitoring.
- Transmitters 22 and 24 are well known in the art and are commercially available.
- differential pressure transmitter 22 may be purchased as Model 1
- Fluid pressure transmitters normally utilize a diaphragm for measurement of the fluid pressure and it is desirable to have the fluid pressure transmitter as close to the restriction 12 in main flow line 10 as possible. Pressure surges occur from compressor stations along the flow line and it is desirable to provide a large number of measurements that an average differential pressure can be obtained for increased accuracy. An increase or decrease in fluid pressure at restriction 12 effects a pressure pulse or wave which is received by the diaphragm of the transmitter and such a pulse travels at the speed of sound. Thus, a practically instantaneous measurement may be provided from a mounting of the measuring and transmitting assembly directly on the flow line which transports a gaseous fluid.
- the flow passages to the transmitters from the flow line should be at least around 3/8 inch diameter to minimize attenuation or amplification of the pressure pulse and the flow passages should be cleaned periodically by rodding.
- the fluid pressure from main flow line 10 to differential pressure transmitter 22 is preferably transmitted along a straight constant diameter flow path or passage thereby to obtain maximum precision in pressure measurement.
- Mounting plate 20 forms an important part of this invention and is positioned between manifold 18 and transmitters 22 and 24. Both transmitters 22 and 24 are mounte on mounting plate 20 with gauge pressure transmitter 24 being positioned on mounting plate 20 downstream from differential pressure transmitter 22.
- Fluid communication fro flow line 10 to transmitters 22 and 24 is controlled by manifold 18 which is a five valv manifold. As shown in Figures 3 and 4, manifold 18 has a body 28 with opposed flange 30 for connection to mounting plate 22 and a fitting generally indicated at 32 fo connection to fluid pressure taps or lines 14, 16 from flow line 10.
- Manifold 18 has a high pressure flow passage 36 and a low pressure flow passag 38 therethrough in communication with respective pressure lines 14 and 16.
- Manifold 1 is available commercially as Model M65A from Anderson Greenwood & Company, Houston, Texas.
- Hand valves 40 movable between open and closed positions control flui flow from pressure lines 14 and 16 to transmitters 22, 24.
- Suitable block and bleed valve 41, 42 and 44 are provided for blocking or venting to atmosphere either the high pressur side or the low pressure side of transmitter 22 and 24.
- a connecting flow passage 4 extends between passages 36 and 38. For example, if desired to vent to atmosphere the lo pressure side, valves 40 and 44 are closed.
- valves 41 and 42 are opened to permi fluid flow from transmitters 22 and 24 through passages 38 and 46 to the vent port opene by valve 42.
- the high pressure side may be vented to atmosphere by closin valve 40 and opening valves 42 and 44. Bleeding of fluid from transmitters 22, 24 may b desired for repair or replacement, removal of contaminated fluids, or calibration, fo example.
- bolt 48 extend through openings 50 for securing plate 20 onto adjacent flange 30 of manifol 18 and for threading within aligned openings 52 of differential pressure transmitter 22
- Mounting plate 20 has an upper planar surface 53 on which transmitters 22 and 24 ar supported and a lower parallel planar surface 55 in contact with flange 30 of manifold 18
- Bolts 54 extend through openings 56 within aligned threaded openings 58 in gauge pressur transmitter 24 for mounting transmitter 24 thereon.
- Suitable elastomeric seal rings 60 ar mounted on grooves between plate 20 and transmitters 22, 24 for sealing therebetwee
- Low pressure port 62 is in straight axial alignment with low pressure flow passage 38 manifold 18 and high pressure port 64 is in straight axial alignment with high pressure flo passage 36 of manifold 18.
- Ports 62 and 64 are in fluid communication with suitabl diaphragms (not shown) in differential pressure transmitter 22 for measuring the differenti pressure.
- a low pressure port 66 is in fluid communication with a suitable diaphragm ( shown) in gauge pressure transmitter 24 for measuring the low pressure.
- a longitudin extending flow passage 68 extends the length of plate 20 and has end plugs 70 ther Transverse branch flow passage 72 having end plugs 74 extends between flow passage and low pressure ports 62 and 66 thereby to provide fluid communication between p 62 and 66.
- Port 76 is not a live port as shown in Figures 5 and 6 and is plugged at Port 66 is plugged at 79.
- a hand operated plug valve indicated generally at 80 has a plug 82 on extending end received within a tapered valve seat 84 in flow passage 68.
- Valve 82 shown in a closed position in Figure 5 as might be desired for venting or bleeding ga pressure transmitter 24 from manifold 18.
- gauge pressure transmitter 24 it may be desired for gauge pressure transmitter 24 to measure hi pressure instead of low pressure, and mounting plate 20 is adapted to be utilized for t purpose.
- a particular installation will normally be installed for measuring either hi pressure or low pressure and mounting plate 20 may be utilized for either installati without the requirement of having separate mounting plate.
- Plate 20 may be rotated 18 in a horizontal plane, relative to manifold 18 and transmitters 22, 24 as viewed in Fig 2. In this position, port 66 would be beneath differential pressure transmitter 22 in fl communication with high pressure line 14 upon removal of plug 79 and port 62 would beneath gauge pressure transmitter 24 in fluid communication with port 66 through line Port 76 would be beneath differential pressure transmitter 22 in fluid communication w low pressure line 16 upon removal of plug 78.
- gauge pressure transmitter 24 wo be measuring the high fluid pressure in main flow line 10. It is noted in Figure 1 t pressure lines 14 and 16 are shown schematically as extending on opposite sides mounting plate 20 in order to illustrate fluid communication between main flow line 10 a differential pressure transmitter 22. It is noted that ports 66, 76 are positioned on plate in symmetrical relation to ports 62 and 66.
- FIG. 7-10 another embodiment of this invention is sho mounted on a stand indicated generally at 88 and positioned adjacent main flow line 1
- a stand or separate support may be desirable when main flow line 10 is subjected substantial vibration from pressure surges or the like.
- a support bracket 89 secured stand 88 supports a manifold 18A thereon and high and low pressure lines 14 and extend to manifold 18A from an associated main flow line (not shown).
- a ma flow line such as a pipeline, will vibrate and it is desirable to mount any instrumentation on a separate stand adjacent the flow line.
- Manifold 18A is a five valve manifold similar to manifold 18 in the embodiment of Figures 1-6.
- Mounting plate 20A is bolted by bolts 48A to manifold 18A through openings 50A.
- Differential pressure transmitter 22A is in fluid communication with high pressure line 14A through port 62 A and with low pressure line 16A through port 64A. Suitable bolts (not shown) secure differential pressure transmitter 22A to the upper planar surface 53A of mounting plate 20A.
- Gauge pressure transmitter 24A has a flange 90 secured by bolts 92 to a side of mounting plate 20A.
- a fluid passage 68A in communication with port 62A provides low pressure fluid to gauge pressure transmitter 24A for measurement.
- transmitters 22A and 24A extend at right angles to each other.
- mounting plate 20A may be rotated along with differential pressure transmitter 24A 180° so that port 62 A is in fluid communication with high pressure line 14.
- a manifold 18B is mounted on a side of main flow line 10 at restriction 12 and supports mounting plate 20B.
- Differential pressure transmitter 22B and gauge pressure transmitter 24B are supported on planar surface 53B of mounting plate 20B.
- Mounting plate 20B is similar to mounting plate 20 of the embodiment of Figures 1-6 and extends in a generally horizontal direction.
- FIG. 13 an additional embodiment of the present invention is illustrated in which a mounting plate 20C is secured to manifold 18C supported from a side of flow line 10.
- Differential pressure transmitter 22C and gauge pressure transmitter 24C are supported on planar surface 53C of mounting plate 20C which extends in a generally vertical direction.
- Transmitters 22C and 24C extend in opposite direction from each other.
- Mounting plate 20C is similar to mounting plate 20 shown in the embodiment of Figures 1-6.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Measuring Fluid Pressure (AREA)
- Measuring Volume Flow (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/615,126 US5036884A (en) | 1990-11-19 | 1990-11-19 | Mounting means for fluid pressure transmitters |
US615,126 | 1990-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992008955A1 true WO1992008955A1 (en) | 1992-05-29 |
Family
ID=24464098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1991/008620 WO1992008955A1 (en) | 1990-11-19 | 1991-11-19 | Mounting means for fluid pressure transmitters |
Country Status (5)
Country | Link |
---|---|
US (2) | US5036884A (en) |
EP (1) | EP0558650A4 (en) |
AU (1) | AU643649B2 (en) |
CA (1) | CA2088509C (en) |
WO (1) | WO1992008955A1 (en) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5111840A (en) * | 1991-03-14 | 1992-05-12 | Applied Power Inc. | Modular valve |
US5292155A (en) * | 1992-04-06 | 1994-03-08 | Keystone International Holdings Corp. | Method and apparatus for mounting an instrument assembly on a main flow line |
JPH05296867A (en) * | 1992-04-23 | 1993-11-12 | Hitachi Ltd | Differential pressure transmitter |
US5277224A (en) * | 1993-03-02 | 1994-01-11 | Century Industries Inc. | Five valve manifold for use with a pressure sensing apparatus |
US5494071A (en) * | 1994-06-03 | 1996-02-27 | Keystone International Holdings Corp. | Mounting system for pressure transmitters |
US5583294A (en) * | 1994-08-22 | 1996-12-10 | The Foxboro Company | Differential pressure transmitter having an integral flame arresting body and overrange diaphragm |
JP3822237B2 (en) | 1994-12-08 | 2006-09-13 | ローズマウント インコーポレイテッド | Manifold for pressure transmitter |
GB9425463D0 (en) * | 1994-12-16 | 1995-02-15 | Wood Group Production Technolo | Flowmeter |
US5655560A (en) * | 1994-12-16 | 1997-08-12 | Affymax Technologies N.V. | Clog-free valving system |
US5722457A (en) * | 1995-10-23 | 1998-03-03 | Wilda; Douglas W. | Integrated manifold for coplanar pressure transmitter |
US5709247A (en) * | 1995-12-15 | 1998-01-20 | Hutton; Peter B. | Multiple valve manifold for use with a pressure processing apparatus |
US5868155A (en) * | 1996-03-13 | 1999-02-09 | Hutton; Peter B. | Valve manifold system |
US5668322A (en) * | 1996-06-13 | 1997-09-16 | Rosemount Inc. | Apparatus for coupling a transmitter to process fluid having a sensor extension selectively positionable at a plurality of angles |
US5720317A (en) * | 1996-08-21 | 1998-02-24 | Pgi International, Ltd. | Low profile flanged manifold valve |
US5988203A (en) * | 1997-10-01 | 1999-11-23 | Hutton; Peter B. | Two-piece manifold |
USD406320S (en) * | 1997-10-29 | 1999-03-02 | Tyco Flow Control, Inc. | Manifold |
USD415703S (en) * | 1997-12-04 | 1999-10-26 | Hutton Peter B | Manifold |
USD410398S (en) * | 1997-12-04 | 1999-06-01 | Hutton Peter B | Manifold |
USD407984S (en) * | 1997-12-04 | 1999-04-13 | Hutton Peter B | Manifold |
US6035724A (en) * | 1998-02-02 | 2000-03-14 | Hewson; John E. | Differential pressure instrument support manifold having rotary mode selection system |
US6000427A (en) | 1998-10-19 | 1999-12-14 | Hutton; Peter B. | Manifold for use with dual pressure sensor units |
US6079443A (en) * | 1998-10-19 | 2000-06-27 | Hutton; Peter B. | Instrument valve manifolds for use with pressure transmitters |
USD423387S (en) * | 1998-10-19 | 2000-04-25 | Hutton Peter B | Instrument manifolds for use with pressure transmitters |
GB2362873B (en) * | 2000-06-01 | 2005-05-04 | Imi Cornelius | Apparatus to control fluid flow rates |
GB0101241D0 (en) * | 2001-01-17 | 2001-02-28 | Walker Filtration Ltd | Electronic sensing device |
MXPA03011356A (en) * | 2001-06-08 | 2004-03-19 | Rib Loc Australia | Hydraulic control arrangement for a pipe relining machine. |
US6705173B1 (en) * | 2001-09-05 | 2004-03-16 | Autoquip, Inc. | Air flow rate meter |
US6688184B2 (en) * | 2002-02-01 | 2004-02-10 | Hamilton Sunstrand | Sensor manifold for a flow sensing venturi |
GB2391278A (en) * | 2002-07-30 | 2004-02-04 | David Williams | Pipe Coupling |
DE10316033A1 (en) * | 2003-04-07 | 2004-10-21 | Endress + Hauser Gmbh + Co. Kg | Relativdruckmeßumformer |
JP2005156307A (en) * | 2003-11-25 | 2005-06-16 | Denso Corp | Pressure sensor |
US20050252563A1 (en) * | 2004-05-11 | 2005-11-17 | Primary Flow Signal, Inc. | Gate valve |
US7225832B2 (en) * | 2004-09-01 | 2007-06-05 | Phoenix Precision | Five valve manifold with angle bonnet details |
US7357040B2 (en) * | 2005-08-13 | 2008-04-15 | Joel David Bell | Torus wedge flow meter |
US7231831B1 (en) | 2006-01-17 | 2007-06-19 | Noshok, Inc. | Manifold valve and pressure transducer assembly |
US7721764B2 (en) * | 2006-10-13 | 2010-05-25 | Rosemount Inc. | Process pressure measurement system with improved venting |
US7398695B2 (en) * | 2006-10-27 | 2008-07-15 | Unique Industrial Product Company | Universal converter plate for pressure transmitters |
US8365765B2 (en) * | 2007-09-10 | 2013-02-05 | Joel David Bell | Flow restrictor cartridge for fluid flow measurements |
US8701497B2 (en) * | 2012-03-22 | 2014-04-22 | Frederick H. Grenning | Fluid flow testing system |
DE102013114608A1 (en) * | 2013-12-20 | 2015-07-09 | Endress + Hauser Gmbh + Co. Kg | Relative pressure sensor |
WO2016080984A1 (en) * | 2014-11-19 | 2016-05-26 | Cummins, Inc. | A delta pressure sensing element for pressure port fittings |
US10386001B2 (en) | 2015-03-30 | 2019-08-20 | Rosemount Inc. | Multiple field device flange |
US9899108B2 (en) | 2015-03-30 | 2018-02-20 | Rosemount Inc. | Capillary connection through wall penetration |
US11022041B2 (en) * | 2015-10-13 | 2021-06-01 | Raytheon Technologies Corporation | Sensor snubber block for a gas turbine engine |
US10054472B1 (en) * | 2017-01-31 | 2018-08-21 | Joel David Bell | Fluid flow meter |
JP6857095B2 (en) * | 2017-07-05 | 2021-04-14 | サーパス工業株式会社 | Pressure detector |
US11187606B2 (en) * | 2017-11-09 | 2021-11-30 | Kulite Semiconductor Products, Inc. | Pressure transducer with integral bleed valve |
US20190323924A1 (en) * | 2018-04-20 | 2019-10-24 | Kai-Ee Inc. | Testing device for vehicles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2871881A (en) * | 1957-01-28 | 1959-02-03 | John E Hewson | Valve manifold |
US4453417A (en) * | 1982-03-08 | 1984-06-12 | Anderson, Greenwood & Company | Unitized measurement instrument connector apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3450157A (en) * | 1967-07-31 | 1969-06-17 | John E Hewson | Valve manifold |
CA990102A (en) * | 1973-06-25 | 1976-06-01 | Sydney C. Bias | Control device |
US4319492A (en) * | 1980-01-23 | 1982-03-16 | Anderson, Greenwood & Co. | Pressure transmitter manifold |
US4745810A (en) * | 1986-09-15 | 1988-05-24 | Rosemount Inc. | Flangeless transmitter coupling to a flange adapter union |
US4879912A (en) * | 1988-03-08 | 1989-11-14 | J. M. Huber Corporation | Unitized instrument manifold |
US4920626A (en) * | 1989-04-07 | 1990-05-01 | Precision General, Inc. | Stabilized connector flange for interconnecting an instrument manifold with an orifice plate assembly |
-
1990
- 1990-11-19 US US07/615,126 patent/US5036884A/en not_active Ceased
-
1991
- 1991-11-19 AU AU90961/91A patent/AU643649B2/en not_active Ceased
- 1991-11-19 EP EP92901422A patent/EP0558650A4/en not_active Withdrawn
- 1991-11-19 CA CA 2088509 patent/CA2088509C/en not_active Expired - Fee Related
- 1991-11-19 WO PCT/US1991/008620 patent/WO1992008955A1/en not_active Application Discontinuation
-
1992
- 1992-06-23 US US07/903,141 patent/USRE34610E/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2871881A (en) * | 1957-01-28 | 1959-02-03 | John E Hewson | Valve manifold |
US4453417A (en) * | 1982-03-08 | 1984-06-12 | Anderson, Greenwood & Company | Unitized measurement instrument connector apparatus |
Non-Patent Citations (1)
Title |
---|
See also references of EP0558650A4 * |
Also Published As
Publication number | Publication date |
---|---|
USRE34610E (en) | 1994-05-17 |
US5036884A (en) | 1991-08-06 |
CA2088509C (en) | 1997-01-07 |
AU9096191A (en) | 1992-06-11 |
AU643649B2 (en) | 1993-11-18 |
CA2088509A1 (en) | 1992-05-20 |
EP0558650A4 (en) | 1997-07-16 |
EP0558650A1 (en) | 1993-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU643649B2 (en) | Mounting means for fluid pressure transmitters | |
CA2383322C (en) | Differential pressure flow meter with integrated pressure taps | |
US4582089A (en) | Valve manifold having a removable flange | |
US5920016A (en) | Apparatus for coupling a transmitter to process fluid | |
US4879912A (en) | Unitized instrument manifold | |
CA1260799A (en) | Valve manifold for a differential pressure transmitter | |
EP0094429B1 (en) | Apparatus for conveying fluid pressures to a differential pressure transducer | |
US5209258A (en) | Apparatus and method for minimizing pulsation-induced errors in differential pressure flow measuring devices | |
US5988203A (en) | Two-piece manifold | |
US5868155A (en) | Valve manifold system | |
US6000427A (en) | Manifold for use with dual pressure sensor units | |
US5725024A (en) | Manifold valve having controlled vent port integral with flange | |
GB2210169A (en) | Apparatus for monitoring or measuring differential fluid presure | |
CA2277138C (en) | Two-piece manifold | |
US3037384A (en) | Multi-range fluid flow measuring apparatus | |
CA2980546C (en) | Paddle style orifice plate with integral pressure ports | |
US6564651B1 (en) | Modular high-temperature gas flow sensing element for use with a cyclone furnace air flow measuring system | |
US6959610B1 (en) | Manual purge system for instrumentation flow element tubing | |
GB2217462A (en) | A removable fluid flow meter | |
EP4166824A1 (en) | An improved valve assembly | |
CA1310253C (en) | Unitized instrument manifold | |
WO2024218615A1 (en) | An improved valve assembly | |
GB2135784A (en) | Fluid flow indicating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2088509 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1992901422 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1992901422 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1992901422 Country of ref document: EP |